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Abstract

This is an exposition of our resent results contained in [KSvS03b],
[KSvS03a] and [KvS06] where we prove the density of hyperbolicity for
one dimensional real maps and non-renormalizable complex polynomials.
The proofs of these results are very technical, so in this paper we try
to show the main ideas on some simplified examples and also give some
outlines of the proofs.

1 Introduction

One of the central aims in dynamical systems is to describe dynamics of a
’typical’ system. In this article we will understand the word ’typical’ from the
topological point of view.

The nicest kind of system is one which is stable (also called structurally
stable): this means that it is topologically conjugate to any sufficiently nearby
system. This notion is closely related to that of hyperbolicity of the system (see
below).

The most ambitious hope would be to show that structurally stable and
hyperbolic maps are dense. Apparently, up to the late 1960’s, Smale believed
that hyperbolic systems are dense in all dimensions, but this was shown to be
false in the early 1970’s for diffeomorphisms on manifolds of dimension ≥ 2 (by
Newhouse and others).

However, in dimension one hyperbolic systems are dense. This is the topic
of this article.

2 Density of Hyperbolicity

The problem of density of hyperbolicity in dimension one goes back in some form
to Fatou (in the 1920’s). Smale gave this problem ‘naively’ as a thesis problem
in the 1960’s (to Guckenheimer and Nitecki), see [Sma00]. The problem whether
hyperbolicity is dense in dimension one was studied by many people, and it was
solved in the C1 topology by Jakobson, see [Jak71] and the C2 topology by Shen
[She04].
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Theorem 1 (K, Shen, vS, 2004). Any real polynomial can be approximated
by hyperbolic real polynomials of the same degree.

(So by changing the coefficients of the polynomial slightly, it can be made
hyperbolic.) Here we say that a real one-dimensional map f is hyperbolic if each
critical point is in the basin of a (hyperbolic) periodic point and all periodic
points are hyperbolic. This implies that the real line is the union of a repelling
hyperbolic set (a Cantor set of zero Lebesgue measure), the basin of hyperbolic
attracting periodic points and the basin of infinity. So the dynamics of a hyper-
bolic map is very simple: Lebesgue almost all points are attracted to periodic
cycles.

This theorem has a long history before it was proven in this full generality, see
works of Yoccoz [Yoc89], Sullivan [Sul92], Lyubich [Lyu97], Światek, Graczyk
[GŚ98], Kozlovski [Koz03], Blokh, Misiurewicz [BM00], Shen [She04]. Most of
these works deal with the quadratic family x 7→ ax(1− x). This case is special,
because in this case certain return maps become almost linear. This special
behaviour does not even hold for maps of the form x 7→ x4 + c.

Note that the above theorem implies that the space of hyperbolic polyno-
mials is an open dense subset in the space of real polynomials of fixed degree.
Every hyperbolic map satisfying the mild “no-cycle” condition (critical points
are not eventually mapped onto other critical points) is structurally stable.

The above theorem allows us to solve the 2nd part of Smale’s eleventh prob-
lem for the 21st century.

Theorem 2. Hyperbolic maps are dense in the space of Ck maps of the compact
interval or the circle, k = 1, 2, . . . ,∞, ω.

As mentioned, this easily implies

Corollary 3. Structurally stable maps are dense in the space of Ck maps of
the compact interval or the circle, k = 1, 2, . . . ,∞, ω.

A similar question about density of hyperbolic maps can be asked for maps
of a complex plane given by a complex polynomial. In the case of a complex
polynomial, we say it is hyperbolic if all its critical points are in the basins of
hyperbolic periodic attractors. We have only a partial result which applies to
non (or finitely) renormalizable polynomials:

Theorem 4. Any complex polynomial which is not infinitely often renormaliz-
able, can be approximates by a hyperbolic polynomial of the same degree.

(If we could prove this without the condition that the map is only finitely
renormalizable, the complex Fatou conjecture would follows.) Here we say that
a polynomial f is infinitely renormalizable if there exist arbitrarily large s > 1
(called the period) and simply connected open sets W containing a critical point
c of f such that fks(c) ∈ W , ∀k ≥ 0 and such that s is the first return time of
c to W .
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3 Quasi-conformal rigidity

The proof of these result heavily depends on complex analysis. In fact the
theorems above can be derived from the following rigidity result.

