
Business-Cycle Models: Closing the

Gap Between the Different Approaches∗

Oleg Kozlovski† Patrick Pintus‡ Sebastian van Strien§

Robin de Vilder¶

May 18, 2004

∗The authors thank Andy Atkeson and Hal Cole for useful comments and suggestions.

First version: december 2000.
†Warwick University (UK), Dpt. of Mathematics.
‡Corresponding author: pintus@univ-aix.fr. University of Aix-Marseille II & GREQAM

(France). Part of this research was done while the author was affiliated with the University

of Cergy Pontoise (THEMA, France) and during visits at DELTA.
§Warwick University (UK), Dpt. of Mathematics.
¶CNRS and DELTA (joint research unit of CNRS-EHESS-ENS, Paris, France) and Univer-

sity of Amsterdam, Dpt. of Mathematics (Netherlands). Part of this research has been done

while the author was working as a Marie Curie fellow at INSEE/CREST and during visits at

the University of Warwick.

1



2

Summary: This paper is concerned with the subject of how the three main

approaches to model aggregate economic fluctuations are related. That is, we

are interested in the relation between real business cycle models, endogenous

business cycle models and sunspot equilibria models. It is shown that there

exists an open set of parameters where the three approaches are very much

related: the time series have much resemblance. Outside this set of parameters

the approaches seem mutually exclusive. In particular, we show that if the

interior steady state is unique and has a saddle structure then no sophisticated

deterministic fluctuations can occur. On the other hand if the nonlinear model

is close to having multiple eigenvalues close to 1 in absolute value then so-

called Bogdanov-Takens bifurcations can occur very close to the interior steady

state: sophisticated deterministic fluctuations near unit roots occur. We will

argue that if these types of bifurcations occur then linearizing requires checking

for the size of the basin of attraction. In addition, for parameters close to

these bifurcations, the linearized model may have the same structure as the

real business-cycle model and generate similar time series. However, in this

case cycles are driven by animal spirits and, therefore, do not require persistent

shocks.

1 Introduction

In the dominant macro-economic paradigm agents are rational beings that op-

timally respond to fundamental changes in a market clearing economy with

Pareto optimal allocations of contingent commodities. Translating this view

into a system of dynamic equations leads to a neoclassical model where the

solutions for (aggregate) capital, and all other variables are, near the unique

steady state, linearly approximated, while the (forcing) stochastic process is de-

scribed by an autoregressive (AR) model with roots close to (but smaller than)

one. Since the unique steady state of the, on empirical data calibrated, neoclas-

sical model has a saddle structure attention is restricted to the dynamics on the

stable manifold(s), see the real business cycle (RBC) approach promoted, fol-

lowing Lucas [30], by, for example, Kydland and Prescott [28] and King, Plosser

and Rebelo [25]. To find economic rationale and evidence for the presence (and

properties) of the stochastic process has turned out to be a cumbersome task1

and in fact has reinforced the necessity to find alternative methods to model

1See, for instance, the critiques by Sims [37].
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aggregate business cycles. This has resulted in an expansion of a line of research

that is referred to as the endogenous business cycle (EBC) approach. Similar

to the RBC models markets clear, agents are rational beings and allocations

of contingent commodities are Pareto optimal. In this framework, however,

fundamental changes of the economy are disregarded: technology, preferences

and endowments are assumed to be stationary. The occurrence of fluctuations

is originated by self-fulfilling changes in (deterministic) agents’ expectations,

endogenously accounted for by nonlinear laws that underly the economy, see

Benhabib and Day [4] and Grandmont [15] for early examples. Although this

avoids introducing in the model unexplained shocks to the fundamentals, it in

turn creates new problems. In fact, it can be shown, at least in one-dimensional

endogenous models, that the cycles can only arise under quite unrealistic eco-

nomic assumptions (such as the violation of the gross substitutability axiom,

unrealistic parameter values, long time scale) and that the statistical properties

of the time paths have almost no resemblance with those observed empirically.

However, some of this criticism has been countered in the past decade or so, see

for example Reichlin [36], Woodford [42], de Vilder [40] or Grandmont, Pintus

and de Vilder [16] where the time scale and the gross substitutability issues are

settled.

An alternative, and promising, way to tackle the occurrence of shocks to the

economy is by assuming that business cycles are in fact induced by “animal”

spirits of agents. The approach is based on the Keynesian thought of the self-

fulfilling prophecy, see for example Azariadis [1], Cass and Shell [8], Azariadis

and Guesnerie [2], Guesnerie [17], Guesnerie and Woodford [42]. The time

series generated by these types of economies, also referred to as sunspot equilib-

rium (SE) models, may overcome all of the previously mentioned criticism, see

Farmer and Guo [14]. However, some of the modern macro-economic assump-

tions and Pareto optimality are violated which makes this approach, according

to some economists, a theoretical curiosity. Moreover, an important caveat of

the approach is that the results reported by Farmer and Guo [14] based on lin-

earization may only be valid, as will be shown in this paper, in an extremely

small neighbourhood of the interior steady state.

Although the EBC and SE approaches to model business cycles have, until

now, mainly received theoretical recognition it remains an open, interesting and

possibly enlightening topic to examine how the three approaches are actually

connected. Answering this question, at least partially, is the aim of this paper.
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To fix ideas, we shall use a standard two-dimensional (discrete time) benchmark

economic model, with capital accumulation and input substitution, that is a

variant of representative models both used in the exogenous, the endogenous

and the sunspot literature (see for example Kydland and Prescott [28], King,

Plosser and Rebelo [25], Farmer and Guo [14], Grandmont, Pintus and de Vilder

[16]). For certain parameter configurations this particular model displays all

principal local and global bifurcations that have been reported in the economic

literature in the past two decades. While for other parameter configurations the

interior steady state is unique and possesses a saddle structure as prescribed by

the real business cycle approach. The main theme throughout the paper is to

locate in parameter space those economies that are able, using the different

methodologies, to generate time series that have empirically realistic properties

such as AR structures with roots close to one. The conclusion we make is that

for certain sets of parameters there is a fundamental connection between the

different approaches.

We have organized the paper as follows. In the next section we present the

benchmark model and locate the different economies in parameter space. In

section 3 we discuss the dangers of linearization and introduce the Bogdanov-

Takens bifurcation. In section 4 we present a sufficient condition for the absence

of chaos. In section 5 we apply the results presented in the previous sections to a

general specification of the model. In section 6 we give some concluding remarks.

Finally, in the appendix we give proofs and provide an extensive discussion of

the Bogdanov-Takens bifurcation.

2 The benchmark model

In this section we introduce the model that we use as a benchmark. The pro-

posed model is a variant of settings that have been used in the endogenous

literature (see for example Grandmont, Pintus and de Vilder [16] where a modi-

fication of Woodford’s infinite horizon model [42] is chosen) and in the exogene-

nous literature (Kydland and Prescott [28]). We shall restrict our attention to

the endogenous interpretation and introduce randomness at the level of expec-

tations. We end the section by presenting a local stability analysis and indicate

in parameter space the regions that fit the different approaches.
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2.1 The deterministic equilibrium model

We restrict attention to the region in phase space where the infinite horizon

model proposed by Woodford [42] can be interpreted as an overlapping genera-

tions model. In that region workers behave as if they came in two generations.

They supply, in period t, lt ≥ 0 units of labour, the income of which is saved

in the form of mt ≥ 0 units of fiat money which in turn is spent on ct+1 ≥ 0

units of consumption good in the next period. Workers may be identified by

one typical agent whose preferences are represented by a separable utility func-

tion V2(ct+1) − V1(lt), where the Vi’s are (dis)utility functions that satisfy the

standard properties:

Assumption 2.1 The utility functions Vi, i = 1, 2 are Cr, r > 3, for l, c ≥
0. With V ′1 (l) > 0, V ′′1 (l) > 0, liml→∞ = +∞, V ′2(c) > 0, V ′′2 (0) < 0 and

−cV ′′2 (c) < V ′2(c).

We are focusing on intertemporal equilibria with self-fullfilling expectations. In

this setting workers maximise their utility under the current and future con-

straints wtlt = mt = pt+1ct+1, where wt ≥ 0 is the wage rate and pt+1 ≥ 0 is

either the random or perfectly foreseen price of the consumption good. In this

subsection we shall treat the case where there is no uncertainty about the future

price of the consumption good. In the next subsection the alternative case is

introduced. When interior the budget constraints and the first order condition

leads to

v1(lt) = v2(ct+1), (1)

where v(l) = lV ′1(l) and v2(c) = cV ′2(c).

