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1 Introduction

1.1 Practical Arrangement
• The lectures for this module will take place Monday 10-

12 and Tuesday 3-4 in Clore.

• Each week I will hand out a sheet with problems. It is
very important you go through these thoroughly, as these
will give the required training for the exam and class
tests.

• Support classes: Tuesday 4-5, from January 26.

• The support classes will be run rather differently from
previous years. Attend problem classes!The objective is to make sure that you
will get a lot out of these support classes.

• The main way to revise for the tests and the exam is by
doing the exercises.

• There will be two class tests. These will take place on
Friday week 19 and and 25 (i.e. the 5th and 11th week
of this term). Each of these count for 5% .

• Questions are most welcome, during or after lectures
and during office hour.

• I aim to do ask questions and do problems in class, and
use clickers on your mobile https://www.menti.
com for getting feedback.

• My office hour is to be agreed with students reps. Office
hour will in my office 6M36 Huxley Building.

6

https://www.menti.com
https://www.menti.com


1.2 Relevant material
• There are many books which can be used in conjunction

to the module, but none are required.

• The lecture notes displayed during the lectures will be
posted on blackboard.

• The lectures will also be recorded on panopto.

• There is absolutely no need to consult any book. How-
ever, recommended books are

– Simmons + Krantz, Differential Equations: The-
ory, Technique, and Practice, about 40 pounds. This
book covers a significant amount of the material we
cover. Some students will love this text, others will
find it a bit longwinded.

– Agarwal + O’Regan, An introduction to ordinary
differential equations.

– Teschl, Ordinary Differential Equations and Dy-
namical Systems. These notes can be downloaded
for free from the authors webpage.

– Hirsch + Smale (or in more recent editions): Hirsch
+ Smale + Devaney, Differential equations, dynam-
ical systems, and an introduction to chaos.

– Arnold, Ordinary differential equations. This book
is an absolute jewel and written by one of the mas-
ters of the subject. It is a bit more advanced than
this course, but if you consider doing a PhD, then
get this one. You will enjoy it.

Quite a few additional exercises and lecture notes can be
freely downloaded from the internet.
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1.3 Notation and aim of this course
Notation:

• ẋ will ALWAYS mean
dx

dt

• y′ usually means
dy

dx
but also sometimes

dy

dt
; which one

will always be clear from the context.

This course is about studying differential equations of the
form

ẋ = f(x), resp. ẏ = g(t, y),

• This is short for finding a function t 7→ x(t) resp. t 7→
y(t) so that

dx

dt
= f(x(t)) resp.

dy

dt
= g(t, y(t)).

In particular this means that (in this course) we will as-
sume that t 7→ x(t) differentiable.

• In ODE’s the independent variable (usually the t) is one-
dimensional. In a Partial Differential Equation (PDE)
such as

∂u

∂t
+
∂u

∂x
= 0

the unknown function u is differentiated w.r.t. several
variables.

Aim of this course is to find out when or whether such an
equation has a solution and determine its properties.
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1.4 Examples of differential equations
• The oldest example of a differential equation is the law

of Newton: mẍ(t) = F (x(t)) ∀t. Here F is the gravita-
tional force. Using the gravitational force in the vicinity
of the earth, we approximate this by

mẍ1 = 0,mẍ2 = 0,mẍ3 = −g.

This has solution

x(t) = x(0) + v(0)t− g

2m




0
0
1


 t2.

• According to Newton’s law, the gravitational pull be-
tween two particles of massm andM isF (x) = γmMx/|x|3.
This gives

mẍi = − γmMxi
(x2

1 + x2
2 + x2

3)3/2
for i = 1, 2, 3

• For three bodies we have something similar. Now it is no
longer possible to explicitly solve this equation.

• Poincaré showed this in 1887 in his famous solution to a
prize competition posed by the king of Sweden: https:
//en.wikipedia.org/wiki/Henri_Poincare#
Three-body_problem).

• Nowadays we know that solutions can be chaotic.

• For a similar system, see also https://www.youtube.
com/watch?v=AwT0k09w-jw.

• One needs some theory be sure that there are solutions
and that they are unique.
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Consider the initial value problem (I.V.P.):

dx

dt
= f(t, x) and x(0) = x0

where f : R× Rn → Rn.
Does this I.V.P. have solutions? Are these solutions unique?

1.4.1 There might NOT exist any solution

Example 1.1
Consider x′ = f(x) where

f(x) =

{
1 when x < 0
−1 when x ≥ 0

Then there exists no solution to the initial value

ẋ = f(x), x(0) = 0.

Question: Is

x(t) =

{
t for t ≤ 0
−t for t > 0

a solution?

10



1.4.2 Solutions may NOT be unique

Example 1.2
Take

ẋ = |x|1/2, x(0) = 0.

Then x(t) defined by

x(t) =

{
0 for t ≤ 1
(t− 1)2/4 for t ≥ 1

is a solution.

Question: Can you think of other solutions? How many solu-
tions has this I.V.P?

11



1.4.3 Physical meaning of non-uniqueness

Example 1.3
Consider a cylindrical bucket of cross sectional area A has
a small hole of area a at the bottom. It is filled with water
of height h(t) which leaks out of the bucket under the effect
of Earth’s gravitational field, g. The equation becomes

ḣ = − a
A

√
2gh.

The solution of this equation is non-unique: this follows
from the previous example.

Question: Why is the non-uniqueness not surprising: consider
the problem/equation with backward time.

12



1.4.4 Uniqueness and determinism

Having a unique solution of the (I.V.P.)

dx

dt
= f(t, x) and x(0) = x0

means that this problem is deterministic.
An example where f does not depend on t and for which

f : R2 → R2 is drawn below:

13



• An example of an ODE related to vibrations of bridges
(or springs) is the following (see Appendix C, Subsec-
tion C.7):

Mx′′ + cx′ + kx = F0 cos(ωt).

One reason you should want to learn about ODE’s is:

– http://www.ketchum.org/bridgecollapse.
html

– http://www.youtube.com/watch?v=3mclp9QmCGs

– http://www.youtube.com/watch?v=gQK21572oSU

• This is related to synchronisation phenomena, for exam-
ple of a large number of metronomes, see for example
https://www.youtube.com/watch?v=5v5eBf2KwF8

1.5 Issues which will be addressed in the course
include:

• do solutions of ODE’s exist?

• are they unique?

• most differential equations, cannot be solved explicitly.
One aim of this course is to develop methods which makes
it possible to obtain information on the behaviour of so-
lutions anyway.
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2 The Banach fixed point theorem
In this chapter we will present a general method for proving
that solutions to certain equations exist. This method even
gives a method for finding approximations of these solutions.

X will denote the space in which the solution is supposed
to lie. Sometimes we will take X = R or X = Rn, but in the
next chapter we will apply this chapter to proving solutions of
differential equations exist, and X will be a space of functions
(so an infinite dimensional space).

2.1 Banach spaces
Banach spaces are just generalisations of Rn.

• A vector space X is a space so that if v1, v2 ∈ X then
c1v1 + c2v2 ∈ X for each c1, c2 ∈ R (or, more usually,
for each c1, c2 ∈ C).

• A norm on X is a map || · || : X → [0,∞) so that

1. ||0|| = 0, ||x|| > 0 ∀x ∈ X \ {0}.
2. ||cx|| = |c|||x|| ∀c ∈ R and x ∈ X
3. ||x+y|| ≤ ||x||+ ||y|| ∀x, y ∈ X (triangle inequal-

ity).

• A Cauchy sequence in a vector space with a norm is a
sequence (xn)n≥0 ∈ X so that for each ε > 0 there exists
N so that ||xn − xm|| ≤ ε whenever n,m ≥ N .

• A vector space with a norm is complete if each Cauchy
sequence (xn)n≥0 converges, i.e. there exists x ∈ X so
that ||xn − x|| → 0 as n→∞.

• X is a Banach space if it is a vector space with a norm
which is complete.
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2.2 Metric spaces
Reminder from analysis II:

• A metric space X is a space with together with a func-
tion d : X ×X → R+ (called metric) so that

1. d(x, x) = 0 and d(x, y) = 0 implies x = y.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

• A sequence (xn)n≥0 ∈ X is called Cauchy if for each
ε > 0 there exists N so that d(xn, xm) ≤ ε whenever
n,m ≥ N .

• The metric space is complete if each Cauchy sequence
(xn)n≥0 converges, i.e. there exists x ∈ X so that d(xn, x)→
0 as n→∞.

2.3 Metric space versus Banach space
• Given a norm || · || on a vector space X one can also

define the metric d(x, y) = ||y − x|| on X . So a Banach
space is automatically a metric space.

• A metric space is not necessarily a Banach space. For
example the set S2 = {x ∈ R3; |x| = 1}, together with
the Euclidean metric is a metric space, but not a vector
space.

16



2.4 Examples
Example 2.1

Consider R with the norm |x|. You have seen in Analysis I
that this space is complete.

In the next two examples we will consider Rn with two
different norms. As is usual in year ≥ 2, we write x ∈ Rn

rather than x for a vector.

Example 2.2

Consider the space Rn and define |x| =
√∑n

i=1 x
2
i where

x is the vector (x1, . . . , xn). It is easy to check that |x| is
a norm (the main point to check is the triangle inequality).
This norm is usually referred to as the Euclidean norm (as
d(x, y) = |x− y| is the Euclidean distance).

Example 2.3
Consider the space Rn and the supremum norm |x|∞ :=
maxni=1 |xi| (it is easy to check that this is a norm).

Regardless which of these two norms we put on Rn, in both
cases the space we obtain becomes a complete metric space
(this follows from Example 1).

Without saying this explicitly everywhere, in this course,
we will always endow Rn with the Euclidean metric. In other
courses, you will also come across other norms on Rn (for ex-
ample the lp norm (

∑n
i=1 |xi|p)1/p, p ≥ 1.

17



Example 2.4
One can define several norms on the space of n× n matri-
ces. One, which is often used, is the matrix norm

||A|| = sup
x∈Rn\{0}

|Ax|
|x|

when A is a n × n matrix. Here x,Ax are vectors and
|Ax|, |x| are the Euclidean norms of these vectors. By lin-
earity of A we have

sup
x∈Rn\{0}

|Ax|
|x| = sup

x∈Rn,|x|=1

|Ax| (1)

and so the latter also defines ||A||. In particular, since x 7→
Ax is continuous, ||A|| is a finite real number.

Question:Why does ≤ and ≥ hold in (1)?
Question: Why is A 7→ ||A|| a norm?

18



Now we will consider a compact interval I and the vector
space C(I,R) of continuous functions from I to R. In the next
two examples we will put two different norms on C(I,R). In
one case, the resulting vector is complete and in the other it is
not.

Example 2.5
The setC(I,R) endowed with the supremum norm ||x||∞ =
supt∈I |x(t)| is a Banach space. That || · ||∞ is a norm is
easy to check, but the proof that ||x||∞ is complete is more
complicated and will not proved in this course (this result
is shown in the metric spaces course).

Example 2.6
The space C([0, 1],R) endowed with the L1 norm ||x||1 =∫ 1

0
|x(s)| ds is not complete.

Remark: The previous two examples show that the same set
can be complete w.r.t. one norm (or metric) and incomplete
w.r.t. to another norm (or metric).
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For completeness, let us prove the assertion in Example 2.6
that the norm ||x||1 is not complete. This page will be skipped in the lectures, and is not

examinable.This proof is non-examinable and will not be covered in
class).

To prove that the norm ||x||1 is not complete, we find a
Cauchy sequence (w.r.t. this norm) which does not converge.
Let us choose for this sequence the functions

xn(s) =

{
min(

√
n, 1/

√
s) for s > 0√

n for s = 0.

This sequence of functions is Cauchy w.r.t. the ||·||1 norm: take
m > n then

∫ 1

0
|xn(s) − xm(s)| ds =

∫ 1/m

0
|√m − √n| ds +∫ 1/n

1/m
|1/√s−√n| ds ≤ 1/

√
m+ 2/

√
n ≤ 3/

√
n→ 0.

