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Introduction

Game theory is a subject with a wide range of applications in economics and biology. In
this dissertation, we discuss evolutionary dynamics in games, where players’ strategies
evolve dynamically, and we study the long-term behaviour of some of these systems. The
replicator system is a well known model of an evolving population in which successful
subtypes of the population proliferate. Another system known as fictitious play (also
called best response dynamics) models the evolution of a population in which at any given
time some individuals review their strategy and change to the one which will maximise
their payo↵. We will investigate these two systems and their behaviour and finally explore
the link between the two.
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Chapter 1

Game Theory

We begin by briefly going over the game theoretic ideas and definitions that we hope the
reader is already familiar with, along with some of the biological motivation behind the
technical details. The material presented here can be found in any number of books on
game theory: see for example Hofbauer and Sigmund [11, §6].

1.1 Games in normal form

Generally we assume an individual can behave in n di↵erent ways. These are called pure
strategies, denoted by P1 to P

n

, and could represent things like “fight”, “run away”, “play
rock in a game of Rock Paper Scissors”, or even “sell shares” in a more economic context.
For biology, we take it that one individual plays one pure strategy. Then the make up
of the population can be described by the proportions of individuals playing each pure
strategy. These proportions form what is said to be simply the strategy of the population
as a whole. As the proportions should clearly sum to one, the set of possible strategies
is a simplex:

⌃
n

=

(

p = (p1, ..., pn) 2 Rn : p
i

� 0 and
n

X

i=1

p
i

= 1

)

.

Here p
i

can be thought of as the chance of randomly picking an individual who uses
strategy i. By definition a population in which everybody plays strategy P

i

corresponds
to the i-th unit vector in the simplex.

We then consider games to be played by a population that evolves continuously as time
progresses, describing a path in the simplex. To model some form of evolution, we need to
somehow quantify what happens when one individual encounters another: which strategy
will perform better? Given that we know the composition of the population, how well
will one strategy perform on average over many encounters? In this context, the phrases
“perform better” or “succeed” refer to an increase in evolutionary fitness: more food,
more territory, more females - anything that increases the chance of reproduction.

The way to model this is to assign a “payo↵”: when an individual using strategy i
meets a second individual following strategy j, the i-strategist will receive a payo↵ of a

ij

.
This creates an n⇥n payo↵ matrix A = (a

ij

). Then a population with strategy p playing
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against a population with strategy q will receive a payo↵

p · Aq =
n

X

i=1

n

X

j=1

a
ij

p
i

q
j

.

A game described this way is called a game in normal form. This is as opposed to
extensive form, where a game is written as a tree. Extensive form can describe games
with imperfect or incomplete information, such as where players do not know the payo↵s
or when the payo↵s are subject to (random) noise.

The next concept needed is that of a best response.

Definition 1.1 (Best responses). A strategy p is a best response to a strategy q if for
every p0 in ⌃

n

, we have
p · Aq � p0

· Aq.

We denote the set of best responses to q by BR(q). Essentially, a best response to q is
the strategy (or strategies - best responses are not necessarily unique) that will maximise
the payo↵. This is thus a useful concept as many of the systems we will consider will
involve a population attempting to maximise its payo↵.

If a strategy is a best response to itself, this is called a Nash equilibrium, named for
John Forbes Nash. More formally:

Definition 1.2 (Nash equilibria). A strategy p is a Nash equilibrium if

p · Ap � q · Ap 8p.

If a strategy is the unique best response to itself, then it is said to be a strict Nash
equilibrium.

Notice that p is a Nash equilibrium if and only if its components satisfy

(Ap)
i

= c 8 i such that p
i

> 0,

for some constant c > 0, where

p1 + · · ·+ p
n

= 1.

It is well known that every finite game has a (not necessarily unique) Nash equilibrium.
Multiple proofs, including Nash’s original proof from his thesis [13], may be found in a
paper by Hofbauer [10, Theorem 2.1].

It seems sensible that if a strategy is a Nash equilibrium, then the population should
stop evolving at this state, as it is already following the best strategy. This brings us to
questions of stability of equilibria.

Definition 1.3 (Evolutionarily stable states). A strategy p̂ is said to be an evolutionarily
stable state (ESS) if

p̂ · Ap > p · Ap (1.1)

for every p 6= p̂ in a neighbourhood of p̂.
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1.2 Bimatrix games

An n⇥m bimatrix game covers the situation where there are two players or populations,
one with n strategies and one with m strategies. In normal form this can be represented
by a pair of n ⇥ m matrices [A,B], so that if Player A plays strategy i and Player B
plays strategy j, then the payo↵ to Player A will be a

ij

and the payo↵ to Player B will
be b

ij

. This allows for the representation of games such as the Prisoner’s Dilemma or
Rock, Paper, Scissors. The concepts of Nash equilibria and best responses may then be
generalised to bimatrix games. For simplicity of notation we write the strategy p 2 ⌃

A

of Player A as a row vector and the strategy q 2 ⌃
B

of Player B as a column vector.

Definition 1.4 (Best responses). A strategy p̂ 2 ⌃
A

is a best response of Player A to
the strategy q 2 ⌃

B

of Player B if for every p 2 ⌃
A

we have

p̂Aq � pAq. (1.2)

Similarly a strategy q̂ 2 ⌃
B

is a best response of Player B to the strategy p 2 ⌃
A

of
Player A if for every q 2 ⌃

B

we have

pBq̂ � pBq (1.3)

We denote by BR
A

(q) ⇢ ⌃
A

and BR
B

(p) ⇢ ⌃
B

the sets of best responses of Players
A and B to strategies q and p respectively.

Definition 1.5 (Nash equilibria). A strategy pair (p̂, q̂) is a Nash equilibrium for the
bimatrix game [A,B] if p̂ is a best response to q̂ and q̂ is a best response to p̂: that is,
(p̂, q̂) 2 BR

A

(p̂)⇥ BR
B

(q̂).
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Chapter 2

Replicator Dynamics

The replicator equation is a long-standing simple population model for the evolutionary
success of di↵erent subtypes within a population. It can be found in many books on
evolutionary game dynamics, including those by Hofbauer and Sigmund [11, §7] and by
Fudenberg and Levine [7, §3].

If a population is very large, then one individual is evolutionarily speaking a very
small insignificant part of the population. Consequently we tend to ignore the fact that
populations come in discrete sizes, and assume the population changes continuously over
time. Let us denote by p

i

the proportion of type i individuals within the population. Then
p = (p1, . . . , pn) 2 ⌃

n

can be considered as a continuous function of time t. The relative
success of each type will be dependent on the overall composition of the population.
Denote this fitness by f

i

(p). Then the average fitness for the population will be f̄(p) :=
P

n

i=1 pifi(p).

Definition 2.1 (Replicator Dynamics). Given p(t) 2 ⌃
n

, f
i

: ⌃
n

! R, the replicator
equation is

ṗ
i

= p
i

(f
i

(p)� f̄(p)) i = 1, . . . , n. (2.1)

Notice that we can add a function �(p) to each f
i

without changing the dynamics.
In the case where fitness is given by a payo↵ matrix A, this simplifies to

ṗ
i

= p
i

((Ap)
i

� p · Ap) i = 1, . . . , n. (2.2)

Lemma 2.1. The addition of a constant c to the j-th column of A does not change the
dynamics.

Proof. Let B be the matrix A with the addition of a constant c to the j-th column. Then,

(Bp)
i

=
n

X

k=1

a
ik

p
k

+ cp
j

p · Bp =
n

X

k=1

n

X

l=1

a
kl

p
k

p
l

+
n

X

k=1

cp
j

p
k

.

