
Metric Spaces
MA222

David Preiss
d.preiss@warwick.ac.uk

Warwick University, Spring 2008/2009

Chapter 1. Metric Spaces

Definitions. A metric on a set M is a function d : M ×M → R
such that for all x , y , z ∈ M,

• d(x , y) ≥ 0; and d(x , y) = 0 if and only if x = y (d is positive)
• d(x , y) = d(y , x) (d is symmetric)
• d(x , z) ≤ d(x , y) + d(y , z) (d satisfies the triangle inequality)

The pair (M, d) is called a metric space.
If there is no danger of confusion we speak about the metric space
M and, if necessary, denote the distance by, for example, dM .
The open ball centred at a ∈ M with radius r is the set

B(a, r) = {x ∈ M : d(x , a) < r}

the closed ball centred at a ∈ M with radius r is
{x ∈ M : d(x , a) ≤ r}.

A subset S of a metric space M is bounded if there are a ∈ M and
r ∈ (0,∞) so that S ⊂ B(a, r).
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Normed linear spaces

Definition. A norm on a linear (vector) space V (over real or
complex numbers) is a function � · � : V → R such that for all
x , y ∈ V ,

• �x� ≥ 0; and �x� = 0 if and only if x = 0 (positive)
• �cx� = |c|�x� for every c ∈ R (or c ∈ C) (homogeneous)
• �x + y� ≤ �x�+ �y� (satisfies the triangle inequality)

The pair (V , � · �) is called a normed linear (or vector) space.

Fact 1.1. If � · � is a norm on V then d(x , y) = �x − y� is a metric
on V .

Proof. Only the triangle inequality needs an argument:

d(x , z) = �x − z� = �(x − y) + (y − z)�
≤ �x − y�+ �y − z� = d(x , y) + d(y , z)
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Examples

Example (Euclidean n spaces). Rn (or Cn) with the norm

�x� =

����
n�

i=1

|xi |2 so with metric d(x , y) =

����
n�

i=1

|xi − yi |2

Example (n spaces with �p norm, p ≥ 1). Rn (or Cn) with the
norm

�x�p =

� n�

i=1

|xi |p
� 1

p

so with metric dp(x , y) =

� n�

i=1

|xi − yi |p
� 1

p

Example (n spaces with max, sup or �∞ metric). Rn (or Cn)
with the norm

�x�∞ = max n
i=1|xi | so with metric d∞(x , y) = max n

i=1|xi − yi |
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Balls in �p norms

Balls in R2 with the �1, � 3
2
, �2, �4 and �∞ norms.
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Convexity of �p balls
We show that the unit ball (and so all balls) in �p norm are convex.
(This is an important fact, although for us it is only a tool for proving
the triangle inequality for the �p norms.) So we wish to prove:
If �x�p, �y�p ≤ 1, α,β ≥ 0 and α + β = 1 then �αx + βy�p ≤ 1.

Proof for p < ∞; for p = ∞ it is left as an exercise.
Since the function |t |p is convex (here we use that p ≥ 1!),

|αxi + βyi |p ≤ α|xi |p + β|yi |p.

Summing gives
n�

i=1

|αxi + βyi |p ≤ α
n�

i=1

|xi |p + β
n�

i=1

|yi |p ≤ α + β = 1.

So �αx + βy�p ≤ 1, as required.

MA222 – 2008/2009 – page 1.5

Proof of triangle inequality for �p norms

Proof. (In this proof we write � · � instead of � · �p.)
The triangle inequality �x + y� ≤ �x�+ �y� is obvious if x = 0 or
y = 0, so assume x , y �= 0. Let

x̂ =
x
�x� , ŷ =

y
�y� , λ =

1
�x�+ �y� , α = λ�x� and β = λ�y�.

Then
�x̂� = 1, �ŷ� = 1, α, β,λ > 0, α + β = 1

and
λ(x + y) = αx̂ + βŷ .

Since �αx̂ + βŷ� ≤ 1 by convexity of the unit ball,

�x + y� = (�x�+ �y�)�λ(x + y)�
= (�x�+ �y�)�αx̂ + βŷ� ≤ �x�+ �y�.
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Some exotic metric spaces

Example (Discrete spaces). Any set M with the metric

d(x , y) =

�
0 if x = y
1 if x �= y

Example (Sunflower or French railways metric in R2).

d(x , y) =

�
�x − y� if x , y lie on the same line passing through origin
�x�+ �y� otherwise

Example (Jungle river metric in R2).

d(x , y) =

�
|y1 − y2| if x1 = x2

|y1|+ |x1 − x2|+ |y2| otherwise
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Balls in sunflower metric

d(x , y) =

�
�x − y� x , y , 0 colinear
�x�+ �y� otherwise

centre (4, 3), radius 6
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Subspaces, product spaces
Subspaces. If M is a metric space and H ⊂ M, we may consider
H as a metric space in its own right by defining dH(x , y) = dM(x , y)
for x , y ∈ H. We call (H, dH) a (metric) subspace of M.
Agreement. If we refer to M ⊂ Rn as a metric space, we have in
mind the Euclidean metric, unless another metric is specified.
Warning. When subspaces are around, confusion easily arises.
For example, in R, the ball B(0, 1) is the interval (−1, 1) while in the
metric space [0, 2], the ball B(0, 1) is the interval [0, 1).
Products. If Mi are metric spaces, the product M1 × · · ·×Mn
becomes a metric space with any of the metrics

d(x , y) =

� n�

i=1

(di(xi , yi))
p

� 1
p

or max n
i=1di(xi , yi)

where 1 ≤ p < ∞.
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Function & Sequence Spaces
C([a, b]) with maximum norm. The set C([a, b]) of continuous
functions on [a, b] with the norm

�f� = sup
x∈[a,b]

|f (x)|
�

= max
x∈[a,b]

|f (x)|
�

C([a, b]) with Lp norm. Very different norms on C([a, b]) are defined
for p ≥ 1 by

�f�p =

�� b

a
|f (x)|p dx

� 1
p

Spaces �p. For p ≥ 1, the set of real (or complex) sequences such
that

�∞
i=1 |xi |p < ∞ becomes a normed linear space with

�x�p =

� ∞�

i=1

|xi |p
� 1

p
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Open and closed sets

Definition. A subset U of a metric space M is open (in M) if for
every x ∈ U there is δ > 0 such that B(x , δ) ⊂ U.
A subset F of a metric space M is closed (in M) if M \ F is open.
Important examples. In R, open intervals are open. In any metric
space M: ∅ and M are open as well as closed; open balls are open
and closed balls are closed. In R, [0, 1) is neither open nor closed.
Proof that open balls are open.

If x ∈ B(a, r), put δ = r − d(a, x) > 0.
Let y ∈ B(x , δ). Then

d(y , a) ≤ d(y , x) + d(x , a)

< δ + d(a, x) = r .

So y ∈ B(a, r), and so
B(x , δ) ⊂ B(a, r).
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Properties of open sets
Recall. U ⊂ M is open (in M) if for every x ∈ U there is δ > 0 such
that B(x , δ) ⊂ U.

Proposition 1.2. Let U1, . . . , Uk be open in M. Then
�k

i=1 Ui is
open in M.

Proof. Let x ∈
�k

i=1 Ui . Then x ∈ Ui and Ui is open, so there are
δi > 0 so that B(x , δi) ⊂ Ui . Let δ = min(δ1, . . . , δk ).Then
B(x , δ) ⊂ B(x , δi) ⊂ Ui for each i , hence B(x , δ) ⊂

�k
i=1 Ui .

Proposition 1.3. The union of any collection of sets open in M is
open in M.

Proof. Let U =
�

i∈I Ui where Ui are open and I is any index set.
Let x ∈ U. Then x ∈ Ui for some i . Since Ui is open, there is δ > 0
so that B(x , δ) ⊂ Ui . So B(x , δ) ⊂ Ui ⊂

�
i∈I Ui = U.
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Continuity

Definition. Let (M1, d1) and (M2, d2) be metric spaces and
f : M1 → M2.

• f is said to be continuous at a ∈ M1 if

(∀ε > 0)(∃δ > 0)(∀x ∈ M1)
�
d1(x , a) < δ ⇒ d2(f (x), f (a)) < ε

�

• f is said to be continuous (on M1) if it is continuous at every
point of M1

• f is said to be Lipschitz (continuous) if there is C ∈ R so that

d2(f (x), f (y)) ≤ Cd1(x , y) for all x , y ∈ M.

We also say that f is Lipschitz with constant C.

Fact 1.4. A Lipschitz continuous map is continuous.

Proof. Let δ = ε/C.
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Example: Distance from a set
For a nonempty A ⊂ M we define the distance of a point x ∈ M
from A by

d(x , A) = infz∈A d(x , z)

Fact 1.5. For any nonempty set A ⊂ M, the function x → d(x , A)
is Lipschitz with constant one.
Proof. Let x , y ∈ M. For every z ∈ A we have

d(x , A) ≤ d(x , z)d(x , z) ≤ d(x , y) + d(y , z).d(x , y) + d(y , z).

Hence, taking inf on the right side,

d(x , A) ≤ d(x , y) + d(y , A),

which is
d(x , A)− d(y , A) ≤ d(x , y).

Exchanging x , y and using symmetry gives the required inequality

|d(x , A)− d(y , A)| ≤ d(x , y).
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Examples of continuous function

Example. By 1.4, the function x → d(x , A), where ∅ �= A ⊂ M is
continuous. In particular x → d(x , a) (a ∈ M) is continuous.

Example. Since |xk − yk | ≤ �x − y� for x , y ∈ Rn, the projections
x ∈ Rn → xk are Lipschitz continuous.

Example. As for functions R → R, we can prove that sums,
products and ratios (provided the denominator is non-zero) of
continuous functions M → R are continuous.

Remark (and a warning). The above facts may be used to show
that various functions Rn → R are continuous. For example,

• The function (x , y) → x/(1 + x2 + y2) is continuous on R2.
• The function (x , y) → x/(x2 + y2) is not continuous on R2,

since it is not defined everywhere on R2!

When a similar
question was asked in an exam, this was a common error.
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Continuity and open sets
Recall that the preimage of U under f is f−1(U) = {x : f (x) ∈ U}.
Notice that use of f−1 does not mean that f has an inverse.

Theorem 1.6 (Key Theorem). A map f : M1 → M2 is continuous
iff for every open set U ⊂ M2, the set f−1(U) is open (in M1).
Proof. (⇒) Let x ∈ f−1(U). Then f (x) ∈ U. Hence, since U is
open, B(f (x), ε) ⊂ U for some ε > 0. Since f is continuous at x ,
there is δ > 0 such that d1(y , x) < δ implies d2(f (y), f (x)) < ε.
We show that B(x , δ) ⊂ f−1(U); this will mean that f−1(U) is open.
Let y ∈ B(x , δ). Then d1(x , y) < δ. Hence d2(f (y), f (x)) < ε, which
is f (y) ∈ B(f (x), ε) ⊂ U. So y ∈ f−1(U).
(⇐) Let x ∈ M1; we show that f is continuous at x .
Let ε > 0. Since B(f (x), ε) is open, f−1(B(f (x), ε)) is open.
Since x ∈ f−1(B(f (x), ε)), there is δ > 0 such that
B(x , δ) ⊂ f−1(B(f (x), ε)).
This means that y ∈ B(x , δ) implies f (y) ∈ B(f (x), ε), which is the
same as d1(y , x) < δ implies d2(f (y), f (x)) < ε.
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How show open/closed?

Question. Show that U = {(x , y) ∈ R2 : y > 0, x/y > 7} is open
in R2.
Answer. The functions f (x , y) = y and g(x , y) = x − 7y are
continuous and so U = f−1(0,∞) ∩ g−1(0,∞) is open.

Question. Show that open balls are open and closed balls are
closed.
Answer. The function f (x) = d(x , a) is continuous and so
B(a, r) = f−1(−∞, r) is open. The complement of the closed ball
{x : d(x , a) ≤ r} is f−1(r ,∞), hence open.

Question. Show that the preimages of closed sets under
continuous maps are closed.

Answer. Let f : M → N be continuous and F ⊂ N be closed. Then

M \ f−1(F ) = f−1(N \ F )

is open since N \ F is open, and so f−1(F ) is closed.
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Proofs of “open” using continuity

Question. Show that {(x , y) ∈ R2 : y/ sin(x2y3) > 2} is open.

Wrong Answer. The function f (x , y) = y/ sin(x2y3) is continuous
and the set is f−1(2,∞). This is wrong since f is not continuous,
since it is not defined everywhere on R2.

Answer. The set is

{(x ,y) ∈ R2 : sin(x2y3) > 0, y > 2 sin(x2y3)}
∪ {(x , y) ∈ R2 : sin(x2y3) < 0, y < 2 sin(x2y3)}

=
�
g−1(0,∞) ∩ h−1(0,∞)

�
∪

�
g−1(−∞, 0) ∩ h−1(−∞, 0)

�

where g(x , y) = sin(x2y3) and h(x , y) = y − 2 sin(x2y3) are
continuous. This set is open since pre-images of open intervals
under g and h are open, and finite intersections and unions
preserve openness.
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Convergence of sequences

Definition. We say that a sequence xk ∈ M converges to x ∈ M if
d(xk , x) → 0.

Fact 1.7. A sequence can have at most one limit.

Proof. If xk → x , y then d(x , y) ≤ d(x , xk ) + d(xk , y) → 0.
So d(x , y) = 0, implying that x = y .

Fact 1.8. xk → x iff for every open set U containing x there is K
such that xk ∈ U for all k ≥ K .