The production sector of the economy is operated by profit maximising, in-

finitely long living, entrepreneurs. In the production process labour and capital

(k ≥ 0) are combined in variable proportions to produce y = lf(k/l) units of

output, where f(.) is the reduced production function that satisfies:

Assumption 2.2 The marginal productivity of capital ρ(a) = f ′(a) is a de-

creasing function and the marginal productivity of labour ω(a) = f(a) − af ′(a)

is an increasing function of a, where a is defined as the capital-labour ratio k/l.
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In the RBC literature the randomness is introduced at the level of the production

function by means of a stochastic (scaling) technology parameter. In the next

subsection we shall get back to this matter in more detail. As usual in one-

sector models the output is to be interpreted as a perishable good that can be

either consumed or reinvested. Moreover, the production process also yields in

each period (1− δ)k units of depreciated capital, with 0 < δ ≤ 1. Under perfect

competition, the real gross return on capital R = ρ + 1 − δ is in equilibrium

equal to R(a) = ρ(a) + 1− δ while the real wage w/p is in equilibrium equal to

ω(a). We focus on a limit version of the model where capitalists do not consume

and in fact reinvest all their capital income. In equilibrium the behaviour of the

capitalists is then described by

kt = R(at)kt−1 (2)

Finally, we assume that the supply of outside money M > 0 is constant over

time. Since money is held by the household sector the real money balances

M/pt are equal to the consumption of “the old” (ct) which in turn is equal to

real wage income ω(at)lt.

ct = ω(at)lt = M/pt (3)

By substituting (3) into (1) and using (2) we get an expression for the perfect

foresight equilibrium dynamics which is summarized in the following definition:

Definition 2.1 An inter-temporal equilibrium with perfect foresight is a deter-

ministic sequence kt > 0 and at > 0 that satisfies

kt = R(at)kt−1

ω(at+1)/at+1 = γ(kt−1/at)/kt
(4)

for t ≥ 1, where γ = v−1
2 ◦ v1 is the workers (invertible) offer curve.

Grandmont et al. [16] show that under appropriate boundary conditions on the

marginal utility functions and on the marginal productivity of capital, a unique

interior steady state exists. Moreover, if ω(a)/a is invertible at this steady

state then the equations (4) define, at least locally, an invertible determistic

dynamical system.
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2.2 The stochastic equilibrium model

Let us now show how randomness can be introduced into the benchmark model

(4). We introduce the uncertainty at the level of expectations. In this setting

the young maximize at date t the mathematical expectation of their utility

conditional upon the available information which we denote byHt and subject to

the current and future budget constraints wtlt = mt = pt+1ct+1. Instead of the

case where agents have perfect foresight about future prices of the consumption

good it is now assumed that pt+1 is random. This together with the first order

condition then leads to

v1(lt) = Et(v2(ct+1)) (5)

where the vi’s are as in (1). Now take a sequence of random variables st,

t = 0, 1, . . . ,∞ that lies in a compact set S. So at time t a typical household

has as an information set Ht = (st, st−1, . . . ). Since the uncertainty is about

future prices we can still substitute (3) into (5) and use (2) to get an expression

for the intertemporal equilibrium dynamics which is summarized by:

Definition 2.2 An intertemporal equilibrium with self-fullfilling expectations is

a sequence of random variables kt−1 > 0 and at > 0 that satisfies

kt = R(at)kt−1

E[v2(ktω(at+1)/at+1)|Ht] = v1(kt−1/at)
(6)

An equivalent way to write this is by introducing a sequence of innovations εt

with E[εt+1|Ht] = 0. This then results in:

kt = R(at)kt−1

v2(ktω(at+1)/at+1) = v1(kt−1/at) + εt+1, where E[εt+1|Ht] = 0
(7)

Observe that in this two-dimensional stochastic difference equation the random

innovations only influence the capital-labour ratio a and not the predetermined

variable k.
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2.3 Linearized dynamics

We now show that the steady state of (4) can undergo various bifurcations. We

state the next lemma in terms of σ (the elasticity of input substitution), εγ (the

elasticity of the offer curve), s (the share of capital in output), δ (the rate of

capital depreciation), βc (the rate of discounting).

Lemma 2.1 Assume θ(1− s) < s, where θ = 1−βc(1− δ). Then the following

holds:

1. If σ ∈ [0, σF = θ(1−s)/2], a stable supercritical Hopf bifurcation occurs at

εγH = (s− σ)/(θ(1− s)− σ); for εγ slightly larger than εγH an attracting

invariant closed curve surrounds the unstable steady state, on which the

dynamics is either periodic or quasi-periodic. Moreover, the steady state

is stable when 1 < εγ < εγH .

2. If σ ∈ (σF , σH ), a stable supercritical Hopf bifurcation occurs at εγH , fol-

lowed by an unstable subcritical flip bifurcation at εγF = (2s+ θ(1− s)−
2σ)/(2σ−θ(1−0s)) > εγH , where σH = s[1+θ(1−s)/s−

√
1− θ(1− s)/s]/2;

for εγ slightly larger than εγH an attracting invariant closed curve sur-

rounds the unstable steady state, while for εγ slightly smaller than εγF

there exists a period two saddle orbit near the unstable steady state.

3. If σ = σH there exists a value εγ such that a Hopf and a flip bifurcation

coincide.

4. If σ ∈ (σH , σI) an unstable subcritical flip bifurcation occurs at εγ = εγF

where σI = [θ+ s(1− θ)]/2; for εγ slightly smaller than εγF there exists a

period two saddle near the stable steady state.

The proof can be found in Grandmont, Pintus and de Vilder [16]. In what

follows we fix the propensity to save s at 1/3, the depreciation rate of capital δ

at 1/10 and the discounting parameter βc at 1. This then leads to the bifurcation

diagram in figure 1: along the segment (B,C) the supercritical Hopf bifurcation

occurs and along the segment (A,B) the subcritical flip bifurcation. In this

paper we have special interest in the case associated with point B where both

curves meet. Here we just refer to figure 1 where we have drawn the different
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bifurcation curves. We also indicate in this figure the stability of the steady

state in the regions.

RBC domain:

RBC proponents concentrate on parameters in the region where the unique in-

terior fixed point is a saddle, see figure 1. According to that approach all the

economic action takes place on the stable manifold. However, if we would add

i.i.d. random noise to the second equation of (4) orbits will not be feasible with

probability 1: the fixed point is determinate. Similarly, if we would perturb

the technology with an i.i.d. noise term then again all orbits will escape with

probability 1. The RBC literature solves this problem by explicitly taking into

account in the optimization procedure that the technology is subjected to ran-

dom perturbations, and then determine the optimal paths of the expectations of

these random variables. From this, together with their standing assumptions,

they conclude that the only economically feasible paths are on the stable man-

ifold of the unique fixed point p (that we denote W s(p); see subsection 3.2 for

the definition). In terms of equations this approach may be expressed in the

following simple form:

kt = fAt(kt−1)

At+1 = βAt + εt,
(8)

where A denotes total factor productivity, fA : W s(p) → W s(p) (f is linear),

kt+1 = fAt(kt), kt ∈ W s(p), β smaller than but close to 1 and εt i.i.d. ran-

dom noise. This particular configuration is obtained when labour supply is

sufficiently inelastic w.r.t. real wage, i.e. if εγ is large enough, or if σ (substi-

tutability of inputs) is large enough.

EBC domain:

EBC proponents are interested in the regions where the interior steady state is

either stable or when it bifurcates to another attractor, see figure 1. That is,

in terms of figure 1, when the left line, while increasing the parameter εγ , lies

inside the triangle (A,B,C) or if it is close to the lines (B,C) or (A,B). In the

first case the fixed point is attracting, in the second case (on the line (B,C))

generically a Hopf bifurcation occurs and in the latter case (on the line (A,B))

generically a period-doubling bifurcation occurs. If the Hopf bifurcation is stable

an attracting circle bifurcates out of the fixed point and all asymptotic economic

dynamics takes place on this circle. In fact, this circle might transform into a

very complicated set which also bears the interest of the EBC proponents, see

Pintus, Sands and de Vilder [35]. Similar for the flip bifurcation, the asymptotic
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Figure 1: The bifurcation curves in the trace-determinant plane. Are also de-

picted the left-line ∆σ for different values of σ and regions in which the different

approaches are located, in the trace-determinant plane.
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dynamics may take place on a stable period two cycle that might transform

into a very complicated set through a whole series of flip bifurcations, see for

example Grandmont [15]. In both cases the stable manifolds of the dynamic

objects are two-dimensional. This configuration is obtained when labour supply

is less inelastic (εγ close to 1) than is the case in the RBC approach and only if

σ is small enough.