Noting that
P

k

cp
j

p
k

= cp
j

P

k

p
k

= cp
j

, we see that

p
i

((Bp)
i

� p · Bp) = p
i

((Ap)
i

+ cp
j

� (p · Ap� cp
j

))

= p
i

((Ap)
i

� p · Ap).

Thus the dynamics do not change.
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Note that it follows from Lemma 2.1 that we may rewrite A in a simpler form, for
example having only 0 in the last row.

The following useful lemma (given as an exercise in Hofbauer and Sigmund [11, p. 68])
allows us to transform the system so that we may move a point of interest such as a Nash
equilibrium to the barycentre.

Lemma 2.2. The projective transformation p ! q given by

q
i

=
p
i

c
i

P

n

l=1 plcl

(with c
j

> 0) changes (2.2) into the replicator equation with matrix Ã = (a
ij

c�1
j

). Notice
that this enables us to move a specific point p = (p

i

) to the barycentre ( 1
n

, 1
n

, . . . , 1
n

) by
taking c

i

= p�1
i

.

Proof. This calculation is somewhat tedious but necessary as the result will be useful
later. First, let us calculate

(Ãq)
i

=
n

X

j=1

a
ij

c�1
j

q
j

=
n

X

j=1

a
ij

c�1
j

p
j

c
j

1
P

n

l=1 plcl

=
1

P

n

l=1 plcl
(Ap)

i

.

Also we have

q · Ãq =
n

X

j=1

a
ij

c�1
j

q
i

q
j

=
1

(
P

n

l=1 plcl)
2

n

X

i=1

n

X

j=1

a
ij

c
i

p
i

p
j

.
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Then by definition,

dq
i

dt
=

d

dt

✓

p
i

c
i

P

n

l=1 plcl

◆

=
ṗ
i

c
i

P

n

l=1 plcl
�

p
i

c
i

(
P

n

l=1 plcl)
2

n

X

l=1

ṗ
l

c
l

=
p
i

c
i

P

n

l=1 plcl

 

n

X

j=1

a
ij

p
j

�

n

X

i=1

n

X

j=1

a
ij

p
i

p
j

!

�

p
i

c
i

(
P

n

l=1 plcl)
2

n

X

i=1

"

p
i

c
i

 

n

X

j=1

a
ij

p
j

�

n

X

k=1

n

X

j=1

a
kj

p
k

p
j

!#

=
p
i

c
i

P

n

l=1 plcl

 

n

X

j=1

a
ij

p
j

�

1
P

n

l=1 plcl

n

X

i=1

n

X

j=1

a
ij

c
i

p
i

p
j

!

= p
i

c
i

⇣

(Ãq)
i

� q · Ãq
⌘

=
q
i

P

n

l=1 c
�1
l

q
l

⇣

(Ãq)
i

� q · Ãq
⌘

.

This is almost the replicator equation: the only di↵erence is the factor of
P

n

l=1 plcl. This
can be fixed by a rescaling of time, and we obtain the replicator equation with matrix
Ã = (a

ij

c�1
j

) as required.

2.1 Long term behaviour and convergence

We now endeavour to say something about the long term behaviour of replicator dy-
namics. As one would expect, this is closely tied to the concepts of Nash equilibria,
evolutionarily stable strategies and Lyapunov stability1.

Lemma 2.3. If p 2 ⌃
n

is a Nash equilibrium for the game with payo↵ matrix A, then p
is a fixed point of the corresponding replicator equation.

Proof. Suppose p is a Nash equilibrium. Then, as discussed in the previous chapter, its
components satisfy

(Ap)
i

= c 8 i such that p
i

> 0, for some constant c > 0, where
n

X

i=1

p
i

= 1.

Thus,

p · Ap =
n

X

i=1

p
i

c = c.

Considering the replicator equation, we see that

ṗ
i

= 0 8 i () p
i

((Ap)
i

� p · Ap) = 0

() p
i

((Ap)
i

� c) = 0.

This clearly holds when p is a Nash equilibrium.

1It is assumed the reader is familiar with Lyapunov stability and omega limit sets: for definitions and
discussion of these concepts see for example Hofbauer and Sigmund [11, §2.6]
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Lemma 2.4. Rest points p 2 int(⌃
n

) of the replicator equation are precisely points p
such that

(Ap)1 = (Ap)2 = · · · = (Ap)
n

and
n

X

i=1

p
i

= 1.

Equivalently, a point in the interior of the simplex ⌃
n

is a rest point if and only if it is
a Nash equilibrium.

Proof. Points in the interior have p
i

> 0 for all i, so this follows directly from the previous
lemma.

Lemma 2.5. If the omega limit set !(p) of a point p 2 ⌃
n

under replicator dynamics
consists of one point q, then q is a Nash equilibrium of the underlying matrix.

Proof. Suppose {q} = !(p) for some p 2 ⌃
n

. Then by definition and slight abuse of
notation2, there exists a sequence t

n

with lim
n!1 t

n

= 1 such that p(t
n

) ! q. This
implies that ṗ(t

n

) ! 0. Suppose q is not a Nash equilibrium. Then there exists a
standard basis vector e

i

such that e
i

·Aq > q ·Aq. Equivalently, there exists ✏ > 0 such
that e

i

· Aq� q · Aq > ✏. By definition, (Aq)
i

= e
i

· Aq, thus we have

q̇
i

= q
i

(e
i

· Aq� q · Aq)

=)
q̇
i

q
i

> ✏ 8t � 0.

But then q̇ 6! 0 for any t
n

! 1: a contradiction.

Lemma 2.6. If q is a Lyapunov stable point of the replicator equation with matrix A,
then q is a Nash equilibrium for the game with payo↵ matrix A.

Proof. Suppose q is not a Nash equilibrium. Then by continuity there exists an i and some
✏ > 0 such that (Ap)

i

� p ·Ap > ✏ for all p in some neighbourhood of q. Then ṗ
i

> ✏p
i

,
so p

i

increases exponentially for all p in some neighbourhood of q. This contradicts the
Lyapunov stability of q.

Notice that not every rest point of the replicator equation is a Nash equilibrium: any
pure strategy will always be a rest point (representing the idea that extinct subtypes
cannot come back to life), but there are certainly games where a given pure strategy is
not a Nash equilibrium. Similarly, not every Nash equilibrium is Lyapunov stable under
fictitious play: for example in a game where every strategy is a Nash equilibrium (take
a
ij

= 1 for all i, j).

Theorem 2.1. If q 2 ⌃
n

is an evolutionarily stable state for the game with payo↵ matrix
A, then q is an asymptotically stable rest point of the corresponding replicator equation.

Proof. Consider the function

F : ⌃
n

! [0,1], p 7!

n

Y

i=1

pqi
i

.

We first show that this has a unique maximum at q. To see this, we use Jensen’s
Inequality:

2Here we use p to denote both the point p 2 ⌃n and the solution p(t) to the replicator equation
satisfying p = p(0).
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Theorem 2.2 (Jensen’s Inequality). If a function f : I ! I is strictly convex on an
interval I, then

f

 

n

X

i=1

q
i

p
i

!



n

X

i=1

q
i

f(p
i

),

where q = (q
i

) 2 int(⌃
n

) and p
i

2 I, with equality if and only if p1 = p2 = · · · = p
n

.

We apply Jensen’s Inequality to the function � log(F ), setting I = [0,1] and 0 log 0 =
0 log1 = 0. Notice that log is strictly increasing, so F has a maximum at q if and only
if logF has a maximum at q. Now,

log(F (p)) = log

 

n

Y

i=1

pqi
i

!

=
n

X

i=1

log pqi
i

=
n

X

i=1

q
i

log p
i

.

By Jensen’s Inequality,

� log

 

n

X

i=1

q
i

p
i

q
i

!