Proof. (⇒) Since U is open, there is r > 0 with B(x , r) ⊂ U.
Since xk → x , there is K so that d(xk , x) < r for k ≥ K .
It follows that xk ∈ B(x , r) and so xk ∈ U for k ≥ K .
(⇐) Let ε > 0. Then B(x , ε) is an open set, so there is K such that
xk ∈ B(x , ε) for k ≥ K . Hence d(xk , x) < ε for k ≥ K .
This means that d(xk , x) → 0, in other words that xk → x .
Note possible other forms of this Fact.

MA222 – 2008/2009 – page 1.19



Sequences and closed sets

Theorem 1.9. A subset F of a metric space M is closed iff for
every sequence xk ∈ F that converges to some x ∈ M we
necessarily have that x ∈ F.

Proof. (⇒) Let F be closed, xk ∈ F and xk → x ∈ M. If x /∈ F then
x ∈ M \ F which is open. So (by Fact 1.8) there is K such that
xk ∈ M \ F for k ≥ K . But this contradicts xk ∈ F .
(⇐) Let x ∈ M \ F . If B(x , 1/k) ⊂ M \ F for some k , we are done.
If not, then for every k there is xk ∈ B(x , 1/k) ∩ F . But then
d(xk , x) < 1/k → 0, so xk → x and F � xk → x /∈ F , contradicting
our assumption.

Continuity and sequences are related as in R, with the same proof.

Theorem 1.10. A function f : M1 → M2, where M1, M2 are metric
spaces, is continuous at x ∈ M1 iff f (xk ) → f (x) for every sequence
xk ∈ M1 such that xk → x.
Danger. We do not base our approach to continuity on this!!!
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Continuity in different metrics
The fact that continuity is described using open sets only (by
“preimages of open sets are open”) has the following immediate
corollaries that motivate the transition to topological spaces.
Observation. Let d1, d2 be two metrics on the same set M. The
identity map (f (x) = x for x ∈ M) is continuous from (M, d1) to
(M, d2) iff every d2 open set is d1 open.

Theorem 1.11. If d1, d2 are two metrics on the same set M, the
following statements are equivalent.
(1) For every metric space (N, d), every f : M → N is d1

continuous iff it is d2 continuous.
(2) For every metric space (N, d), every g : N → M is d1

continuous iff it is d2 continuous.
(3) d1 open and d2 open sets coincide.
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Equivalence of metrics

Definition. Two metrics d1, d2 on the same set M are called
topologically equivalent if d1 open and d2 open sets coincide.

Fact 1.12. If there are 0 < c, C < ∞ such that for all x , y ∈ M,

cd1(x , y) ≤ d2(x , y) ≤ Cd1(x , y),

then d1, d2 are topologically equivalent.

Proof. Let U be d2 open and x ∈ U. Find δ > 0 such that
Bd2(x , δ) ⊂ U. Then Bd1(x , δ/C) ⊂ Bd2(x , δ) ⊂ U, so U is d1 open.
The converse is similar.

Example. The norms � · �p in Rn are topologically equivalent.

Example. � · �1 and � · �2 in C[0, 1] are not topologically equivalent.

Example. On R, the Euclidean metric and the metric
d(x , y) = min(1, |x − y |) are topologically equivalent.
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Isometries and homeomorphisms
If f : M1 → M2 is a bijection such that d2(f (x), f (y)) = d1(x , y), we
would naturally consider that M1 and M2 are “the same” as metric
spaces, since f just renames the points. In this situation we say
that M1 and M2 are isometric and f is an isometry.
If f : M1 → M2 is a bijection such that U is open in M1 iff f (U) is
open in M2, then M1 and M2 are “the same” not as metric spaces,
but behave in the same way for questions concerning continuity.
(This is just another way of saying the main point of the previous
part that continuity can be fully described with the help of open
sets.) In this situation we say that M1 and M2 are homeomorphic
and f is a homeomorphism.
Notice also that the above condition of preservation of open sets is
equivalent to saying that f and f−1 are both continuous.

Example. (0, 1) and R are not isometric but are homeomorphic.
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Topological properties
If P is some property which makes sense for every metric space,
we say that it is a topological property of metric spaces (or
topological invariant of metric spaces) if whenever M has property
P so has every metric space homeomorphic to it.

Examples (of topological properties).
• M is open in M; M is closed in M.
• M is finite; countable; uncountable.
• M has an isolated point, ie, {x} is open for some x ∈ M.
• M has no isolated points.
• Every subset of M is open.

Examples (of non-topological properties).
• M is bounded.
• M is totally bounded, ie, for every r > 0 there is a finite set F

such that every ball with radius r contains a point of F .
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Main points of Chapter 1

• Definition of metric spaces. Metrics induced by norms.

• Examples: Euclidean spaces, �p norms, proof of the triangle inequality.

• Examples: Discrete spaces, some exotic spaces, function spaces.

• Subspaces and product spaces

• Open and closed sets. Union and intersection. Openness of open balls.

• Continuity. Lipschitz continuity.

• Examples: Distance from a set, projections. Algebraic operations.

• A function is continuous if and only if preimages of open sets are open.

• Convergence of sequences. Description using open sets.

• Closed sets are those from which sequences cannot escape.

• Equivalence of metrics. Isometries. Homeomorphisms. Topological properties.
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Chapter 2. Topological spaces

Definition. Topology on a set T is a collection T of subsets of T ,
whose members are called open sets, such that
(T1) ∅ and T are open;

(T2) the intersection of any finite collection of open sets is open;
(T3) the union of any collection of open sets is open.
The pair (T , T ) is called a topological space.
If there is no danger of confusion we speak about the topological
space T and call the open sets T -open.

Example (Topology induced by a metric). If d is a metric on
T , the collection of all d-open sets is a topology on T .

Example (Discrete topologies). All subsets of T are open.

Example (Indiscrete topologies). Only ∅ and T are open.
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Defining a topology via closed sets
Definition. A set F in a topological space T is called closed if its
complement is open.
By De Morgan Laws, the collection F of closed sets has the
following properties.
(T1) ∅ and T are closed;
(T2) the union of any finite collection of closed sets is closed;
(T3) the intersection of any collection of closed sets is closed.

Conversely, again by De Morgan Laws, if a collection of subsets of
T satisfies these conditions, there is unique topology on T for
which it becomes the collection of closed sets.

Example (Zariski-type topology). Closed sets consist of finite
subsets of T , together with T .
Warnings. Sets are not doors. They may be neither open nor
closed. And they may be simultaneously open and closed.
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Bases and sub-bases

Definition. A basis for a topology T on T is a collection B ⊂ T
such that every set from T is a union of sets from B.

Example. In a metric space, open balls form a basis for the
topology induced by the metric.

Proof. In a metric space, a set U is open iff for every x ∈ U there
is δx > 0 such that B(x , δx) ⊂ U. Hence U =

�
x∈U B(x , δx).

Definition. A sub-basis for a topology T on T is a collection
B ⊂ T such that every set from T is a union of finite intersections
of sets from B.

Example. The collection of intervals (a,∞) and (−∞, b) is a
sub-basis for the (Euclidean) topology of R.
Funny agreements. In these definitions, we understand the union
of an empty collection of sets as the empty set ∅, and the
intersection of an empty collection of sets as the whole space T .
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Defining a topology via bases
Immediately from the definition of basis we have

Proposition 2.1. If B is any basis for the topology of T then
(B1) T is the union of sets from B,
(B2) if B, D ∈ B then B ∩ D is a union of sets from B.

Proposition 2.2. If B is any collection of subsets of a set T
satisfying (B1) and (B2) then there is a unique topology on T with
basis B. Its open sets are exactly the unions of sets from B.

Proof. By definition of basis, if such a topology exists, it must be
the collection T of the unions of sets from B. So we just have to
show that this T is a topology:
(T1) ∅, T ∈ T by Agreement and (B1), respectively.
(T2) If U =

�
i∈I Bi and V =

�
j∈J Dj where Bi , Dj ∈ B then

U ∩ V =
�

i,j Bi ∩ Dj , which is a union of sets from B by (B2).
(T3) A union of unions of sets from B is a union of sets from B.
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Defining a topology via sub-bases

Proposition 2.3. If B is any collection of subsets of a set T then
there is a unique topology on T with sub-basis B. Its open sets are
exactly the unions of finite intersections of sets from B.

Proof. By the definition of sub-basis, any topology with sub-basis
B must have the collection D of finite intersections of sets from B
as a basis. The only point to observe is that D satisfies (B1), (B2).
Then Proposition 2.2 immediately implies that there is unique
topology with basis D. This topology is also the unique topology
with sub-basis B.

Definition. If T0 and T1 are two topologies on the same set, we
say that T0 is coarser than T1, or that T1 is finer than T0, if T0 ⊂ T1.
Notice that the topology with the sub-basis B can be described as
the coarsest topology containing B.
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The topology of pointwise convergence
The topology of pointwise convergence on the set F(X ) of real
functions on a set X is defined as the topology with a sub-basis
formed by the sets {f ∈ F(X ) : a < f (x) < b} (x ∈ X , a, b ∈ R).
A set from the sub-basis consists of all functions that pass through
one vertical interval.
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Subspaces and product spaces
Subspaces. If (T , T ) is a topological space and S ⊂ T , we define
the subspace topology on S as TS = {(U ∩ S) : U ∈ T }.
We call (S, TS) a (topological) subspace of T .
Products. If (T1, T1), (T2, T2) are topological spaces, the product
topology on T1 × T2 is the topology T with basis

B = {U1 × U2 : U1 ∈ T1, U2 ∈ T2}

We call (T1 × T2, T ) the (topological) product of T1, T2.
The definition extends to any number of factors. In particular, Rn is
the topological product of R, . . . , R.
Warning. Usually there are many more sets in the product than
just those from B.
Remark. For metric spaces, we can either take subspaces and
products as defined above, or first take them in the sense of metric
spaces and then use the induced topology. Fortunately, we get
precisely the same topologies!
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Neighbourhood, interior and closure.

Definitions. A neighbourhood of x ∈ T is a set H ⊂ T for which
there is an open set U such that x ∈ U ⊂ H.
The closure H of a set H ⊂ T is the set of points x such that every
neighbourhood of x meets H.
The interior Ho is formed by points x of which H is a
neighbourhood.

Fact 2.4. Ho = T \ (T \ H) and H = T \ (T \ H)o.

Proof. If x ∈ Ho, H is a neighbourhood of x not meeting T \ H, so
x /∈ (T \ H), so x ∈ T \ (T \ H).
If x ∈ T \ (T \ H), then x /∈ (T \ H), which means that there is a
neighbourhood of x not meeting T \ H. So this neighbourhood of x
is contained in H, and so x ∈ Ho.

Examples. In R: (a, b) = [a, b], [a, b]o = (a, b), Q = R, Qo = ∅,
Note that in [a, b], [a, b]o = [a, b] and in (a, b), (a, b) = (a, b).
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Closure, interior, boundary
Using the definition of Ho and the formula H = T \ (T \ H)o, we get

• Ho is open and H is closed
• Ho is the largest open subset and H is the least closed

superset of H
• H is open iff H = Ho and H is closed iff H = H

• (Ho)o = Ho and H = H
• H ⊂ K implies Ho ⊂ K o and H ⊂ K
• (H ∩ K )o = Ho ∩ K o and H ∪ K = H ∪ K

Definition. The boundary ∂H of H is the set of points x whose
every neighbourhood meets both H and its complement.

Fact 2.5. ∂H = H ∩ (T \ H) is a closed set.

Examples. In R, ∂(a, b) = ∂[a, b] = {a, b}, ∂Q = R.
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Boundaries on pictures
The (open) set

{(x , y) ∈ R2 : (x2 + y2)3 < (x2 − y2)2}

and its boundary

{(x , y) ∈ R2 : (x2 + y2)3 = (x2 − y2)2}
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The Cantor set
Step 0. Start with the interval [0, 1] and call it C0.
Step 1. Remove the middle third; two closed intervals remain.

. . .
Step N. From each of the 2N−1 remaining intervals remove the

(open) middle third; 2N closed intervals remain.

• The set C =
�∞

n=0 Cn is the (ternary) Cantor set.
• It is a closed set with empty interior, so ∂C = C.
• Notice that C has no isolated points.
• It has uncountably many points, so many more than just the

end-points of the removed intervals. (A proof may be given in
Chapter 5.)
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Continuity
Motivated by description of continuity in metric spaces using open
sets, we define:

Definition. A map f : T1 → T2 between two topological spaces is
said to be continuous if for every open set U ⊂ T2, the set f−1(U)
is open (in T1).

Examples. Constant maps. Identity map. Continuous maps
between metric spaces. Any map of a discrete space to any
topological space.

Example. If T is an indiscrete topological space then f : T → R is
continuous iff it is constant.

Fact 2.6. Suppose that T1, T2 are topological spaces and B is a
sub-basis for T2. Then f : T1 → T2 is continuous iff f−1(B) is open
for every B ∈ B.

Proof. Preimages preserve unions and intersections.
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Continuity, composition and product spaces

Theorem 2.7. If T1, T2, T3 are topological spaces and f : T1 → T2
and g : T2 → T3 are continuous then g ◦ f : T1 → T3 is continuous.

Proof. If U is open in T3, g−1(U) is open in T2 by continuity of g.
So (g ◦ f )−1(U) = f−1(g−1(U)) is open in T1 by continuity of f .

Definition. The first projection of T1 × T2 onto T1 is defined by
π1(x , y) = x ; the second projection π2 is defined similarly.

Fact 2.8. The projections π1 and π2 are continuous.

Proof. If U1 ⊂ T1, then π−1
1 (U1) = U1 × T2.

Proposition 2.9. f = (f1, f2) : T → T1 × T2 is continuous iff f1 and
f2 (ie π1 ◦ f and π2 ◦ f ) are continuous.

Proof. (⇒) Since πi are continuous, so are fi = πi ◦ f .
(⇐) If Ui are open in Ti , f−1(U1 × U2) = f−1

1 (U1) ∩ f−1
2 (U2) is open

in T . So preimages of sets from a basis are open. Now use 2.6.
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Continuity and algebraic operations.