Let us now show by contradiction that this Cauchy sequence
does not converge: assume that there exists continuous func-
tion x ∈ C([0, 1],R) so that ||x − xn||1 converges to zero.
Since x is continuous, there exists k so that |x(s)| ≤

√
k for

all s. Then it is easy to show that ||xn − x||1 ≥ 1/(2
√
k) > 0

when n is large:
Indeed, for n ≥ k and s ∈ [0, 1/k), we have xn(s)−x(s) ≥

xn(s)−
√
k > 0. Hence ||xn−x||1 ≥

∫ 1/k

0
|xn(s)−x(s)|ds ≥∫ 1/k

0
xn(s)−(1/k)

√
k =

∫ 1/n

0
xn(s)+

∫ 1/k

1/n
xn(s)−(1/k)

√
k =

(1/n)
√
n + (2/

√
k − 2/

√
n) − (1/k)

√
k ≥ 1/(2

√
k) when n

is large.
Hence ||xn−x||1 ≥ 1/(2

√
k) > 0 and therefore the Cauchy

sequence xn does not converge.
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2.5 Banach Fixed Point Theorem
Theorem 2.7 (Banach Fixed Point Theorem)

LetX be a complete metric space and consider F : X → X
so that there exists λ ∈ (0, 1) so that

d(F (x), F (y)) ≤ λd(x, y) for all x, y ∈ X

Then F has a unique fixed point p,

F (p) = p.

and for every x0 ∈ X the sequence defined by xn+1 =
F (xn) converges to this p.

Proof : (Existence) Take x0 ∈ X and define (xn)n≥0 by xn+1 =
F (xn). This is a Cauchy sequence:

d(xn+1, xn) = d(F (xn), F (xn−1)) ≤ λd(xn, xn−1).

Hence for each n ≥ 0, d(xn+1, xn) ≤ λnd(x1, x0). There-
fore when n ≥ m,

d(xn, xm) ≤ d(xn, xn−1) + · · ·+ d(xm+1, xm) ≤

≤ (λn−1 + · · ·+ λm)d(x1, x0) ≤ λm/(1− λ)d(x1, x0).

So (xn)n≥0 is a Cauchy sequence and has a limit p, i.e.
d(xn, p)→ 0.

By the triangle inequality and the fact that F is Lipschitz,
d(F (p), p) ≤ d(F (p), F (xn))+d(F (xn), p) ≤ λd(xn, p)+
d(xn+1, p)→ 0. Hence F (p) = p.

(Uniqueness) If F (p) = p and F (q) = q then d(p, q) =
d(F (p), F (q)) ≤ λd(p, q). Since λ ∈ (0, 1), p = q.
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Remark: Since a Banach space is also a complete metric space,
the previous theorem also holds for a Banach space.
Example 2.8

Let g : [0,∞) → [0,∞) be defined by g(x) = (1/2)e−x.
Then |g′(x)| = |(1/2)e−x| ≤ 1/2 for all x ≥ 0 and so there
exists a unique p ∈ R so that g(p) = p. (By the Mean

Value Theorem
g(x)− g(y)

x− y = g′(ζ) for some ζ between

x, y. Since |g′(ζ)| ≤ 1/2 for each ζ ∈ [0,∞) this implies
that g is a contraction. Also note that g(p) = p means that
the graph of g intersects the line y = x at (p, p).)
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Example 2.9

Find a sequence xn which converges to
√
a by Newton’s

method.
To do this, take f(x) = x2 − a, take xn close to

√
a

and choose xn+1 as the root of the linear approximation
Ln(x) = f(xn) + f ′(xn)(x− xn) of f at xn.

Question: draw the functions f and Ln.

Ln(xn+1) = 0 gives

xn+1 = xn − [f ′(xn)]−1f(xn).

In this particular instance, this expression takes the form

xn+1 = xn −
x2 − a

2xn
=

1

2
(xn +

a

xn
).

Is
T (x) :=

1

2
(x+

a

x
)

a contraction and on what space X?

Question: Draw the graph of T and show that T : [
√
a,∞)→

[
√
a,∞), so T maps X = [

√
a,∞) into itself.

T : [
√
a,∞)→ [

√
a,∞) is a contraction since

|T (x)− T (y)| = 1

2
|x+

a

x
− y − a

y
| = 1

2
|1− a

xy
||x− y|

and since 0 ≤ 1− a

xy
≤ 1 for x, y ≥ √a.
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2.6 Lipschitz functions
Let X be a Metric space. Then we say that a function f : X →
X is Lipschitz if there exists K > 0 so that

d(f(x), f(y)) < Kd(x, y).

Example 2.10
Let A be a n × n matrix. Then Rn 3 x 7→ Ax ∈ Rn is
Lipschitz. Indeed, |Ax − Ay| ≤ K|x − y| where K is the

matrix norm of A defined by ||A|| = supx∈Rn\{0}
|Ax|
|x| .

Remember that ||A|| is also equal to maxx∈Rn;|x|=1 |Ax|.

Example 2.11
The function R 3 x 7→ x2 ∈ R is not Lipschitz: there
exists no constant K so that |x2 − y2| ≤ K|x − y| for all
x, y ∈ R.

Example 2.12
On the other hand, the function [0, 1] 3 x 7→ x2 ∈ [0, 1] is
Lipschitz.

Example 2.13

The function [0, 1] 3 x 7→ √x ∈ [0, 1] is not Lipschitz.
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2.7 The Multivariable Mean Value Theorem
To check that a function is Lipschitz the following theorem is
often useful.
Theorem 2.14 (Multivariable Mean Value Theorem)

If
f : Rn → Rm

is continuously differentiable then ∀x, y ∈ Rn there exists
ξ ∈ [x, y] (where [x, y] is the line connecting x and y) so
that |f(x)− f(y)| ≤ ||Dfξ|||x− y|.

Proof : See Appendix A.

Here Dfξ is the Jacobian matrix of f and ξ and ||Dfξ|| is the
norm of this matrix.

Question: Why do you have = in the above theorem when
n = 1 and (in general) ≤ when n > 1?

This theorem implies in particular that if f : Rn → Rm is
continuously differentiable, then for eachR > 0 there existsK
so that

|f(x)− f(y)| ≤ K|x− y| for all |x|, |y| ≤ R.

This theorem also implies:
Corollary 2.15

Let U be an open set in Rn and f : U → R be continuously
differentiable. Then f : C → R is Lipschitz for any com-
pact set C ⊂ U . When n = 1 this follows from the Mean
Value Theorem, and for n > 1 this follows from the above
theorem.
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2.8 The usefulness of the Banach contraction the-
orem

The Banach fixed point theorem is used in all branches of math-
ematics, both pure and applied. Many people refer to it as the
Banach contraction theorem. In the next section we use it to
prove an existence and uniqueness theorem for ODE’s. In Ap-
pendix A it is used to proving the inverse function theorem in
higher dimensions.
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3 Existence and Uniqueness of solutions
for ODEs

In this chapter we will prove a theorem which gives sufficient
conditions for a differential equation to have solutions.

3.1 The Picard Theorem for ODE’s (for func-
tions which are globally Lipschitz)

In this section we will use the Banach fixed point theorem to
show that many differential equations have solutions.
Theorem 3.1

Picard Theorem (global version).
Consider a continuous map f : R× Rn → Rn which satis-
fies the Lipschitz inequality
|f(s, u) − f(s, v)| ≤ K|u − v| for all s ∈ R, u, v ∈ Rn.
Let h = 1

2K
.

Then there exists a unique x : (−h, h)→ Rn satisfying
the initial value problem

dx

dt
= f(t, x) and x(0) = x0. (2)

This theorem is also called Picard-Lindelöf theorem or Cauchy-
Lipschitz theorem, and was developed by these mathematicians in
the 19th century.

Question: Why does the non-uniqueness in Example 1.2 not
contradict this theorem?
Remark 3.2

Later on we will discuss when one can take h =∞.
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Proof : By integration it follows that

dx

dt
= f(t, x) and x(0) = x0. (3)

is equivalent to

x(t)− x(0)
•
=

∫ t

0
f(s, x(s)) ds. (4)

It follows that the initial value problem is equivalent to find-
ing a fixed point x of the operator P : X → X defined by

The reason for the assumption that f is continuous is that it
guarantees that this integral exists (of course weaker
assumptions on f would suffice.)P (u)(t) := x0 +

∫ t

0
f(s, u(s)) ds

on the Banach spaceX := C([−h, h],Rn) with norm ||u|| =
maxt∈[−h,h] |u(t)|.

Note that P assigns to a function x ∈ X another func-
tion which we denote by P (x). To define the function P (x),
we need to evaluate its vector value at some t ∈ [−h, h].
This is what P (x)(t) means. So a solution of P (x) = x is
equivalent to finding a solution of (4) and therefore of (3).
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Let us show that

P (x)(t) := x0 +

∫ t

0
f(s, x(s)) ds

is a contraction. Eqations (*)-(***) are clarified on the next page.Take x, y : [−h, h] → Rn. Then for all
t ∈ [−h, h] one has

|P (x)(t)− P (y)(t)| = |
∫ t

0
(f(s, x(s))− f(s, y(s))) ds|

∗
≤

∫ t

0
|f(s, x(s))− f(s, y(s))| ds

∗∗
≤ K

∫ t
0 |x(s)− y(s)| ds

∗∗∗
≤ (hK)||x− y|| ≤ (1/2)||x− y||.

So

||P (x)− P (y)|| = sup
t∈[−h,h]

|P (x)(t)− P (y)(t)|

≤ (1/2)||x− y||
and so P is a contraction on the Banach space X . By the
previous theorem therefore P has a unique fixed point.
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(*)

|
∫ t

0

(f(s, x(s))−f(s, y(s))) ds|
∗
≤
∫ t

0

|f(s, x(s))−f(s, y(s))| ds.

holds because
Lemma 3.3

|
∫ t

0
u(s) ds| ≤

∫ t
0
|u(s)| ds for any function u ∈ X . (If t <

0 the r.h.s. in fact should be
∫ 0

t
|u(s)| ds or |

∫ t
0
|u(s)| ds|.)

Proof : Take 0 = t0 < t1 < · · · < tn = t with |ti+1 − ti| < ε.
Then

∫ t
0 u(s) ds is equal to the limit of the Riemann sum∑n−1

i=0 (ti+1 − ti)u(ξi) where ξi ∈ (ti, ti+1) as n→∞ so as
ε→ 0. By the triangle inequality, |∑n−1

i=0 (ti+1− ti)u(ξi)| ≤∑n−1
i=0 (ti+1 − ti)|u(ξi)| and the right hand side is again a

Riemann sum which in the limit (as n → ∞) converges to∫ t
0 |u(s)| ds.

(**) The Lipschitz assumption on f implies
∫ t

0

|f(s, x(s))− f(s, y(s))| ds
∗∗
≤ K

∫ t
0
|x(s)− y(s)| ds.

(***) Finally

K
∫ t

0
|x(s)− y(s)| ds

∗∗∗
≤ (hK)||x− y|| ≤ (1/2)||x− y||

holds because |x(s) − y(s)| ≤ ||x − y|| (because ||x − y|| =
sups∈[−h,h] |x(s)− y(s)|). So

∫ t
0
|x(s)− y(s)| ds ≤ t · ||x− y||,

and using |t| ≤ h inequality (***) follows.
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3.2 Application to linear differential equations
Corollary 3.4

Consider the IVP

x′ = Ax with x(0) = x0 (5)

where A is a n× n matrix and x(t) ∈ Rn.

1. There exists h > 0 so that (5) has a unique solution
x : (−h, h)→ Rn. (Later on we shall show h =∞.)

2. Write x0 = (c0, . . . , cn) ∈ Rn and let ui(t) be the
(unique) solution of u̇i = Aui, ui(0) = ei where ei is
the i-th basis vector. Then

x(t) = c1u1(t) + · · ·+ cnun(t).

3. x(t) = eAtx0 where

eAt =
∞∑

k=0

tkAk

k!
.

Proof : (1) Note that |Ax − Ay| ≤ K|x − y| where K is the

matrix norm ofA defined by ||A|| = supx∈Rn\{0}
|Ax|
|x| . So

the Picard Theorem implies that the initial value problem (5)
has a unique solution t 7→ x(t) for |t| < h. It is important to
remark that the Picard theorem states that there exists h > 0
(namely h = 1/(2K)) so that there exists a solution x(t) for
|t| < h. So at this point we cannot yet guarantee that there
exists a solution all t ∈ R.
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(2) For each choice of x0 = (c1, . . . , cn) ∈ Rn there
exists a unique solution x(t) (for |t| small) of ẋ = Ax,
x(0) = x0. For each i = 1, . . . , n, let ui(t) be the (unique)
solution of u̇i = Aui, ui(0) = ei where ei is the i-th basis
vector. Let u(t) = c1u1(t) + · · · + cnun(t). Since linear
combinations of solutions of x′ = Ax are also solutions and
since u(0) = x0, we get by uniqueness that x(t) ≡ u(t). It
follows that

u(t) = c1u1(t) + · · ·+ cnun(t)

is the general solution of x′ = Ax.