 �

n

X

i=1

q
i

log

✓

p
i

q
i

◆

()

n

X

i=1

q
i

log

✓

p
i

q
i

◆

 log

 

n

X

i=1

p
i

!

.

Since
P

n

i=1 pi = 1 this gives us

n

X

i=1

q
i

log p
i

�

n

X

i=1

q
i

log q
i

 0,

with equality if and only if p
i

= cq
i

for some constant c and for all i. As we must have
p 2 ⌃

n

, the only viable possibility here is that c = 1. Thus,

n

X

i=1

q
i

log p
i



n

X

i=1

q
i

log q
i

,

for all p 2 ⌃
n

, with equality if and only if p = q. So the function F has a unique
maximum at q.

Next we show that F is a strict Lyapunov function at q, i.e. that Ḟ > 0 for all p in
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some neighbourhood of q, p 6= q. Notice that F (p) > 0 for all p 2 ⌃
n

. Now

(logF )˙ =
d

dt

 

n

X

i=1

q
i

log p
i

!

=
n

X

i=1

d

dt
q
i

log p
i

=
n

X

i=1

q
i

ṗ
i

q
i

=
n

X

i=1

q
i

((Ap)
i

� p · Ap)

= q · Ap� p · Ap.

By assumption, q is an ESS, and so by definition we have that q · Ap � p · Ap > 0 for
p in a neighbourhood of q. Hence, Ḟ

F

> 0 in a neighbourhood of q. We know that F is

strictly positive on ⌃
n

, thus we have that Ḟ > 0 and F is a strict Lyapunov function. So,
q is asymptotically stable and by previous lemmas (2.3 and 2.6), q is an asymptotically
stable rest point of the replicator equation.

2.2 Correspondence with Lotka-Volterra dynamics

Lotka-Volterra dynamics have been well studied and are generally one of the first examples
of population modelling that one encounters. Consequently a correspondence between
replicator dynamics and Lotka-Volterra systems gives us a rapid gain in understanding
for comparatively little e↵ort, and is thus very helpful.

Throughout this section, p = (p
i

)n
i=1 2 ⌃

n

will be used to denote variables for replica-
tor dynamics and q = (q

i

)n�1
i=1 2 Rn�1

+ will be used to denote variables for Lotka-Volterra
dynamics.

Definition 2.2 (Lotka-Volterra dynamics). The generalised Lotka-Volterra system for
q 2 Rn�1

+ is given by

q̇
i

= q
i

 

r
i

+
n�1
X

j=1

b
ij

q
j

!

,

for i = 1, . . . , n� 1, where the r
i

and b
ij

are constants.

Written thus, the generalised Lotka-Volterra equations and replicator dynamics are
both first order non-linear ordinary di↵erential equations. Replicator dynamics involves
n equations with cubic terms on an n � 1 dimensional space, and the Lotka-Volterra
system involves n� 1 equations with quadratic terms on an n� 1 dimensional space. A
correspondence does not seem that unreasonable.

Theorem 2.3. There exists a smooth invertible map from {p 2 ⌃
n

: p
n

> 0} to Rn�1
+

that maps the orbits of replicator dynamics to the orbits of the Lotka-Volterra system 2.2
with r

i

= a
in

� a
nn

and b
ij

= a
ij

� a
nj

.
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Proof. First notice that by Lemma 2.1 we may assume without loss of generality that the
last row of A consists of zeros, i.e. (Ap)

n

= 0. Define q
n

= 1. Consider the transformation

T : {p 2 ⌃
n

: p
n

> 0} ! Rn�1
+

p 7! q,

given by

q
i

=
p
i

p
n

for i = 1, . . . n� 1. This has inverse given by

p
i

=
q
i

P

n�1
j=1 qj + 1

for i = 1, . . . n� 1, and

p
n

=
1

P

n�1
j=1 qj + 1

.

Clearly T is smooth and invertible. We now show that T maps the orbits of the replicator
equation to the orbits of the Lotka-Volterra system (and that T�1 performs the reverse).
Assume the replicator equation holds. Then

q̇
i

=
d

dt

✓

p
i

p
n

◆

=
p
i

p
n

((Ap)
i

� (Ap)
n

)

= q
i

 

n

X

j=1

a
ij

p
j

!

= q
i

 

a
in

+
n�1
X

j=1

a
ij

q
j

!

· p
n

.

By a change in velocity we can remove the extra p
n

. Noting that we assumed a
nj

⌘ 0 for
all j, set r

i

:= a
in

and b
ij

:= a
ij

. Then we have the Lotka-Volterra system as required.
Assume the Lotka-Volterra equations hold. Then define a

ij

:= b
ij

for i, j = 1, . . . , n�1.
Define a

in

:= r
i

for i = 1, . . . , n � 1 and a
nj

:= 0 for j = 1, . . . , n. For convenience of
notation define q

n

= 1.
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Then

ṗ
i

=
d

dt

 

q
i

P

n

j=1 qj

!

=
q̇
i

P

n

j=1 qj
�

q
i

P

n

j=1 qj
⇥

P

n

j=1 q̇j
P

n

j=1 qj

=
q
i

P

n

j=1 qj

 

r
i

+
n�1
X

j=1

b
ij

q
j

!

�

P

n

i=1 qi
P

n

j=1 qj

 

r
i

+
n�1
X

j=1

b
ij

q
j

!

= p
i

n

X

l=1

q
l

 

n

X

j=1

a
ij

p
j

�

n

X

i=1

p
i

n

X

j=1

a
ij

p
j

!

= p
i

n

X

l=1

q
l

((Ap)
i

� p · Ap) .

By a change in velocity we thus have the replicator equation.

There are many other interesting results involving the replicator equation which would
exceed the scope of this work. A full classification of dynamics for n = 3 was given by
Zeeman [20], and specific examples may be found in Hofbauer and Sigmund [11, §7.4].
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Chapter 3

Fictitious Play

The fictitious play process was originally defined by Brown in 1951 [2] as a method of
computing Nash equilibria in zero-sum games. It is now used primarily as a model of
learning (see Berger’s paper [4] for more of the history). At a given moment, each player
computes a best response to the average of his opponent’s past strategies using a payo↵
matrix and instantly plays this best response. This causes each player’s average to move
continuously towards the best response. In terms of populations this can be interpreted
as follows: in each moment of time, a proportion of the current population changes from
their current strategy to the best response.

3.1 Definitions

Let [A,B] be a bimatrix game. We will also use A and B to refer to the two players,
but the context will make clear what is meant. Following the conventions of Sparrow et
al. [18], we set the averages of the pure strategies of the players to be pA(t) and pB(t),
defining these as row and column vectors respectively. We define the best response sets
BR

A

and BR
B

to be the sets of best responses for each player (see Section 1.2). We also
define:

vA(t) := ApB(t)

vB(t) := pA(t)B

Generically the best response sets will consist of a pure strategy. If there is more than
one pure best response, then the best response set will consist of all convex combinations
of these pure strategies. The strategies for which there are multiple best responses form
planes in the simplex, called indi↵erence planes as this is where a player is indi↵erent
between two or more strategies.

Definition 3.1 (Indi↵erence planes). The indi↵erence planes for players A and B re-
spectively are

ZB

ij

:=
n

pA

2 ⌃
A

: vB

i

(pA) = vB

j

(pA) = max
k

{vB

k

(pA)}
o

✓ ⌃
A

ZA

kl

:=
n

pB

2 ⌃
B

: vA

k

(pB) = vA

l

(pB) = max
k

{vA

k

(pB)}
o

✓ ⌃
B

.
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Figure 3.1: Simplices and indi↵erence planes for the Shapley system (§3.4), � ⇡

1
2

Then the fictitious play process is defined as follows:

d

dt
pA = BR

A

(pB)� pA (3.1)

d

dt
pB = BR

B

(pA)� pB. (3.2)

As mentioned previously, we are here considering pA(t) and pB(t) to be the averages of
the players’ past strategies, or alternatively as populations many up of individuals playing
pure strategies: it is not that the player is playing a mixed strategy.