Example. If f , g : T → R are continuous then cf (c ∈ R), |f |,
max(f , g), min(f , g), f + g, fg and, if g is never zero, f/g are all
continuous.
Proof for f + g. Notice (f (x) + g(x) > a) ⇐⇒ (f (x) > a− g(x))

⇐⇒ (∃r)((f (x) > r) & (r > a− g(x)))
⇐⇒ (∃r)((f (x) > r) & (g(x) > a− r)).

Hence

{x : f (x) + g(x) > a} =
�

r∈R

�
{x : f (x) > r} ∩ {x : g(x) > a− r}

�
.

Similarly for {x : f (x) + g(x) < b}. Now use 2.6.

Another proof for f + g. The function h : (x , y) ∈ R2 → x + y ∈ R
is continuous. (Since R2, R are metric spaces, this may be proved
by observing that it is a Lipschitz function or by other methods of
metric spaces.) The map Φ : x ∈ T → (f (x), g(x)) is continuous by
Proposition 2.9. Now notice that f + g = h ◦ Φ.
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Examples of proofs of continuity

Question. Show that (x , y) ∈ R2 → (x + y , sin(x2y3)) ∈ R2 is
continuous.
Answer. (x , y) → x and (x , y) → y are continuous (projections).
So are (x , y) → x + y (sum), (x , y) → x2y3 (products) and
(x , y) → sin(x2y3) (composition with t ∈ R → sin(t)). Hence both
components of our function are continuous, so it is continuous.

Question. Show that the identity map from C[0, 1] with the
topology Tm induced by the maximum norm to the topology of
pointwise convergence Tp is continuous.

Answer. By Fact 2.6, it suffices to show that for each set U from a
sub-basis of Tp, U = id−1(U) is open in Tm. Take U of the form
U = {ϕ : a < ϕ(x) < b} for some x ∈ [0, 1] and a, b ∈ R.
For ϕ ∈ U denote δϕ = min{ϕ(x)− a, b − ϕ(x)} > 0.
If �ψ − ϕ� < δϕ then a < ψ(x) < b. Hence Bm(ϕ, δϕ) ⊂ U, implying
that U =

�
ϕ∈U Bm(ϕ, δϕ) is open in Tm.
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Direct proofs of open/not open

Question. Show that the set S = {ϕ ∈ C[0, 1] : ϕ > 0} is open in
the topology Tm induced by the maximum norm but has empty
interior in the topology of pointwise convergence Tp.

Answer. S =
�

ϕ∈S Bm(ϕ, δϕ) ∈ Tm where δϕ = minx∈[0,1] ϕ(x).

If U is in Tp and contains a function ψ ∈ S, there are
x1, . . . xn ∈ [0, 1] and a1, b1, . . . , an, bn ∈ R such that

ψ ∈ {γ : ai < γ(xi) < bi for i = 1, . . . n} ⊂ U

But then any function which equals to ψ at x1, . . . xn but attains a
negative value is in U. So U �⊂ S, so ψ is not in the interior of U.

Question. Show that the identity map from (C[0, 1], Tp) to
(C[0, 1], Tm) is not continuous.

Answer. We have to find a set in Tm which is not in Tp. By the
previous question, {ϕ ∈ C[0, 1] : ϕ > 0} has this property.
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Defining topologies by continuity requirements
If Tj (j ∈ J) are topological spaces, T is any set and fj : T → Tj any
mappings, the projective (or initial) topology on T is defined as the
coarsest topology for which all fj are continuous.
It can be equivalently described as the topology with the sub-basis
f−1
j (Uj) where j ∈ J and Uj is open in Tj .

Example. The topology of pointwise convergence on F(X ) is the
coarsest topology making all maps f ∈ F(X ) → f (x) continuous.

Definitions. Let Tj , j ∈ J (where J is any set) be topological
spaces. By their product we understand:

• the set T =
�

j∈J Tj of functions x on J such that x(j) ∈ Tj ;
• the coarsest topology on T for which the coordinate

projections, πj : T → Tj , πj(x) = x(j) are all continuous.

Example. If all Tj = R, then
�

j∈J Tj (often denoted by RJ ) is
exactly F(J) with the topology of pointwise convergence.
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Quotient spaces
If Tj (j ∈ J) are topological spaces, S is any set and fj : Tj → S any
mappings, the inductive (or final) topology on S is defined as the
finest topology for which all fj are continuous.
This means that U ⊂ S is open iff f−1

j (U) is open in Tj for every j .
In the special case when T is a topological space, S is any set and
f : T → S is surjective, this topology is called the quotient topology.
This situation often occurs when an equivalence relation on the
space T is given (“gluing some points together”) and f maps T
onto the set of its equivalence classes.

Examples.
• Gluing together two opposite sides of a square gives a cylinder.
• Gluing together two opposite ends of a cylinder gives a torus.
• R, with x ∼ y iff y − x ∈ Z, becomes a circle.
• R, with x ∼ y iff y − x ∈ Q becomes a large indiscrete space.
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Metrizability
Agreement. If we refer to a metric space as a topological space,
we have in mind the topology induced by the metric, unless
another topology is specified.
Agreement. In particular, if we refer to a subset of Rn as a
topological space, we have in mind the topology induced by
Euclidean metric.

Definition. The topological space (T , T ) is called metrizable if
there is a metric d on T such that T is exactly the collection of
d-open sets.

Fact of Life. There are many non-metrizable topologies, and some
of them are not only interesting but also important.
Idea. To prove that a given topology is non-metrizable, we find a
property of topological spaces that holds for all metrizable
topologies but fails for the given space.
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Hausdorff property and non-metrizable topologies

Fact 2.10. Any metrizable topology has the Hausdorff property
that for any two distinct points x , y there are disjoint open sets U, V
containing x , y respectively.

Proof. Let r = 1
2d(x , y), U = B(x , r) and V = B(y , r).

Example. If T has at least two points, the indiscrete topology on
T is not metrizable.
Proof. Take any distinct x , y ∈ T . Then the only open set
containing x is T , which contains y as well.

Example. If T is an infinite set, the Zariski topology on T is not
metrizable.
Proof. Suppose it has the Hausdorff property. Take any distinct
x , y ∈ T and disjoint Zariski open sets U, V containing x , y
respectively. Then T \U is closed and does not contain x , so T \U
is finite. Similarly, T \ V is finite. But then T ⊂ (T \ U) ∪ (T \ V ) is
finite, a contradiction.
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Normal topological spaces.

Definition. T is called normal if for any disjoint closed F0, F1 ⊂ T
there are disjoint open G0, G1 ⊂ T such that F0 ⊂ G0 and F1 ⊂ G1.

Fact 2.11. Metrizable spaces are normal: take
G0 = {x : d(x , F0) < d(x , F1)} and G1 = {x : d(x , F1) < d(x , F0)}.

Example. The space R with the topology T whose subbasis
consists of open intervals together with the set Q is Hausdorff but
not normal. In particular, it is not metrizable.
Proof. We have T = {G ∪ (H ∩Q) : G, H ∈ E} where E the
Euclidean topology of R. The space (R, T ) is Hausdorff since any
two different points are contained in disjoint open intervals.
The sets {0} and R \ Q are disjoint and T -closed. Suppose that
0 ∈ U0 = G0 ∪ (H0 ∩Q) and R \ Q ⊂ U1 = G1 ∪ (H1 ∩Q). Then
there is an open interval I such that (I ∩Q) ⊂ U0. But G1 ⊃ R \Q is
an E-open set and G1 ∩ I �= ∅, so G1 ∩ (I ∩Q) �= ∅ , implying that
U1 ∩ U0 �= ∅. Hence (R, T ) is not normal.
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Continuous functions on normal spaces.

Theorem 2.12 (Urysohn’s Lemma). Suppose that F0, F1 are
disjoint closed subsets of a normal topological space T . Then
there is a continuous function f : M → R such that

• f (x) = 0 for every x ∈ F0,
• f (x) = 1 for every x ∈ F1.

We will not prove Urysohn’s Lemma here, but only observe that if T
is metrizable, such f may be defined by the formula

f (x) =
d(x , F0)

d(x , F0) + d(x , F1)

Theorem 2.13 (Tietze’s Theorem). Every real-valued function
defined and continuous on a closed subset of a normal topological
space T may be extended to a continuous function on the whole T .

We prove Tietze’s Theorem (from Urysohn’s Lemma) in Chapter 5.
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Closure in metrizable spaces
Recalling the description of convergence in metric spaces using
open sets, we define that a sequence xk ∈ T converges to x ∈ T if
for every open set U � x there is K such that xk ∈ U for k > K .

Example. In an indiscrete space, every sequence converges to
every point.

Fact 2.14. In a metrizable space T , the closure S of S ⊂ T is the
set of limits of convergent sequences whose terms are in S.

Proof. Let d be a metric inducing the topology of T . Since S is
closed, we know from Theorem 1.9 that every convergent
sequence from S ⊂ S has its limit in S.
Conversely, if x ∈ S, then for every k the ball B(x , 1/k), being
open, meets S. So we may take xk ∈ B(x , 1/k) ∩ S and get a
sequence in S converging to x .
Warning. In general topological spaces, this is false.
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Some notions of descriptive set theory.

Definitions. A subset S of a topological space T is
• Fσ if it is a union of countably many closed sets
• Gδ if it is an intersection of countably many open sets
• Fσδ if it is an intersection of countably many Fσ sets
• etc

Examples. Every closed set is Fσ, every open set is Gδ. The
complement of an Fσ set is Gδ. The complement of a Gδ set is Fσ.
In R: Q is Fσ and R \ Q is Gδ but Q is not Gδ and R \ Q is not Fσ.
(If you cannot prove the last two statements, try it again after you
learn Baire’s Theorem in Chapter 5.)

Theorem 2.15. In a metrizable space, every closed set is Gδ and
every open set is Fσ.

Proof. If S is closed, then S =
�∞

k=1{x : d(x , S) < 1
k }.
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Application to non-metrizability

Fact 2.16. The space F [0, 1] of real-valued function on [0, 1] with
the topology of pointwise convergence is not metrizable.

Proof. If F [0, 1] were metrizable, the set {0} would be Gδ. Hence
we would have open Gk ⊂ F [0, 1] such that {0} =

�∞
k=1 Gk . By

definition of the topology of pointwise convergence, for each k we
can find a finite set Sk and εk > 0 such that

Gk ⊃ {f : |f (x)| < εk for x ∈ Sk}

But then the function

g(x) = 0 for x ∈
�∞

k=1 Sk and g(x) = 1 otherwise

is not identically zero and belongs to
�∞

k=1 Gk . A contradiction.

Idea of a different proof. Let S be the set of functions f ∈ F [0, 1]
such that {x : f (x) �= 1} is finite. Then S = F [0, 1] and there is no
sequence fk ∈ S such that fk → 0. Now use Fact 2.14.
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Big and small sets in topological spaces

Definitions. A subset S of a topological space T is
• (everywhere) dense in T if S = T
• nowhere dense in T if T \ S is dense in T
• meagre in T (or of the first category in T ) if it is a union of a

sequence of nowhere dense sets.

Examples. Q is dense in R. In R, one point sets are nowhere
dense. So Q is meagre in R. But R \ Q = ∅, so Q is not nowhere
dense in R. Notice that R \ Q is dense in R, so the closure in the
definition of “nowhere dense” cannot be removed.
Fact 2.17. A closed subset S of T is nowhere dense in T iff T \ S
is dense in T .
Proof. If S is closed then S = S.

Fact 2.18. A subset S of T is nowhere dense in T iff S
o

= ∅.
Proof. S

o
= T \ (T \ S).
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Homeomorphisms and topological properties

Definitions. A bijection f : T1 → T2 is a homeomorphism if U is
open in T1 iff f (U) is open in T2. If there is a homeomorphism
f : T1 → T2, we say that T1 and T2 are homeomorphic.

Simple facts. A bijection f : T1 → T2 is a homeomorphism iff f and
f−1 are both continuous. The inverse to a homeomorphism is a
homeomorphism and the composition of two homeomorphisms is
a homeomorphism.

Example. x → x/(1− |x |) is a homeomorphism of (−1, 1) onto R.

Question. Show that [0, 1] and R are not homeomorphic.

Answer. We know that every continuous function on [0, 1] is
bounded while this is clearly false for R.
Moral. To show that two spaces are not homeomorphic we found a
topological invariant, ie a property of topological spaces preserved
by homeomorphisms, that one space has and the other doesn’t.

MA222 – 2008/2009 – page 2.27

Topological invariants

Definition. A property of topological spaces is a topological
invariant (or topological property) if it is preserved by a
homeomorphism.
They are (ultimately) defined in terms of set-theoretic properties
(preserved by bijections) and in terms of open sets.

Examples (Topological invariants).
• T is finite.
• T is a Hausdorff space (has the Hausdorff property).
• T is metrizable.
• The closure S of S ⊂ T is the set of limits of convergent

sequences whose terms are in S.
• Every continuous function on T is bounded.

Example (A non-topological invariant).
• I am an element of T .
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Main points of Chapter 2
• Topological spaces. Open and closed sets.

• Topology induced by a metric. Other examples of topological spaces.

• Bases and sub-bases. The topology of pointwise convergence.

• Subspaces and product spaces.

• Neighbourhoods, closure, interior, boundary.

• Continuity. Sufficiency of openness of preimages of elements of a sub-basis.

• Continuity of composition. Continuity of maps into product spaces.

• Preservation of continuity of real-valued functions by algebraic operations.

• Defining topologies by continuity requirements. Infinite products. Quotients.

• Metrizability. Non-metrizability via Hausdorff property.

• Normal topological spaces.

• Sequential closure.