Theorem 5. Let f and f̃ be real polynomials of degree n which only have real
critical points. If f and f̃ are topologically conjugate (as dynamical systems
acting on the real line) and corresponding critical points have the same order,
then they are quasiconformally conjugate (on the complex plane).

A critical point c is a point so that f ′(c) = 0. Not all critical points of a real
polynomial need to be real.

If the polynomials are not real, then we need to make an additional assump-
tion:

Theorem 6. Let f and f̃ be complex polynomials of degree n which are not
infinitely renormalizable and only have hyperbolic periodic points. If f and f̃
are topologically conjugate, then they are quasiconformally conjugate.

This generalises the famous theorem of Yoccoz, proving that the Mandelbrot
set associated to the quadratic family z 7→ z2 + c is locally connected at non-
renormalizable parameters.

4 How to prove rigidity?

First we need to associate a puzzle partition to any polynomial f which only has
hyperbolic periodic points, and then use this to construct a complex box map-
ping F : U → V . If f has only repelling periodic points, then the construction
is a multi-critical analogue of the usual Yoccoz puzzle partition.

Definition 1 (Complex box mappings). We say that a holomorphic map

F : U → V (1)

between open sets in C is a complex box mapping if the following hold:

• V is a union of finitely many pairwise disjoint Jordan disks;

• every connected component V ′ of V is either a connected component of U
or the intersection of V ′ and U is a union of Jordan disks with pairwise
disjoint closures which are compactly contained in V ′,

• for each component U ′ of U , F (U ′) is a component of V and F |U ′ is a
proper map with at most one critical point;

• each connected component of V contains at most one critical point of F .
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It is possible to show that for a given polynomial which only has hyper-
bolic periodic point one can construct an induced complex box mapping which
captures the dynamics of the polynomial, see [KvS06].

A connected component of the domain of definition of an iterate of F is
called a puzzle–piece. To prove the above rigidity theorem, the main technical
hurdle is to obtain a certain amount of control on the shape of these puzzle–
pieces. In fact, it is not possible to obtain this control for all puzzle–pieces (and
there are examples showing this), however we can prove that this control can
be obtained on a combinatorially defined subsequence of puzzle–pieces:

Theorem 7 (Geometry control of puzzle–pieces). Let F be a complex
non renormalizable box mapping and c be a recurrent critical point. Then there
exists ε > 0 and a combinatorially defined sequence of puzzle–pieces In around
c so that

• the puzzle–pieces In have ε–bounded geometry;

• for each domain A of the first return map to In one has mod(In \A) ≥ ε.

Here we say that a simply connected domain U ⊂ C has ε–bounded geometry
if there are two disks D1 and D2 such that D1 ⊂ U ⊂ D2 and the ratio of
diameters of D1 and D2 is bounded from below by ε.

This control of geometry of puzzle–pieces is enough to prove the Rigidity
theorems, because it allows us to apply the following new way of constructing
quasiconformal conjugacies:

Theorem 8 (QC-Criterion). For any constant ε > 0 there exists a constant
K with the following properties. Let φ : Ω → Ω̃ be a homeomorphism between
two Jordan domains. Let X be a subset of Ω consisting of pairwise disjoint
topological open discs Xi. Assume moreover,

1. for each i both Xi and φ(Xi) have ε-bounded geometry and moreover

mod(Ω−Xi),mod(Ω̃− φ(Xi)) ≥ ε

2. φ is conformal on Ω−Xi.

Then there exists a K-qc map ψ : Ω → Ω̃ which agrees with Ω on the boundary
of Ω.

4.1 The strategy of the proof of QC-rigidity

So the proof of the rigidity theorem relies on the following steps:
First we associate to the polynomial f a suitable sequence of partitions Pn.

Let Ωn be a union of puzzle piece containing the critical points, defined using
the puzzle-pieces In from Theorem 7. Because of the geometric properties of
In, one has control on the domains of the first return map to Ωn, in the manner
required by the previous criterion. This is only true provided one constructs
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the sequence of partitions Pn very carefully. Let Xn be the domain of the first
return map to Ωn.

We can do the same for the topologically conjugate polynomial f̃ . Now f
and f̃ are conformally conjugate near ∞ (by the Böttcher coordinates). Since
∂Ωn consists of pieces of external rays and equipotentials, one can show that
there exists a qc homeomorphism φn : Ωn → Ω̃n (which on the boundary of
Ωn preserves the natural parametrisation induced by the Böttcher coordinates).
Moreover, φn(Xn) = X̃n and φn is conformal outside Xn. Hence, because of
the control on the geometry of puzzle pieces, the QC-criterion gives a K-qc
homeomorphism hn : Ωn → Ω̃n which preserves the natural parametrisation on
the boundary defined by the Böttcher coordinates. Here K does not depend on
n.