3.2 Existence and uniqueness of solutions

It is important to note that as the best response is not necessarily unique, fictitious play
is a di↵erential inclusion. Consequently we must be very careful regarding existence and
uniqueness of solutions. Firstly we notice that there is only a problem on the indi↵erence
planes defined previously. These form a codimension-one subset of ⌃

A

⇥ ⌃
B

. Outside
of this subset, the best responses of each player are unique and so we have existence of
uniqueness of solutions.

Lemma 3.1 (Solutions of fictitious play). If BR
A

(pB) = PA

i

and BR
B

(pA) = PB

j

, then
fictitious play is a di↵erential equation with solutions

pA(t) = (pA(0)� PA

i

)e�t + PA

i

pB(t) = (pB(0)� PB

j

)e�t + PB

j

,

for t 2 [0, ✏) for some ✏ > 0.

It is worth noting that the system can be reparametrised in such a way that - assuming
existence and uniqueness of solutions - the players would reach their best response at time
1. This is particularly useful when modelling the system numerically.

Lemma 3.2 (Reparametrisation). The fictitious play system (3.1) can be reparametrised
as described above.
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Proof. Set s = 1� e�t. Then

d

ds
pA =

dpA

dt

dt

ds
= et(PA

i

� pA(t))

=
1

1� s
(PA

i

� pA(� ln(1� s))).

From the solution above, we can calculate

pA(� ln(1� s)) = (pA(0)� PA

i

)(1� s) + PA

i

.

Then we have

d

ds
pA =

1

1� s
(PA

i

� PA

i

� (1� s)(pA(0)� PA

i

))

= PA

i

� pA(0).

Following the same procedure for pB, this gives us solutions

pA(s) = (1� s)pA(0) + sPA

i

(3.3)

pB(s) = (1� s)pB(0) + sPB

j

, (3.4)

for s 2 [0, ✏) for some ✏ > 0.

This is all very well when the best response is unique. However, most solutions
will cross an indi↵erence plane eventually. Hence we endeavour to extend existence and
uniqueness to the set where at most one player is indi↵erent. This is done rigorously in the
2008 paper by Sparrow et al. [18]. Existence and uniqueness problems with di↵erential
inclusions are explored far more fully in the book by Aubin and Cellina [1].

Denote by Z⇤ the set where both players are indi↵erent between two or more strategies.
Then we have the following theorem.

Theorem 3.1. Solutions to the fictitious play process (3.1) given in Lemma 3.1 extend
continuously to (Z⇤)c provided the following transversality condition is satisfied:

For any (pA,pB) /2 Z⇤ such that pA

2 ZB

ij

for some i, j and BR
A

(pB) = PA

k

, we
require that the vector towards PA

k

at the point pA is not parallel to the indi↵erence plane
ZB

ij

⇢ ⌃
A

. We also have the corresponding condition for pB

2 ZA

ij

and BR
B

(pA) = PB

k

.

Proof. Suppose that pA(0) 2 ZB

ij

for some i, j and BR
A

(pB(0)) = PA

k

. We expect
that due to transversality, for t > 0 we have BR

B

(pA(t)) = PB

i

and for t < 0 we have
BR

B

(pA(t)) = PB

j

(of course possibly with i, j interchanged depending on the system).
The system we hope only has uniqueness issues “momentarily” at t = 0, and as such
we hope to define a continuous extension to the unique solutions that exist before and
after t=0. To do this properly, we would need to define concepts like continuity for
set-valued maps. This can be done quite naturally, but a full discussion of di↵erential
inclusions is somewhat beyond the scope of this project. As such, this is something of a
sketch proof: the details of di↵erential inclusions may be found in Aubin and Cellina [1]
and the application thereof in Sparrow et al. [18, Proposition 3.1]. Continuing, we see
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Figure 3.2: Demonstration of the failure of the transversality condition in the Shapley
system with � = 0 (see §3.4)

that as BR
A

(pB(0)) = PA

k

, there exists ✏ > 0 such that for all t with |t| < ✏, we have
BR

A

(pB(t)) = PA

k

.
Transversality means that ((1 � �)pA(0) + �PA

k

) /2 ZB

ij

for any non-zero value of �.
Thus, we may choose � with 0 < � < ✏ such that BR

B

((1� �)pA(0)+ �PA

k

) is unique and
BR

B

((1 + �)pA(0)� �PA

k

) is unique. Then we may define the solution as follows:

pA(t) = tPA

k

+ (1� t)pA(0) if |t| < ✏

pB(t) =

8

<

:

pB(0) if t = 0
tBR

B

(pA(�)) + (1� t)pB(0) if 0 < t < ✏
tBR

B

(pA(��)) + (1� t)pB(0) if � ✏ < t < 0

This is well defined and satisfies the fictitious play equations (3.1). It is equal to the
(already known) unique solution for t 6= 0 and is clearly a continuous extension of that
unique solution. Thus this is the unique solution for |t| < ✏.

3.3 Games with convergent fictitious play

The main class of games in which fictitious play is known to converge is zero-sum games,
as shown by Robinson [15]. Two more classes of games for which fictitious play has been
extensively studied are quasi-supermodular games (also known as games with strategic
complementarities) and games with diminishing returns. It was originally thought that
fictitious play would converge for all games - it was after all designed as a method of
finding Nash equilibria. This was later shown by Shapley to be false, but considerable
e↵ort has gone into showing convergence for various classes of games. It is conjectured
that non-degenerate quasi-supermodular games are one such class, but attempts at a
proof have so far been unsuccessful. However, steps have been made in this direction,
including the following types of games:

• Generic 2⇥ n non-zero-sum games ([5] Berger, 2005).

• 3⇥ 3 non-degenerate quasi-supermodular games ([9] Hahn, 1999).
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• 3⇥m and 4⇥ 4 non-degenerate quasi-supermodular games ([6] Berger, 2007).

This section will go through (some of) the ideas, results and proofs from these papers. Un-
fortunately the proofs have essentially employed a brute force method which does not ex-
tend to higher dimensions. The idea is to show that when a player changes strategy, they
must change to a “better” strategy. Then we use the properties of quasi-supermodularity
to show that there does not exist a cycle of strategies to follow with each better than the
last, and thus fictitious play must converge.

We begin as always with definitions, which may be found in any of the papers above.

Definition 3.2 (Quasi-supermodular games). An n⇥m bimatrix game [A,B] is said to
be quasi-supermodular if given i, i0 2 N = {1, . . . , n} and j, j0 2 M = {1, . . . ,m} with
i < i0 and j < j0, we have that

a
i

0
j

> a
ij

=) a
i

0
j

0 > a
ij

0

b
ij

0 > b
ij

=) b
i

0
j

0 > b
i

0
j

.

The idea is that as one player increases his strategy, it becomes increasingly advan-
tageous for the other to also increase their strategy to a higher numbered one.

Definition 3.3 (Non-degeneracy). An n⇥m bimatrix game [A,B] is said to be degenerate
if either for some i, i0 2 N with i 6= i0, there exists j such that a

i

0
j

= a
ij

or for some
j, j0 2 M with j 6= j0, there exists i such that b

ij

0 = b
ij

. A game is said to be non-
degenerate if it is not degenerate.

The crux of the proofs of convergence of fictitious play hinged on the concept of an
improvement step.