(3) Take
x0(t) :≡ x0

and define

xn+1(t) = P (xn)(t) := x0 +

∫ t

0
Axn(s) ds.

Then

x1(t) = x0 +
∫ t

0 Ax0(s) ds = x0 + tAx0.

x2(t) = x0 +
∫ t

0 Ax1(s) ds = x0 + tAx0 + t2

2 A
2x0

By induction

xn(t) = x0+tAx0+
t2

2
A2x0+· · ·+ tn

n!
Anx0 =

n∑

k=0

tkAk

k!
x0.

So the solution of (5) is

x(t) = eAtx0 where we write eAt =

∞∑

k=0

tkAk

k!
.

The proof of the Picard Theorem shows that this infinite sum
exists (i.e. converges) when |t| < h. Later on we shall show
that it exists for all t.
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3.3 The Picard Theorem for functions which are
locally Lipschitz

The previous theorem does not apply to many differential equa-
tions, such as x′ = x2 (because R 3 x 7→ x2 is not Lipschitz).
So let’s state a ‘local’ version of this theorem which merely re-
quired that the r.h.s. of the differential equation is Lipschitz (in
the state variable) on some open set U .
Theorem 3.5

Picard Theorem (local version).
Let U be an open subset of R × Rn containing (0, x0)

and assume that

(a) f : U → Rn is continuous,

(b) |f | ≤M

(c) |f(t, u)−f(t, v)| ≤ K|u−v| for all (t, u), (t, v) ∈ U

(d) h ∈ (0, 1
2K

] is chosen so that [−h, h]×{y; |y−x0| ≤
hM} ⊂ U (such a choice for h is possible since U
open).

Then there exists a unique solution (−h, h) 3 t 7→ x(t) of
the IVP:

dx

dt
= f(t, x) and x(0) = x0. (6)

Remark: assumption (d) automatically holds for some h > 0.
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Proof : Fix h > 0 as in the theorem, write I = [−h, h], and let
B := {y ∈ Rn; |y − x0| ≤ hM}. Next define X = C(I,B)
as the space of continuous functions x : I → B ⊂ Rn and

P : C(I,B)→ C(I,B) by P (x)(t) = x0+

∫ t

0
f(s, x(s)) ds

Then the initial value problem (6) is equivalent to the fixed
point problem

x = P (x).

Question: Is P (x) a real number or is P (x) a function?

Question: Why not write P (x(t))?

We need to show that P is well-defined, i.e. that the expres-
sion P (x)(t) = x0 +

∫ t
0 f(s, x(s)) ds makes sense, and that

when x ∈ C(I,B) then P (x) ∈ C(I,B).
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Remember that

B := {y ∈ Rn; |y − x0| ≤ hM}

and that (by the choice of h > 0)

f : U → Rn where U ⊃ [−h, h]×B.

As mentioned, we need to show that P is well-defined, i.e.

1. the expression P (x)(t) = x0 +
∫ t

0 f(s, x(s)) ds makes
sense for any x ∈ B, i.e. we need to show that f(s, x(s))
is actually defined.

2. x ∈ C(I,B) implies P (x) ∈ C(I,B).

This can be seen as follows:

1a. since x ∈ C(I,B), for t ∈ I = [−h, h], (t, x(t)) ∈
I × B ⊂ U and f(t, x(t)) is well-defined for all t ∈
[−h, h];

1b. hence x0 +
∫ t

0 f(s, x(s)) ds is well-defined;

2a. |f | ≤M implies [−h, h] 3 t 7→ x0 +
∫ t

0 f(s, x(s)) ds
is continuous;

2b. hence t 7→ P (x)(t) is a continuous map;

2c. finally, |P (x)(t)−x0| ≤
∫ h

0 |f(s, x(s))| ds ≤ hM . So
P (x)(t) ∈ B for all t ∈ [−h, h].

2d. Hence P (x) ∈ C(I,B).
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Let us next show that

P : C(I,B)→ C(I,B) by P (x)(t) = x0+

∫ t

0
f(s, x(s)) ds

is a contraction: for each t ∈ [−h, h],

|P (x)(t)− P (y)(t)| =
∣∣∫ t

0 (f(s, x(s))− f(t, y(s))) ds
∣∣

≤
∫ t

0 |f(s, x(s))− f(s, y(s))| ds

≤ K
∫ t

0 |x(s)− y(s)| ds (Lipschitz)

≤ Ktmax
|s|≤t
|x(s)− y(s)|

≤ Kh||x− y|| ≤ ||x− y||/2 since h ∈ (0, 1
2K ])

Since this holds for all t ∈ [−h, h] we get ||P (x)−P (y)|| ≤
||x − y||/2. So P has a unique fixed point, and hence the
integral equation, and therefore the ODE, has a unique solu-
tion.
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3.3.1 Existence and uniqueness in the continuously differ-
entiable case

If f : U → Rn is continuously differentiable, then it is not
necessary to explicitly check whether the Lipschitz property
holds.

Theorem 3.6 (Existence and uniqueness in the continuously differentiable case)
Assume V ⊂ R × Rn is open and f : V → Rn contin-

uously differentiable. Then for each (0, x0) ∈ V there
exists h > 0 and a unique solution x : (−h, h) → Rn of
ẋ = f(t, x), x(0) = x0.

Proof : By the Mean Value Theorem 2.14, for each convex, com-
pact subset C ⊂ V with (0, x0) ∈ C there exists K ∈ R so
that for all (t, x), (t, y) ∈ C,

|f(t, x)− f(t, y)| ≤ K|x− y|.

Moreover, there exists M so that |f | ≤ M on C. Now ap-
ply the previous local Picard theorem to any subset U ⊂ C
containing (0, x0).
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3.3.2 Existence and uniqueness theorem in the autonomous
case

x′ = f(t, x) is autonomous if f does not depend on t, so U =
R × V and f is the form f(t, x) = g(x) for all (t, x) ∈ U . So
in this special setting Theorem 3.5 takes the following form:

Theorem 3.7
Picard Theorem (local autonomous version)
Let V ⊂ Rn be open and g : V → Rn continuous, |g| ≤M ,
|g(u) − g(v)| ≤ K|u − v| for all u, v ∈ V . Assume that
x ∈ V and that h is chosen so that

0 < h < 1/(2K) and {y; |y − x0| ≤ hM} ⊂ V.

Then there is a unique solution x ∈ (−h, h)→ Rn of

x′ = g(x), x(0) = x0.
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3.4 Some comments on the assumptions in the
existence and uniqueness theorems

• To obtain existence from Theorem 3.5 it is enough to find
some open set U 3 (0, x0) for which the assumptions
hold.

• Often one can apply Theorem 3.5 or 3.6, but not The-
orem 3.1. Take for example x′ = (1 + x2), x(0) = 1.
Then the r.h.s. is not Lipschitz on all of R. The function
x 7→ 1 + x2 is locally Lipschitz though.

• It is not necessary to take the initial time to be t = 0. The
Picard Theorem also gives that there exists h > 0 so that
the initial value problem

x′ = f(t, x), x(t0) = x0

has a solution (t0 − h, t0 + h) 3 t 7→ x(t) ∈ Rn.

• If (t, x) 7→ f(t, x) has additional smoothness, the solu-
tions will be more smooth. For example, suppose that
f(t, x) is real analytic (i.e. f(t, x) can be written as a
convergent power series in t and x), then the solution
t 7→ x(t) is also real analytic.
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3.5 Solutions can be very complicated
The previous theorem implies that the Lorenz differential equa-
tion

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz

(7)

with, for example σ = 10, r = 28, b = 8/3, has solutions.
However the solutions are very, very complicated and no ex-
plicit expression is known for them. Not surprisingly:

http://www.youtube.com/watch?v=ByH8_nKD-ZM
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4 Linear systems in Rn

In this section we consider

x′ = Ax with x(0) = x0 (8)

where A is a n× n matrix and R 3 t 7→ x(t) ∈ Rn.
In Example 3.4 we saw that

etA =
∑

k≥0

1

k!
(At)k

is defined for |t| small and that x(t) = etAx0 is a solution of
(8) for |t| small. In this section we will show that etA is well-
defined for all t ∈ R and show how to compute this matrix.
Example 4.1

Let A =

(
λ 0
0 µ

)
. Then one has inductively (tA)k =

(
(tλ)k 0

0 (tµ)k

)
. So etA =

(
etλ 0
0 etµ

)
.

Example 4.2

Let A =

(
λ ε
0 λ

)
. Then one has inductively (tA)k =

(
(tλ)k εktkλk−1

0 (tλ)k

)
. By calculating the infinite sum of

each entry we obtain etA =

(
etλ εtetλ

0 etλ

)
.

Lemma 4.3
Let A = (aij) be a n × n matrix. Then its exponential

eA :=
∑

k≥0

1

k!
Ak is also a well-defined n× n matrix.

41



Proof : let aij(k) be the matrix coefficients of Ak and define
a := ||A||∞ := max |aij |. Then

|aij(2)| =
∑n

k=1 |aikakj | ≤ na2 ≤ (na)2

|aij(3)| =
∑n

k,l |aikaklalj | ≤ n2a3 ≤ (na)3

...
|aij(k)| =

∑n
k1,k2,...,kn=1 |ak1k2ak2k3 · · · akn−1kn | ≤ nk−1ak ≤ (na)k

So
∑∞

k=0

|aij(k)|
k!

≤∑∞k=0

(na)k

k!
= exp(na) which means

that the series
∑∞

k=0

aij(k)

k!
converges absolutely by the com-

parison test. So eA is well-defined.

Each coefficient of etA depends on t. So define
d

dt
etA to be

the matrix obtained by differentiating each coefficient.
Lemma 4.4

t 7→ x(t) := etAx0 is the solution of the IVP x′ = Ax, x(0) =
x0.

Proof : Since e0Ax0 = Ix0 = x0 it suffices to prove that
d

dt
exp(tA) =

A exp(tA) = exp(tA)A: here ∗= follows from the definition or from Lemma 4.5(2)

d

dt
exp(tA) = lim

h→0

exp((t+ h)A)− exp(tA)

h

∗
=

= lim
h→0

exp(tA) exp(hA)− exp(tA)

h
=

= exp(tA) lim
h→0

exp(hA)− I
h

= exp(tA)A.

Here the last equality follows from the definition of exp(hA) =

I + hA+
h2

2!
A2 + . . . .
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4.1 Some properties of exp(A)

Lemma 4.5
Let A,B, T be n× n matrices and T invertible. Then

1. If B = T−1AT then exp(B) = T−1 exp(A)T ;

2. If AB = BA then exp(A+B) = exp(A) exp(B)

3. exp(−A) = (exp(A))−1

Proof : (1) T−1(A+B)T = T−1AT+T−1BT and (T−1AT )k =
T−1AkT . Therefore

T−1(

n∑

k=0

Ak

k!
)T =

n∑

k=0

(T−1AT )k

k!
.

(2) follows from:

eA = I +A+
A2

2!
+
A3

3!
+ . . .

eB = I +B +
B2

2!
+
B3

3!
+ . . .

eAeB = I+A+B+
A2

2!
+AB+

B2

2!
+
A3

3!
+
A2B

2!
+
AB2

2!
+
B3

3!
+. . .

Since AB = BA we have (A+B)2 = A2 + 2AB+B2 etc.
So eAeB is equal to

I + (A+B) +
(A+B)2

2!
+

(A+B)3

3!
+ · · · = exp(A+B)

(3) follows from (2) taking B = −A.

For general matrices exp(A+B) 6= exp(A) exp(B).
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Example 4.6

Take A =

(
λ ε
0 λ

)
and let us compute etA again, but

now using the previous lemma. tA = tΛ + tN where Λ =(
λ 0
0 λ

)
and N =

(
0 ε
0 0

)
. Note that ΛN = λN =

NΛ and that N2 = 0. So

etN = I + tN =

(
1 tε
0 1

)
, etΛ =

(
etλ 0
0 etλ

)

and by the previous lemma

etA = etΛetN =

(
etλ εtetλ

0 etλ

)
.