SE domain:

Proponents of the SE approach are in a sense close to the EBC proponents.

That is, their economies lie in regions of the trace determinant space that are a

subset of the EBC economies, see figure 1b. As mentioned we restrict attention

to the case where the SE have a continuous support: i.i.d. random shocks are

applied. We start in the triangular region (A,B,C) in figure 1 where the unique

interior steady state is stable: the fixed point is indeterminate. In the case the

fixed point undergoes an aforementioned stable Hopf bifurcation (along the line

(B,C)) the fixed point becomes determinate. However, since a small attract-

ing circle surrounds the fixed point one can still have SE in a annular region

containing the circle, see Grandmont et al. [16]. A similar story can be told if

the fixed point would loose stability through a stable period-doubling bifurca-

tion: an indeterminate period two orbit surrounds the determinate steady state.

Although numerical simulations indicate that one can still construct SE if the

period two orbit and the invariant circle are transformed into strange (chaotic)

sets there is no formal proof of this assertion yet. In terms of elasticities this

configuration only arises under similair assumptions as in the EBC approach.

3 Linearization, normal forms, bifurcations and

random perturbations

3.1 The dangers of linearizing

In the RBC literature it is a standard procedure to use the linear terms of the

Taylor expansion, associated with the stable direction, as an approximation of

the original nonlinear dynamic economic model. The in this fashion obtained

linear dynamic economic model is then coupled with an auto-regressive process

of the first order with roots close to unity: the AR(1) process is introduced
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to describe the shocks to the fundamentals mechanism, see system (8). Since

in the RBC setting all feasible orbits lie on the stable manifold of the saddle

one constructs in this way a stable system. In the EBC and SE literature one

generally is not interested in restricting attention to the linear terms of the

Taylor expansion. That is, in linear dynamic economic models the dynamics

without shocks is trivial: either all orbits converge to a stable fixed point or

all orbits escape to infinity. More specifically, all interesting dynamic objects,

created through the various local or global bifurcations, are ignored. Finally,

one has to keep in mind that in nonlinear dynamics the size of the basin of

attraction of a fixed point can be small if the eigenvalues are close to one: if both

eigenvalues tend to 1 or −1, then the area of the basin in general shrinks very

fast to zero (often exponentialy fast). In linear models the basin of attraction

is either a point or the whole space whereas in nonlinear models the basin can

be determined by stable manifolds of other dynamic objects and can be very

small. This implies that if one adds i.i.d. normally distributed random noise to

the level of the expectations in an indeterminate SE model, orbits will escape

the basin even if it is the positive quadrant, with probability 1. Hence, in

order to have that the linearized model and the original model display identical

fluctuations one has to compute the basin of attraction of the latter model and

one should not add normally distributed noise but only, for example, noise with

small amplitude. Summarizing, if eigenvalues are close to unity, then it makes

sense to consider normal forms which also contain certain higher order terms,

so that one does not ignore crucial local behaviour and bifurcations.

3.2 Bifurcations near unit roots

Let us return to what happens along the curve [B,C] in figure 1 where both

eigenvalues are on the unit circle. Let these eigenvalues be λ1, λ2. If λ1 = λk1λ
m
2

(i.e. if we write λi as eiφi then this means that (1−k)φ1 = mφ2 mod 2π) then we

say that one has a k:m resonance. If k,m /∈ {0, 1, 2, 3, 4} then a standard Hopf

bifurcation occurs (provided some further conditions are satisfied). However,

along the curve BC the ratio k:m is not constant and in fact there is a parameter

for which one has a 1:2 resonance. In fact, at the point B, in figure 1 one expects

such a 1:2 resonance (both eigenvalues are −1): a flip and a Hopf bifurcation

happen at the same time. While at the point C, in figure 1 both eigenvalues

are +1 and one expects a 1:1 resonance: a saddle-node and a Hopf bifurcation
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happen simultaneously. If some genericity conditions are satisfied then these are

called Bogdanov-Takens bifurcations. In the appendices A.2-A.3, we discuss in

some detail the local structure near the 1:2 resonance. Moreover, the 1:2 and the

1:1 resonance bifurcations are very much related: if one takes the second iterate

of the system that displays the 1:2 resonance bifurcations one obtains a system

that undergoes the 1:1 resonance bifurcation with the exception that one has two

additional saddle fixed points instead of one. In this paper we will be studying

parameters near B in figure 1 because there all these domains meet. That is,

we shall focus on points in parameter space which combines the best features of

the different approaches. Thus we will unify and compare the RBC, EBC, SE

approaches. Of course this may seem a very special choice of parameters, but

we should emphasize that even not very close to these parameters, the dynamics

will be strongly affected by the behaviour at the bifurcation parameter, as we

shall see in section 5. We should also emphasize that in typical two-parameters

families one does expect 1:2 resonance bifurcations to occur, and indeed in

for example, Benhabib, Schmitt-Grohe and Uribe [5], Brock and Hommes [7],

Cazzavillan and Pintus [9] and Mortensen [32] an analysis similar to the one

given in this paper can be given. Also if one chooses a different production

function (with increasing returns to scale) then one can also encounter in system

(4) other resonance Hopf bifurcations (see Cazzavillan, Lloyd-Braga and Pintus

[9]). Contrary to the standard Hopf bifurcations, one has chaotic dynamics

arbitrary near the 1:2 resonance bifurcation. Let us give a short review of

some standard results in dynamical systems. Consider a C1 diffeomorphism

G : R2 → R2. Suppose P = {p,G(p)} is a hyperbolic periodic orbit of period

2 of G, so G2(p) = p and the Jacobian, evaluated at P , has no eigenvalues of

norm 1. Then the stable and unstable sets of p are defined by

W s(p) = {x;G2n(x)→ p, as n→ +∞}

and

W u(p) = {x;G2n(x)→ p, as n→ −∞}

are smooth manifolds. By replacing p by G(p) in this definition one obtains

the stable and unstable manifolds of G(p). In a nonlinear framework stable and

unstable manifolds of p and G(p) may intersect. That is, W u(p) ∩W s(G(p))

may not be equal to the empty set; points x that satisfy this condition are

referred to as heteroclinic points. In fact, if the stable and unstable manifolds

of a periodic orbit have points of heteroclinic intersection then this leads to a

so-called heteroclinic tangle, see figure 2 for a graphical illustration. Moreover,

it can be shown that if a periodic orbit has heteroclinic points then there also
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Figure 2: Here we display a heteroclinic tangle, in the plane, generated by the

stable and unstable manifolds of a period two saddle orbit.

exists points of homoclinic intersection: W u(p) ∩W s(p) 6= ∅. It is well known

that if a dynamical system displays a heteroclinic tangle all sorts of complicated

dynamic phenomena are present, see for example Kuznetsov [27], Palis and

Takens [33] or for an economic application Pintus, Sands and de Vilder [35]. As

we shall see in the appendix, provided some number is non-zero, there are two

possibilities for the dynamics near such a fixed point (for parameters near the

bifurcation value). We shall concentrate on just one case which is summarized

in figure 3, were ε1, ε2 are functions of the original parameters. Figure 3 must

be read as follows: first the attracting fixed point is surrounded by a period

two saddle orbit (i). By altering the parameters (ε1, ε2) such that the line H

is crossed and region (ii) is entered an attracting invariant circle emerges out

of the fixed point. Along the line C the stable and unstable manifolds of the

periodic saddle orbit and the invariant closed curve coincide: a heteroclinic

bifurcation occurs in which the circle is destructed. Finally, the period two

saddle orbit is destructed through a flip bifurcation when the parameters enter

region (iv) leaving region (iii) and crossing F+. In particular, generically the

diffeomorphism will have homoclinic intersections for an open set of parameters.

It follows from the existing literature on the subject (see e.g. Palis and Takens

[33]) that there must exist generically unfolding quadratic tangencies giving rise

to all sorts of (stable) complicated deterministic dynamic phenomena. Although

the invariant structures are “thin” they will strongly influence the observable

dynamic behaviour in phase space.