Definition 3.4 (Improvement steps). We say that (i, j) ! (i0, j0) (called an improvement
step) if either i = i0 and b

ij

0 > b
ij

or j = j0 and a
i

0
j

> a
ij

. A sequence of improvement steps
forms an improvement path and a cyclical improvement path is called an improvement
cycle.

This simple idea is intrinsically linked to the solutions of fictitious play in that the
sequence of best responses must follow an improvement path.

Definition 3.5 (Fictitious play paths). A strategy path (i
t

, j
t

) 2 N ⇥M for t 2 [0,1)
is a (continuous) fictitious play path if for almost every t � 1 we have

(i
t

, j
t

) 2 BR
A

(q(t))⇥ BR
B

(p(t)), (3.5)

where the path (p(t),q(t)) solves the fictitious play equations (3.1).

With this definition, we may consider the indi↵erence planes as being the places where
the fictitious play path switches.

Definition 3.6 (Switching). A fictitious play path (i
t

, j
t

) is said to switch from (i, j) to
(i0, j0) at time t0 if (i, j) 6= (i0, j0) and there exists ✏ > 0 such that

(i
t

, j
t

) = (i, j) for t 2 [t0 � ✏, t0) (3.6)

(i
t

, j
t

) = (i0, j0) for t 2 (t0, t0 + ✏]. (3.7)
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Now that we have arrived at this set up, we simply show that all switches must be
improvement steps. This result is the combination of the Improvement Principle due to
Sela [16] and its analog called the Second Improvement Principle due to Berger [6].

Lemma 3.3 (Improvement Principle). Suppose a fictitious play path switches from (i, j)
to (i0, j0) at time t1.1 Then either there are improvement steps (i, j) ! (i, j0) ! (i0, j0) or
there are improvement steps (i, j) ! (i0, j) ! (i0, j0).

Proof. At time t1, we have that (i, j), (i0, j0) 2 BR
A

(q(t1)) ⇥ BR
B

(p(t1)). The players
are indi↵erent between both strategies. By definition of a switch, there exists ✏ > 0 such
that (i

t

, j
t

) = (i, j) for all t 2 [t0, t1) where t0 = t1 � ✏. Then we may write

(p(t1),q(t1)) = �(PA

i

, PB

j

) + (1� �)(p(t1),q(t1)),

where �  1. Rearranging,

(PA

i

, PB

j

) =
1

�
(p(t1),q(t1)) +

�� 1

�
(p(t1),q(t1))

= c(p(t1),q(t1)) + (1� c)(p(t0),q(t0)),

where c = 1
�

� 1.
Considering only the part in ⌃

B

and multiplying by A,

APB

j

= cAq(t1) + (1� c)Aq(t0)

Now subtract the i-th component from the i0-th component to get

a
i

0
j

� a
ij

= c [Aq(t1)
i

0 � Aq(t1)
i

]
| {z }

0

+(1� c)[Aq(t0)
i

0 � Aq(t0)
i

]

= (1� c)
| {z }

 0 as c � 1

[Aq(t0)
i

0 � Aq(t0)
i

]

� 0.

Now that we have the Improvement Principle, we are able to prove the following
theorem:

Theorem 3.2. The fictitious play process converges for every 3 ⇥ m non-degenerate
quasi-supermodular game (NDQSMG)

Proof. Without loss of generality we may assume that there are no dominated strategies.
Then in a NDQSMG, we begin with the following set up of improvement steps.

Then we look for a step that goes “up”: to be precise, a step of the form (a, j) ! (b, j)
where a > b. Clearly a cycle must contain such a step. There are only three possibilities
for going “up”: a cycle must contain either a step (3, j) ! (1, j), a step (2, j) ! (1, j) or
a step (3, j) ! (2, j). We consider each case.

1Notice that here we are assuming solutions exist
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(1, 1)

(3, 1) (3,m)

(1,m)

Case 1 Suppose the cycle contains a step (3, j) ! (1, j). Then by quasi-
supermodularity, we have steps (3, k) ! (1, k) for all k = 1, . . . , j. Then from (1, j)
the cycle must continue by going left or down. We do not want to reach the equilib-
rium (1, 1), therefore at some point in the cycle there must be a step downwards from
(1, j0) where j0  j. This step cannot be to (3, j0) because we know there is a step
(3, j0) ! (1, j0). So, there must be a step (1, j0) ! (2, j0). By quasi-supermodularity
there are steps (1, k) ! (2, k) for all k = j0, . . . ,m and specifically for k = j. This implies
there is a step (3, j) ! (2, j), and similar steps for k = 1, . . . , j. Having thus extracted
as much information as we can from our assumption and quasi-supermodularity, we have
the following picture.

(1, j)

(3, j)

(1, j0)

Now consider how we arrived at the point (3, j). It is clear from the picture that the
improvement path must have come from the bottom left corner (3, 1). This point cannot
be part of an improvement cycle. Thus there can be no such step (3, j) ! (1, j) in an
improvement cycle.

Case 2 Suppose the cycle contains a step (2, j) ! (1, j). Quasi-supermodularity gives
us steps (2, k) ! (1, k) for k = 1, . . . , j. From (1, j) we must go left or down, and to
avoid the equilibrium and follow a cycle we must hence have a step (1, j0) ! (3, j0), where
1 < j0  j. This implies there are steps (2, k) ! (3, k) for k = j0, . . . ,m as shown.

(1, j)

(3, j)

(1, j0)

Then it is clear that the next steps from (3, j0) must be straight to (3,m), as by the
picture we cannot move to row 2 and by Case 1 we cannot move to row 1. (3,m) cannot
be part of an improvement cycle, and so there can be no such step (2, j) ! (1, j) in an
improvement cycle.

Case 3 The case of a step (3, j) ! (2, j) follows instantly from the preceding cases:
it can be seen from the picture that any path must either involve a step as in Case 2, or
will end in an equilibrium.
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(1, j)

(3, j)

Thus, it is not possible to go “up”. Thus any improvement path must be finite, and
so fictitious play must converge.

This method of proof is somewhat brute force. It can be applied to many situations,
but is inadequate to prove convergence for general n ⇥ m NDQSMGs: indeed, in [6]
Berger found an example of a 4 ⇥ 5 NDQSMG which does have an improvement cycle
(but conjecturally its fictitious play converges nonetheless).

3.4 The Shapley system

Originally it was thought that fictitious play of all games would converge. Then in
1964, Lloyd Shapley presented an example where fictitious play does not converge, but
rather cycles between strategies delineating a triangle in the simplex [17]. This example
was extended by Sparrow et al. [18] to a one-parameter family of games, and numerical
observations suggest that periodic orbits can be found in other games as well. The
Shapley system has payo↵ matrices

A =

0

@

1 0 �
� 1 0
0 � 1

1

A , B =

0

@

�� 1 0
0 �� 1
1 0 ��

1

A , for some � 2 (�1, 1).

Shapley’s original example was this system with � = 0. Generally we here take � between
-1 and 1. This has Nash equilibrium at the barycentre of ⌃

A

⇥ ⌃
B

:

[EA, EB] =



(
1

3
,
1

3
,
1

3
), (

1

3
,
1

3
,
1

3
)T
�

2 ⌃
A

⇥ ⌃
B

.

It has been shown by Sparrow, van Strien and Harris [18] that for � 2 (�1, �) there is
an attracting periodic orbit. This orbit is actually a hexagon in the four-dimensional
space ⌃

A

⇥ ⌃
B

, but the projection to the simplices shows the orbit as triangles around
EA and EB to be followed clockwise (see Figure 3.3). Similarly, there is a periodic orbit
for � 2 (⌧, 1) which projects as triangles to be followed anti-clockwise. Here ⌧ ⇡ 0.9 is a
root of a polynomial. Sparrow et al. further showed that the Shapley system undergoes
a Hopf-like bifurcation at � = �, whereupon the system becomes chaotic for � 2 (�, ⌧)
(shown rigorously in Strien et al. [19]). These results are stable under small perturbations,
and similar behaviour has been empirically observed in other games.