Example 4.7
Similarly, one can derive

exp

(
t

(
a b
−b a

))
=

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)

using this lemma, see the first assignment on problem sheet
2. Another proof is given in Section 4.4.1, see the example
below the proof of Proposition 4.11.

4.2 Solutions of 2× 2 systems
Theorem 4.8

Let A be a 2 × 2 matrix and let λ, µ be its eigenvalues. If
(Case a) λ, µ < 0 (sink). Then x(t)→ 0 as t→∞.
(Case b) If λ, µ > 0 (source). Then x(t) = etAx0 →∞ as
t→∞ for any x0 6= 0.
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40 Chapter 3 Phase Portraits for Planar Systems

with λ1 < 0 < λ2. This can be solved immediately since the system decouples
into two unrelated first-order equations:

x ′ = λ1x

y ′ = λ2y .

We already know how to solve these equations, but, having in mind what
comes later, let’s find the eigenvalues and eigenvectors. The characteristic
equation is

(λ − λ1)(λ − λ2) = 0

so λ1 and λ2 are the eigenvalues. An eigenvector corresponding to λ1 is (1, 0)
and to λ2 is (0, 1). Hence we find the general solution

X(t ) = αeλ1t
(

1

0

)
+ βeλ2t

(
0

1

)
.

Since λ1 < 0, the straight-line solutions of the form αeλ1t (1, 0) lie on the
x-axis and tend to (0, 0) as t → ∞. This axis is called the stable line. Since
λ2 > 0, the solutions βeλ2t (0, 1) lie on the y-axis and tend away from (0, 0) as
t → ∞; this axis is the unstable line. All other solutions (with α, β %= 0) tend
to ∞ in the direction of the unstable line, as t → ∞, since X(t ) comes closer
and closer to (0, βeλ2t ) as t increases. In backward time, these solutions tend
to ∞ in the direction of the stable line. !

In Figure 3.1 we have plotted the phase portrait of this system. The phase
portrait is a picture of a collection of representative solution curves of the

Figure 3.1 Saddle phase
portrait for x ′ = –x,
y ′ = y.

3.1 Real Distinct Eigenvalues 43

(a) (b)

Figure 3.3 Phase portraits for (a) a sink and
(b) a source.

Since λ1 < λ2 < 0, we call λ1 the stronger eigenvalue and λ2 the weaker
eigenvalue. The reason for this in this particular case is that the x-coordinates of
solutions tend to 0 much more quickly than the y-coordinates. This accounts
for why solutions (except those on the line corresponding to the λ1 eigen-
vector) tend to “hug” the straight-line solution corresponding to the weaker
eigenvalue as they approach the origin.

The phase portrait for this system is displayed in Figure 3.3a. In this case the
equilibrium point is called a sink.

More generally, if the system has eigenvalues λ1 < λ2 < 0 with eigenvectors
(u1, u2) and (v1, v2), respectively, then the general solution is

αeλ1t
(

u1
u2

)
+ βeλ2t

(
v1
v2

)
.

The slope of this solution is given by

dy

dx
= λ1αeλ1t u2 + λ2βeλ2t v2

λ1αeλ1t u1 + λ2βeλ2t v1

=
(

λ1αeλ1t u2 + λ2βeλ2t v2

λ1αeλ1t u1 + λ2βeλ2t v1

)
e−λ2t

e−λ2t

= λ1αe(λ1−λ2)t u2 + λ2βv2

λ1αe(λ1−λ2)t u1 + λ2βv1
,

which tends to the slope v2/v1 of the λ2 eigenvector, unless we have β = 0. If
β = 0, our solution is the straight-line solution corresponding to the eigen-
value λ1. Hence all solutions (except those on the straight line corresponding

(Case c) λ < 0 < µ (saddle). Then x(t) = etAx0 → 0
as t → ∞ if x0 lies on the line spanned by the eigenvector
corresponding to the eigenvalue λ < 0, and x(t) → ∞
otherwise.

Proof : By the Jordan theorem from linear algebra (which we
discuss further later on in this chapter), for each 2× 2 matrix
A there exists T so that T−1AT takes the form of one of the
previous examples.

Below we will prove this theorem in a more general form.

4.3 A general strategy for computing etA

In general it is not so easy to compute etA directly from the
definition. For this reason we will discuss

• eigenvalues and eigenvectors;

• using eigenvectors to put a matrix in a new form;

• using eigenvectors and eigenvalues to obtain solutions
directly.

Reminder: A vector v 6= 0 is an eigenvector if Av = ρv for
some ρ ∈ C where ρ is called the corresponding eigenvalue.
So, (A−ρI)v = 0 and det(A−ρI) = 0. The equation det(A−
ρI) = 0 is a polynomial of degree n in ρ and whose roots are
the eigenvalues of A.

45



Theorem 4.9
If an n× n matrix A has a basis of eigenvectors v1, . . . , vn
corresponding to eigenvalues λ1, . . . , λn then
(a) the general solution of x′ = Ax is of the form

x(t) = c1v1e
λ1t + · · ·+ cnvne

λnt

(b) If we take T the matrix with columns v1, . . . , vn then

T−1AT =




λ1 0
. . .

0 λn


 and etA = T




etλ1 0
. . .

0 etλn


T−1.

Proof : To see part (a), note that x(t) = c1v1e
λ1t+· · ·+cnvneλnt

obviously is a solution of x′ = Ax. Since vi form a basis, for
each x0 ∈ Rn one can find ci so that c1v1 + · · ·+ cnvn = x0

and so this is the general solution of the ODE.

Part (b) holds because T−1ATei = T−1Avi = T−1λivi =
λiei and by the 1st part of Lemma 4.5.

Note that by a lemma from Linear Algebra, if all eigenvalues λi
ofA are distinct then the corresponding eigenvectors v1, . . . , vn
are linearly independent and span Rn.

Theorem 4.9 gives two (closely related) methods for solving a
linear differential equation. Let us illustrate both methods in
one example.
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Example 4.10

Take A =




1 2 −1
0 3 −2
0 2 −2


. Consider

det




1− λ 2 −1
0 3− λ −2
0 2 −2− λ


 = −(−1+λ)(−2−λ+λ2).

So A has eigenvalues 2, 1,−1. To compute the eigenvector
w.r.t. 2 we need to find v with


−1 2 −1
0 1 −2
0 2 −4


 v = 0.

which gives v = (3, 2, 1) (or multiples). Computing the
eigenvectors associated to the other eigenvalues, we find A
has eigenvalues 2, 1,−1 with eigenvectors (3, 2, 1), (1, 0, 0), (0, 1, 2).

First method: The general solution is of the form

c1e
2t




3
2
1


+c2e

t




1
0
0


+c3e

−t




0
1
2


 where ci ∈ R is arbitrary .

Second method: for each vector c =




c1

c2

c3


 there ex-

ists x0 ∈ R3 so that c = T−1x0. Hence

exp(tA)x0 = T




e2t 0 0
0 et 0
0 0 e−t


T−1x0 = T




e2t 0 0
0 et 0
0 0 e−t


 c =

T




c1e
2t

c2e
t

c3e
−t


 = c1e

2t




3
2
1


+c2e

t




1
0
0


+c3e

−t




0
1
2


 .
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4.4 Special cases
Let us now deal with the case when a matrix has complex or
repeated eigenvalues.

4.4.1 Complex eigenvectors

Let us explain what to do in the 2× 2 case:
Proposition 4.11

If an 2 × 2 matrix A with complex eigenvalues λ, λ̄ and
eigenvector v, v̄. v1 = ζ1 + iζ2, v2 = ζ1 − iζ2, λ1 = a+ ib
and λ2 = a − ib where ζ1, ζ2 are real vectors and a, b are
real numbers. Then

(a) the general solution of x′ = Ax is of the form

x(t) = d1e
at (cos(bt)ζ1 − sin(bt)ζ2)+d2e

at (sin(bt)ζ1 + cos(bt)ζ2) .

(b) If we take T the matrix with columns ζ1, ζ2 then T−1AT =(
a b
−b a

)
and etA = etaT

(
cos(bt) sin(bt)
− sin(bt) cos(bt)

)
T−1.

Proof : A(ζ1 +iζ2) = (a+bi)(ζ1 +iζ2) = (aζ1−bζ2)+i(aζ2 +
bζ1). So A(ζ1) = aζ1 − bζ2 and A(ζ2) = (aζ2 + bζ1). It
follows that if T is the matrix consisting of columns ζ1, ζ2

then

T−1AT =

(
a b
−b a

)
.

Indeed, AT (e1) = A(ζ1) = aζ1 − bζ2 = aT (e1) − bT (e2)
and so T−1AT (e1) = ae1 − be2. Similarly T−1AT (e2) =
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be1 + ae2. So

exp(tA) = T exp(T−1tAT )T−1 = T

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)
T−1.

Here we use Example 4.7. Now write
(
d1

d2

)
= T−1x0 and

check that

exp(At)x0 = T

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)(
d1

d2

)
=

d1e
at (cos(bt)ζ1 − sin(bt)ζ2)+d2e

at (sin(bt)ζ1 + cos(bt)ζ2) .

Another (but more or less equivalent) way to deal with
complex eigenvalues and eigenvectors is to diagonalise, and
choose coefficients at the end which make the solutions real:

Example 4.12

Let A =

(
1 1
−1 1

)
. Its eigenvalues are 1 + i with e.v.

(
1
i

)
and 1− i with e.v.

(
1
−i

)
.

If we take T =

(
1 1
i −i

)
, then T−1AT =

(
1 + i 0

0 1− i

)
.

So exp(tT−1AT ) =

(
exp(t(1 + i)) 0

0 exp(t(1− i))

)
. So

exp(tA)x0 = T

(
exp(t(1 + i)) 0

0 exp(t(1− i))

)
T−1x0.

Writing T−1x0 =

(
c1

c2

)
gives

exp(tA)x0 = T

(
c1 exp(t(1 + i))
c2 exp(t(1− i))

)
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which is equal to

et
(

(c1 + c2) cos(t) + i(c1 − c2) sin(t)
−(c1 + c2) sin(t) + i(c1 − c2) cos(t)

)
(9)

For each choice of d1, d2 real, one can find c1, c2 (com-
plex) so that d1 = c1 + c2 and d2 = i(c1 − c2). (Note that

nothing other than saying that x0 =

(
d1

d2

)
= T

(
c1

c2

)
.

Therefore (9) becomes equal to

et
(

cos(t) sin(t)
− sin(t) cos(t)

)(
d1

d2

)
.

Together this gives

exp(tA)x0 = et
(

cos(t) sin(t)
− sin(t) cos(t)

)(
d1

d2

)
.

Plugging in t = 0, one again obtains that x0 =

(
d1

d2

)
.
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4.4.2 Repeated eigenvalues: the 2× 2 case

Proposition 4.13
Let A have an eigenvalue ρ with double multiplicity. Let v
be the eigenvalue w.r.t. ρ. Then there exists a vector v2 so
that (A− ρI)v2 = v1. (The general procedure is explained
in Appendix D.) and

(a) The general solution is of the form

x(t) = (c1e
ρt + c2te

ρt)v1 + c2e
ρtv2

(b) If we let T be the matrix consisting of colums v1

and v2 then

T−1AT =

(
ρ 1
0 ρ

)
and etA = T

(
eρt teρt

0 eρt

)
T−1.

Proof : Te1 = v1 and Te2 = v2. So ATe1 = Av1 = ρv1

and ATe2 = Av2 = ρv2 + v1. It follows that T−1AT =(
ρ 1
0 ρ

)
. So the 2nd part of (b) follows from Example 4.6.

(a) follows.