4 Absense of chaos: a sufficient condition

In recent literature on dynamic economic models homoclinic bifurcations asso-

ciated with a fixed (periodic) saddle point have been reported, see for example

Brock and Hommes [7], Cazzavillan et al. [9], Tuinstra [39] and de Vilder [40].
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Figure 3: Depending on the sign of C(0) in the normal form for the 1:2 reso-

nance bifurcation one can have two distinct bifurcation scenarios; here we have

depicted the situation when C(0) > 0.
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Without exception in these examples multiple steady states or periodic orbits

are also present. The natural question then arises whether homoclinic bifurca-

tions are also a possible outcome if the model has a unique fixed point which

has a saddle structure. That is, do economies that fit the RBC regime, display

homoclinic bifurcations and associated sophisticated behaviour? The answer

to this question is subtle since economic models often have an additional fixed

point which is referred to as the autarkic steady state. Although this state is

on economic grounds not attainable in a mathematical sense it may influence

the dynamics, see de Vilder [40]. Moreover, globally the dynamic model may

not be invertible which also has important dynamic implications. Let us start

by dealing with these problems by introducing two definitions concerning feasi-

bility. Let U be a subset of R2
+ and let f be a smooth map defined on U with

a unique fixed point p in U , then

Definition 4.1 The global feasible set Λ̂ is the set of points: {x; fn(x) ∈ U, ∀n ≥
0}.

Definition 4.2 The feasible set Λ is the path-connected component2 of Λ̂ con-

taining the fixed point and restricted to Λ the map f is invertible.

In figure 4 we give a schematic sketch of these two definitions. In this picture the

global feasible set Λ̂ = ∪5
i=1Ui whereas the feasible set Λ is equal to U1. From

an economic point of view the definition of Λ can be rationalized as follows:

we are only interested in those initial states x ∈ R2 that lie in a (possibly

large) neighbourhood of the fixed point p and can reach p if time increments

would decrease to zero. We are now ready to present a theorem that excludes

the occurrence of chaos associated with homoclinic intersections of the stable

and unstable manifolds of the saddle fixed point in certain classes of dynamic

economic models.

Theorem 4.1 Assume that p is a saddle point with positive eigenvalues and

that definition 4.2 is satisfied, then Λ ⊂W s(p).

2Λ is the set of all points x ∈ Λ̂ such that p and x can be connected by an arc which lies

inside Λ̂.
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Figure 4: A schematic drawing of the feasible sets Λ and Λ̂. In this picture Λ̂ =

∪5
i=1Ui and Λ = U1 assuming that f is invertible on U1. The complementary

regions consists of those points that are not feasible: they may escape to infinity

or converge to different dynamic objects.
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Proof: The proof can be found below, in the first appendix. �

So no sophisticated behaviour, such as periodic or chaotic fluctuations, can occur

under the outlined circumstances. Moreover, if the saddle has negative eigen-

values and there are no periodic orbits of period two then one can replace the

map f by its second iterate and apply the previous theorem. In the next section

we will specify the production and utility functions for our model and show that

this theorem applies for cetrain parameter configurations to our setting.

5 A worked out example

In this section we shall apply the theory of the previous sections to a general

specification of our model.

5.1 Model specification

We specify the following widely-used reduced CES production function:

f(a) = A(sa−η + 1− s)−1/η if η 6= 0 and f(a) = Aas if η = 0. (9)

Here η > 0 determines the elasticity of input substitution through σ = 1/(1+η),

A is a productivity parameter and 0 < s < 1 is the share of capital income in

total production. As utility functions we use:

V1(l) = l1+α1/(1 + α1) and V2(c) = c1−α2/(1− α2) (10)

where α1 ≥ 0 and 0 < α2 < 1. This specification then leads to an offer curve

with constant elasticity εγ = (1 + α1)/(1 − α2) > 1. As in Grandmont et al.

[16] we choose

δ = 0.1, A = δ/s and s = 1/3.

Then substituting (9) and (10) into the equations (4), we get a dynamical sys-

tem:
kt = (sAa−η−1

t (sa−ηt + 1− s)−1−1/η + 1− δ)kt−1

A(1− s)a−1
t+1(sa−ηt+1 + 1− s)−1−1/η = (kt−1/at)

εγ (kt)
−1

(11)
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It is easy to see that the monetary steady state exists and is actually equal to

(1, k̄) independently of η, where k̄ = (A(1 − s))1/(εγ−1). If we choose δ and s

as above and η 6= (1 − s)/s the system (11) has a unique interior fixed point

and is invertible in a neighbourhood Û of (1, k̄): observe that the feasible set

Λ ⊂ Û . In fact, one can fix the parameters (η, εγ) such that both eigenvalues

go through −1, see Grandmont et al. [16].

5.2 Description of dynamics for various choices of param-

eters

For this choice of the utility and production functions the only feasible parame-

ters in the trace determinant plane are located to the left of the half line (A,C)

in figure 1. As we pointed out in section 2 for parameters inside the triangle

(A,B,C) the unique interior steady state is stable. For parameters left to the

segment (A,B) we have the following proposition:

Proposition 5.1 To the left of the half line (A,B) in figure 1 the set Λ ∈
W s(p).

Proof: In Grandmont et al. [16] it is shown that for all parameters considered

there exists a set U containing the interior steady state such that restricted to U

the map (11) is invertible. From section 2 we know that to the left of the half line

(A,B) the interior steady state is a saddle and from the discussion above that

it is unique: the autarkic steady state does not lie inside U . Next, as pointed

out, along the half line (A,B) a period-doubling bifurcation of the interior fixed

point occurs. Using a mathematica code we have computed the coefficients in

the normal form of this bifurcation (see Guckenheimer and Holmes [19, p.158]

and it turns out that the bifurcation is always subcritical and gives rise to a

period two saddle orbit. This implies that for parameters to the left of the line

(A,B) the unique fixed point is a saddle with negative eigenvalues and there

are no other periodic orbits of period 2, see figure35a. So for parameters to the

left of the segment (A,B) theorem 1 applies and consequently the feasible set

Λ ∈ W s(p) and we are done.

3All the phase space figures presented in this paper have been obtained by using the

program Dunro [11].
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Figure 5: Here we present, in phase space, the different regimes. In (a) we are

in the RBC regime where no sophisticated dynamics occurs, in (b) and (c) we

are in the EBC and SE regimes, while in (d) we are again in the EBC regime.

Observe that there is a one-to-one correspondence with figure 1.

�

For parameters inside the triangle (A,B,C) the attracting fixed point coexists

with a period two orbit which actually has a saddle structure, see figure 5b To

complete the picture we want to point out that for parameters bounded by the

half lines (A,B), (A,C) and above the line segment (B,C) there is a repelling

fixed point, a saddle orbit of period two and provided that the parameters

are just above (B,C) there is an attracting circle with a rational or irrational

rotation, see figure 5c. For parameters further above the circle may break up

into a strange attractor (figure 5d), see Pintus, Sands and de Vilder [35].
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Figure 6: Close to the Bogdanov-Takens bifurcation the basin of attraction is

determined by segments of the stable and unstable manifolds that surround the

attracting fixed point (a), the basin corresponds to the shaded area in (b).

5.3 Dangers of linearization and restricting to stable man-

ifolds: chaos near unit roots

As mentioned linearizing becomes less justifiable when the basin of the attract-

ing fixed point is very small. For example, for parameters just north-east of

B one obtains a phase picture as in figure 6a: the attracting fixed point, with

complex eigenvalues, is surrounded by a period two saddle orbit. Segments of

the stable manifolds of the period two saddle determine the boundary of the

basin of attraction of the fixed point and as can be seen is very small indeed:

the feasible set Λ (which also contains the stable and unstable manifolds of the

period two orbit) is very small, see figure 6b. This particular configuration is

very similar to the one reported by Farmer and Guo [14]. The reason for this is

that the eigenvalues at their fixed point are close to one and so taking the second

iteration of our map corresponds to theirs with the exception that there are now

two additional fixed points instead of one. Nevertheless, one must conclude that

a linearization only makes sense if the dynamics remains inside Λ; outside Λ al-

most all, in the sense of Lebesgue, orbits leave the positive quadrant. Moreover,

in order to stay inside Λ one can not apply for example normally distributed

i.i.d. shocks to the expectations. In fact, the linear part of the map near B can

be brought in the following (normal) form

(
u1

u2

)
7→
(
−1 1

β1 −1 + β2

)(
u1

u2

)
, (12)
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where at B one has β1 = β2 = 0. For parameters left to the half line (A,B) and

close to B, where the unique fixed point has a saddle structure, the stable and

unstable generalized eigenspaces of (12) make a very small angle. So in terms of

the nonlinear map the stable and unstable manifolds are also very close together

and a point x 6= p in the stable manifold can land on the unstable manifold by

a small perturbation. Let us now show that our system displays stable chaotic

dynamics while the eigenvalues at the fixed point are close to −1.