Because hn : Ωn → Ω̃n is natural on the boundary, the above qc map hn can
be extended to a global homeomorphism hn which is K-qc and so that

hn ◦ f(x) = f̃ ◦ hn(x)

for each x /∈ Ωn. (So hn is a conjugacy everywhere except on the small set Ωn.)
Since K-qc homeomorphisms form a compact space, we can extract a K-qc

limit h from the sequence hn. As Ωn shrinks to the set of critical points, the
limit h is a K-qausi-conformal conjugacy between f and f̃ .

5 Enhanced nest construction

As we have mentioned before the geometry estimates do not hold for all puzzle–
pieces and we have to find a way to combinatorially construct a subsequence of
puzzle–pieces where this property holds. This is achieved through a powerful
construction which we call “enhanced nest”.

For simplicity of the exposition let us consider a unicritical box mapping
F : U → V (ie F has a unique critical point) and write U = ∪Ui where Ui are
the connected components of the domain U . In this case we can assume that U
is a subset of V and V is connected. Let U0 be a component of U containing
the critical point. Consider the critical value F (c) and iterates of F near the
critical value. Let us only discuss the case when c is recurrent (the non-recurrent
case is much easier). It can happen that there are infinitely many domains Wi

containing F (c) and ni such that Fni maps Wi univalently onto V for a suitable
choice of ni. This case is called reluctantly recurrent. This case is easy: c is
recurrent, so there are infinitely many nij

such that Fnij
+1(c) is inside U0. The

pullback of U0 by Fnij
+1 is a puzzle–piece and then one can easily show (using

the Koebe lemma) that its geometry depends only on U0.
The opposite case, when this infinite sequence of iterates Fni : Wi → V

does not exist, is called persistently recurrent. The enhanced nest construction
applies to this case.

If the infinite sequence as above does not exist, then we can consider a
minimal domain W around F (c) such that W is univalently mapped onto V by
some Fn. This domain W has several nice properties.
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Firstly, Fn maps the critical value F (c) into the critical domain U0. Indeed,
otherwise Fn+1(c) would be in some domain Ui which is mapped univalently
onto V by F ; then Fn+1 : compF (c)(F−n(Ui)) → V is a univalent map which
contradicts the minimality of W . Here the notation compx(U) denotes a con-
nected component of U containing x. Secondly, the annulus W \ W̃ , where
W̃ = compF (c)(F−n(U0)) is a pullback of the central domain, does not contain
points of the postcritical set. Suppose the contrary, so there is k > 0 such that
F k(c) ∈ W \ W̃ and let k be minimal with this property. Since F k(c) is not in
W̃ , the point F k+n(c) is in some non central domain Uj . Let X be a pullback
of Uj by F k+n−1 along the orbit of the critical value F (c), so F (c) ∈ X. Notice
that Fn : F k−1(X) → Uj is univalent and that F k−1(X) ⊂ W \ W̃ . Moreover,
F k−1 : X → F k−1(X) is also univalent because of the minimality of k. Hence
the map F k+n : X → V is univalent and this again contradicts the minimality
of W .

The pullback of the domain W by F : U → V to the critical point we call
the smallest successor of V and denoted by B(V ). The corresponding pullback
of W̃ will be denoted by A(V ). From the construction the smaller successor we
know that A(V ) has some space outside which contains no postcritical points
and the B(V ) has some space inside near the boundary free of the postcritical
set. Thus, if we combine both operations, we see that B(A(V )) has some space
inside and outside free of the postcritical set. The size (in terms of moduli) of
this ’empty’ space can be easily estimated if one has estimates from below on
infi mod(V \ Ui).

Obviously, this property of having some space around the boundary of a
domain free of postcritical set is very important: if Fm : X → Y is a univalent
map between two simply connected domains and Y ′ ⊃ Y is another simply
connected domain such that the annulus Y ′ \ Y does not contain points of the
postcritical set, then there is a domain X ′ ⊃ X so that Fm extends to X ′,
Fm(X ′) = Y ′ and the map Fm : X ′ → Y ′ is univalent. If one can control the
modulus of Y ′\Y , then the distortion of Fm|X can be controlled by the classical
Koebe lemma.