Example 4.14

Take A =

(
1 9
−1 −5

)
and let us compute the solution of

x′ = Axwith x0 =

(
1
−1

)
. det(A−ρI) =

(
1− ρ 9
−1 −5− ρ

)
=

(ρ + 2)2 so the eigenvalue −2 appears with double multi-

plicity. (A − ρI)v =

(
3 9
−1 −3

)
v = 0 implies v is a

multiple of v1 :=

(
3
−1

)
so there exists only one eigen-

vector. To find the 2nd ‘generalised eigenvector’ consider
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(A − ρI)v2 = v1 =

(
3
−1

)
which gives v2 =

(
1
0

)

as a solution. Take T the matrix with columns v1, v2, i.e.
Tei = vi. Then

T−1AT = J :=

(
−2 1
0 −2

)

Hence

etAx0 = TetJT−1 = T

(
e−2t te−2t

0 e−2t

)
T−1x0 =

= c1

(
3
−1

)
e−2t + c2

(
t

(
3
−1

)
+

(
1
0

))
e−2t

where we take T−1x0 =

(
c1

c2

)
. Of course for varying

choice of c1, c2 this gives the general solution, and when

we want that x(0) = x0 =

(
1
−1

)
then c1 = 1, c2 = −2

solves the initial value problem.

4.4.3 A n× n matrix with n times repeated eigenvalue

If an n×nmatrixA has only one eigenvector v (which implies
that its eigenvalue λ appears with multiplicity n) then

• one can define inductively v1 = v and (A−λI)vi+1 = vi.

• v1, . . . , vn are linearly independent and span Rn.

• If we take T the matrix with columns v1, . . . , vn then
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T−1AT =




λ 1 0
0 λ 1

. . . . . .
0 λ 1
0 λ




.

• etA = Tetλ(I + tN + · · ·+ tn−1

(n−1)!
Nn−1)T−1 where N =



0 1 0
. . . . . .

0 1
0


.

53



4.5 Complex Jordan Normal Form (General Case)
Theorem 4.15

For each n × n matrix A there exists a (possibly complex)
matrix T so that T−1AT takes the Jordan Normal Form:

T−1AT =




J1

. . .
Jp


 where

Jj =




ρj 1 0 0
0 ρj 1

. . .
0 ρj 1
0 ρj




and where ρj is an eigenvalue of A and where the the di-
mension of Jj is the smallest kj so that dim ker(A−ρjI)kj+1 =
dim ker(A− ρjI)kj .

If Jj is a 1 × 1 matrix, then Jj = (ρj). Associated to
each block Jj , there exists an eigenvector vj (with eigenvalue
ρj). The dimension of Jj is equal to the maximal integer kj so
that there exist vectors w1

j , w
2
j , . . . , w

kj
j 6= 0 (where w1

j = vj)
inductively defined as (A− ρjI)wi+1

j = wij for i = 1, . . . , kj −
1. The matrix T has columns w1

1, . . . , w
k1
1 , . . . , w

1
p, . . . , w

kp
p .

In the computations in Subsection 4.4.3, we showed how
to determine T so this holds. The proof in the general case is
given in one of the appendices.
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4.6 Real Jordan Normal Form
Splitting real and complex parts we obtain:

For each real n×nmatrixA there exists a real n×nmatrix
T so that T−1AT takes the real Jordan Normal Form:

T−1AT =




J1

. . .
Jp


 where Jj is either as in the

complex Jordan Normal form when ρj real or if it is complex
equal to

Jj =




Cj I 0 0
0 Cj I

. . .
0 Cj I
0 Cj




where Cj =

(
aj bj
−bj aj

)

where ρj = aj + ibj and I =

(
1 0
0 1

)
.

If Jj is a 2× 2 matrix, then
(

aj bj
−bj aj

)
.

Proof: See appendix D.
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5 Maximal solutions, the flow property
and continuous dependence on initial
conditions

Let us now get back to general (nonlinear) ODE’s. In this chap-
ter, when we say that f : R×Rn → Rn is so that the existence
and uniqueness of solutions of x′ = f(t, x) holds, we mean that
for each x0 there exists h > 0 so that ẋ = f(t, x), x(0) = x0

has a unique solution x : (−h, h)→ Rn.

5.1 Extending solutions
Lemma 5.1

Let f : R × Rn → Rn be so that the existence and unique-
ness of solutions of x′ = f(t, x) holds. Assume

x1 : I1 → Rn, x2 : I2 → Rn

are both solutions of the initial value problem

ẋ(t) = f(t, x), x(0) = x0.

Then
x1(t) = x2(t) for all t ∈ I1 ∩ I2.

Proof : Let I = I1 ∩ I2. Note that the existence and uniqueness
theorem implies that x1(t) = x2(t) for all t in some interval
(−h, h), but here I could be much larger that (−h, h).

We claim that x1(t) = x2(t) for all t ∈ I with t ≥ 0. If
not, then define

b := inf
{
t > 0 : t ∈ I and x1(t) 6= x2(t)

}
.

Therefore, we get that x1(t) = x2(t) for all t ∈ [0, b).
Due to continuity of x1(t) and x2(t) in t ∈ I , we get that
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x1(b) = x2(b) = p ∈W . Using the existence and uniquenes
theorem, there exists h > 0 such that the following IVP

x′(t) = f(t, x), x(b) = p

has a unique solution x : (b−h, b+h)→ Rn. Consequently,
x1(t) = x2(t) for all t ∈ (b−h, b+h) which contradicts the
definition of b, unless b is the right endpoint of I , proving the
claim.

Similarly, x1(t) = x2(t) for all t ∈ I with t ≤ 0.

5.2 The maximal solution
Proposition 5.2

Let f : R × Rn → Rn be so that the existence and unique-
ness of solutions of x′ = f(t, x) holds. Then for each
x0 ∈ Rn there exists and interval J(x0) = (α(x0), β(x0))
where α(x0) < 0 < β(x0) so that the following two prop-
erties hold:

(i) there exists a solution x : J(x0) → Rn of the initial
value problem ẋ = f(t, x), x(0) = x0;

(ii) if x : J → Rn is a solution of the value problem ẋ =
f(t, x), x(0) = x0 then J ⊂ J(x0).

Since there is no larger time interval on which there exists a
solution, x : J(x0)→ Rn is called the maximal solution.
Proof : Let J(x0) be the union of all intervals containing 0 on

which there is a solution. By the previous lemma any two so-
lutions agree on the intersections of the two intervals. Hence
there exists a solution on the union of all such intervals.

In more detail: Let J(x0) denote the union of all open
intervals J containing 0 such that there exists a solution xJ :
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J →W of the following IVP

x′J = f(xJ), xJ(0) = x0. (10)

Thus, J(x0) is also an open interval and of the form (α(x0), β(x0))
for some α(x0) < 0 < β(x0). Now define x : J(x0) → Rn
by

x(t) = xJ(t) when t ∈ J for some J from the def. of J(x0).

To show this makes sense (so different choices for J don’t
give different definitions), take two intervals J1, J2 from the
definition of J(x0) with t ∈ J1 ∩ J2. Since (by assumption)
xJi : Ji → Rn are both solutions of (10), the previous lemma
gives x1(t) = x2(t) for all t ∈ J1 ∩ J2 and so the definitions
coincide. Property (i) and (ii) follow automatically.

5.3 Property of the maximal solution
Theorem 5.3

Let f : Rn → Rn be continuously differentiable. Let x(t)
be a solution of

x′ = f(x), x(0) = x0 (11)

Let 0 ∈ I = (a, b) be the maximal interval for which I 3
t 7→ x(t) is well-defined (see the previous theorem). Then
b <∞ implies |x(t)| → ∞ as t ↑ b.

Proof : Step 1: Suppose that the conclusion of this theorem is
wrong. Then there exists R > 0 and t < b arbitrarily close
to b so that |x(t)| ≤ R.

Step 2: Let K be the Lipschitz constant of f on the set
{x ∈ Rn; |x| ≤ R + 1}. (That K exists follows from the
Mean Value Theorem, since the derivative x 7→ Df(x) is
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continuous and since the set {x ∈ Rn; |x| ≤ R+ 1} is com-
pact.) Moreover, let M be the maximum of x 7→ |f(x)| on
{x ∈ Rn; |x| ≤ R + 1}. Note that the unit ball around any
p ∈ {Rn; |x| ≤ R} is contained in {x ∈ Rn; |x| ≤ R+ 1}.

Step 3: Hence, by the local Picard theorem, for any h >
0 so that hM < 1 and hK < 1/2 and for any p ∈ {Rn; |x| ≤
R} and any t0 ∈ R, the initial value problem

y′ = f(y) , y(t0) = p (12)

has a solution y : (t0 − h, t0 + h)→ Rn.

Step 4: Take t0 ∈ (a, b) so close to b so that t0 + h > b
and so that, moreover, |x(t0)| ≤ R (this is possible by Step
1).

Step 5: Choose p = x(t0) and let y be the solution of the
IVP (12). Since x, y restricted to t ∈ (t0, b) both solve (12),
x(t) = y(t) for all t ∈ (t0, b).

Step 6: Extend x : (a, b) → Rn to x̂ : (a, t0 + h) → Rn
by defining x̂(t) = x(t) for t ∈ (a, b) and x̂(t) = y(t) for
[b, t0 + h). This is a solution of (11) defined on the interval
(a, t0 + h). Since t0 + h > b this contradicts the maximality
of (a, b).
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5.4 Solutions of autonomous ODE’s cannot cross
and have the flow property

We say that x′ = f(t, x) is autonomous or time-independent
if f : U → Rn does not depend on t, i.e. if it is of the form
x′ = f(x). In this case, we often denote by φt(x0) the solution
of

x′ = f(x), x(0) = x0 that is
d

dt
φt(x0) = f(φt(x0)) and φ0(x0) = x0.

So φt(x0) is the solution going through x0.

Theorem 5.4
Assume that f : Rn → Rn is continuously differentiable
and consider the solution φt(x) of the autonomous ODE
x′ = f(x). Then

(a) solutions cannot cross: if x1 and x2 are solutions and
x1(t1) = x2(t2) then x1(t + t1) = x2(t + t2) for all
t ∈ R for which this is defined.

(b) the flow property holds: φt(φs(x)) = φt+s(x).

Proof : To explain and prove this, let x1, x2 are solutions with
x1(t1) = x2(t2) = p ∈ V then

x3(t) = x1(t+ t1) and x4(t) = x2(t+ t2)

are both solutions to x′ = f(x) with x(0) = p. So by unique-
ness of solutions:

x3 ≡ x4 i.e. x1(t1 + t) = x2(t2 + t)∀t.

Property (b) will be proved in the assignments.
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5.5 Higher order differential equations
Consider a higher order differential equation of the form

y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y = b(t) (13)

where y(i) stands for the i-th derivative of y w.r.t. t.

• One can rewrite (13) as a first order ODE, by defining

z1 = y, z2 = y(1), . . . , zn = y(n−1).

The higher order differential equation (13) is equivalent
to

d

dt




z1

. . .
zn−1

zn


 =




z2

. . .
zn

b(t)− [an−1(t)zn + · · ·+ a0(t)z1]




• Picard’s theorem implies ∃! solution of this ODE which
satisfies (z1(0), . . . , zn(0)) = (y(0), . . . , y(n−1)(0)) pro-
vided a0(t), . . . , an−1(t), b(t) are all bounded by some
constant M .

• One can rewrite the vectorial equation as

d

dt




z1

. . .
zn−1

zn


 = A(t)




z1

. . .
zn−1

zn


+




0
. . .
0
b(t)




where A(t) is matrix with coefficients depending on t.
Therefore, as in subsection 3.4, the general solution of
the non-homogeneous ODE is of the form c1y1 + · · · +
cnyn + p where p is a particular solution. There are at
most n degrees of freedom.
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5.6 Continuous dependence on initial conditions
Theorem 5.5

Continuous dependence on initial conditions Let U ⊂
R× Rn be open, f, g : U → Rn be continuous and assume
that

K = sup
(t,u),(t,v)∈U

|f(t, u)− f(t, v)|
|u− v| , M = sup

(t,u)∈U
|f(t, u)−g(t, u)|

are finite. If x(t) and y(t) are respective solutions of the
IVP’s

{
x′ = f(t, x)
x(0) = x0

and
{

y′ = g(t, y)
y(0) = y0

Then

|x(t)− y(t)| ≤ |x0 − y0|eK|t| +
M

K
(eK|t| − 1).

5.7 Gronwall Inequality
Proof:

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

0

|f(s, x(s))− g(s, y(s))| ds.

Moreover,
|f(s, x(s))− g(s, y(s))| ≤

≤ |f(s, x(s))− f(s, y(s))|+ |f(s, y(s))− g(s, y(s))| ≤
≤ K|x(s)− y(s)|+M.

Hence, writing u(t) := |x(t)− y(t)| we have

u(t) ≤ |x0 − y0|+
∫ t

0

(K|u(s)|+M)
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and therefore the required inequality follows from the follow-
ing lemma.