The existence of the periodic orbit is proved by looking for fixed points of the first
return map to an indi↵erence plane. The calculations involved are only practicable due to
the simplifying e↵ect of the symmetry of the orbit. Even so, the calculations are somewhat
tedious and not instructive, hence the interested reader is referred to the paper for the
full details.
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Figure 3.3: Periodic orbit for the Shapley system, � = 0.

3.5 Open questions

There are many open questions pertaining to fictitious play. As discussed in Section 3.3,
there are many classes of games for which the dynamics are unknown. We now consider
some of the questions related to the Shapley system as in the previous section.

3.5.1 Transition diagrams

The state space of the Shapley system is ⌃
A

⇥⌃
B

. This creates an issue with visualisation:
it is very di�cult to mentally picture things in a four dimensional space. To help with
this problem, Sparrow et al. [18] thought of a way of representing ⌃

A

⇥⌃
B

that enables
one to see quickly and easily what indi↵erence planes are crossed in what order. It is a
similar idea to the diagrams used by Hahn [9] and Berger [6] but also incorporates the
concept of indi↵erence planes.
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23
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12

PB
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Figure 3.4: Simplices and indi↵erence planes for the Shapley system, � ⇡

1
2

Given the simplices as above, we consider the (four-dimensional) regions where A ! i
and B ! j. There are three possibilities for the best responses of each of A and B,
thus giving us nine such preference regions. We represent these by the grid as follows,
identifying the top edge with the bottom and the left edge with the right.
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B ! 1

B ! 3

B ! 2

A ! 1 A ! 2 A ! 3

⌃A

⌃B

Figure 3.5: Transition diagram for � > 0

In Figures 3.4 and 3.5 above, the region where A ! 1 and B ! 1 is indicated in
blue. Looking at the simplices, one can see that from a position in ⌃

A

that is in the
blue region but above the red dashed line, the next indi↵erence plane crossed will be ZB

13

and not ZB

12. This is represented by the arrows and the red dashed line shown in the
transition diagram. The transition diagrams are only a representation: certainly orbits
in the simplex are not in bijective with paths drawn in the transition diagrams. These
representations are, however, useful, as they provide an easy way of depicting various
questions: for example, do there exist orbits of the following type?

B ! 1

B ! 3

B ! 2

A ! 1 A ! 2 A ! 3

⌃A

⌃B

The proper phrasing of this question is as follows: for the Shapley system with � > 0,
do there exist orbits beginning on ZB

13 that cross the following indi↵erence planes in this
exact order:

ZB

13, Z
A

23, Z
B

13, Z
A

13, Z
B

12, Z
A

12, Z
B

12, Z
B

13.
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Equivalently, do there exist orbits such that the sequences of players’ best responses
is as follows:

✓

A 2 3 3 1 1 2 2
B 3 3 1 1 2 2 1

◆

.

Drawn in the simplices, an orbit of this type would look approximately like this,
beginning at the blue dots:
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23
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3
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2⌃A

ZA

13

ZA

23

ZA

12

PB

1 PB

3

PB

2⌃B

The transition diagrams make it possible to instantly see which regions an orbit may
move into. However, these arrows only describe possible movements from one region to
another: sequences of arrows are another matter entirely. The diagram does not mean
that for any path drawn following the arrows there actually exists an orbit (or orbits) that
follows this sequence. This is the question I have been considering, focusing specifically
on the paths shown above before attempting to generalise. Numerical experimentation
suggests that such an orbit is impossible, and indeed this appears to be the case.

The first thing to notice is that it is su�cient to consider an orbit starting on the
boundary @(⌃

A

⇥⌃
B

).2 This is because the system may be projected onto the boundary
(see [19, §3]).

Thus, for the initial point we take pA(0) = (0, 1+�

2+�

, 1
2+�

) = (a1, a2, a3). Now we en-

deavour to find conditions on the initial point pB(0) = (pB

1 (0),p
B

2 (0),p
B

1 (0)) = (b1, b2, b3)
such that the orbit is of the desired type. These conditions can be essentially seen by
eye: for example in Figure 3.4, a starting point in the blue region that in ⌃

A

is above
the red dashed line will next cross ZB

12 whereas one that is below the red dashed line
in ⌃

A

will cross next ZB

13. Thus whether the orbit has passed the dashed lines becomes
important when looking for a particular sequence of indi↵erence planes. We hence draw
in the relevant lines as in Figure 3.6.

Notice the numbered points are the points at which a player crosses an indi↵erence
plane. This is because it causes the other player to change direction: thus to proceed to
the next indi↵erence plane in the sequence, the players must be in the correct place to
allow this to happen. The conditions are listed thus:

• At 0, require pB

1 < pB

2 to next cross ZA

23 rather than ZA

12.

2Notice that @(⌃A ⇥ ⌃B) = (⌃A ⇥ @⌃B) [ (@⌃A ⇥ ⌃B). This is not the same as @⌃A ⇥ @⌃B .
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Figure 3.6: Orbit with numbers depicting the points at which an indi↵erence plane is
traversed.

• At 2, require pB

2 < pB

3 to next cross ZA

13 rather than ZA

23.

• At 3, require pA

2 < pA

3 to next cross ZB

12 rather than ZB

13.

• At 4, require pB

1 > pB

3 to next cross ZA

12 rather than ZA

13.

• At 5, require pA

1 < pA

3 to next cross ZB

12 rather than ZB

23.

With point 2, for example, this could be more explicitly written as follows: let t2 > 0
be the time such that pA(t2) 2 ZB

13. Then we require that pB

2 (t2) < pB

3 (t2). For ease of
calculation we use the reparametrised system (3.2). Let us now commence a numerical
investigation of the orbit.

As an example, we calculate the first few inequalities explicitly. The first is clear by
inspection: we require pB

1 (0) < pB

2 (0). Then, let the time at which the orbit reaches
ZA

23 be t1 > 0. On this first leg of the orbit (0 < t < t1), we have BR
A

(pB(t)) = PA

2 ,
BR

B

(pA(t)) = PB

3 . Thus the equation of the orbit is

pA(t) = (1� t)pA(0) + tPA

2

pB(t) = (1� t)pB(0) + tPB

3

Hence t1 solves (ApB(t1))2 = (ApB(t1))3. Writing this explicitly and solving using the
equations above, we see

�pB

1 (t1) + pB

2 (t1) = �pB

2 (t1) + pB

3 (t1) (3.8)

�(1� t1)b1 + (1� t)b2 = �(1� t1)b2 + (1� t1)b3 + t1 (3.9)

=) t1 =
�(b1 � b2) + (b2 � b3)

1 + �(b1 � b2) + (b2 � b3)
(3.10)

() t1 =
�(b1 � b2) + b1 + 2b2 � 1

�(b1 � b2) + b1 + 2b2
. (3.11)
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The last line comes from substituting b3 = 1 � b1 � b2 and is performed because it is
then easier to get Maple to plot the correct diagrams.3 Hence t1 may be considered as a
function of b1 and b2. Clearly we require t1 > 0. Plotting this in Maple4, we have

(a) t1 = 0 and t1 = 1 (b) t1 > 0

Figure 3.7: Plots for t1

With some thought, these plots of ⌃
B

are sensible. The blue lines are (extended)
indi↵erence planes and the red area is the region where BRA(pB(0)) = PA

2 . The green
line denotes t1 = 0 and coincides with the indi↵erence plane ZA

23: if the initial point p
B(0)

is on ZA

23, then it will take no time to get there. The red line denotes t1 = 1: if the initial
point pB(0) is in fact PB

3 , then pB(t) will be constant for t 2 [0, t1] and will thus never
reach ZA

23. The orange region on the right hand figure is where t1 > 0. Notice that in
plotting this we are currently ignoring the previous conditions on b1 and b2 (for example
the condition for BR

A

(pB(0)) = PA

2 ) and are actually extending the function t1(b1, b2)
from its original domain determined by these conditions to the entirety of R2.