Theorem 5.1 There exists values (εγ , σ) such that the feasible set of system

(11) contains stable chaotic dynamics.

Proof: From Grandmont et al. [16] we know that there exists values (εγ , σ)

such that the eigenvalues are both −1. From the same paper we know that f

is invertible in a neighbourhood U of p. Observe that the feasible set Λ ⊂ U .

From the discussion in the appendix we learn that we have to transform the

map at B (where both eigenvalues are −1) into the normal form (16). Crucial

in this normal form are the coefficients given by (15). Using a matlab code

we have computed these coefficients. From these computations we learn that

C(0) >> 0 and D(0) >> 0. Therefore, D1(0) = −2D(0) − 6C(0) 6= 0 and

C1(0) > 0 (see (19)). So we are in the situation in which the dynamics of the

vector field approximation is as in figure 3. In terms of our discrete map this

means that we have a generic 1:2 bifurcation. This implies that in a very small

neighbourhood of the fixed point all sorts of complicated dynamic objects ex-

ists for parameters close to the bifurcation value where both eigenvalues pass

through −1. Whether some of these dynamic objects are stable depends on the

product of the eigenvalues of the period two saddle orbit. Using the program

Dunro [11] we have checked that the product of the eigenvalues for parameters

near the 1:2 resonance bifurcation are larger than 0.9 but smaller than 1.0. Let

p be the periodic orbit of saddle-type near the fixed point created by the bifur-

cation. Generically, see for example [27], there exists parameters so that W s(p)

and W u(f(p)) have tangential intersections which unfold generically (and sim-

ilarly W s(f(p)) and W u(p). It is well-known, see [33], that this means that

there are strange attactors for nearby parameters. We need to show that these

attractors lie in the feasible set Λ. To see this, note that the tangency occurs

within U (more precisely, the pieces of W s(p), W s(f(p)) and W u(p), W u(f(p))

connecting p and f(p) with two tangency points bound a region which lies in U).

So we can take a region R and an integer n so that R, . . . , fn(R) lie in U and
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so that fn : R → R2 as the parameter changes is a ‘horseshoe family’ (and so

fn is invertible on R. The strange attractors constructed by Mora and Viana,

see [33], are contained in the set Ω = {x; f i(x) ∈ R ∪ · · · ∪ fn(R) for all i ≥ 0}
and so lie in U . �

5.4 Stochastic fluctuations near unit roots

It is generally believed that deviations from common trend in business cycles

possess unit roots. In terms of time series this particular feature can be modeled

by

xt+1 = Axt + εt (13)

where xt ∈ Rn, A a nxn-matrix with eigenvalues inside and close to the unit

circle and εt for example an independent, identically and uniformly distributed

process. Then

xt = Atx0 +At−1ε0 +At−2ε1 + · · ·+ εt−1 (14)

In our case we shall assume that economic agents can only observe the variable

every other time4, and let A be the second iterate of the linear matrix (12).

Then when β1, β2 = 0 both eigenvalues of this matrix are equal to one, but

there is only one eigenvector. It is easy to see that for these parameters the

matrix An is equal to

(
1 n

0 1

)
and so certain coefficients grow linearly with

n. This implies that when βi ≈ 0 and both eigenvalues are less than unity

the i.i.d. random shocks have longer-term effects than would be the case if we

took simply the random walk model xt+1 = xt + εt. The time series, buffeted

with a sufficiently small (depending on the size of the basin of attraction) i.i.d.

uniformly distributed shock at each time step to the second equation of (12),

look much more like the ones reported by King et al. [25], see figure 7a. In fact,

if we apply on average at each 5-th time step a sufficiently small i.i.d. uniformly

distributed shock to the second equation of (12) then we obtain similar time

series, see figure 7. Moreover, if we would fix the parameters such that the

original system is close to having a Bogdanov-Takens bifurcation then some

additional irregularities may be observed if we would use the nonlinear model. If

4We could also introduce increasing returns to scale into the model and then we could

obtain a 1:1 resonance bifurcation; for reasons of exposition we have omitted this exercise.
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Figure 7: In (a) we present a time-series that we obtained by adding a small i.i.d.

uniformly distributed shock to the second equation of (12). In (b) we followed

the same procedure but now shocks were applied, on average, each 5-th time

step. Compare these time series with the ones reported by Farmer and Guo [14]

and King et al. [25].

we apply a unit root test (Phillips-Perron, see Stock [38]) on the series presented

in figure 7 (a) it is not rejected on a 10% level, see table 1.

PP test statistic -2.307281 1% critical value -4.396

5% critical value -2.8648

10% critical value -2.5685

Table 1

On the other hand, if we would test for the presence of i.i.d. random increments

using (xt − xt−1) the hypothesis will be rejected. Only in the case where we
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Figure 8: Here we present the time-series obtained by adding at each time step

a small amount of i.i.d. uniformly distributed noise to the second equation of

(11) shortly after a standard Hopf bifurcation has occurred. We have filtered

out the periodic behaviour as explained in the text.

use as increments (xt−Axt−1) the hypothesis of i.i.d. random variables will not

be rejected. It has been argued that if a dynamic economic model displays a

standard Hopf bifurcation similar results as above can be obtained. However,

it is not hard to see that if the rotation of the circle is not close to 0 then

the Phillips-Perron unit root test will be rejected; just because the time series

fluctuate too much around the stationary steady state. Moreover, in a standard

Hopf bifurcation one will not get an off-diagonal term in the properly chosen

normal form as was the case in (12). This implies that if one corrects for the

periodic behaviour induced by the Hopf bifurcation a standard random walk

with i.i.d. random increments will be obtained. The resulting time series are

however far less appealing from an economic point of view as may be seen from

figure 8.

6 Conclusion

In this paper we have shown that one can find a region in parameter space of

two-dimensional economic models in which the RBC, EBC en SE approaches

to model business cycles are very much related. In fact, we have been able to

show that for certain parameters in this region chaotic dynamics is a possible
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outcome, with multiple eigenvalues close to 1, which makes a linearization less

justifiable. In addition, for different parameters in this region one is able to

find linear approximations that have the same structure as the RBC models.

However, in this case cycles were generated by animal spirits. Outside this

region the different approaches seem mutually exclusive. That is, if the model

has a unique interior steady state which has a saddle structure complicated

deterministic phenomena related with the stable and unstable manifolds of the

saddle are excluded. Moreover, if the model displays a standard Hopf bifurcation

the resulting time series do not have much resemblance with the ones observed

in reality. A similar conclusion can be made if the invariant circle, created in

the Hopf bifurcation, transforms into a complicated set. It remains to be seen

if similar results do occur in alternative and empirically relevant business-cycle

models. For instance, one could build upon some results by Pintus [34] which

show that resonant bifurcations are likely to be found in generalized versions of

the RBC model la Farmer and Guo [14].
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A Appendix

A.1 The two-fixed point lemma

Complicated expectations-driven business cycles may occur in various economic

models. For example, the general equilibrium models, suggested by Benhabib

and Day [4] and Grandmont [15], focused on simple one-dimensional economies

and required large income effects in order to get complicated cyclical behaviour.

By introducing productive capital into similar types of models, which increases

the dimension of the dynamics of the economy to two, one can show that both lo-

cal regular (e.g. Reichlin [36], Woodford [42], Grandmont, Pintus and de Vilder

[16]) and global irregular (de Vilder [40], Pintus, Sands and de Vilder [35]) cy-

cles are compatible with dominant substitution effects. The main mechanism

that accounts for the occurrence of complicated deterministic global fluctuations

in the two-dimensional framework involves intersections of stable and unstable

manifolds of a (periodic) saddle equilibrium (see de Vilder [40], Pintus, Sands

and de Vilder [35] and Brock and Hommes [7], for example).

By contrast, a broad (widely known) class of two-dimensional dynamic eco-

nomic models, such as the ones studied by King, Plosser and Rebelo [25] and

Kydland and Prescott [28], have a unique fixed point with a saddle structure.