Lemma 5.6
Gronwall Inequality

u(t) ≤ C0 +

∫ t

0

(Ku(s) +M) ds for all t ∈ [0, h] =⇒

u(t) ≤ C0e
Kt +

M

K

(
eKt − 1

)
for all t ∈ [0, h].

Proof : Let’s only prove this only when M = 0. Define

U(t) = C0 +

∫ t

0
(Ku(s)) ds.

Then u(t) ≤ U(t). Differentiating, we obtain

U ′(t) = Ku(t).

Hence
U ′(t)/U(t) = Ku(t)/U(t) ≤ K

and therefore
d

dt
log(U(t)) ≤ K.

Since U(0) = C0 this gives

u(t) ≤ U(t) ≤ C0e
Kt.
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5.8 Consequences of Gronwall inequality
• Let us interpret the previous result for f = g. Then M =

0 and
{

x′ = f(t, x)
x(0) = x0

and
{

y′ = f(t, y)
y(0) = y0

implies

|x(t)− y(t)| ≤ |x0 − y0|eK|t|.
In particular, uniqueness follows. (This of course we
knew already: f satisfies the Lipschitz assumption.)

• The previous inequality states:

|x(t)− y(t)| ≤ |x0 − y0|eK|t| + 0.

So in principle orbits can separate exponentially fast.

5.9 The Lorenz equations: the butterfly effect
If solutions indeed separate exponentially fast, then the differ-
ential equation is said to have sensitive dependence on initial
conditions. (The flapping of a butterfly in the Amazon can
cause a hurricane over the Atlantic.)

This sensitive dependence occurs in very simple differen-
tial equations, for example in the famous Lorenz differential
equation

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz

(14)

with σ = 10, r = 28, b = 8/3.
This equation has solutions which are chaotic and have sen-

sitive dependence.

http://www.youtube.com/watch?v=ByH8_nKD-ZM
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5.10 Double pendulum
There are many physical system where sensitive dependence of
initial conditions occurs. For example the double pendulum,
see for example https://www.youtube.com/watch?
v=U39RMUzCjiU or https://www.youtube.com/
watch?v=fPbExSYcQgY.
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6 Power Series Solutions
Theorem 6.1

If f is real analytic near (x0, 0), then x′ = f(t, x), x(0) =
x0 has a real analytic solution, i.e. the solution t 7→ x(t) is
a power series in t which converges for |t| < h.

To prove this theorem one considers in the differential equa-
tion x′ = f(t, x) the time t be complex! We will not pursue this
here.

Note that in this chapter we obtain take the derivative w.r.t.
x, so write instead y′ = f(x, y) and look for solutions x 7→
y(x).

In this chapter we will consider some examples. Typically,
one the coefficients appearing in the power series expansions of
the solutions can be found inductively as in the next examples.

Example 6.2

y′ = y. Then substitute y =
∑

i≥0 aix
i and y′ =

∑
j≥1 jajx

j−1 =∑
i≥0(i+ 1)ai+1x

i. Comparing powers gives
∑

i≥0(aix
i −

(i+ 1)ai+1x
i) = 0 and so ai+1 = ai/(i+ 1). So an = C/n!

which gives y(x) = C
∑

n≥0 x
n/n! = C exp(x).

6.1 Legendre equation
Example 6.3

Consider the Legendre equation at x = 0:

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0.

Write y =
∑

i≥0 aix
i,

y′ =
∑

j≥1

jajx
j−1 =

∑

i≥0

(i+ 1)ai+1x
i.
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y′′ =
∑

j≥2

j(j − 1)ajx
j−2 =

∑

i≥0

(i+ 2)(i+ 1)ai+2x
i.

We determine ai as follows.

y′′ − x2y′′ − 2xy′ + p(p+ 1)y =

∑

i≥0

(i+2)(i+1)ai+2x
i−
∑

i≥2

i(i−1)aix
i−2

∑

i≥1

iaix
i+p(p+1)

∑

i≥0

aix
i

=
∑

i≥2

[(i+ 2)(i+ 1)ai+2 − i(i− 1)ai − 2iai + p(p+ 1)ai]x
i+

+(2a2 + 6xa3)− 2a1x+ p(p+ 1)(a0 + a1x)

∑

i≥0

(i+2)(i+1)ai+2x
i−
∑

i≥2

i(i−1)aix
i−2

∑

i≥1

iaix
i+p(p+1)

∑

i≥0

aix
i

=
∑

i≥2

[(i+ 2)(i+ 1)ai+2 − i(i− 1)ai − 2iai + p(p+ 1)ai]x
i+

+(2a2 + 6xa3)− 2a1x+ p(p+ 1)(a0 + a1x)

So collecting terms with the same power of x together gives
a2 = −p(p+1)

2
a0 and a3 = (2−p(p+1))

6
a1 and

ai+2 =
[i(i− 1) + 2i− p(p+ 1)]ai

(i+ 1)(i+ 2)
= −(p− i)(p+ i+ 1)

(i+ 2)(i+ 1)
ai.

If p is an integer, ap+2j = 0 for j ≥ 0. Convergence of
y =

∑
i≥0 aix

i for |x| < 1 follows from the ratio test.
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6.2 Second order equations with singular points
Sometimes one encounters a differential equation where the
solutions are not analytic because the equation has a pole. For
example

y′′ + (1/x)y′ − (1/x2)y = 0.

Or more generally if the equation can be written in the form

y′′ + p(x)y′ − q(x)y = 0

where p has a pole of order 1 and q a pole of order 2. That is,

p(x) =
a−1

x
+
∑

n≥0

anx
n, q(x) =

b−2

x2
+
b−1

x
+
∑

n≥0

bnx
n (15)

and where the sums are convergent. Such systems are said to
have a regular singular point at x = 0.

Even though the existence and uniqueness theorem from
Chapter 3 no longer guarantees the existence of solutions, it
turns out that a solution of the form y = xm

∑
i≥0 aix

i exists.
Here, in general, m ∈ C and

∑
aix

i converges near 0). For
simplicity we always assume a0 6= 0.

It will turn out that m is necessarily a root of a quadratic
equation (called the indicial equation), which therefore has two
roots m1,m2. (In these notes we will only encounter cases
when m ∈ R.) The general form of y′′ + p(x)y′ − q(x)y = 0
will be then of the form

y(x) = Axm1

∑

i≥0

aix
i +Bxm2

∑

i≥0

bix
i

where ai and bi satisfy some recursive equations.
Example 6.4

2x2y′′ + x(2x+ 1)y′ − y = 0.
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Substitute y =
∑

i≥0 aix
m+i where we CHOOSE m so

that a0 6= 0. Then y′ =
∑

i≥0(m + i)aix
m+i−1 and y′′ =∑

i≥0(m+ i)(m+ i− 1)aix
m+i−2. Note that m may not be

an integer so we always start with i = 0. Plugging this in
gives

2
∑

i≥0

(m+ i)(m+ i− 1)aix
m+i + 2

∑

i≥0

(m+ i)aix
m+i+1+

+
∑

i≥0

(m+ i)aix
m+i −

∑

i≥0

aix
m+i = 0.

Collecting the coefficient in front of xm gives

(2m(m− 1) +m− 1)a0 = 0.

Since we assume a0 6= 0 we get the indicial equation

2m(m− 1) +m− 1 = 0

which gives m = −1/2, 1. The coefficient in front of all
the terms with xm+i gives

2(m+i)(m+i−1)ai+2(m+i−1)ai−1+(m+i)ai−ai = 0, i.e.

[2(m+ i)(m+ i−1)+(m+ i)−1]ai = −2(m+ i−1)ai−1.

Taking m = −1/2 this reduces to: aj =
3− 2j

−3j + 2j2
aj−1.

If m = 1 then this gives aj =
−2j

3j + 2j2
aj−1.

So the general solution is of the form:

y = Ax−1/2
(
1− x+ (1/2)x2 + . . .

)
+Bx (1− (2/5)x+ . . . ) .

The ratio test gives that (1− x+ (1/2)x2 + . . . ) and (1− (2/5)x+ . . . )
converge for all x ∈ R.
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Remark: The equation required to have the lowest order
term vanish is called the indicial equation which has two roots
m1,m2 (possibly of double multiplicity).
Theorem 6.5

Consider a differential equation y′′ + p(x)y′ − q(x)y = 0
where p, q are as in equation (15). Then

• If m1−m2 is not an integer than we obtain two inde-
pendent solutions of the form y1(x) = xm1

∑
i≥0 aix

i

and y2(x) = xm2
∑

i≥0 aix
i.

• If m1 − m2 is an integer than one either can find a
2nd solution in the above form, or - if that fails - a
2nd solution of the form log(x)y1(x) where y1(x) is
the first solution.

Certain families of this kind of differential equation with
regular singular points, appear frequently in mathematical physics.

• Legendre equation

y′′ − 2x

1− x2
y′ +

p(p+ 1)

1− x2
y = 0

• Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0

• Gauss’ Hypergeometric equation

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0

For suitable choices of a, b solutions of this are the sine,
cosine, arctan and log functions.
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7 Boundary Value Problems, Sturm-Liouville
Problems and Oscillatory equations

Instead of initial conditions, in this chapter we will consider
differential equations satisfying boundary values. Examples:

• y′′ + y = 0, y(0) = 0, y(π) = 0. The space of solutions
is linear: {yc; yc(x) = c sin(x), c ∈ R}.

• y′′ + y = 0, y(0) = 0, y(π) = ε 6= 0 has no solutions:
y(x) = a cos(x) + b sin(x) and y(0) = 0 implies a = 0
and y(π) = 0 has no solutions.

• Clearly boundary problems are more subtle.

• We will concentrate on equations of the form u′′+λu = 0
with boundary conditions, where λ is a free parameter.

• Such problems are relevant for a large class of physical
problems: heat, wave and Schroedinger equations.

• This generalizes Fourier expansions.

7.1 Motivation: wave equation
Consider the wave equation:

∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t) (16)

where x ∈ [0, π] and the end points are fixed:

u(0, t) = 0, u(π, t) = 0 for all t , (17)

u(x, 0) = f(x),
∂

∂t
u(x, t)|t=0 = 0. (18)

This is a model for a string of length π on a musical instrument
such as a guitar; before the string is released the shape of the
string is f(x). It is also a model for how a bridge vibrates.
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7.1.1 How to solve the wave equation

• As usual, one solves (16) by trying to find solutions of
the form u(x, t) = w(x) · v(t). Substituting this ex-
pression into the wave equation gives w′′(x)/w(x) =
v′′(t)/v(t). Since the left hand does not depend on t and
the right hand side not on x this expression is equal to
some constant λ and we get

w′′ = λw and v′′ = λv.

By analogy to the setting in linear algebra one often calls
λ (or sometimes−λ) an eigenvalue and w an eigenfunc-
tion.

• We need to set w(0) = w(π) = 0 to satisfy the boundary
conditions that u(0, t) = u(π, t) = 0 for all t.

• If λ = 0 then w(x) = c3 +c4x and because of the bound-
ary conditions c3 = c4 = 0, and therefore w ≡ 0. Hence
u ≡ 0, which is the trivial solution. So we may as well
assume λ 6= 0. In this case it is convenient to write
λ = −µ2 where µ is not necessarily real.

• Since λ 6= 0, v′′ = λv has solution

v(t) = c1 cos(µt) + c2 sin(µt).

• Since λ 6= 0, w′′ − λw = 0, has solution w(x) =
c3 cos(µx)+c4 sin(µx). Since w(0) = w(π) = 0, c3 = 0
and w(π) = c4 sin(µπ) = 0 implies µ = n ∈ N (or
c4 = 0 which implies again u ≡ 0). Check that µ is non-real =⇒ sin(µπ) 6= 0.So

w(x) = c4 sin(nx) and λ = −n2 and n ∈ N \ {0}.

• So for any n ∈ N we obtain that

un(x, t) = wn(x)vn(t) = (c1,n cos(nt)+c2,n sin(nt)) sin(nx)

is a solution of (16) and (17).
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• The boundary condition
∂

∂t
u(x, t)|t=0 ≡ 0 gives

∑
c2,nn sin(nx) ≡ 0 =⇒ c2,n = 0 for all n ≥ 0.

Since the problem is linear, we therefore obtain

u(x, t) =
∞∑

n=1

c1,n cos(nt) sin(nx)

is a solution.