• Some notions of descriptive set theory.

• Homeomorphisms and topological invariants.
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Chapter 3. Compactness

Definition. A topological space T is compact if every open cover
of T has a finite subcover.
Explanations. A cover of A is a collection U of sets whose union
contains A. A subcover is a subcollection of U which still covers A.
A cover is open if all its members are open.

Example. The family (a, 1], where 0 < a < 1, is an open cover of
(0, 1] which has no finite subcover.
Warning. Notice the word “every” in the definition of compactness.
Some finite covers always exist! (Eg, T is covered by {T}.)
Notice that if T is a subspace of another topological space S, the
definition speaks about sets open in T (so about a cover by
subsets of T ). However, it could be also interpreted as speaking
about covers of T by sets open in S. Fortunately, the two
interpretations lead to the same notion of compactness!
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Compactness of [a, b]

Theorem 3.1 (Heine-Borel). Any closed bounded interval [a, b]
in R is compact.

Proof. It will be convenient to admit intervals [x , x ] = {x}. Let U be
a cover of [a, b] by sets open in R. Let A denote the set of x ∈ [a, b]
such that [a, x ] can be covered by a finite subfamily of U . Then
a ∈ A (a point is easy to cover), so A �= ∅ and bounded above by b.
Let c = sup A. Then a ≤ c ≤ b, so c ∈ U for some U ∈ U . Since U
is open, there is δ > 0 such that (c − δ, c + δ) ⊂ U.
Since c = sup A, there is x ∈ A, x > c − δ. So
[a, c + δ) ⊂ [a, x ] ∪ (c − δ, c + δ) can be covered by a finite
subfamily of U , since [a, x ] can be covered by such a subfamily and
(c − δ, c + δ) is covered by U.
It follows that (c, c + δ) ∩ [a, b] = ∅ (since points from this set would
belong to A but be bigger than c = sup A). Hence c = b and so
[a, b] = [a, c] ⊂ [a, c + δ) is covered by a finite subfamily of U .
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Compact subspaces and closed subsets

Fact 3.2. Any closed subset C of a compact space T is compact.
Proof. Let U be a cover of C by sets open in T . Then U ∪{T \C} is
an open cover of T . So it has a finite subcover of T . Deleting from
it T \ C if necessary, we get a finite cover of C by sets from U .

Fact 3.3. Any compact subspace C of a Hausdorff space T is
closed in T .
Proof. Let a ∈ T \C. Use that T is Hausdorff to find for each x ∈ C
disjoint T -open Ux � x and Vx � a. Then Ux form an open cover of
C. Let Ux1 , . . . , Uxn be a finite subcover of C. Then V =

�n
i=1 Vxi is

an open set containing a and disjoint from C, since C ⊂
�n

i=1 Uxi

and V ∩
�n

i=1 Uxi = ∅. Hence a ∈ (T \ C)o, so T \ C is open.

Fact 3.4. A compact subspace C of a metric space M is bounded.
Proof. Fix a ∈ M. Then C is covered by open balls B(a, r). So
there are r1, . . . , rn such that

C ⊂
�n

i=1 B(a, ri) = B
�
a, max(r1, . . . , rn)

�
.
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Intersections of compact sets

Theorem 3.5. Let F be a collection of nonempty closed subsets
of a compact space T such that every finite subcollection of F has
a nonempty intersection. Then the intersection of all sets from F
is non-empty.

Proof. Suppose that the intersection of the sets from F is empty.
Let U be the collection of their complements. By De Morgan’s rules,
U is a cover of T . Since the sets from U are open, it is an open
cover, and so it has a finite subcover U1, . . . , Un. Then Fi = T \ Ui
belong to F and, by De Morgan’s rules, their intersection is empty.
This contradicts the assumptions of the Theorem.

Corollary 3.6. Let F1 ⊃ F2 ⊃ F3 ⊃ · · · be nonempty closed
subsets of a compact space T . Then

�∞
k=1 Fk �= ∅.

Remark. Theorem 3.5 and its Corollary are often stated for
Hausdorff spaces and compact sets. This follows since we know
that then compact sets are closed.
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Continuous image

Theorem 3.7. A continuous image of a compact space is
compact.

Proof. Let f : T → S be continuous and T compact. We have to
show that f (T ) is compact. Let U be an open cover of f (T ). Since f
is continuous, the sets f−1(U), where U ∈ U are open. Moreover,
they form a cover of T since for every x ∈ T , f (x) belongs to some
U ∈ U . By compactness of T , there is a finite subcover
f−1(U1), . . . , f−1(Un) of T . But for every y ∈ f (T ) we have y = f (x)
where x ∈ T . Then x ∈ f−1(Ui) for some i and so y = f (x) ∈ Ui .
Hence U1, . . . , Un form the finite subcover we wanted.

Theorem 3.8. A continuous bijection of a compact space T onto
a Hausdorff space S is a homeomorphism.

Proof. If U is open in T , T \ U is closed, hence compact by 3.2, so
f (T \ U) is compact by 3.7, so closed by 3.3, and so the preimage
of U under f−1, (f−1)−1(U) = f (U) = S \ f (T \ U) is open.
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Attainment of minima and maxima

Definition. A function f : T → R is called lower semi-continuous if
for every c ∈ R, {x ∈ T : f (x) > c} is open. It is called upper
semi-continuous if for every c ∈ R, {x ∈ T : f (x) < c} is open.

Theorem 3.9. A lower (upper) semi-continuous real-valued
function f on a nonempty compact space T is bounded below
(above) and attains its minimum (maximum).

Proof. Let c = infx∈T f (x), where possibly c = −∞. If f is lower
semi-continuous and does not attain the value c (surely true if
c = −∞), then f (x) > c for every x and so the open sets
{x : f (x) > r} = f−1(r ,∞), where r > c, cover T . Find
r1, . . . , rn > c so that T ⊂

�n
i=1{x : f (x) > ri}. Then

f (x) > min(r1, . . . , rn) for all x . Hence
c = infx∈T f (x) ≥ min(r1, . . . , rn) > c, a contradiction.

Corollary 3.10. A continuous real-valued function f on a compact
space T (is bounded and) attains its maximum and minimum.
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Compactness of products

Theorem 3.11 (Special case of Tychonov’s Theorem). The
product T × S of compact spaces T , S is compact.
Let U be an open cover of T × S. We first show how the statement
follows from the following Lemma.

Lemma 3.12. If s ∈ S, there is open V ⊂ S containing s such that
T × V can be covered by a finite subfamily of U .

Proof of Theorem. By Lemma, for each s ∈ S there is open
Vs ⊂ S such that s ∈ Vs and T × Vs can be covered by a finite
subfamily of U . Since S is compact and Vs (s ∈ S) form its open
cover, there are Vs1 , . . . , Vsm covering S. Hence
T × S =

�m
j=1 T × Vsj . Since the union is finite and each of the sets

T × Vsj can be covered by a finite subfamily of U , T × S can be
covered by a finite subfamily of U .
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Cover of T × {s} where s ∈ S
Proof of Lemma: It T is compact, s ∈ S and U is an open cover of
T × S, there is open V ⊂ S containing s such that T × V can be
covered by a finite subfamily of U .
Proof. For each x ∈ T find Wx ∈ U such that (x , s) ∈ Wx .

By definition of the product topology, there are open Ux ⊂ T and
Vx ⊂ S such that (x , s) ∈ Ux × Vx ⊂ Wx . Then the sets Ux (x ∈ T )
form an open cover of T , so they contain a finite subcover
Ux1 , . . . , Uxn . Let V =

�n
i=1 Vxi . Then V ⊂ S is open and

T × V ⊂
�n

i=1 Uxi × Vxi ⊂
�n

i=1 Wxi .
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Compact sets in Rn

Theorem 3.13 (Heine-Borel). A subset of Rn is compact iff it is
closed and bounded.
Proof. Metric spaces are Hausdorff. So we have already proved in
3.3 and 3.4 that any compact subset of Rn is closed and bounded.
If C ⊂ Rn is closed and bounded, there is [a, b] such that

C ⊂ [a, b]× · · ·× [a, b].

The space on the right is compact by Tychonov’s Theorem. So C is
a closed subset of a compact space, hence compact by 3.2.
Warning. Although the implication ⇒ is true, with the same proof,
in all metric spaces, the implication ⇐ is completely false in
general metric spaces.

Example. (0, 1) is a closed and bounded subset of the space
(0, 1). If you feel this is cheating, consider R with the metric
d0(x , y) = min(|x − y |, 1). Then [0,∞) is closed and bounded, yet
non-compact.
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Lebesgue number of a cover

Definition. Given a cover U of a metric space M, a number δ > 0
is called a Lebesgue number of U if for any x ∈ M there is U ∈ U
such that B(x , δ) ⊂ U.

Example. The sets (x/2, x), where x ∈ (0, 1), form an open cover
of the open interval (0, 1) which has no Lebesgue number.

Proposition 3.14. Every open cover U of a compact metric
space has a Lebesgue number.
Proof. For x ∈ M define r(x) as the supremum of 0 < r ≤ 1 for
which there is U ∈ U such that B(x , r) ⊂ U. We show that r(x) is
lower semi-continuous. Then it attains its minimum, say r > 0. So
for every x , r(x) ≥ r , and so r/2 is a Lebesgue number of U .
Lower semi-continuity of r(x): Let W = {x : r(x) > c} and x ∈ W .
For ε = 1

3(r(x)− c) find U ∈ U such that B(x , r(x)− ε) ⊂ U.
If d(x , y) < ε, then B(y , c + ε) ⊂ B(x , c + 2ε) = B(x , r(x)− ε) ⊂ U.
Hence r(y) ≥ c + ε > c. So B(x , ε) ⊂ W , and so W is open.
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Uniform continuity

Definition. A map f of a metric space M to a metric space N is
called uniformly continuous if

(∀ε > 0)(∃δ > 0)(∀x , y ∈ M)
�
dM(x , y) < δ =⇒ dN(f (x), f (y)) < ε

�

Theorem 3.15. A continuous map of a compact metric space M
to a metric space N is uniformly continuous.

Proof. Let ε > 0. Then the sets

Uz = f−1�BN
�
f (z), ε/2

��
, z ∈ M

form an open cover of M. Let δ be its Lebesgue number. If
x , y ∈ M and dM(x , y) < δ then y ∈ B(x , δ). But B(x , δ) is
contained in a single set Uz , hence

dN(f (x), f (y)) ≤ dN(f (x), f (z)) + dN(f (y), f (z)) < ε.
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Sequential compactness in metric spaces

Definition. A metric space M is said to be sequentially compact if
every sequence of its elements has a convergent subsequence.
Notice that in practice M is usually a subspace of another metric
space N. It is important to notice that in this situation “convergent”
means “convergent in the space M”, that is to an element of M!

Theorem 3.16. A metric space is compact iff it is sequentially
compact.
Proof of (⇒). Let xj be a sequence of points of a compact metric
space M. Let Fj = {xj , xj+1, . . . }.
By Corollary 3.6 we have

�∞
j=1 Fj �= ∅. Choose x ∈

�∞
j=1 Fj .

Since x ∈ {x1, x2, . . . }, there is j(1) so that d(x , xj(1)) < 1.
Continue recursively:
When j(k) has been defined, use that x ∈ {xj(k)+1, xj(k)+2, . . . } to
find j(k + 1) > j(k) so that d(x , xj(k+1)) < 1/k .
Then xj(k) is a subsequence of xj converging to x .
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Proof of Theorem 3.16(⇐)

Let U be an open cover of M. For each x ∈ M choose 0 < s(x) ≤ 1
such that B(x , s(x)) ⊂ U for some U ∈ U .
Greedy Algorithm. Denote M1 = M, let s1 = supx∈M1

s(x), find x1

with s(x1) > 1
2s1 and choose U1 ∈ U so that B

�
x1, s(x1)

�
⊂ U1.

When x1, . . . , xj have been defined, denote

Mj+1 = Mj \ B
�
xj , s(xj)

�
= M \

�j
i=1 B

�
xi , s(xi)

�
.

If Mj+1 = ∅, M ⊂
�j

i=1 B
�
xi , s(xi)

�
⊂

�j
i=1 Ui , and we are done.

If Mj+1 �= ∅, denote sj+1 = supx∈Mj+1
s(x), find xj+1 ∈ Mj+1 with

s(xj+1) > 1
2sj+1 and pick Uj+1 ∈ U so that B

�
xj+1, s(xj+1)

�
⊂ Uj+1.

Suppose the procedure ran for ever. The (infinite) sequence xj has
a subsequence xj(k) converging to some x . Since Mj are closed, x
belongs to all of them and so d(x , xj) ≥ 1

2sj ≥ 1
2s(x) for each j . So

no subsequence of xj can converge to x , a contradiction.
Hence Mj+1 = ∅ for some j and {Ui : i ≤ j} is a finite subcover.
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Comments on sequential compactness
Recall that convergence of sequences is defined in an arbitrary
topological space. We call a topological space T sequentially
compact if every sequence in T has a convergent subsequence.
Theorem 3.16 says that a metric space is compact iff it is
sequentially compact. However, both implications of this theorem
are false in general topological spaces, and the restriction to
metric spaces is absolutely essential!
Subsets M of N such that every xj ∈ M has a subsequence
converging in N are called relatively sequentially compact in N.

Question. Show: If N is a metric space, M ⊂ N is relatively
sequentially compact in N iff M is compact.

Answer. If xj ∈ M, find yj ∈ M with d(xj , yj) < 1/j . Choose yj(k)

converging to some y ∈ N. Then y ∈ M and xj(k) converge to y .
Hence M is sequentially compact, hence compact.
The converse is obvious.
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Maximal open covers without finite subcovers
We sketch a proof of the full version of Tychonov’s Theorem that
the (possibly infinite) product of compact spaces is compact.