It is not clear from the mathematical literature on the subject (see, for exam-

ple, Guckenheimer and Holmes [19], Katok and Hasselblatt [24] or Palis and

Takens [33]), whether complicated deterministic structures associated with in-

tersections of stable and unstable manifolds can also be present in this widely

used framework. More specifically, is it possible for the stable and unstable

manifolds of a unique fixed point of a two-dimensional C1 invertible map of the

positive orthant of the plane to intersect non-trivially?

In this section it is shown that chaos cannot arise from such intersections in

these models. That is, we show that a necessary condition for stable and unsta-

ble manifolds of a saddle stationary state to intersect non-trivially is that the

map has, at least, one additional steady state with positive index; we refer to
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this finding as the two-fixed point lemma. We obtain this result by exploiting the

Lefschetz index theorem for vector fields [29]. So only in models with multiple

steady states (see for example Hornstein [23], Farmer and Guo [14] and Boldrin

and Rustichini [6], Cazzavillan et al. [10], Cazzavillan and Pintus [9]) this kind

of chaos is possible.

We should emphasize that this appendix appeared as a Warwick preprint on

November, 10, 1999, see [26]. Hirsch [21] has reported a similar result in Febru-

ary 2000.

This appendix is organized as follows. In the next section we define the types of

dynamic economic models we have in mind. In that section we also introduce

the notion of stable and unstable manifolds as well as some related results. In

the third section we present the two-fixed point lemma and provide a sketch of

the proof. In the section thereafter we give some concluding remarks. Finally,

the formal proof of the two-fixed point lemma can be found in the last section.

A.1.1 The Framework

The results of this section apply to any two-dimensional model of the plane

satisfying the axioms specified in the next subsection.

The dynamic economic model

In this section we shall assume that the economic model satisfies the following

Standing Assumptions.

• The phase space is a simply connected open subset U of R2. For example

U can be the positive quadrant R2
+ without boundary points. More-

over, we assume that time is discrete. We denote the state variables by

(xn, yn) ∈ U , n ∈ Z.

• The dynamics of the economy is described by (xn+1, yn+1) = f(xn, yn).

• We assume that fixed points of f are isolated.

• The map f : U → f(U) is C1 and invertible.

The first three assumptions are extremely general, and are used in a broad class

of models. Models that we have in mind are, for example, King et al. [25],
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Kydland et al. [28] and Weibull [41]. The fourth assumption is more restrictive,

because in some models f is not invertible. Whether one believes that the

equations of motion also allow for backward motion, is perhaps a matter of

taste.

Intersecting stable and unstable manifolds

We introduce the notion of stable and unstable manifolds of fixed points. That

is, let p ∈ U be a hyperbolic fixed point of f , so f(p) = p and the Jacobian Df

has two real eigenvalues λs and λu such that |λs| < 1 < |λu|. Then the stable

and unstable manifolds of p are defined as follows.

W s = {x ∈ U ; fn(x) ∈ U for all n ≥ 0 and lim
n→∞

fn(x) = p}.

Since f(U) can be not equal to U , it is possible that W s has several connected

components. Similarly, let

W u = {x ∈ U ; fn(x) ∈ U for all n ≤ 0 and lim
n→−∞

fn(x) = p}.

If f(U) ⊂ U , the unstable manifold can only have one connected component,

but otherwise it is possible that it has many connected components. These

manifold are smooth curves passing through p, tangent to the stable and un-

stable eigenspaces of Df(p), respectively. Contrary to a linear specified model,

in a nonlinear framework, the stable and unstable manifolds of p may intersect

outside the saddle; these points of intersection of stable and unstable manifolds

are known as homoclinic points. These are those points x for which fn(x)→ p

as n → +∞ and as n → −∞, see figure 1. If p is a saddle fixed point and the

stable and unstable manifolds of p intersect at a point q 6= p then q is called

a homoclinic point of p. The orbit of a homoclinic point is called a homoclinic

orbit; each point in it is homoclinic.

A.1.2 The Main Result

In this section we present the main result.

The two fixed-point lemma
Let f : U → f(U) be as in the standing assumptions, and let p ∈ U be a fixed

hyperbolic saddle point of f with positive eigenvalues. Assume that the stable
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Figure 9: W u and W s of the saddle equilibrium p may intersect outside p. We have

schematically drawn the situation where W u intersects W s in a point q. The point r

in the figures is the additional fixed point that exists according to the two-fixed point

lemma in section A.1.2.

and unstable manifolds of p have a point q 6= p of intersection and that there

are curves γs ⊂ W s and γu ⊂ W s in U connecting q and p. Then f has at

least one additional fixed point r of positive index in the interior of the domain

bounded by γs and γu, see figure 9 for a graphical illustration.

The index of a fixed point is defined in the last section.

Remark: If one assumes that f(U) ⊂ U then the statement of the lemma can be

simplified: there is then no need to assume the existence of the connecting curves

γs and γu. Indeed, in this case if the stable and unstable manifold intersect in

some point q (6= p), then there exists an integer n such that fn(q) belongs to

the local stable manifolds and there is a piece of this manifold connecting p

and fn(q). Moreover, the piece of the unstable manifold situated between p

and fn(q) is connected because the unstable manifold is connected (here we use

again f(U) ⊂ U).

We should also emphasize that we only consider fixed points in the open set

U (and not on the boundary). The additional fixed point of positive index

the lemma above asserts, is actually in the open set U . So if there are several

saddle fixed points (with positive eigenvalues), then since these have index −1,

the conclusion of the lemma still applies. If f(U) = U then one can use an
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extension of a result of Brouwer, see the last lemma in [12]. In that case, f has

no recurrent behaviour: for each point x 6= p (where p is a fixed point) there is

a neighborhood O so that fn(O) ∩ fm(O) = ∅ for all n 6= m.

The proof of the lemma can be found in the last section. Here we just give a

sketch. The main tool that we use to prove the two-fixed point lemma is the

Lefschetz index theorem5 for vector fields [29]. Roughly speaking, the index

of a vector field V on the plane with respect to an oriented Jordan curve Γ

in the plane (i.e. a continuous closed curve without self-intersections on which

direction is defined) is equal to the number of full turns the vector field produces

when Γ is traversed once (for a formal definition see the proof below). However,

the index of V cannot be defined if it has a singularity on Γ. The index is

always an integer and stays constant if one continuously deforms Γ. Provided

this deformation does not create singularities for V on the curve. Assuming

that these conditions are satisfied one can apply the Lefschetz index theorem

for vector fields, which says the following:

Lefschetz Index Theorem

Let Γ be a Jordan curve and V a continuous vector field defined on Γ and the set

bounded by Γ. Suppose that V has no singularities on Γ and that all singularities

inside Γ are isolated. Then the sum of the indices of the singularities of V inside

Γ is equal to the index of V on Γ.

As a vector field V we shall use V (x) = f(x) − x which implies that the index

of V at a singularity s is equal to the index of s as a fixed point of f . The index

of a hyperbolic fixed point may be defined in terms of the eigenvalues of the

Jacobian matrix evaluated at the fixed point6, see Table 1.

To apply this theory to our map f , we shall define a curve Γ in the last section

by using segments of the stable and unstable manifolds of the fixed point p.

Observe that the vector field V (x) = f(x) − x is defined on Γ and its interior

D, see figure 10. The final step is the observation that V restricted to Γ makes

one full turn when the curve Γ is traversed once (to prove this, we shall use a

deformation argument in the proof below). This implies that the index of the

5For other applications of this theorem to economic theory, see for example Balasko [3],

Guesnerie and Woodford [18] and Mas-Colell [31].
6Although not generic we have to point out that one may construct fixed points with, for

example, index +2.
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Figure 10: The closed curve Γ consists of l and the pieces W s(b, q) and W u(c, q) of

stable and unstable manifolds. If the curve Γ is traversed once, V makes one full turn

and so the index of V with respect to Γ is equal to +1.

vector field V with respect to Γ is +1. Hence, from the Lefschetz Index Theorem

it follows that there must be at least one singularity of V in the interior of γ

of positive index. This singularity corresponds, by the definition of the vector

field, with a fixed point of the map f .

Remark: By taking the second iterate of the map f one can also account for

the orientation reversing cases as well as for the case where both eigenvalues of

the saddle are negative by considering the second iterate of f . In these cases

the statements will be different since a priori one cannot exclude the presence

of a period two orbit instead of an additional fixed point.