• This expression shows that the string can only vibrate
with frequencies which are of the form nπ where n ∈ N.

7.1.2 The boundary condition u(x, 0) = f(x): Fourier ex-
pansion

The final boundary condition is that

u(x, 0) =
∑

c1,n sin(nx) = f(x) for all x ∈ [0, π]. (19)

This looks like Fourier expansion: That only sin terms appear
in this expansion is because f(0) = f(π) = 0, as explained in
Lemma F.2 in Appendix F.
Theorem 7.1

L2 Fourier Theorem. If f : [0, 2π] → R is continuous (or
continuous except at a finite number of points) then we one
can coefficients c1,n, c2,n so that

f ∼
∞∑

n=0

(c1,n cos(nx) + c2,n sin(nx))

where ∼ means that
∫ 2π

0

|f(x)−
N∑

n=0

(c1,n cos(nx) + c2,n sin(nx))|2 dx→ 0
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as N →∞. Moreover, if f ′ is differentiable then

f ′ ∼
∞∑

n=0

(−nc1,n sin(nx) + nc2,n cos(nx))

7.1.3 C2 solution of the wave equation

The L2 Fourier Theorem does not claim that f(x) is every-
where equal to

∑∞
n=0(c1,n cos(nx) + c2,n sin(nx)): the infinite

sum in the right hand side may not be well-defined for all x. To
obtain this we need the following:
Theorem 7.2

Fourier Theorem with uniform convergence. Assume
f : [0, 2π]→ R isC1 (continuously differentiable) then one
can find c1,n, s1,n so that
N∑

n=1

[c1,n cos(nx)+c2,n sin(nx)] converges uniformly to f(x) as N →∞.

Using this theorem one can prove that if f is C3, f(0) =
f(π) = f ′′(0) = f ′′(π) then there exists a C2 function u of the
form u(x, t) =

∑∞
n=1 c1,n cos(nt) sin(nx) which is a genuine

solution of the wave equation. Some details for this are given
in Appendix F (which is non-examinable).
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7.2 A typical Sturm-Liouville Problem
Let us consider another example:

y′′ + λy = 0, y(0) + y′(0) = 0, y(1) = 0.

• If λ = 0 then y(x) = c1 + c2x and the boundary condi-
tions give y(x) = 1− x (or multiples of y(x) = 1− x).

• If λ 6= 0 we write again λ = µ2. The equation y′′+λy =
0 gives y(x) = c1e

iµx+c2e
−iµx. Plugging this expression

in y(0) + y′(0) = 0, y(1) = 0 gives
(c1 + c2) + iµ(c1 − c2) = 0 and c1e

iµ + c2e
−iµ = 0.

So c2 = −c1e
2iµ and c1[(1 + iµ) − (1 − iµ)e2iµ] = 0.

Since we can assume c1 6= 0 (otherwise y ≡ 0), the last
equation reduces to [(1 + iµ)e−iµ− (1− iµ)eiµ] = 0 (*).

• If λ < 0 then µ is purely imaginary because λ = µ2

and so µ = iR for some real R. Then (*) corresponds to
(1−R)e+R−(1+R)e−R = 0, i.e. e2R = (1+R)/(1−R),
and it is easy to see that the only real solution of this is
R = 0 and so λ = 0 (which was treated before).

• If λ > 0 and so µ is real then (*) Indeed,
0 = (1 + iµ)(cosµ− i sinµ)− (1− iµ)(cosµ+ i sinµ) =
(2i(µ cosµ− sinµ), so tanµ = µ.

implies tanµ = µ
(see margin). This equation has infinitely many solutions
µn ∈ [0,∞), n = 0, 1, . . . µn ∈ ((2n − 1)π/2, (2n +
1π/2) when n ≥ 0. In fact, µ0 = 0 and µn ≈ (2n +
1)π/2 when n is large.

• y(x) = [c1e
iµx + c2e

−iµx] = c1[eiµx − e2iµe−iµx] =
c1e

iµ[e−iµ+iµx − eiµ−iµx] = 2c̃1 sin(µx − µ). Here c̃1

is a new (complex) constant. So yn(x) = sin(µn(1− x))
is an eigenfunction.

• Summarising we get eigenvalues: λn = µ2
n with µ0 =

0, µn ∈ ((2n − 1)π/2, (2n + 1π/2)) for n ≥ 1 and
for n large λn ≈ (2n + 1)2(π/2)2. and eigenfunctions:
y0(x) = 1− x and yn(x) = sin(

√
λn(1− x)), n ≥ 1.
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7.3 The Sturm-Liouville Theorem
The previous example is a special case of the following prob-
lem: given functions p, q, r : [a, b] → R find both y : [a, b] →
R and λ so that

(p(x)y′)′ + q(x)y + λr(x)y = 0. (20)

Theorem 7.3
Sturm-Liouville Theorem Assume that p, r > 0 are con-
tinuous and p is C1 on [a, b]. Then (20) with the boundary
conditions (21)

α0y(a) + α1y
′(a) = 0, β0y(b) + β1y

′(b) = 0. (21)

(where αi, βi are assumed to be real and neither of the vec-
tors (α0, α1), (β0, β1) are allowed to be zero) has infinitely
many solutions yn and λn with the following properties:

1. The numbers λn (which are usually called eigenval-
ues) are real, distinct and of single multiplicity;

2. The eigenvalues λn tend to infinity, so λ1 < λ2 < . . .
and λn →∞.

3. If n 6= m then corresponding eigenfunctions yn, ym
are real and orthogonal in the sense that

∫ b

a

ym(x)yn(x)r(x) dx = 0.

4. Each continuous function f can be expanded in terms
of the eigenfunctions, as in the Fourier case: one can
find coefficients cn, n = 0, 1, 2, . . . so that f is the
limit of the sequence of functions

∑N
n=0 cnyn.
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If f is merely continuous than this convergence is in
the L2 sense, while if f isC2 then this convergence is
uniform (this sentence is not examinable, and in this
course we will not cover a proof of this sentence).

We will not be able to prove this theorem in this course,
but for those who are interested there is a brief outline of the
strategy of the proof below.

Remark 1: If yn, ym are solutions and we set

W (ym, yn)(x) := det(
ym(x) y′m(x)
yn(x) y′n(x)

) = ym(x)y′n(x)−yn(x)y′m(x)

then W (a) = 0 and W (b) = 0. To see that W (a) = 0, note
that the first boundary condition in equation (21) implies

(
ym(a) y′m(a)
yn(a) y′n(a)

)(
α0

α1

)
= 0.

Since (α0, α1) 6= (0, 0) the determinant of the matrix is zero.

Remark 2: For any function f there is an easy way to obtain
the necessary conditions for an so that f(x) =

∑
n≥0 anyn(x).

Just define (v, w) is the inner product:

(v, w) =

∫ b

a

v(t)w(t) dt

and take

(f, ryk) = (
∑

n≥0 anyn(x), ryk) =
∑

n≥0 an(yn, ryk)
= ak(yk, ryk).

Here we used in the last equality that (yn, ryk) 6= 0 implies
n = k. Hence

ak :=
(f, ryk)

(yk, ryk)
.
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7.4 A glimpse into symmetric operators
Sturm-Liouville problems are solved using some operator the-
ory: the 2nd order differential equation is equivalent to

Ly(x) = λr(x)y(x) where L =

(
− d

dx
p(x)

d

dx
− q(x)

)
.

Let H be the space of functions y : [a, b] → R satisfying the
boundary conditions

α0y(a) + α1y
′(a) = 0, β0y(b) + β1y

′(b) = 0. (22)

H is an infinite dimensional linear space.
L : H → H turns out to be turns out to be a symmetric

operator in the sense that (Lv,w) = (v, Lw) where (v, w) =∫ b
a
v(x)w(x) dx is as defined above.
The situation for analogous to the finite dimensional case:

L is a symmetric (and satisfies some additional properties) =⇒
its eigenvalues are real, and its eigenfunctions form a basis.
Lemma 7.4

L : H → H is symmetric (self-adjoint) in the sense that
(Lv,w) = (v, Lw) for all v, w ∈ H .

Proof : Let Lu = −(pu′)′ − qu and Lv = −(pv′)′ − qv.

∫ b
a L(u)v̄ dx =

∫ b
a [−(pu′)′v̄ − quv̄] dx.

∫ b
a uL(v) dx =∫ b

a [−u(pv′)′ − quv̄] dx.
∫ b
a −(pu′)′v̄ dx = −pu′v̄|ba +

∫ b
a pu

′v̄′ dx

= −pu′v̄|ba + puv̄′|ba −
∫ b
a u(pv̄′)′ dx.

Hence
∫ b
a [L(u)v̄− uL(v)] dx = −p(x)[u′v̄ − uv̄′]

∣∣∣
b

a

= [p(b)W (u, v̄)(b)− p(a)W (u, v̄)(a)]
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If u, v satisfy the boundary conditions, thenα0u(a)+α1u
′(a) =

0 and α0v(a)+α1v
′(a) = 0. Since α0, α1 are real, therefore

α0v̄(a)+α1v̄
′(a) = 0. Hence, W (u, v̄)(a) = W (u, v̄)(b) =

0, and therefore
∫ b

a
[L(u)v̄ − uL(v)] dx = 0.

This implies (Lu, v) = (u, Lv).

Lemma 7.5
Eigenvalues of L : H → H are real and eigenfunctions are
orthogonal to one another.

Proof : Define (u, v) =
∫ b
a u(x)v(x) dx. Then the previous

lemma showed (Lu, v) = (u, Lv).

• Suppose that Ly = rλy. Then the eigenvalue λ is
real: Indeed,

λ(ry, y) = (λry, y) = (Ly, y) = (y, Ly) = λ̄(y, ry) = λ̄(ry, y)

since r is real. Since (ry, y) > 0 it follows that λ = λ̄.

• Suppose that Ly = rλy and Lz = rµz.
λ 6= µ =⇒

∫ b
a r(x)y(x)z(x) dx = (ry, z) = 0.

So the eigenfunctions y, z are orthogonal. Indeed,

λ(ry, z) = (λry, z) = (Ly, z) = (y, Lz) = (y, µrz)
= µ̄(y, rz) = µ̄(ry, z) = µ(ry, z).

where we have used that r and µ are real. Since λ 6= µ
it follows that (ry, z) = 0.
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7.5 The strategy for proving the Sturm-Liouville
Theorem 7.3

In this subsection, which is non-examinable and which will
not be covered in class, we explain some of the ideas used in
the proof of Theorem 7.3.

• Define a Hilbert spaceH: this is a Banach space over the
complex numbers with the inner product as above. Note
(v, w) = (w, v) where z is complex conjugation. Define

the norm ||v|| =
√

(v, v) = ||v|| =
√∫ b

a
|v(x)|2 dx,

the so-called L2 norm (generalizing the norm ||z|| =√
(z, z) =

√
zz̄ on C).

• Associate to each linear map A : H → H , the operator
norm ||A|| = supf∈H,||f ||=1 ||Af ||;
• to call a linear operator A is compact if for each se-

quence ||fn|| ≤ 1, there exists a convergent subsequence
of Afn.

• A : H → H is called compact, if there exists a sequence
of eigenvalues αn → 0 and eigenfunctions un. These
eigenvalues are all real and the eigenfunctions are or-
thogonal. If the closure of A(H) is equal to H , then
for each f ∈ H then one can write f =

∑∞
j=0(uj, f)uj .

• The operator L in Sturm-Liouville problems is not com-
pact, and that is why one considers some related operator
(the resolvent) which is compact.

The Sturm-Liouville Theorem is fundamental in

• quantum mechanics;

• in large range of boundary value problems;

• and related to geometric problems describing properties
of geodesics.
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7.6 Oscillatory equations
Consider (py′)′ + ry = 0 where p > 0 and C1 as before and r
continuous.

Theorem 7.6
Let y1, y2 be solutions. Then the Wronskian x 7→ W (y1, y2)(x) :=
y1(x)y′2(x)− y2(x)y′1(x) has constant sign. (We also write
W (x) = W (y1, y2)(x).)

Proof : Now assume by contradiction that x 7→ W (x) changes
sign. Then W would be zero as some point x. Let us show
that this implies that W ≡ 0.