Lemma 3.17. If T is not compact, it has a maximal open cover V
without a finite subcover. Moreover, for any continuous π : T → S,
(a) the collection U of sets U open in S such that π−1(U) ∈ V

cannot contain a finite cover of S;
(b) if U ⊂ S is open and not in U then π−1(S \ U) can be covered

by finitely many sets from V.

Proof. One can argue that V can be defined by adding open sets
to a starting cover as long as possible, perhaps infinitely many
times, but keeping the property that the new cover has no finite
subcover. A formal proof needs the Axiom of Choice.
(a) Preimages under π of a finite cover of S by sets from U would
form a finite cover of T by sets from V.
(b) V wouldn’t be maximal since π−1(U) could be added to it.
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Tychonov’s Theorem

Theorem 3.18. The product of compact spaces is compact.

Proof. By Lemma 3.17, assume that V is a maximal open cover of
C =

�
i∈I Ci without a finite subcover. Let Ui be the collection of

sets Ui open in Ci such that π−1
i (Ui) ∈ V. By Lemma 3.17 and

compactness of Ci , Ui is not a cover of Ci . Choose x(i) ∈ Ci not
covered by Ui . So Lemma 3.17 gives that for every open Ui � x(i),
π−1

i (Ci \ Ui) can be covered by finitely many sets from V.
The point x = (x(i))i∈I belongs to some set from V. Hence there is
a finite set J ⊂ I and sets Uj � x(j) open in Cj such that�

j∈J π−1
j (Uj) is contained in a set from V. But then

C =
��

j∈J

π−1
j (Uj)

�
∪

�

j∈J

π−1
j (Cj \ Uj)

is a finite union and each of the terms, and so all of C, can be
covered by finitely many sets from V; a contradiction.
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Main points of Chapter 3

• Covers. Definition of compactness.

• Compact subspaces and closed subsets.

• Intersections of compact sets.

• Continuous images of compact spaces.

• Attainment of minima and maxima.

• Compactness of products.

• Compact sets in Rn.

• Lebesgue number of a cover.

• Uniform continuity.

• Equivalence of sequential compactness and compactness for metric spaces.

• Tychonov’s Theorem.
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Chapter 4. Connectedness

Definition. A topological space T is connected if the only
decompositions of T into open sets are T = ∅ ∪ T and T = T ∪ ∅.
Explanation. A decomposition means T = A ∪ B and A ∩ B = ∅.

Fact 4.1. T is disconnected iff any one of the following holds.

(a) T has a decomposition into two nonempty open sets;

(b) T has a decomposition into two nonempty closed sets;

(c) T has a subset which is open, closed and is neither ∅ nor T ;

(d) T admits a non-constant continuous function to a two-point
discrete space {a, b}.

Proof. The sets A, B in a decomposition are both open iff they are
both closed. So (a), (b) and (c) are all equivalent to the definition.
(d) follows by defining f (x) = a on A and f (x) = b on B. Finally, if
f : T → {a, b} is as in (d), we let A = f−1(a) and B = f−1(b).
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Connected subsets
Warning. Even if T is a subspace of another space, “open” in the
definition of connectedness means open in T !

Definition. A set T ⊂ S is separated by subsets U, V of S if
T ⊂ U ∪ V , U ∩ V ∩ T = ∅, U ∩ T �= ∅ and V ∩ T �= ∅.

Proposition 4.2. A subspace T of a topological space S is
disconnected iff it is separated by some open subsets U, V of S.
Proof. If T is disconnected, there are nonempty A, B ⊂ T open in
T such that T = A ∪ B and A ∩ B = ∅. Since T is subspace of S,
there are U, V open in S such that A = U ∩ T and B = V ∩ T .
Then U, V separate T .
If U, V separate T , U ∩ T is nonempty, open and closed in T .

Remark. The second condition from the definition of “separated”
would be nicer were it replaced by U ∩ V = ∅. But this cannot be
done. For example, consider the subspace {a, b} of the three point
space {a, b, c} in which a set is open iff it is empty or contains c.
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A slightly dangerous “equivalent” definition
Continuing the remark from the previous slide, we show that in
metric spaces the definition of “separated” may be simplified as
indicated.

Theorem 4.3. A subset T of a metric space M is disconnected iff
there are open subsets U, V of M such that

T ⊂ U ∪ V, U ∩ V = ∅, U ∩ T �= ∅ and V ∩ T �= ∅.

Proof. (⇐) is obvious.
(⇒) Write T = A∪B where A, B are disjoint nonempty sets open in
T . Define U = {x ∈ M : d(x , A) < d(x , B)} and
V = {x ∈ M : d(x , A) > d(x , B)}. Then U, V are disjoint and, since
the functions x → d(x , A) and x → d(x , B) are continuous, they
are open. We show A ⊂ U. Let x ∈ A. Since A is open in T , there
is δ > 0 such that B(x , δ) ∩ T ⊂ A. Since B ⊂ T is disjoint from A,
B(x , δ) ∩ B = ∅. So d(x , B) ≥ δ > 0. Since d(x , A) = 0, we have
x ∈ U as wanted. Similarly, B ⊂ V and the statement follows.
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Connectedness and Intervals

Theorem 4.4. A subset of R is connected iff it is an interval.
Before proving this, (on the next slide), we have to say what we
mean by “an interval”: It is one of the sets ∅; {a};
[a, b] (where a < b); (a, b] (where a < b and a may be −∞);
[a, b) (where a < b and b can be ∞); and
(a, b) (where a < b and any of the a, b may be infinite).

Fact 4.5. A set I ⊂ R is an interval iff
(∀x , y ∈ I)(∀z ∈ R)(x < z < y =⇒ z ∈ I)

Proof. Intervals clearly have this property. Conversely, suppose I
has the described property and that I is non-empty and not a
singleton. Let a = inf I and b = sup I (allowing a, b = ±∞).
We show that (a, b) ⊂ I: If z ∈ (a, b) there are x ∈ I with x < z
(because z > inf I) and y ∈ I with y > z (because z < sup I). So
z ∈ I by our condition. Hence (a, b) ⊂ I ⊂ (a, b) ∪ {a, b}, showing
that I is one of the sets listed above.
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Connected subsets of R
Lemma 4.6. If I ⊂ R is connected then it is an interval.

Proof. Suppose I is not an interval. Then there are x , y ∈ I and
z ∈ R such that x < z < y and z /∈ I. Let A = (−∞, z) ∩ I,
B = (z,∞) ∩ I. Then A, B are disjoint, open (by definition of
topology on I) and nonempty (since x ∈ A and y ∈ B). Finally
A ∪ B = I since z /∈ I, and we see that I is not connected.

Lemma 4.7. Any interval I ⊂ R is connected.

Proof #1. If not, there is a non-constant continuous f from I to
discrete {0, 1}. Then f : I → R is also continuous, which
contradicts the intermediate value theorem.
Proof #2. Suppose I is decomposed into nonempty open sets
A, B. Choose a ∈ A, b ∈ B and assume a < b. Then A, B form an
open cover of [a, b]. Let δ be its Lebesgue number. Then
[a, a + δ/2] ⊂ A, [a + δ/2, a + 2δ/2] ⊂ A, . . . , until we come to an
interval containing b. So b ∈ A, and A, B are not disjoint.
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Unions of connected sets

Theorem 4.8. If C and Cj (j ∈ J) are connected subspaces of a
topological space T and if Cj ∩ C �= ∅ for each j then
K = C ∪

�
j∈J Cj is connected.

Proof. Suppose that K is disconnected. Hence there are U, V
open in T which separate K . So K ⊂ U ∪ V , U ∩ V ∩ K = ∅,
U ∩ K �= ∅ and V ∩ K �= ∅.
Now C, being connected, cannot be separated by U, V . So C does
not meet one of the sets U, V . Suppose that it is V , so C ∩ V = ∅.
Since V is open, we even have C ∩ V = ∅ and so K ∩ C ⊂ U.
Since Cj ∩ C �= ∅ it follows that Cj ∩ U �= ∅. Since Cj is connected,
the same argument as for C shows that either Cj ⊂ U or Cj ⊂ V .
But Cj ⊂ V is impossible since Cj ∩ U �= ∅. Hence Cj ⊂ U.
So K = C ∪

�
j∈J Cj ⊂ U, which contradicts V ∩ K �= ∅.

Theorem 4.9. If C ⊂ T is connected, so is any C ⊂ K ⊂ C.
Proof. K = C ∪

�
x∈K{x} and {x} ∩ C �= ∅ for each x ∈ K .
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Continuous Images

Theorem 4.10. The continuous image of a connected space is
connected.
Proof. Let f : T → S be continuous with T connected. If f (T ) is
disconnected, there are open sets U, V ⊂ S separating f (T ), which
means that f (T ) ⊂ U ∪ V , U ∩ V ∩ f (T ) = ∅, U ∩ f (T ) �= ∅ and
V ∩ f (T ) �= ∅. Then f−1(U) and f−1(V ) are nonempty, open in T
(since U, V are open and f is continuous), disjoint (since
f−1(U) = f−1(U ∩ f (T )) and f−1(V ) = f−1(V ∩ f (T )) are
preimages of disjoint sets), and cover T (since U, V cover f (T )).
This contradicts connectedness of T .
Notice that together with the description of connected subsets of R,
this Proposition implies the Intermediate Value Theorem. (But to
use this, we should better prove connectedness of intervals without
the use of the Intermediate Value Theorem.)
Examples. Curves in R2 are connected, graphs of functions
continuous on intervals are connected (as subsets of R2).
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Proofs of connectedness

Theorem 4.11. The product of connected spaces is connected.

Proof. Let T , S be connected and s0 ∈ S. Denote C = T × {s0}
(fixed horizontal line) and Ct = {t}× S (vertical lines above t ∈ T ).
Then C and Ct , being homeomorphic to T and S, respectively, are
connected. Since Ct ∩ C �= ∅ (it contains (t , s0)) and
T × S = C ∪

�
t∈T Ct , the statement follows from 4.8.

Proofs of connectedness: We combine connectedness of
continuous images of connected spaces 4.10 (often of intervals)
with connectedness of sufficiently intersecting unions 4.8.

Example.
• R2 = R× R is connected by 4.11.
• Circles are connected (continuous images of intervals).
• R2 \ {0} is connected since it is the union of circles about (0, 0)

each of which meets a fixed half-line, eg the positive x-axis.
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Example: The “topologist’s sin curve”

Example. The “topologist’s sin curve,” which is the graph of
sin(1/t) together with the vertical segment I from (0,−1) to (0, 1) is
connected.

Proof. Let C = {(t , sin(1/t)), t > 0} and D = {(t , sin(1/t)), t < 0}.
Then C, D and I are connected (continuous images of intervals).
The point (0, 0) ∈ I belongs to C since (tk , sin(1/tk )) → (0, 0) when
tk = 1/kπ. Hence I ∩ C �= ∅ and I ∪ C is connected by 4.8.
Similarly I ∪ D is connected. Moreover, (I ∪ C) ∩ (I ∪ D) �= ∅, so
their union is connected by 4.8.
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Connected components
Connectedness gives a natural equivalence relation on T :

x ∼ y if x and y belong to a common connected subspace of T .
Reflexivity and symmetry are easy. Transitivity follows from 4.8.

Definition. The equivalence classes of ∼ are called the
(connected) components of T .

Fact 4.12. Directly from the definition we get:
• A component containing x is the union of all connected

subsets of T containing x.
• Components are connected (by 4.8).
• Components are closed (by 4.9).
• Components are maximal connected subsets of T .

Examples. The components of (0, 1) ∪ (1, 2) are (0, 1) and (1, 2).
The components of Q, R \ Q and the Cantor set are just points.
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Topological invariants based on connectedness.
From the definition of connectedness (or from 4.10) we see

Fact 4.13. Connectedness is a topological invariant (it is
preserved by homeomorphisms). Hence the number of
components is also a topological invariant.

Example. (0, 1), (0, 1) ∪ (1, 2) and (0, 1) ∪ (1, 2) ∪ (2, 3) are
mutually non-homeomorphic.

Example. The property “T \ {x} is connected for every x ∈ T ” is
also a topological invariant. This shows that

• [0, 1] is not homeomorphic to a circle;
• R is not homeomorphic to R2;
• [0, 1] is not homeomorphic to a square.
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Path-connected spaces

Definitions. Let u, v ∈ T . A path from u to v in T is a continuous
map ϕ : [0, 1] → T such that ϕ(0) = u and ϕ(1) = v .
T is called path-connected if any two points in T can be joined by a
path in T .

Proposition 4.14. A path-connected space T is connected.

Proof. Let u ∈ T . For every v ∈ T , the image Cv of a path from u
to v is connected, and all the Cv contain u. So T = {u} ∪

�
v∈T Cv

is connected by 4.8.
Our main reason for introducing path-connectedness is that it is
easier to imagine than connectedness. (But it is not equivalent to
it.) We will give only one result (Theorem 4.16) in the proof of
which the following simple observation will be useful.

Fact 4.15. A path ϕ1 from u to v and a path ϕ2 from v to w may
be joined to a path ϕ from u to w by defining ϕ(t) = ϕ1(2t) for
t ∈ [0, 1/2] and ϕ(t) = ϕ2(2t − 1) for t ∈ [1/2, 1].
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A connected not path-connected space

Example. The “topologist’s sin curve,” S is not path-connected.

Proof. Let tk = 2/((2k + 1)π), so xk = (tk , (−1)k ) ∈ S. Suppose
that ϕ is a path from (0, 0) to x1 in S. We find a decreasing
sequence sk ∈ [0, 1] such that ϕ(sk ) = xk . Then sk converge, so
ϕ(sk ) have to converge, but they obviously don’t, a contradiction.
Finding sk : Let s1 = 1. If sk has been defined, observe that there is
a point sk+1 ∈ (0, sk ) such that ϕ(sk+1) = xk+1: if not, the
connected image ϕ[0, sk ] would be separated by the sets
{(x , y) : x < tk+1} and {(x , y) : x > tk+1}.