A.1.3 Conclusion

In this section we have shown that stable and unstable manifolds of a saddle

equilibrium of an invertible two-dimensional dynamic economic model, cannot

intersect non-trivially if the model has no other steady states. This means that

the system cannot have homoclinic intersections causing chaotic dynamics unless

the map has a fixed point of positive index in the (open) domain of definition.
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Eigenvalues Index of fixed point Description

1 |λ1| < 1, |λ2| < 1 IndDf (p) = 1 contracting

2 |λ1| > 1, |λ2| > 1 IndDf (p) = 1 expanding

3 |λ1| = |λ2| = 1 6= λi IndDf (p) = 1 elliptic

4 0 < λ1 < 1 < λ2 IndDf (p) = −1 hyperbolic saddle

5 λ1 < −1 < λ2 < 0 IndDf (p) = 1 hyperbolic saddle with rotation

Table 1: The index (called IndDf (p)) of a fixed point p of a map f may be defined

in terms of the eigenvalues of the Jacobian matrix Df evaluated at p. For orientation

preserving maps, generically, five different cases can be distinguished for the index of

a fixed point.

So behaviour as observed by Grandmont, Brock, de Vilder and others for expec-

tation driven business cycle models, cannot occur in that case. In other words,

only if the two-dimensional dynamic economic model has multiple steady states

or if the model does not satisfy the conditions stated in standing assumptions,

global analysis is required. Only then one might have “unexpected” complicated

deterministic structures.

A.1.4 Proof of the two-fixed point lemma

We start by providing some useful definitions. First, we define the degree of a

circle map φ : S1 → S1, where S1 is equal to R modulo 1. We identify S1 also

with the unit circle in R2 which has the anti-clockwise orientation.

Definition A.1 Let φ be a continuous map from the circle S1 into itself. Let Φ

be any lift of φ to R (so φ(x) = Φ(x) (mod 1) and Φ is continuous). The degree

of φ is Φ(x + 1)− Φ(x), where x ∈ R is any point. The degree is independent

of the choice of Φ and of x.

A Jordan curve is an injective map γ : S1 → R2. We shall write Γ = γ(S1).

By Jordan’s theorem (see any book on topology or for example page 730 of

[24]) we know that such a curve divides the plane into two components: one

bounded and one unbounded (if for example U is the positive quadrant, then

the ‘unbounded component’ is ∂R2
+). We shall only consider piecewise smooth

curves, and say that γ : S1 → R2 is positively oriented if going forward along
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the curve, the unbounded component is on the right hand side (so positive

orientation is the anti-clockwise orientation). In a similar fashion we can define

the negative orientation of a curve. Next we define the index of a vector field

with respect to γ.

Definition A.2 Let γ : S1 → R2 be a Jordan curve, Γ = γ(S1) and V : Γ →
R2 be a vector field which nowhere takes the value 0 (has no singularities). Let

Γ be parameterized by some map γ : S1 → Γ which preserves orientation. The

index of V with respect to Γ is equal to the degree of the circle map φ defined by

φ : x 7→ V (γ(x))

|V (γ(x))| .

Next we define the index of a singularity of a vector field.

Definition A.3 Let V be a vector field defined on an open set U and let p ∈ U
be an isolated singularity of V . Let Γ be a Jordan curve surrounding p in U ,

separating p from any other singularities of V . The index of V at p is defined

to be the index of V on Γ. This index is an integer, and is independent of the

choice of Γ.

We define the vector field V by V (x) = f(x)− x. Then by definition, the index

of a fixed point p of f is equal to the index of the vector field V at p. In the

case that the Jacobian Df at p has no eigenvalues equal to 1 (the fixed point is

hyperbolic), the index can be defined as (−1)card(i|λi>1, λi∈R) where λi (i = 1, 2)

are the eigenvalues of Df evaluated at p. In table 1 (above in the text) we have

summarized the 5 generically occurring cases.

We are now ready to prove the two-fixed point lemma which we recall here:

The two fixed-point lemma
Let f : U → f(U) be as in the standing assumptions, and let p ∈ U be a fixed

hyperbolic saddle point of f with positive eigenvalues. Assume that the stable

and unstable manifolds of p have a point q 6= p of intersection and that there

are curves γs ⊂ W s and γu ⊂ W s in U connecting q and p. Then f has at

least one additional fixed point r of positive index in the interior of the domain

bounded by γs and γu, see figure 9 for a graphical illustration.
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Proof of the two fixed-point lemma: Let us introduce some notation that we will

use later on. If x, y are points on W u then W u(x, y) denotes a piece of W u

bounded by the points x and y. The same notation is applied to W s.

Let W s
+ and W u

+ be components of the stable and unstable manifolds of p which

intersect. Remember that W u
+ is contained in U . We have the 2 curves γs and

γu connecting p and q. Moreover, we can assume that these curves intersect only

in the points p and q. Indeed, if it is not the case, then we can take the first

point q′ of intersection of γu with γs so that W u(p, q′) ∩ γs = {p, q′}. Now, if

we denote γ′u = W u(p, q′) and γ′s = W s(p, q′), we obtain two curves intersecting

only in p and q′.

Let us now define a closed Jordan curve Γ and a domain D bounded by Γ. Let

O be a neighborhood of p on which Hartman-Grobman linearization is possible

(see Katok and Hasselblatt [24, ch.6,p.260]) and so that W u(p, f(q)) ∩ O and

W s(p, q) ∩ O have only one component. Take a straight line segment l = [b, c]

close to p in O connecting c ∈ W u
+ with b ∈ W s

+, where the points b and

c are very close to the origin and such that f(l) and W s(p, f−1(b)) are also

in O. The curve Γ = W u(c, q) ∪W s(q, b) ∪ l forms a closed Jordan curve in

the simply connected domain U and by Jordan’s theorem Γ bounds a simply

connected region (i.e. a disc) D which is contained in U . We choose on Γ a

positive orientation. The origin may or may not be in D, see figure 1 for the

two possible cases.

Next we define a vector field V on the closure of D by considering V (x) =

f(x)− x. Any zero of V is a fixed point of f . By construction V has no zeroes

on the boundary Γ of D. This implies that the index indΓ(V ) is well-defined,

where the index of a vector field is defined as in definition A.2. Our aim is to

show that indΓ(V ) is equal to +1. Using the Lefschetz index theorem for vector

fields (see the core of the text) this implies the following proposition

Proposition A.1 There is a singularity of V in the interior of D of positive

index corresponding to a fixed point r 6= p of f .

Proof: By the Lefschetz index theorem for vector fields the sum of the indices

of singularities of V in the interior of D is equal to indΓ(V ) which is equal to

+1 as we shall show below. By the definition of V we have that a singularity of



38

V corresponds to a fixed point of f . Hence, if p /∈ D then this gives the result

immediately. If p ∈ D then since the index of the fixed point p is −1 (it is a

saddle with positive eigenvalues, see table 1), we must have other fixed points

in D in order to have that the sum of the indices equals +1. �

To prove that the index of V w.r.t. the boundary of D is equal to +1 we

will continuously deform the vector field on the boundary without creating new

singularities. We first define the notion of a rotational vector field.

Definition A.4 A vector field V defined on a Jordan curve Γ is called rotational

if it has no singularities on Γ and if for any x ∈ Γ the point x+V (x) also belongs

to Γ.

Proposition A.2 A rotational vector field has index +1.

Proof: By an isotopy of the curve (and a corresponding one of the vector field)

we may assume that Γ is a circle. Define a new vector field N which at a base

point x points to the center of the circle. Next consider a deformation of the

vector field defined by

Vλ(x) = (1− λ)V (x) + λN(x),

where 0 ≤ λ ≤ 1. Notice that V0(x) = V (x) and that V1(x) = N(x) and that

Vλ(x) is not equal to 0 for 0 < λ < 1 for all x ∈ Γ. Indeed, if this would not be

true then (1−λ)V (x)+λN(x) = 0 and so V (x) = −λ/(1−λ)N(x) which would

mean that the vector field points outside the unit disc, a contradiction. Since

the index of a vector field Vλ is an integer and depends continuously on the

parameter, the index of Vλ is a constant. In particular, the indices of V0 = V

and V1 = N are equal. Obviously the index of N is equal to +1, it follows that

the index of V is also +1. �

To apply this proposition to the vector field V we have to continuously de-

form V into a rotational vector field without creating singularities. To see

why it fails to be rotational, notice that a point in Γ ∩W s
+ close to q, is not

mapped into Γ. Therefore we deform V , and subdivide Γ in four segments
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Figure 11: The curves Γi from proposition A.3 and the deformation of the vector field

V .