In the unimodal case we define Γ(W ) = B(W ). Now, the enhanced nest
construction goes as following: given V , let

I0 := V and Ii+1 := ΓT (B(A(Ii))),

where T only depends on the order of the critical point. We have already
explained the rationale behind taking B(A(Ii)). The Γ operation is used to
control the return times of the critical point to the domains Ii and is - in some
sense - a rather minor technical point.

This is a full description of the enhanced nest in the unicritical case. The
construction in the general case is slightly more complicated and then the defi-
nitions of A(V ) and B(V ) are based on the following lemma:

Lemma 1. Let F : U → V be a persistently recurrent box mapping, c be a
critical point of F and Y 3 c be some pullback of a connected component of V
by an iterate of F . Then there is a positive integer ν with F ν(c) ∈ Y such that

6



the following holds. Let X0 = compc(F−ν(Y )) and Xj = F j(X0) for 0 ≤ j ≤ ν.
Then

1. #{0 ≤ j ≤ ν − 1 : Xj ∩ Crit(F ) 6= ∅} ≤ b2;

2. X0 ∩ PC(F ) ⊂ compc

(
F−ν(Ỹ )

)
;

where Crit(F ) denotes the set of critical points of F , PC(F ) is the postcritical
set, b is the number of critical points counted with their multiplicity and Ỹ is a
connected component of the domain the first return map to Y containing c.

6 Small Distortion of Thin Annuli

To control the shape of the puzzle–pieces we must control the amount of space
around a puzzle–piece which is free of points of the postcritical set. As the pre-
vious construction of the enhanced nest shows we should estimate the modulus
of pullbacks of various annuli.

Let G : U → V be a holomorphic surjective map and the domains A ⊂
U , B ⊂ V be simply connected so that G(A) = B. We would like to have
some estimates from below of the modulus of the annulus U \ A in terms of
the modulus of V \ B. If G is univalent map, this is the best case scenario:
mod(U \ A) = mod(V \ B). Now suppose that G has some critical points and
all of them are in A. Then G : U \A→ V \B is an unbranched covering, hence
mod(U \ A) = mod(V \ B)/d, where d is the degree of G. If d is large, the
modulus can deteriorate quite a lot and one can do nothing about it.

An important case is when G has relatively small number of critical points
in A and possibly a large number of critical points in U \ A. Simple examples
show that if the annulus V \B was fat (has large modulus), the modulus of its
pullback U \ A can drop a lot. However there is a special case when this does
not happen: if the annulus V \B is thin, the map G is real and all the domains
are symmetric with respect to the real line. More precisely the following lemma
holds:

Lemma 2 (Small Distortion of Thin Annuli). For every K ∈ (0, 1) there
exists κ > 0 such that if A ⊂ U , B ⊂ V are simply connected domains symmetric
with respect to the real line, G : U → V is a real holomorphic branched covering
map of degree D with all critical points real which can be decomposed as a
composition of maps G = g1 ◦ · · · ◦ gn with all maps gi real and either real
univalent or real branched covering maps with just one critical point, the domain
A is a connected component of G−1(B) symmetric with respect to the real line
and the degree of G|A is d, then

mod(U \A) ≥ KD

2d
min{κ,mod(V \B)}.

It is not possible to drop the condition of G being real and the domains
being symmetric. If V is a disk and B spirals around its centre (and therefore
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not symmetric with respect to the real line), it is possible to construct G so that
the lemma does not hold.

This lemma allowed us to considerably simplify the original proof of the real
Geometry control of puzzle–pieces theorem (which initially used many sophisti-
cated real pullback arguments). The basic idea how to use the lemma in order
to prove Theorem 7 is this: let µn = inf mod(In \ A) where the infimum runs
over all domains A of the first return map to In. Now consider the iterate G of
F which maps In to In−M . When M is large, the degree D of this map is large.
However, it turns out that

• the degree d of G|A remains bounded, independently of M ;

• the set In−M \G(A) contains many ’previous annuli’, and using this we get:
mod(In−M \G(A)) ≥ K ′(µn−M−1 + · · ·+µn−5), where K ′ is independent
of M .