MA222 – 2008/2009 – page 4.13

Open sets in Rn

Theorem 4.16. Connected open sets in Rn are path-connected.

Proof. Let u ∈ U and denote by V the set of points x ∈ U that can
be joined to u by a path in U. We show that for every z ∈ U ∩ V
there is δ > 0 such that B(z, δ) ⊂ V . Then V is both open and
closed in U and contains u, so V = U, and the statement follows.
So suppose z ∈ U ∩ V . Find δ > 0 such that B(z, δ) ⊂ U. Since
z ∈ V , there is y ∈ V ∩B(z, δ). Then every x ∈ B(z, δ) is in V since
we may join a path in U from u to y (which exists since y ∈ V ) with
the linear path from y to x (which is in U since it is in B(z, δ)).

Theorem 4.17. Open subsets of Rn have open components.

Proof. Let C be a component of open U ⊂ Rn and x ∈ C. Find
δ > 0 with B(x , δ) ⊂ U. Since B(x , δ) is connected and C is the
union of all connected subsets of U that contain x , we have
B(x , δ) ⊂ C. Hence C is open.
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Open sets in R

Theorem 4.18. A subset U of R is open iff it is a disjoint union of
countably many open intervals.
Explanation. So U =

�
i(ai , bi) where (ai , bi) are mutually disjoint

and i runs through a finite set or through N.

Observation. Each of the (ai , bi) must be a component of U: it is
connected and U ⊂ (ai , bi) ∪ (R \ (ai , bi)). So these intervals are
determined uniquely; and this tells us how to prove the Theorem.

Proof. (⇐) Any union of open intervals is open.
(⇒) Let U ⊂ R be open and let Cj (j ∈ J) be its components. Since
Cj are connected and open, they are open intervals. As
components, they are mutually disjoint. So we only have to show
that J can be ordered into a sequence. For each j there is a
rational number rj ∈ Cj . By disjointness of the Cj ’s, for different j we
get different rational numbers rj . So j → rj is an injection into Q,
showing that J can be ordered into a sequence.
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Main points of Chapter 4

• Definition(s) of (dis)connectedness.

• Connected subsets of R are exactly intervals.

• Connectedness of sufficiently intersecting unions.

• Connectedness of continuous images and products.

• Connected components.

• Path-connectedness.

• A connected space need not be path-connected.

• Connected open sets in Rn are path-connected.

• Components of open sets in Rn are open.

• Open sets in R are countable disjoint unions of open intervals.
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Chapter 5. Completeness
Recall that a sequence xn ∈ M converges to x ∈ M if d(xn, x) → 0.
As in R we will show that convergent sequences have the following
property.

Definition. A sequence xn in a metric space M is Cauchy if

(∀ε > 0)(∃k ∈ N)(∀m, n ≥ k) d(xn, xm) < ε

Definition. A metric space M is complete if every Cauchy
sequence in M converges.
Warning. Although every Cauchy sequence in (0, 1) converges (it
is a bounded sequence of real numbers), the space (0, 1) is
incomplete: Some of these sequences do not converge in the
space (0, 1) (only in R). Not to make an error, we may finish the
definition of completeness by “. . . converges to a point of M.”
Warning. Completeness is not a topological invariant: R is
complete and (0, 1) is homeomorphic to it, yet incomplete.
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From convergence to Cauchy

Proposition 5.1. A convergent sequence is Cauchy.

Proof. For every ε > 0 there is nε such that d(xn, x) < ε/2 for
n ≥ nε. If m, n ≥ nε then d(xm, xn) ≤ d(xm, x) + d(xn, x) < ε.

Recall that a subset S of a metric space M is closed iff for every
sequence xn ∈ S converging to a point x ∈ M we have that x ∈ S.

Proposition 5.2.
(a) A complete subspace S of any metric space M is closed.
(b) A closed subset S of a complete metric space M is complete.

Proof. (a) Suppose S � xn → x ∈ M. Then xn is Cauchy in M, so
in S (the definition of Cauchy sequence depends only on points of
the sequence). So xn → y ∈ S. But S is a subspace of M, so
xn → y also in M. By uniqueness of limits, x = y , and so x ∈ S.
(b) Let (xn) be Cauchy in S. Then it is Cauchy in M so it converges
to x ∈ M. Since S is closed, x ∈ S. Hence xn → x in S.
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Proving “Cauchy”

Fact 5.3. A sequence xn in a metric space M is Cauchy iff there is
a sequence εn ≥ 0 such that εn → 0 and d(xm, xn) ≤ εn for m > n.

Proof. Suppose that xn is Cauchy. Define εn = supm>n d(xm, xn).
Then εn → 0: Given ε > 0, there is k such that d(xm, xn) < ε for
m, n ≥ k ; hence εn ≤ ε for n ≥ k .
Suppose d(xm, xn) ≤ εn for m > n and εn → 0. Given ε > 0, find k
so that εn < ε for n ≥ k . Then d(xm, xn) ≤ εn < ε for m > n ≥ k ;
exchanging m, n and noting that d(xm, xn) = 0 < ε if m = n we see
that d(xm, xn) < ε for m, n ≥ k . So xn is Cauchy.

Fact 5.4. Let xn be a sequence in a metric space M for which
there are τn ≥ 0 such that

�∞
n=1 τn < ∞ and d(xn, xn+1) ≤ τn for

each n. Then the sequence xn is Cauchy.

Proof. Use the previous Fact with εn =
�∞

k=n τk . Since�∞
n=1 τn < ∞, we have εn → 0 and by the triangle inequality,

d(xm, xn) ≤
�m−1

k=n d(xk , xk+1) ≤
�m−1

k=n τk ≤ εn.
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Completeness of Rn

Theorem 5.5. Rn is complete.

Proof. Let x(k) =
�
x1(k), . . . , xn(k)

�
∈ Rn be a Cauchy sequence

of elements of Rn.
For every ε > 0 there is kε such that �x(k)− x(l)� < ε for k , l ≥ kε.
For each i = 1, . . . , n and k , l ≥ kε,

|xi(k)− xi(l)| ≤ �x(k)− x(l)� < ε

Hence the sequence
�
xi(k)

�∞
k=1 of real numbers is Cauchy, and so

it converges to some xi ∈ R.
Let x = (x1, . . . , xn). Then

lim
k→∞

�x(k)− x� = lim
k→∞

����
n�

i=1

|xi(k)− xi |2 = 0.

So x(k) → x as required.
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Spaces of bounded functions

Proposition 5.6. For any set S, the space B(S) of bounded
real-valued functions on S with the norm �f� = supx∈S |f (x)| is
complete.

Proof. Let (fn) be a Cauchy sequence. Given any ε > 0, there is nε

such that supx∈S |fm(x)− fn(x)| < ε whenever m, n ≥ nε. Hence for
each fixed x ∈ S the sequence (fn(x)) is Cauchy in R. So it
converges to some f (x) ∈ R.
Note that, if n ≥ nε, then |fm(x)− fn(x)| < ε for each m ≥ nε. Limit
as m →∞ gives |f (x)− fn(x)| ≤ ε for x ∈ S and n ≥ nε.
This implies both that f is bounded (say, since |f (x)− fn1(x)| ≤ 1
and fn1 is bounded), which we need in order to know that f ∈ B(S)
and that the sequence (fn) converges to f in our norm (since
�f − fn� ≤ ε for n ≥ nε).
Note that the convergence in the norm of B(S) is the uniform
convergence.
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Continuous functions form a closed subset of B(T )

Lemma 5.7. If T is any topological space then the set Cb(T ) of
bounded continuous functions on T is a closed subset of B(T ).

Proof. Let f ∈ Cb(T ). Then for every ε > 0 there is gε ∈ Cb(T ) with

supx∈T |f (x)− gε(x)| < ε.

We show that for every a ∈ R,

{x : f (x) > a} =
�

ε>0{x : gε(x) > a + ε}

If f (x) > a, we let ε = (f (x)− a)/2 and get

gε(x) = f (x)− (f (x)− gε(x)) > f (x)− ε = a + ε.

If gε(x) > a + ε then

f (x) = gε(x)− (gε(x)− f (x)) > (a + ε)− ε = a.

So {x : f (x) > a} and similarly {x : f (x) < a} are open. Continuity
of f follows from 2.6.
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Spaces of continuous functions

Corollary 5.8. If T is any topological space then the space Cb(T )
with the norm �f� = supx∈T |f (x)| is complete.

Proof. Immediate from Lemma 5.7, Proposition 5.6 and
Proposition 5.2.

Corollary 5.9. If K is a compact topological space then the space
C(K ) of continuous functions on K equipped with the norm
�f� = maxx∈K |f (x)| is complete.

Proof. Since every continuous function on K is bounded and
attains its maximum, C(K ) = Cb(K ) and

�f� = sup
x∈T

|f (x)| = max
x∈K

|f (x)|.

Hence this is a special case of 5.8.
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The space C[0, 1] with the L1 norm

Example. The space C[0, 1] with the norm �f�1 =
� 1

0 |f (x)|dx is
incomplete.

Proof. Let fn(x) = min(
√

n, 1/
√

x) for x > 0 and fn(0) =
√

n.
So fn ∈ C[0, 1]. First we show that (fn) is Cauchy. If m > n then
� 1

0
|fm(x)− fn(x)|dx =

� 1/m

0
(
√

m −
√

n) dx +

� 1/n

1/m
(1/

√
x −

√
n) dx

≤ 1/
√

m + 2/
√

n ≤ 3/
√

n → 0.

Now let f ∈ C[0, 1]. Find k ∈ N such that |f | ≤
√

k . Then for n > k ,
� 1

0
|fn(x)− f (x)|dx ≥

� 1/k

1/n
(1/

√
x − f (x)) dx

≥ 2(1/
√

k − 1/
√

n)− 1/
√

k

= 1/
√

k − 2/
√

n → 1/
√

k > 0.
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Proof of Tietze’s Theorem — a lemma
Recall that Urysohn’s Lemma says that in a normal topological
space T , for any two disjoint closed sets A, B there is a continuous
g : T → [0, 1] such that g(x) = 0 on A and g(x) = 1 on B.

Lemma 5.10. Let f ∈ Cb(S). Then there is h ∈ Cb(T ) such that
�f − h�Cb(S) ≤ 2

3�f�Cb(S) and �h�Cb(T ) ≤ 1
3�f�Cb(S).

Proof. If f = 0, let h = 0. So we may assume �f�Cb(S) = 1.
The sets A = {x ∈ S : f (x) ≤ −1

3} and B = {x ∈ S : f (x) ≥ 1
3} are

disjoint and closed in S, and so in M since S is closed in M.
Hence there is continuous g : M → [0, 1] such that g(x) = 0 on A
and g(x) = 1 on B. Let h(x) = 2

3(g(x)− 1
2). Clearly �h�Cb(T ) ≤ 1

3 .

If x ∈ A, −1 ≤ f (x) ≤ −1
3 and h(x) = −1

3 , hence |f (x)− h(x)| ≤ 2
3 .

If x ∈ B, 1
3 ≤ f (x) ≤ 1 and h(x) = 1

3 , hence |f (x)− h(x)| ≤ 2
3 .

If x ∈ S \ (A ∪ B), −1
3 ≤ f (x), h(x) ≤ 1

3 hence |f (x)− h(x)| ≤ 2
3 .

Consequently, �h�Cb(T ) ≤ 1
3 .
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Proof of Tietze’s Theorem for bounded functions

Proposition 5.11. Suppose that S is a closed subspace of a
normal topological space T . Then every function from Cb(S) can
be extended to a function from Cb(T ).

Proof. Let f0 ∈ Cb(S). By Lemma 5.10 find h0 ∈ Cb(T ) such that

�f0 − h0�Cb(S) ≤ 2
3�f0�Cb(S) and �h0�Cb(T ) ≤ 1

3�f0�Cb(S).

We let f1 = f0 − h0 and continue recursively: Whenever fk has been
defined, we find hk ∈ Cb(T ) such that

�fk − hk�Cb(S) ≤ 2
3�fk�Cb(S) and �hk�Cb(T ) ≤ 1

3�fk�Cb(S)

and let fk+1 = fk − hk = f0 −
�k

j=0 hj . It follows that

�fk�Cb(S) ≤ (2
3)k�fo�Cb(S) and �hk�Cb(T ) ≤ 1

3(2
3)k�fo�Cb(S).

By completeness of Cb(T ), h =
�∞

k=0 hk is a function from Cb(T ).
On S we have f0 =

�∞
k=0 hk = h and we are done.
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Proof of Tietze’s Theorem

Proposition 5.12. Suppose that S is a closed subset of a normal
topological space T . Then every continuous function on S can be
extended to a continuous function to T .

Proof. Let ψ be a homeomorphism of R onto (−1, 1). If f is a
continuous function on S, ψ ◦ f is a bounded continuous function
on S, hence it can be extended to a continuous function h on T .
We change h so that it has values only in (−1, 1):

The sets A = {x ∈ T : |h(x)| ≥ 1} and S are disjoint closed
subsets of T . Hence by Urysohn’s Lemma there is a continuous
function g : M → [0, 1] such that g(x) = 0 on A and g(x) = 1 on S.
Then the product gh still extends f and has values in (−1, 1).

It follows that ψ−1 ◦ (gh) is a continuous extension of f to T .
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Fixed point theorems
Fixed point theorems speak about existence and/or approximation
of the solution of equations of the form

x = f (x)

Many equations can be brought to this form.

Definition. Let f : S → S (where S is any set). A point x ∈ S such
that f (x) = x is called a fixed point of f .