Performing similar calculations to find t2 2 (0, 1) such that pA(t1 + t2) 2 ZB

13, we find

t2 =
�1� �b2 + b1 + 2b2 + �b1

�1� �2b2 + 2b1 + 3�b1 + 4b2 + �2b1
. (3.12)

As seen in Figure 3.6, the orbit must reach ZB

13 after p
B

2 (t) = pB

3 (t) in order to next cross
ZA

13 rather than ZA

23. Thus we calculate s2 2 (0, 1) such that pB

2 (t1 + s2) = pB

3 (t1 + s2).

s2 = �

�(b1 � b2)

b1 + 2b2
. (3.13)

Now we require t2 > s2. This forms the purple region in Figure 3.8:
Once again, the blue lines denote extended indi↵erence planes, the green lines denote

where the relevant quantity is 0, and the red lines where the relevant quantity is 1. The
additional edges of the purple region visible in Figure 3.8 (c) are where t2 = s2. This
plot tells us that there do exist regions such that both t2 > s2 and the initial conditions
are satisfied. Omitting calculations, we continue plotting the further conditions: if there

3Plotting in the simplex can be achieved in Maple by creating a standard plot with b1 against b2

and then using the transform function in the plottools library to send (x, y) to (1� x�

1
2y,

p
3
2 y). This

method proved easier than correctly orienting a 3d plot.
4Plots shown are for � = 2

5 ; other values look similar.
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(a) t2 > 0 (orange) (b) s2 > 0 (cyan) (c) t2 > s2 (purple)

Figure 3.8: Plots for t2 and s2

exists a region such that all of the conditions are satisfied at once, then the orbit is
possible. If upon overlapping the plots there is no such region, then the orbit is impossible.

We thus get the following plots:

(a) s3 < t3 (cyan) (b) s4 < t4 (green) (c) s5 > t5 (yellow)

Figure 3.9: Plots for t3, t4 and t5.

It is clear that for this particular value � = 2
5 , the yellow region where s5 > t5 does not

intersect the red initial region. Thus for � = 2
5 , no orbit may follow the desired sequence

of indi↵erence planes.
For other values of beta, it is slightly less clear. For example for � = 4

5 we instead get
the plot Figure 3.10 (a). However, considering also the plot for s2 < t2 as in Figure 3.10
(b), we see that there is still no feasible region.

(a) s5 > t5 (yellow) (b) Plots for t5 and t2 overlaid

Figure 3.10: Plots for � = 4
5 .

Here, there is clearly nowhere where the initial conditions are satisfied (red), t2 > s2
(purple), and s5 > t5 (yellow). Thus the orbit is still impossible. This appears to happen
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for all values � 2 (0, 1).
Of course, the above reasoning is only numerical and does not constitute a fully

rigorous proof. However, it provides a good intuition as to why this particular sequence
cannot be realised by a concrete orbit of fictitious play.
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Chapter 4

The link between replicator
dynamics and fictitious play

As we have seen, there are quite some similarities between fictitious play and replicator
dynamics, and a bit of numerical experimentation lends credence to the idea of there
being some sort of link between the two. As noted by Gaunersdorfer and Hofbauer [8]
and in the book by Hofbauer and Sigmund [11], the general rule of thumb is that in the
long term, the time averages of solutions to the replicator equation behave as solutions
for fictitious play. This was made more precise in Benäım et al. [3], and this chapter will
carefully go through the ideas and proofs presented in that paper. The main statement
is that the time averages of solutions to replicator dynamics approximate the fictitious
play process, and that this approximation gets better as t ! 1.

We begin by generalising. Instead of considering replicator dynamics and fictitious
play as involving matrices at all, we instead just focus on one player (or population).
This player receives a stream of outcomes: if he plays strategy i at time t, he will receive
the payo↵ U

i

(t). The key point here is that the player has no idea of what is behind these
outcomes; no idea even of how many other players he is facing, let alone what they are
doing, what matrices are possibly involved, whether there is some sensible mechanism
behind the calculations of the payo↵s or whether it is just random. For simplicity, we
assume the payo↵s to be bounded and measurable. Formally, with n the number of
available strategies and c > 0 a bound on the payo↵s, we have an outcome process:

U = {U(t) 2 [�c, c]n, t � 0}.

As noted above, U
i

(t) is the payo↵ the player receives from playing strategy i at time t.
Then the time average of the payo↵s is Ū(t) = 1

t

R

t

0 U(s) ds.
We next define best responses: for U 2 [�c, c]n,

BR(U) = {p 2 ⌃
n

: hp, Ui = max
q2⌃n

hq, Ui}.

Now we define generalised fictitious play for U by

ṗ(t) 2
1

t
[BR(Ū(t))� p(t)]. (4.1)

If we set U(t) = Aq(t) where q(t) is the opponent’s strategy at time t, then we recover
the original fictitious play equation (3.1) for player one.
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We define generalised replicator dynamics by

ṗ
i

(t) = p
i

(t)[U
i

(t)� hp(t), U(t)i] i 2 1, . . . , n. (4.2)

Here we may set U(t) = Ap(t) to recover the original version.
To show the time averages of solutions to replicator dynamics approximate the ficti-

tious play process, we first need a sensible description of an approximation to the fictitious
play process. We do this by approximating the best responses:

Definition 4.1 (Approximation to best responses). Given U 2 [�c, c]n, ⌘ > 0, define
the ⌘-neighbourhood of BR(U) as follows:

[BR]⌘(U) = {p 2 ⌃
n

| 9q 2 BR(U) : kp� qk1 < ⌘}, (4.3)

where k · k1 is the supremum norm.

We will now show that the logit map can be used to find approximate best responses.
Then, we will use the logit map to find solutions of the replicator equation for a given U .

Definition 4.2 (Logit map). Define L : Rn

! ⌃
n

by

(L(U))
i

=
exp(U

i

)
P

n

j=1 exp(Uj

)
. (4.4)

Lemma 4.1. [12, Proposition 3.1] For every U 2 [�c, c]n and every ✏ > 0, there exists a
function ⌘(✏) with ⌘(✏) ! 0 as ✏ ! 0 such that

L

✓

U

✏

◆

2 [BR]⌘(✏)(U).

Proof. Given ⌘ > 0, define

D⌘(U) = {p 2 ⌃
n

|U
i

+ ⌘ < max
j=1,...,n

U
j

=) p
i

 ⌘ for i = 1, . . . , n}. (4.5)

This rather awkward-looking definition is actually quite simple once fully understood.
To illustrate the idea, consider the following example.

Example 1. Suppose that

U =

0

@

0
0
1

1

A

2 [�1, 1]3

and suppose that ⌘ < 1. Then

D⌘

0

@

0
0
1

1

A =

8

<

:

0

@

��
(1� �)�
1� �

1

A

2 ⌃3 | � < ⌘,� 2 [0, 1]

9

=

;

.

Here, max
j

U
j

= U3 = 1, and we have U1+⌘ = ⌘ < 1 and U2+⌘ = ⌘ < 1. Thus we require
that p1, p2 < ⌘, and furthermore we want the set of all such p 2 ⌃3 with p1, p2 < ⌘. This
gives the set above.
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Now it happens that D⌘(U) is a subset of [BR]⌘(✏)(U) and it is conveniently easy to
show that L

�

U

✏

�

2 D⌘(U). This is the idea of the proof.

Proposition 1. D⌘(U) ✓ [BR]⌘(U).