W u(c, f−1(q)), W u(f−1(q), q), W s(q, f−1(b)) and W s(f−1(b), b)∪ l. Obviously

V is well defined on these segments and it has the rotational property on the

segments W u(c, f−1(q)) and W s(q, f−1(b)). It remains to be shown that V

can be deformed such that it also has the rotational property on the remaining

two segments. We use the following proposition that is a standard result from

topology:

Proposition A.3 Take two Jordan curves (Γ0 and Γ1) which have the same

orientation, suppose that these two curves have a common segment ∆ and more-

over suppose that along this segment Γ0 and Γ1 are oriented in the same way

(see figure 11). Then there exists a homotopy from the curve Γ0 \∆ to the curve

Γ1 \∆ without creating intersections with the segment ∆.

Proof: Since we assume that Γi are piecewise smooth, there are curves Γ̃i near

Γi homotopic to Γi which intersect transversally. Then proceed as in chapter 8

of [20]. �

Notice that Γ0 and Γ1 are allowed to intersect in some points which are not in

∆.

We next apply this result to the curves Γ0 = W u(p, q) ∪ W s(p, q), Γ1 =

W u(p, f(q))∪W s(f(q), p) and ∆ = W s(f(q), p)∪W u(p, q). Γ0 and Γ1 are closed

curves without self-intersection because of the choice of the point q. Notice also

that Γ1 = f(Γ0). If we orient these curves in the direction of the unstable

manifold, then they will have the same orientation because f is an orientation
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preserving. Moreover, these curves have the same orientation along ∆. Thus

we can apply the previous proposition and obtain a homotopy from W u(q, f(q))

to W s(q, f(q)) without crossing W u(p, q). Let us denote this homotopy by

ψλ : W u(q, f(q))→ R2, λ ∈ [0, 1], so ψ0 = Id , ψ1(W u(q, f(q))) = W s(q, f(q)).

Now we can define a deformation of the vector field V on the segmentW u(f−1(q), q)

by

Vλ(x) = ψλ(f(x)) − x,

where x ∈ W u(f−1(q), q) and 0 ≤ λ ≤ 1. Obviously, V0 = V because ψ0 = Id,

Vλ is never singular because ψλ(x) is never in W u(p, q) and V1 satisfies the

rotational property on the segment W u(f−1(q), q) for the curve Γ = ∂D.

Since in the small neighborhood O of p (the segments l = [b, c], f(l) and

W s(p, f−1(b)) are contained in O), f is almost a linear map, it is easy to see

that one can continuously deform the vector field V on l ∪W s(f−1(b), b) with-

out creating singularities in such a way that the vector field becomes rotational:

simply again use proposition A.3.

So, we have shown that V can be continuously deformed on the curve Γ = ∂D

to a rotational vector field without creating singularities. Once again, since the

index depends continuously on the parameter this implies that the index of V

on Γ is equal to the index of the rotational vector field which is +1. Together

with proposition A.1 this proofs the lemma. �

A.2 The normal form near a Bogdanov-Takens bifurcation

Even if two eigenvalues are equal to −1 this is not sufficient for having a ‘generic’

1:2 resonance bifurcation. To check this, one also needs to compute coefficients

in the normal form, for parameters at the 1:2 bifurcation value. One algorithm

for doing the normal form computation is described in for example Kuznetsov

[27, pp.369-373]. The first step is to translate the steady state to 0 = (0, 0) and

the 1:2 bifurcation parameter value of α to (0, 0) (and relabel this parameter as

β). Next linear changes of coordinates are performed such that the system is
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transformed into:
(
u1

u2

)
7→
(
−1 1

β1 −1 + β2

)(
u1

u2

)
+

(
F (u, β)

H(u, β)

)
, (15)

where β = (β1(α), β2(α)) and F,H = O(||u||2). A smooth invertible nonlin-

ear change of coordinates smoothly depending on the parameters is used to

transform (15) into the following map (see lemma 9.8 in [27])

(
ξ1

ξ2

)
7→
(
−1 1

β1 −1 + β2

)(
ξ1

ξ2

)
+

(
0

C(β)ξ3
1 +D(β)ξ2

1ξ2

)
+O(||ξ||4).

(16)

where C(β) and D(β) are smooth functions. In fact, C(β) and D(β) depend on

the third order Taylor expansion of F and H w.r.t. the variable u. In particular,

on page 377 of [27] it is shown that if C(0) 6= 0 and D(0) + 3C(0) 6= 0 then a

1:2 resonance bifurcation occurs. Here C(0) and D(0) are given by:

C(0) = h30(0) + f20(0)h20(0) + h2
20(0)/2 + h20(0)h11(0)/2

D(0) = h21(0) + 3f30(0) + f20(0)h11(0)/2 + 5
4h20(0)h11(0)

h20(0)h02(0) + 3f2
20(0) + 5

2f20(0)h20(0) + 5
2f11(0)h20(0)

+h2
20(0) + h2

11(0)/2.

(17)

A.3 The bifurcation diagram near a Bogdanov-Takens map

The general approach to the study of such resonant bifurcations is to embed

(some iterate of) the map in a flow, and then to use the bifurcation analysis of

the corresponding vector field (in this case the Bogdanov-Takens bifurcation).

A description of the Bogdanov-Takens can be found in for example the books by

Guckenheimer and Holmes [19] and Kuznetsov [27, pp. 373-381]. We shall follow

the exposition in the latter book. In what follows we assume that a 1:2 resonance

bifurcation occurs: the conditions on the coefficients in the normal form (16) are

satisfied. First we aim to approximate the 1:2 resonance normal form (16) by a

flow. Since at the 1:2 bifurcation value the eigenvalues both are −1 this cannot

be done (near a singularity of a flow eigenvalues must be positive). However, if

we denote for simplicity the normal form map by ξ 7→ Γβ(ξ), then the second

iterate of the map ξ 7→ Γβ(ξ) can be approximated by a flow. In fact, see for

example [27, theorem 9.3, p.376], Γ2
β(ξ) can be represented for all sufficiently

small ||β|| by

ξ 7→ φ1
β(ξ) +O(||ξ||4) (18)
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where φtβ is the flow of a planar system that is smoothly equivalent to the system

(
ζ̇1

ζ̇2

)
=

(
0 1

τ1(β) τ2(β)

)(
ζ1

ζ2

)
+

(
0

C1(β)ζ3
1 +D1(β)ζ2

1 ζ2

)
. (19)

where C1(0) = 4C(0) and D1(0) = −2D(0)− 6C(0) (the C(0) and D(0) are the

coefficients in the normal form (16)). The system (19) is the normal form flow

for 1:2 resonances. Under our assumptions on the coefficients C(0) and D(0)

one can scale the variables, parameters and time in the normal form for the flow

(19) is such a way that the following system is obtained

ξ̇1 = ξ2 (20)

ξ̇2 = ε1ξ1 + ε2ξ2 + dξ3
1 − ξ2

1ξ2. (21)

Here d = sign C(0) = 1 and εi are parameters. Depending on the sign of d

one can have two distinct bifurcation scenarios for the vector fields. In figure 3

we display the case that corresponds with d = 1. The alternative case, which

essentially leads to the same conclusions, can be found in Kuznetsov [27, p. 379].

For the vector fields, the stable and unstable manifolds of the period two saddle

orbits coincide along the curve C. By construction the second iterate of the

original diffeomorphism is ε-close to the time-one map of the vector field (19).

This means that it is close to a map for which the stable and unstable manifolds

of the two fixed points of G2 (which correspond to period two points of the map

G) coincide. However, for diffeomorphisms it is ungeneric for stable and unstable

manifolds to coincide, and so one has some parameter at which one expects to

observe homoclinic intersections. Let us be more precise here. For the family of

vector fields one has locally the situation as in figure 3. This means that for the

nearby family of diffeomorphisms (compact) segments of the stable and unstable

manifolds will change (with a change of the parameter). So at some parameter,

the stable and unstable manifolds will intersect, see figure 2. In principle, it is

possible that the stable and unstable manifolds will actually coincide, but by

a (generic) perturbation one can make sure that these manifolds will intersect

transversally. Since transversal homoclinic intersections are structurally stable

it follows that generically the diffeomorphism will have homoclinic intersections

for an open set of parameters. Moreover, it follows from the existing literature

on the subject (see e.g. Palis and Takens [33]) that there must exist generically

unfolding quadratic tangencies giving rise to all sorts of (stable) complicated

deterministic dynamic phenomena. The corresponding invariant structures will

strongly influence the observable dynamic behaviour in phase space.