We will only consider the case when S is a metric space and the
Lipschitz constant of f is < 1; such maps are called contractions.

Definition. A map f of a metric space M into itself is a contraction
if there is a constant κ < 1, called contraction ratio, such that
d(f (x), f (y)) ≤ κd(x , y) for every x , y ∈ M.

Fact 5.13. Contractions are continuous.

Proof. Take δ = ε or recall that Lipschitz maps are continuous.
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Contraction Mapping Theorem

Theorem 5.14 (Banach). If f is a contraction on a complete
metric space M then f has a unique fixed point.

Proof of uniqueness. If f (x) = x and f (y) = y then
d(x , y) = d(f (x), f (y)) ≤ κd(x , y). Since κ < 1, this gives
d(x , y) = 0, so x = y .

Proof of existence. Choose x0 ∈ M and set xn+1 = f (xn). Then

d(xj , xj+1) = d(f (xj−1), f (xj)) ≤ κd(xj−1, xj) ≤ . . . ≤ κj d(x0, x1).

Since
�∞

j=1 κj d(x0, x1) < ∞, the sequence (xn) is Cauchy by 5.4.
Since M is complete, xn converge to some x ∈ M, so f (xn) → f (x).
But f (xn) = xn+1 → x , so f (x) = x as required.

Notice also various inequalities that may be deduced, for example
d(x , xn+1) ≤ κd(xn, xn+1)/(1− κ). They are useful numerically.
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Numerical approximation

Question. Solve x7 − x3 − 21x + 5 = 0, x ∈ [0, 1] with error
< 10−6.

Answer. Rewrite the equation as x = (x7 − x3 + x + 5)/22. Use
contraction mapping theorem with M = [0, 1] and
f (x) = (x7 − x3 + x + 5)/22.
Since clearly 0 ≤ f (x) ≤ 1, we have f : [0, 1] → [0, 1]. Since
|f �(x)| = |(7x6 − 3x2 + 1)/22| ≤ 1/2, we see from the Mean Value
Theorem that f is a contraction with contraction ratio κ = 1/2.
Starting with x0 = 0 gives:
x1 = 0.2272727, x2 = 0.2370711, x3 = 0.2374449,
x4 = 0.2374591, x5 = 0.2374596, x6 = 0.2374596, . . .
We know that d(x , x6) ≤ κd(x5, x6)/(1− κ), where κ = 1/2 and
d(x5, x6) < 10−7.
Hence x6 = 0.2374596 approximates the solution with error
< 10−6.
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Example of application
Let f : R2 → R be a continuous function which is Lipschitz in the
second variable; this means that there is C such that

|f (x , y)− f (x , z)| ≤ C|y − z|.
We show that for any given x0, y0 ∈ R, the differential equation

y � = f (x , y) y(x0) = y0

has a unique solution on (a, b) = (x0 − δ, x0 + δ) where δ = 1/2C.
Rewrite the equation in the form

y(x) = y0 +
� x

x0
f (t , y(t)) dt = F (y)(x)

Define F : C[a, b] → C[a, b] by this. We want y ∈ C[a, b] such that
y = F (y), ie a fixed point of F !
Is F a contraction?
|F (y)(x)− F (z)(x)| =

��� x
x0

(f (t , y(t))− f (t , z(t))) dt
��

≤
� x

x0
|f (t , y(t))− f (t , z(t))|dt

≤ C
� x

x0
|y(t)− z(t)|dt ≤ �y − z�/2 YES!
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Total boundedness

Definition. A metric space M is totally bounded if for every ε > 0
there is a finite set F ⊂ M such that every point of M has distance
< ε of a point of F .
Explanation. The expression “every point of M has distance < ε of
a point of F ” says that M ⊂

�
x∈F B(x , ε).

Lemma 5.15. A subspace M of a metric space N is totally
bounded iff for every ε > 0 there is a finite set H ⊂ N such that
M ⊂

�
z∈H B(z, ε).

Proof. (⇒) is obvious, take H = F .
(⇐) Given ε > 0, let H ⊂ N be a finite set such that
M ⊂

�
z∈H B(z, ε

3) =
�

z∈H B(z, ε
3). From each nonempty

M ∩ B(z, ε
3) choose one point. Let F be the set of these points. So

F is a finite subset of M. If y ∈ M then y is in one of the B(z, ε
3).

So M ∩ B(z, ε
3) �= ∅ and so there is x ∈ F ∩ B(z, ε

3). Hence
y ∈ B(x , ε) and we see that M ⊂

�
x∈F B(x , ε).
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Total boundedness of subspaces, closures etc

Corollary 5.16. A subspace of a totally bounded metric space is
totally bounded.

Proof. If M ⊂ N and N is totally bounded, for every ε > 0 there is a
finite set H ⊂ N such that M ⊂ N ⊂

�
x∈H B(x , ε). So the condition

of Lemma 5.15 is satisfied.

Corollary 5.17. If a subspace M of a metric space N is totally
bounded then so is M.

Proof. For every ε > 0 we have a finite set F ⊂ M such that
M ⊂

�
x∈F B(x , ε). Hence M ⊂

�
x∈F B(x , ε), and we may use

Lemma 5.15.

Remark. A totally bounded space is bounded: There are finitely
many points x1, . . . , xn such that every x is in distance < 1 from
one of the xi . Hence d(x , x1) < r where r = 1 + maxi d(xi , x1).
The converse is false: Take R with dist(x , y) = min(1, |x − y |).
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Total boundedness and Cauchy sequences.

Theorem 5.18. A metric space M is totally bounded iff every
sequence in M has a Cauchy subsequence.

Proof. (⇒) Let xn ∈ M. Let N0 = N. Suppose inductively that we
have defined an infinite set Nk−1 ⊂ N. Since M is covered by
finitely many balls of radius 1/2k , there is one such ball Bk such
that Nk = {n ∈ Nk−1 : xn ∈ Bk} is infinite.
Let n(1) be the least element of N1 and choose inductively the
least n(k) ∈ Nk such that n(k) > n(k − 1). Then (xn(k)) is a
subsequence of (xn) such that xn(i) ∈ Bk for i ≥ k . Hence
d(xn(i), xn(j)) < 1/k for i , j ≥ k , and we see that (xn(k)) is Cauchy.
(⇐) Suppose M is not totally bounded. So for some ε > 0 there is
no finite set with all points of M within ε of it. Choose x1 ∈ M and
continue by induction: when x1, . . . , xk−1 have been defined our
assumption implies that there is xk such that d(xk , xi) ≥ ε for all
i < k . So we get an infinite sequence (xk ) such that d(xi , xj) ≥ ε
for every i �= j . So no subsequence of (xk ) is Cauchy.
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Completeness and compactness

Theorem 5.19. A subspace C of a complete metric space M is
compact iff it is closed and totally bounded.

Proof. (⇒) C is closed by 3.3 and totally bounded since for each
ε > 0 its open cover B(x , ε), (x ∈ C) has a finite subcover.
(⇐) Every sequence in C has a Cauchy subsequence by 5.18,
which converges to a point of M since M is complete. But C is
closed, so the limit belongs to C. So C is sequentially compact,
hence compact by 3.16.

Theorem 5.20. A subspace S of a complete metric space M is
totally bounded iff its closure is compact.

Proof. (⇒) S is totally bounded by 5.17 and so compact by 5.19.
(⇐) S is totally bounded by 5.19 and so is its subset S by 5.16.
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Arzelà-Ascoli Theorem

Definitions. A subset S of C(M) is called
• equicontinuous at x if for every ε > 0 there is δ > 0 such that
|f (y)− f (x)| < ε whenever f ∈ S and y ∈ B(x , δ).

• equicontinuous if it is equicontinuous at every x ∈ M
• uniformly equicontinuous if for every ε > 0 there is δ > 0 such

that |f (y)− f (x)| < ε whenever f ∈ S and d(y , x) < δ.

Fact 5.21. If M is compact, S ⊂ C(M) is equicontinuous iff it is
uniformly equicontinuous.

Theorem 5.22. Let M be a compact metric space. A subset of
C(M) is totally bounded iff it is bounded and equicontinuous.

Theorem 5.23. Let M be a compact metric space. A subset of
C(M) is compact iff it is closed, bounded and equicontinuous.
We first indicate an application.
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Application to differential equations

Theorem 5.24 (Peano). Let f : R2 → R be continuous and
(x0, y0) ∈ R2. There is δ > 0 such that the problem

u� = f (x , u) u(x0) = y0

has a solution on (x0 − δ, x0 + δ).
Idea of the proof. The time delayed equations

u�k (x) = f (x , uk (x − 1/k)) for x > x0, uk (x) = y0 for x ≤ x0

are easy to solve. Use the Arzelà-Ascoli Theorem (this will be
explained on the next slide) to find a subsequence uki uniformly
convergent on [x0, x0 + δ) to some u. Since x and uki (x) lie in a
bounded set on which f is uniformly continuous,
f (t , uki (t − 1/ki)) → f (t , u(t)) uniformly on [x0, x0 + δ). Hence we
may take the limit as i →∞ in the equation
u�ki

(x) = f (x , uki (x − 1/ki)) to get u� = f (x , u) on [x0, x0 + δ). The
interval (x0 − δ, x0] may be treated similarly.
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Use of the Arzelà-Ascoli Theorem
Assume x0 = y0 = 0. Since f is continuous, there is C ∈ [1,∞)
such that |f (x , y)| ≤ C whenever max(|x |, |y |) ≤ 1. Let δ = 1/C.
Let uk be the solutions of the “time delayed equations:”

u�k (x) = f (x , uk (x − 1/k)) for x > 0, uk (x) = 0 for x ≤ 0

These uk may be defined inductively, first on [0, 1/k), then on
[1/k , 2/k) etc. By induction along the construction we prove that
|uk (x)| ≤ 1 for x ≤ δ:

|uk (x)| ≤
� x

0

��f
�
t , uk (t − 1/k)

��� dt ≤ Cx ≤ 1

So uk are bounded by 1 on [0, δ]. They are also equicontinuous:

|uk (x1)− uk (x2)| ≤
� x2

x1

��f
�
t , uk (t − 1/k)

��� dt ≤ C|x1 − x2|.

Hence by Arzelà-Ascoli Theorem, a subsequence of uk converges
to some u ∈ C[0, δ].
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Proof of Theorem 5.22(⇒)

Statement. Let S ⊂ C(M) be totally bounded. Then it is bounded
and uniformly equicontinuous. So it is also bounded and
equicontinuous.

Proof. A totally bounded subset is bounded by 5.16.
Let ε > 0. Use that S is totally bounded to find f1, . . . , fn ∈ S so that
for every f there is i with �f − fi� < ε/3. Since fi are uniformly
continuous, there is δ > 0 such that for each i = 1, . . . , n,

|fi(y)− fi(x)| < ε/3 whenever d(x , y) < δ.

For every f ∈ S choose i with �f − fi� < ε/3. Then for d(x , y) < δ,

|f (y)− f (x)| ≤ |f (y)− fi(y)|+ |fi(y)− fi(x)|+ |fi(x)− f (x)|
≤ �f − fi�+ |fi(y)− fi(x)|+ �f − fi� < ε.

Hence S is uniformly equicontinuous.
Of course, uniform equicontinuity implies equicontinuity.
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Proof of Theorem 5.22(⇐)

Statement. Let S ⊂ C(M) be bounded and equicontinuous. Then it
is totally bounded.

Proof. Let ε > 0. For every x ∈ M find δ(x) > 0 such that
|f (y)− f (x)| < ε/3 whenever f ∈ S and y ∈ B(x , δ(x)). By
compactness, there are x1, . . . , xn ∈ M such that
M ⊂

�n
i=1 B(xi , δ(xi)).

For any q1, . . . , qn ∈ Z for which there is a function g ∈ S with
g(xi) ∈ [qiε/3, (qi + 1)ε/3] choose one such g. Since all g ∈ S are
bounded by the same constant, there are only finitely many such
q1, . . . , qn. Hence the set F of the chosen functions g is finite.
Let f ∈ S. There are qi ∈ Z so that f (xi) ∈ [qiε/3, (qi + 1)ε/3].
So there is a function g ∈ F with g(xi) ∈ [qiε/3, (qi + 1)ε/3].
For every x ∈ M we find i so that x ∈ B(xi , δ(xi)). Then

|f (x)− g(x)| ≤ |f (x)− f (xi)|+ |f (xi)− g(xi)|+ |g(xi)− g(x)| < ε.

Hence �f − g� < ε. So S is totally bounded.
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Cantor’s Theorem

Definition. The diameter of a nonempty subset S of a metric
space is defined by

diam(S) = supx ,y∈S d(x , y)

Note. S is bounded iff diam(S) < ∞.

Theorem 5.25. Let Fn be a decreasing sequence of nonempty
closed subsets of a complete metric spaces such that
diam(Fn) → 0. Then

�∞
n=1 Fn �= ∅.

Explanation. “Fn decreasing” means F1 ⊃ F2 ⊃ F3 ⊃ · · ·
Proof. Choose xn ∈ Fn. Then for i ≥ n, xi ∈ Fi ⊂ Fn. Hence for
i , j ≥ n, xi , xj ∈ Fn, giving d(xi , xj) ≤ diam(Fn). Since diam(Fn) → 0,
the sequence (xn) is Cauchy. By completeness of M, xn converge
to some x .
For each n we use once more that xi ∈ Fn for i ≥ n: Since Fn is
closed, it implies that x ∈ Fn. So x ∈

�∞
n=1 Fn and we are done.
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Baire’s (Category) Theorem

Theorem 5.26. A nonempty complete metric space is not meagre
in itself. Moreover, a set S meagre in M has a dense complement.