Proof. Suppose p 2 D⌘(U). Then, given ` such that U
`

= max
j=1,...,n Uj

, clearly we have
that the `-th unit vector is a best response, i.e. P ` = (0, . . . , 0, 1, 0, . . . , 0) 2 BR(U).

Then for p 2 D⌘(U), we know that p
`

� 1� ⌘. Thus:

|(P `)
`

� p
`

| = |1� p
`

|

 |1� (1� ⌘)| = ⌘.

For i 6= `,

|(P
`

)
i

� p
i

| = |0� p
i

| = |p
i

|  ⌘.

Hence, for every p 2 D⌘(U), there exists q 2 [BR]⌘(U) such that

kq� pk  ⌘.

Thus D⌘(U) ✓ [BR]⌘(U).

Continuing the proof of Lemma 4.1, let ✏(⌘) satisfy

exp(�
⌘

✏
) = ⌘.

Then for all i, k 2 {1, . . . , n},

Li

✓

U

✏

◆

=
exp(Ui

✏

)
P

j

exp(Uj

✏

)

=
exp(Ui

✏

)
P

j

exp(Uj

✏

)
·

exp(�Uk
✏

)

exp(�Uk
✏

)

=
exp( (Ui�Uk)

✏

)
P

j 6=k

exp(Uj�Uk

✏

)
.

This holds for every i, k 2 {1, . . . , n}. Specifically, this holds for k = ` such that U
`

=
max

j

U
j

. Then if U
i

+ ⌘ < U
`

, we have

U
i

� U
`

< �⌘

=) exp

✓

(U
i

� U
`

)

✏

◆

< exp
⇣

�

⌘

✏

⌘

= ⌘.

Hence, for a given ⌘ > 0, we may take ⌘(✏) to satisfy the inverse of the equation for ✏(⌘),
that is let ⌘(✏) satisfy

✏ = �

⌘

log ⌘
.

Then for ✏ < ✏(⌘), we have

L

✓

U

✏

◆

2 D⌘(U) ⇢ [BR]⌘(✏)(U),

where ⌘(✏) ! 0 as ✏ ! 0.
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We now use the logit map to describe solutions of replicator dynamics, called “con-
tinuous exponential weight” (CEW) by Hofbauer, Sorin, and Viossat [12].

Definition 4.3 (Continuous exponential weight). Given U , define

p(t) = L

✓

Z

t

o

U(s) ds

◆

. (4.6)

L maps Rn to ⌃
n

, so p(t) 2 ⌃. Notice also that p(0) = ( 1
n

, 1
n

, . . . , 1
n

). Later we will

Theorem 4.1. [12, Proposition 4.1] Continuous exponential weight satisfies the replicator
equation.

Proof. By definition of L, we have

p
i

(t) =
exp

⇣

R

t

0 Ui

(s) ds
⌘

P

j

exp
⇣

R

t

0 Uj

(s) ds
⌘ .

Di↵erentiating log(p
i

(t)),

ṗ
k

(t)

p
k

(t)
=

d

dt

"

log

✓

exp

✓

Z

t

0

U
i

(s) ds

◆◆

� log

 

X

j

exp

✓

Z

t

0

U
j

(s) ds

◆

!#

=
d

dt

Z

t

0

U
i

(s) ds�
d

dt
log

 

X

j

exp

✓

Z

t

0

U
j

(s) ds

◆

!

= U
i

(t)�

d

dt

P

j

exp
⇣

R

t

0 Uj

(s) ds
⌘

P

`

exp
R

t

0 U`

(s) ds

= U
i

(t)�
X

j

U
j

(t)

0

@

exp
⇣

R

t

0 Uj

(s) ds
⌘

P

`

exp
⇣

R

t

0 U`

(s) ds
⌘

1

A

= U
i

(t)� hp(t), U(t)i.

Theorem 4.2. [12, Proposition 4.2] CEW satisfies

p(t) 2 [BR]�(t)(Ū(t)), (4.7)

for some �(t) ! 0 as t ! 1.

Proof. By Lemma 4.1,

p(t) = L

✓

Z

t

0

U(s) ds

◆

= L(tŪ(t)) 2 [BR]⌘(
1
t )(Ū(t)).

Then we simply set ✏ = 1
t

and �(t) = ⌘(1
t

).
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4.1 Time averages

Definition 4.4. Define the time average of p(t) by

P(t) =
1

t

Z

t

0

p(s) ds. (4.8)

For p(t) given by CEW, we have

Ṗ(t) =
d

dt

✓

1

t

Z

t

0

p(s) ds

◆

=
1

t
p(t)�

1

t2

Z

t

0

p(s) ds

=
1

t
(p(t)�P(t)).

Thus,

Ṗ(t) 2
1

t

�

[BR]�(t)(Ū(t))�P(t)
�

, (4.9)

with �(t) ! 0 as t ! 1. This clearly looks like an approximation to fictitious play.
However, under continuous exponential weight as defined previously, p(0) = ( 1

n

, 1
n

, . . . , 1
n

),
whereas we would like to discuss solutions with any given initial condition.

Theorem 4.3. [12, §4.4] The solution of the replicator process (4.2) with initial condition
p(0) 2 int(⌃

n

) is given by

p(t) = L

✓

U(0) +

Z

t

0

U(s) ds

◆

, (4.10)

where U
i

(0) = log(p
i

(0)). Then the time average process satisfies

Ṗ(t) 2
1

t

�

[BR]↵(t)(Ū(t))�P(t)
�

, (4.11)

with ↵(t) ! 0 as t ! 1.

Proof. We may check that (4.10) does indeed satisfy the replicator process (4.2) with the
correct initial condition. Then it can be seen that

p(t) = L

✓

U(0) +

Z

t

0

U(s) ds

◆

// = L(tŪ(t) + t ·
1

t
U(0))// 2 [BR]⌘(

1
t )(Ū(t) +

1

t
U(0)),

where ⌘
�

1
t

�

! 0 as t ! 1. This can be rewritten as

Ṗ(t) 2
1

t

�

[BR]↵(t)(Ū(t))�P(t)
�

,

with ↵(t) ! 0 as t ! 1 as required.

This intuitively looks like an approximation to the fictitious play process, and indeed
this idea is broadly correct. The full details involve stochastic approximations of di↵eren-
tial inclusions (see [3]) and even stating these results becomes rather complicated and as
such is beyond the scope of this discussion. In essence the limit set of the time averages
of the replicator process is a subset of the limit set of the fictitious play process.
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Chapter 5

Conclusion

Replicator dynamics and fictitious play are two interesting examples of evolutionary
games. We have seen in Chapter 2 that the behaviour of the replicator system in the long
term ties in with the concept of Nash equilibria and that orbits of the replicator system
are equivalent to those of the Lotka-Volterra system. In Chapter 3, we have seen that fic-
titious play is known to converge for zero-sum games and various sizes of non-degenerate
quasi-supermodular games (§3.3), but for the Shapley system (§3.4) the behaviour of
fictitious play orbits is highly complicated and not yet completely understood. Finally
in Chapter 4, using the logit map and continuous exponential weight, we have seen that
as proved in Benäım et al. [3], the time averages of solutions to the replicator system
approximate the fictitious play process, with this approximation improving as t ! 1.
These are only some examples of dynamics in games. There are many other systems
modelling di↵erent evolutionary behaviour, such as the more general setting of adaptive
dynamics [11, §9]. It is a wide area with many questions for the future.
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