Now fix M so large that K ′(µn−M−1 + · · · + µn−5) ≥ 8dµn−M−1,n−5 where
µn−M−1,n−5 = min{µi; i = n −M − 1, . . . , n − 5}. Next choose K ∈ (0, 1) so
close that KD ≥ 1/2. Using the previous lemma we then get some κ > 0 so
that mod(In \ A) ≥ 1/2

2d min(κ, 8d µn−M−1,n−5). From this one easily proves
recursively a lower bound for µn. The proof of Theorem 7 follow then easily.

The proof of the previous lemma is relatively simple and is based on the
following idea. We can cut B into two symmetrical pieces by the real line and
pullback just a half of B by maps gi. All the pullbacks are going to lay in a half
complex plain, and it is possible to provide good moduli estimates for this case.
When the half of B is pullbacked all the way to U we can reconstruct A from
it by the symmetry. In this last operation we loose only factor of one half.

If G is not real, the situation is more complicated because as we mentioned
there is not (and cannot be) an analogue of the previous lemma. However, it is
still possible to control moduli if one pullbacks two annuli instead of one. The
following powerful lemma is due to Kahn and Lyubich, see [KL05]:

Lemma 3. For any η > 0 and D > 0 there is ε = ε(η,D) > 0 such that the
following holds: Let A ⊂ A′ ⊂ U and B ⊂ B′ ⊂ V be topological disks in C and
let G : (A,A′, U) → (B,B′, V ) be a holomorphic branched covering map. Let
the degree of G be bounded by D and the degree of G|A′ be bounded by d. Then

mod(U \A) > min(ε, η−1mod(B′ \B), Cηd−2mod(V \B)),

where C > 0 is some universal constant.

7 Approximating non renormalizable complex
polynomials

If the complex Rigidity theorem were proven in full generality, then using the
standard Sullivan technique one could show that the hyperbolic polynomials are
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dense in the space of complex polynomials of fixed degree. We have proven the
complex Rigidity theorem in the case of finitely renormalizable polynomials, so
some extra work is needed to show that such polynomials can be approximated
by hyperbolic ones.

To simplify the exposition we will show how to do this in the case of cubic
non renormalizable polynomial whose both critical points are recurrent. We can
normalise a cubic polynomial so it is f(z) = z3 + az + b.

The Rigidity theorem implies that there are no other normalised polynomials
qc conjugate to f . Fix some neighbourhood W of f in the space of cubic
normalised polynomials. For g ∈ W let ck(g), k = 1, 2, denote the critical
points of g.

First we claim that there are polynomials in W which have a critical relation,
ie there are k1, k2, n such that gn(ck1(g)) = ck2(g). Indeed, if this was not the
case, all preimages of the critical points would move holomorphically as functions
of g ∈ W . Then using Lambda lemma we can extend this holomorphic motion
to the whole C and get that all polynomials in W are qc conjugate.

The neighbourhood W can be chosen arbitrarily small, and therefore there
are polynomials arbitrarily close to f having a critical relation. Any critical
relation gives an algebraic curve in the space of normalised cubic polynomi-
als (which is C2), this curve contains all polynomials having the same critical
relation.

Consider one of these curves. Since it is an algebraic curve it has just finitely
many singular points, we can remove them from this curve and get a holomorphic
one dimensional manifold. Take some connected component of the intersection
of W and this manifold which will be denoted by M1 and take a polynomial
f1 ∈ M1. Arguing as before we can see that either all polynomials in M1 are
qc conjugate or there is polynomial in M1 having another critical relation. If a
cubic polynomial has two critical relations, then it is hyperbolic. So if the second
alternative holds, we are done because we have found a hyperbolic polynomial
in W . If all polynomials in M1 are qc conjugate, we cannot apply the Rigidity
theorem because we do not know whether f1 is finitely renormalizable or not.
Instead we should do the following.

Take a sequence of polynomials fi having a critical relations and converging
to f . Let Mi 3 fi denote connected components of intersection of W and the
corresponding manifolds as in the previous paragraph. We can assume that all
polynomials in Mi are qc conjugate (otherwise we are done). The closure of
each Mi has non empty intersection with the boundary of W because Mi is a
part of an algebraic curve and such curves cannot have compact components in
C2. Therefore we can find f̃ ∈ ∂W , a subsequence ij and f̃ij

∈Mij
so that f̃ij

converges to f̃ . The maps fij
and f̃ij

are qc conjugate and fij
→ f , so it is

possible to show (though it is not completely straightforward) that the maps f
and f̃ are qc conjugate as well. Now we can apply the Rigidity theorem because
f is non renormalizable and we can see that such the polynomial f̃ cannot exist.
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