Proof. Let S ⊂ M be meagre. Write S =
�∞

k=1 Sk where Sk are
nowhere dense in M. Let Gk = M \ Sk . Since Sk are nowhere
dense, Gk are dense in M. Since Sk are closed, Gk are open.
Let U be a nonempty open set. Then U ∩G1 �= ∅. Choose
x1 ∈ U ∩G1 and find δ1 > 0 so that B(x1, δ1) ⊂ U ∩G1.
We continue inductively: when xk−1 and δk−1 have been defined,
we use that Gk is dense to find xk ∈ Gk ∩ B(xk−1, δk−1/2) and then
use that Gk is open to find 0 < δk < δk−1/2 so that B(xk , δk ) ⊂ Gk .
Then δk → 0 and B(xk , δk ) ⊂ B(xk−1, δk−1). By Cantor’s Theorem,

∅ �=
�∞

k=1 B(xk+1, δk+1) ⊂
�∞

k=1 B(xk , δk ) ⊂ U ∩
�∞

k=1 Gk

= U \
�∞

k=1 Sk ⊂ U \
�∞

k=1 Sk = U \ S = U ∩ (M \ S).

Hence M \ S is dense in M.
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Exercises on Baire’s Theorem

Question. Show that the Cantor set C is uncountable.

Answer. We observe that for every x ∈ C there are points y ∈ C,
y �= x arbitrarily close to x . In other words, C \ {x} is dense in C,
which, since {x} is closed, shows that {x} is nowhere dense.
If C were countable, we would have C =

�∞
j=1{xj}, showing that C

is meagre in itself and contradicting the Baire Theorem.

Question. Let f : [1,∞) → R be a continuous function such that
for some a ∈ R there are arbitrarily large x with f (x) < a. Show
that for each k ∈ N, the set S =

�∞
n=k{x ∈ [1,∞) : f (nx) ≥ a} is

nowhere dense.
Answer. Since f is continuous, S is closed. Let 1 ≤ α < β < ∞.
We have to show (α,β) \ S �= ∅. For large n, (n + 1)/n < β/α, so
(n + 1)α < nβ. It follows that the set

�∞
n=k (nα, nβ) contains some

interval (r ,∞) and so a point y such that f (y) < a. Find n such that
y ∈ (nα, nβ). Then x = y/n ∈ (α,β) and f (nx) < a, so x /∈ S.
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Exercises on Baire’s Theorem

Question. Let f : [1,∞) → R be a continuous function such that
for every x ≥ 1 the limit limn→∞ f (nx) exists. Show that
limx→∞ f (x) exists.

Answer. If limx→∞ f (x) does not exist there are a < b such that
there are arbitrarily large x with f (x) < a and arbitrarily large y with
f (y) > b. By the previous question, the set
∞�

k=1

∞�

n=k

{x ∈ [1,∞) : f (nx) ≥ a} ∪
∞�

k=1

∞�

n=k

{x ∈ [1,∞) : f (nx) ≤ b}

is meagre. By Baire’s Theorem there is x not belonging to this set.
The fact that x does not belong to the first union means that for
every k there is n ≥ k such that f (nx) < a. In other words, there
are arbitrarily large n such that f (nx) < a. Similarly we see that
there are arbitrarily large n such that f (nx) > b. Hence the
sequence f (nx) does not converge.
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Application: nowhere differentiable functions

Theorem 5.27. There is a continuous f : [0, 1] → R that is
non-differentiable at any point of [0, 1].
Brief sketch of proof. We will work in the complete space C[0, 1]
equipped with the norm �f� = maxx∈[0,1] |f (x)|. Define

Sn = {f ∈ C[0, 1] : (∃x ∈ [0, 1])(∀y ∈ [0, 1]) |f (y)− f (x)| ≤ n|y − x |}

and show
(a) Sn is closed,
(b) the complement of Sn is dense,
(c) if f �(x) exists for some x , then f ∈ Sn for some n.
The first two points imply that Sn are nowhere dense. Hence by
Baire Category Theorem,

C[0, 1] \
�∞

n=1 Sn �= ∅

Any function belonging to this set is nowhere differentiable thanks
to (c).
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Sn is closed
Sn = {f ∈ C[0, 1] : (∃x ∈ [0, 1])(∀y ∈ [0, 1]) |f (y)− f (x)| ≤ n|y − x |}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof. Let fk ∈ Sn, fk → f . Find xk ∈ [0, 1] so that

(∀y ∈ [0, 1]) |fk (y)− fk (xk )| ≤ n|y − xk |.

Since xk has a convergent subsequence, we may assume that
xk → x . Clearly, x ∈ [0, 1].
For any y ∈ [0, 1] we get

|f (y)− f (x)| ≤ |f (y)− f (xk )|+ |f (xk )− f (x)|
≤ |fk (y)− fk (xk )|+ 2�f − fk�+ |f (xk )− f (x)|
≤ n|y − xk |+ 2�f − fk�+ |f (xk )− f (x)|
→ n|y − x |.

Hence |f (y)− f (x)| ≤ n|y − x | and so f ∈ Sn.
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Complement of Sn is dense
Sn = {f ∈ C[0, 1] : (∃x ∈ [0, 1])(∀y ∈ [0, 1]) |f (y)− f (x)| ≤ n|y − x |}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof. Let n ∈ N, g ∈ C[0, 1] and 0 < ε < 1. We have to show that

B(g, ε) \ Sn �= ∅.

Use that g is uniformly continuous to find δ > 0 such that
|g(x)− g(y)| < 1

4ε for |x − y | ≤ δ.
Let k ∈ N, k > max(1/δ, 4n/ε). Consider

f (x) = g(x) + 1
2ε sin(2kπx)

Given any x ∈ [0, 1] there is y ∈ [0, 1] such that |y − x | ≤ 1/k and
| sin(2kπy)− sin(2kπx)| = 1. Then

|f (y)− f (x)| ≥ 1
2ε− |g(y)− g(x)| ≥ 1

4ε

> n/k ≥ n|y − x |.

Hence f ∈ B(g, ε) \ Sn, as required.
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Proof of: f �(x) exists ⇒ f ∈ Sn for some n
Sn = {f ∈ C[0, 1] : (∃x ∈ [0, 1])(∀y ∈ [0, 1]) |f (y)− f (x)| ≤ n|y − x |}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof. If f �(x) exists, find δ > 0 so that
�� f (y)−f (x)

y−x − f �(x)
�� < 1

whenever 0 < |y − x | < δ.
Let n ∈ N, n ≥ max(1 + |f �(x)|, 2�f�

δ ). We show that for every
y ∈ [0, 1],

|f (y)− f (x)| ≤ n|y − x |.

This is obvious if y = x . If |y − x | < δ, we have

|f (y)− f (x)| ≤ |y − x |
�� f (y)−f (x)

y−x − f �(x)
�� + |y − x ||f �(x)|

≤ (1 + |f �(x)|)|y − x | ≤ n|y − x |.

If |y − x | ≥ δ, then

|f (y)− f (x)| ≤ 2�f� = 2�f�
δ δ ≤ 2�f�

δ |y − x | ≤ n|y − x |.

Hence f ∈ Sn.
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Topological completeness
Notice that validity of Baire’s Theorem is a topological property
while completeness is not. In particular, Baire’s Theorem holds in a
metric space provided that there is a topologically equivalent metric
in which it is complete.

Spaces for which there is a topologically equivalent metric in which
they are complete a are called topologically complete.
We will answer the question which spaces have this property. We
give our answer in two independent steps. First we consider the
case that our space is a subspace of a complete metric space and
show

Theorem 5.28. A subspace of a complete metric space is
topologically complete iff it is Gδ.

Later we complete this description by showing that every metric
space is a subspace of a complete space.
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Topologically complete subspaces are Gδ

Proof of (⇒). Assume that S is a subspace of a complete metric
space (M, d) and d0 is a topologically equivalent complete metric
on S. Since S is a Gδ subset of M, we may replace M by S and so
assume that S is dense in M.

For every x ∈ S and n ∈ N, Bd0(x , 2−n) is an open subset of S. So
there is an open subset Ux ,n of M such that Ux ,n ∩ S = Bd0(x , 2−n).

Let Gn =
�

x∈S Ux ,n. Clearly S ⊂
�∞

n=1 Gn.

Let x ∈
�∞

n=1 Gn. For every n find xn ∈ S such that x ∈ Uxn,n.
Hence for each n, m, Uxn,n ∩ Uxm,m is a nonempty open set. Since
S is dense in M, there is xn,m ∈ S ∩ Uxn,n ∩ Uxm,m. Hence

d0(xn, xm) ≤ d0(xn, xn,m) + d0(xn,m, xm) ≤ 2−n + 2−m.

It follows that xn is a d0 Cauchy sequence , so xn converges to
some point y ∈ S. Hence in the space M, xn converges to x as well
as to y , implying that x = y ∈ S.
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Gδ subspaces are topologically complete

Proof of (⇐). Assume (M, d) is complete and S =
�∞

n=1 Gn where
Gn ⊂ M are open. Define gn : S → R by gn(x) = 1/d(x , M \ Gn)
and let

d0(x , y) = d(x , y) +
�∞

n=1 min(2−n, |gn(x)− gn(y)|).

If xk →d x then for each m,

d0(xk , x) ≤ d(xk , x)+
�m

n=1 |gn(xk )−gn(x)|+
�∞

n=m+1 2−n →k→∞ 2−m.

Hence xk →d0 x . Since clearly xk →d0 x implies xk →d x , we see
that d0 is topologically equivalent to d .
Let now xk be a d0 Cauchy sequence. Then xk is d-Cauchy. Hence
there is x ∈ M such that xk →d x . We have to show that x ∈ S.
Assuming this is not the case, fix n such that x /∈ Gn. Then
d(xk , M \ Gn) ≤ d(xk , x) → 0, hence gn(xk ) →∞. Then for every k
there is j > k with |gn(xj)− gn(xk )| > 2−n, so d0(xj , xk ) ≥ 2−n.
Hence the sequence xk is not Cauchy, a contradiction.
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Completion – discussion
In the proof that the C[0, 1] is incomplete in the L1-norm, we found
a sequence fn that should have converged to 1/

√
x , but this

function was ‘missing’ from our space. It is possible to add those
‘missing functions’ to C[0, 1] by building the powerful theory of the
Lebesgue integral; Lebesgue integrable functions form a complete
space when normed by �f�1 =

� 1
0 |f (x)|dx .

We will consider the problem of making a space complete
abstractly: Given an (incomplete) metric space, can we add to it
points so that it becomes complete?
For example, to (−1, 1) we may add −1, 1 to make it complete, but
we may also add all x ∈ R with |x | ≥ 1. Observing that in the first
case (−1, 1) is dense in the bigger space while in the latter it is not,
we will also require that the original space be dense in its
completion.
Recall that a set S ⊂ M is dense in M if S = M.
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Definitions of completion

Definition. A completion of a metric space M is a complete
metric space N such that M is a dense subspace of N.

Definition (Modern). A completion of M is a complete metric
space N together with an isometry i of M onto a subset of N such
that i(M) is dense in N.

Example. In the old-fashioned definition, R is a completion of Q
because it is complete and Q is its dense subset. The same fact is
said in the modern definition that R together with the identity map
from Q to R is a completion of Q. However notice that R together
with the map i(x) = −x from Q to R is also a completion of Q.

Remark. It can be proved that completions are unique in the
following sense: if N, i and N �, i � are two completions of M, there is
an isometry j : N → N � so that j(i(x)) = i �(x). (We will not prove it
in this lecture.)
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Existence of completion

Theorem 5.29. Any metric space can be isometrically embedded
into a complete metric space.

Proof. We find an isometry of M onto a subset of B(M), which is
complete by 5.6. Fix a point a ∈ M and define F : M → B(M) by

F (x)(z) = d(z, x)− d(z, a).

The inequality |d(z, x)− d(z, a)| ≤ d(x , a) says that F ∈ B(M).
We have |F (x)(z)− F (y)(z)| = |d(z, x)− d(z, y)| ≤ d(x , y) and
the inequality becomes equality when z = y (or z = x). So
�F (x)− F (y)� = d(x , y) and so F is an isometry (onto some
subset of B(M)).

Corollary 5.30. Any metric space has a completion.

Proof. Embed M into a complete metric space N. Then M (the
closure taken in N) is complete by 5.2 and M is dense in M. So M
is a completion of M.
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Compactness and the Cantor Set
Recall the Cantor set. Notice that the remaining intervals give rise
to pieces of the Cantor set that are both open and closed.

Theorem 5.31. Every compact metric space M is a continuous
image of the Cantor set C.

Sketch of Proof. Let Ak ⊂ M be finite sets such that every point
of M is within 2−k of some point of Ak . By induction one constructs
a sequence fk : C → M of continuous functions such that
fk (C) = Ak and d(fk (x), fk+1(x)) ≤ 2k for x ∈ C. Then fk form a
Cauchy sequence in the space of continuous functions C → M, so
they converge to a continuous f : C → M. Moreover, f (C) is dense
in M. It is also compact, hence closed, hence f (C) = M.

Corollary 5.32. There is a continuous surjective map
f : [0, 1] → [0, 1]2. (Such maps are called Peano curves.)

Proof. Extend a surjective continuous map f : C → [0, 1]2 linearly
to each interval removed during the construction of C.
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Main points of Chapter 5
• Cauchy Sequences. Complete Metric Spaces.

• Complete subspaces and closed subsets.

• Completeness of Rn, spaces of bounded and continuous functions.

• Incompleteness of C[0, 1] with the L1 norm.

• Proof of Tietze’s Theorem.

• Contraction Mapping Theorem and applications.

• Total boundedness, Cauchy sequences, completeness and compactness.

• Arzelà-Ascoli Theorem.

• Cantor’s Theorem. Baire’s (Category) Theorem. Applications.

• Topological completeness.

• Completion: definition and existence.

• Compact metric spaces as images of the Cantor Set.
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