(py′1)′ + ry1 = 0 and (py′2)′ + ry2 = 0. Multiplying the
first equation by y2 and the second one by y1 and subtract:

0 = y2(py′1)′−y1(py′2)′ = y2p
′y′1 +y2py

′′
1−y1p

′y′2−y1py
′′
2 .

Differentiating W and substituting the last equation in

pW ′ = p[y′1y
′
2 + y1y

′′
2 − y′2y′1 − y2y

′′
1 ] = py1y

′′
2 − py2y

′′
1

gives
pW ′ = −p′W. (23)

This implies that if W (x) = 0 for some x ∈ [a, b] then
W (z) = 0 for all z ∈ [a, b]. Indeed, the differential equation
(23) can be written as W ′ = f(x,W ) where f(x,W ) :=
(−p′(x)/p(x))W . Since W 7→ f(x,W ) is Lipschitz in
W (it is linear in W ), the only solution of the IVP W ′ =
f(x,W ),W (x) = 0 is W ≡ 0.
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Lemma 7.7
W (y1, y2) ≡ 0 =⇒ ∃c ∈ R with y1 = cy2 (or y2 = 0).

Proof : Since W (y1, y2) = det

(
y1 y2

y′1 y′2

)
, the assumption

W (y1, y2) = 0, y2 6= 0 implies that the columns of the ma-
trix are linearly dependent, and so (y1, y

′
1) is a multiple of

(y2, y
′
2), i.e.

(
y1(x)
y′1(x)

)
= c(x)

(
y1(x)
y′1(x)

)
.

Can c(x) depend on x? No:

y1(x) = c(x)y2(x) and y′1(x) = c(x)y′2(x) ∀x
=⇒ c(x)y′2(x) = y′1(x) = c′(x)y2(x) + c(x)y′2(x) ∀x.

Hence c′ ≡ 0.

Theorem 7.8
Sturm Separation Theorem Consider (py′)′+ry = 0 with
p, r as above. Let y1, y2 be two solutions of which are inde-
pendent (one is not a constant multiple of the other). Then
zeros are interlaced: between consecutive zeros of y1 there
is a zero of y2 and vice versa.

Proof : Assume y1(a) = y1(b) = 0. y′1(a) 6= 0 (otherwise y1 ≡
0) and y′2(b) 6= 0. We may choose a, b so that y1(x) > 0 for
x ∈ (a, b). Then y′1(a)y′1(b) < 0. (Draw a picture.) Also,

W (y1, y2)(a) = −y2(a)y′1(a) and W (y1, y2)(b) = −y2(b)y′1(b).

Since y′1(a)y′1(b) < 0 and W (y1, y2)(a)W (y1, y2)(b) > 0
(W does not change sign), we get y2(a)y2(b) < 0, which
implies that y2 has a zero between a and b.

82



8 Nonlinear Theory
In the remainder of this course we will study initial value prob-
lems associated to autonomous differential equations

x′ = f(x), x(0) = x0 (24)

where f : Rn → Rn is C∞. We saw:

• There exists δ(x0) > 0 so that this has a unique solution
x : (−δ, δ)→ Rn;

• There exists a unique maximal domain of existence I(x0) =
(α(x0), β(x0)) and a unique maximal solution x : I(x0)→
Rn.

• If β(x0) <∞ then |x(t)| → ∞ when t ↑ β(x0).

• If α(x0) > −∞ then |x(t)| → ∞ when t ↓ α(x0).

• The solution is often denoted by φt(x0).

• The map (t, x) 7→ φt(x) is continuous in (t, x). That
it is continuous in x follows from Theorem 8.8 (taking
f = g and so M = 0 in that theorem). That it is jointly
continuous in (t, x) then follows easily.

• One has the flow property: φt+s(x0) = φtφs(x0), φ0(x0) =
x0.

• Solutions do not intersect. One way of making this pre-
cise goes as follows: t > s and φt(x) = φs(y) implies
φt−s(x) = y. (So φs(φt−s(x)) = φt(x) = φs(y) implies
φt−s(x) = y.)
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8.1 The orbits of a flow
Rather than studying each initial value problem separately, it
makes sense to study the flow φt associated to x′ = f(x), x(0) =
x0. The curves t 7→ φt(x) are called the orbits. For example
we will show that the flow of

ẋ = Ax−Bxy
ẏ = Cy +Dxy

is equal to

8.2 Singularities
Consider x′ = f(x), x(0) = x0.

If f(x0) = 0 then we say that x0 is a rest point or singular-
ity. In this case x(t) ≡ x0 is a solution, and by uniqueness the
solution. So φt(x0) = x0 for all t ∈ R.

This notion is so important that several alternative names
are used for this: rest point, fixed point, singular point or
critical point.

Near such points usually a linear analysis suffices.

Since f(x0) = 0, and assuming that f is C1 we obtain by
Taylor’s Theorem

f(x) = f(x0)+A(x−x0)+o(|x−x0|1) = A(x−x0)+o(|x−x0|)
where o(|x−x0|) is so that o(|x−x0|)/|x−x0| → 0 as x→ x0.
(By the way, if f is C2 we have f(x) = A(x − x0) + O(|x −
x0|2).)

A = Df(x0) is called the linear part of f at x0.
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8.3 Stable and Unstable Manifold Theorem
A matrix A is called hyperbolic if its eigenvalues λ1, . . . , λn
have non-zero real part, i.e. satisfy <(λi) 6= 0, i = 1, . . . , n.
Order the eigenvalues so that
<(λi) < 0 for i = 1, . . . , s and <(λi) > 0 for i = s+1, . . . , n.

Let Es (resp. Eu) be the eigenspace associated to the eigenval-
ues λ1, . . . , λs (resp. λs+1, . . . , λn).

A singular point x0 of f is called hyperbolic if the matrix
Df(x0) is hyperbolic.

Theorem 8.1
Stable and Unstable Manifold Theorem Let x0 be a
singularity of f and assume x0 is hyperbolic. Then there
exist a manifold W s(x0) of dimension s and a manifold
W u(x0) of dimension n− s both containing x0 so that

x ∈ W s(x0) ⇐⇒ φt(x)→ x0 as t→∞,

x ∈ W u(x0) ⇐⇒ φt(x)→ x0 as t→ −∞.
W s(x0),W u(x0) are tangent to x0+Es resp. x0+Eu at x0.

Remarks:

• Here we will not give the general definition of the notion
of manifold, but simply define it near x0 as the graph of
a smooth function from the linear space Es to Eu. Most
of the time we will consider the case when Es and Eu

have dimension one (and then W s(x0) and W u(x0) is
a curve). If Es has dimension two, then the object we
obtain is a surface.

• If s = n then the singularity is called a sink and this
case the above theorem asserts that W s(x0) is a neigh-
bourhood of x0.
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Figure 1: An example of a differential equation which will be
studied later on in which there are several singularities: with a
sink, source and saddle.

• If 1 ≤ s < n then it is called a saddle.

• s = 0 then it called a source.

• W s(x0) is called the stable manifold.

• W u(x0) is called the unstable manifold.

Example 8.2
Take x′ = x + y2, y′ = −y + x2. The linearisation of this
system at (0, 0) is x′ = x, y′ = −y. So the system has

eigenvalues 1,−1 with corresponding eigenvectors
(

1
0

)

and
(

0
1

)
. So Eu is equal to the x-axis and Es is equal to

the y-axis. Hence, by Theorem 8.1 there is supposed to an
invariant manifold W u(0) (a curve) which is tangent to the
x-axis.

This means that there exists a function g(x) so that

W u(x) = {(x, g(x));x ∈ R}
near (0, 0) with g(0) = 0 and g′(0) = 0. (That we insist on
g′(0) = 0 is to ensure that the curve is tangent to the x axis.

How to find the Taylor expansion g(x) = a2x
2 +a3x

3 +
· · ·+O(|x|k) of g? Take a point (x, y) ∈ W u(0) so that y =
g(x). We need that y(t) = g(x(t)) for all t. Since t→ −∞
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we have y(t) → 0, x(t) → 0 and so y(t) − g(x(t)) → 0
holds in the limit as t→ −∞ (recall that g(0) = 0).

So y(t)−g(x(t)) = 0 for all t holds =⇒ y(t)−g(x(t))

is constant ⇐⇒ dy

dt
− dg

dx

dx

dt
= 0 ⇐⇒

g′(x) = (
dy

dt
)/(

dx

dt
) =
−y + x2

x+ y2
. (25)

Substituting this in (25) gives

2a2x+ 3a3x
2 + · · · = −[a2x

2 + a3x
3 + . . . ] + x2

x+ [a2x2 + a3x3 + . . . ]2
.

Comparing terms of the same power, shows that 2a2 =
(1 − a2) and so on. Thus we determine the power series
expansion of g(x).

Proof of Theorem 8.1. We will only prove this theorem
in the case that s = n and when the matrix A = Df(x0) has
n real eigenvalues λi < 0 and n eigenvectors v1, . . . , vn. For
simplicity also assume x0 = 0. Consider x near x0 = 0 and
denote the orbit through x by x(t).

Let T be the matrix consisting of the vectors v1, . . . , vn
(that is Tej = vj). Then T−1AT = Λ where Λ is a diago-
nal matrix (with λ1, . . . , λn on the diagonal). You may want to assume that T is the identity matrix when

you go through the first the proof for the first timeLet us show that limt→∞ x(t) = 0 provided x is close to
0. Let us write y(t) = T−1(x(t)). It is sufficient to show that
y(t)→ 0. Instead we will show

|y(t)|2 = T−1(x(t)) · T−1(x(t))→ 0 as t→∞.

To see this we will prove that there exists ρ′ > 0 so that when-
ever y(0) is close to zero, then

d|y(t)|2
dt

≤ −ρ′|y(t)|2. (26)
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This would be enough, because if we write z(t) = |y(t)|2 then
we get z′ ≤ −ρ′z which means

|y(t)|2 = z(t) ≤ z(0)e−tρ
′ ≤ |y(0)|2e−tρ′

which shows that y(t)→ 0 as t→∞ with rate ρ′/2.

So we need to estimate
d|y(t)|2
dt

from above:

d|y(t)|2
dt

=
d

dt
(T−1x(t) · T−1(x(t)) = 2T−1x · T−1ẋ

= 2T−1x · T−1f(x)

= 2T−1x · T−1Ax+ 2T−1x · T−1[f(x)− Ax].

Let us first estimate the first term in this sum under the as-
sumption that all eigenvalues of A are real. Then

T−1x · T−1Ax = y · Λy ≤ −ρ|y|2 (27)

where ρ = mini=1,...,n |λi|. Here we use that Λ is diagonal with
all eigenvalues real (and therefore the eigenvectors are real and
so T and y are also real).

The second term can be estimated as follows: Since f(x)−
Ax = o(|x|) for any ε > 0 there exists δ > 0 so that |f(x) −
Ax| ≤ ε|x| provided |x| ≤ δ. Hence using the Cauchy inequal-
ity and the matrix norm we get

T−1x·T−1[f(x)−Ax] ≤ |y|·|T−1[f(x)−Ax]| ≤ |y|·||T−1||·ε|x|.
provided |x| ≤ δ. Of course we have that |x| = |TT−1x| =
|Ty| ≤ ||T || · |y|. Using this in the previous inequality gives

2T−1x · T−1[f(x)− Ax] ≤ 2ε||T || · ||T−1|| · |y|2. (28)

Using (27) and (28) in the estimate for
d|y(t)|2
dt

gives

d|y(t)|2
dt

≤ −2ρ|y(t)|2 + 2ε||T || · ||T−1|| · |y(t)|2 ≤ −ρ′|y(t)|2
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where ρ′ = (2ρ − 2ε||T || · ||T−1||), Provided we take ε >
0 sufficiently small we get that ρ′ > 0. Thus we obtain the
required inequality (26) and we are done.

IfA is diagonalisable but the eigenvalues are no longer real,
then the estimate in the inequality in (27) needs to be altered
slightly. Let us explain the required change by considering an

example. Take A =

(
−a b
−b −a

)
. Note A has eigenvalues

−a ± bi and that A is already in the real Jordan normal form.
Moreover,

y · Ay =

(
y1

y2

)
·
(
−ay1 + by2

−by1 − ay2

)

= −a
(
[y1(t)]2 + [y2(t)]2

)
= −a|y|2.

so the argument goes through. Using the real Jordan normal
form theorem, the same method applies as long asA has a basis
of n eigenvectors. This concludes the proof of Theorem 8.1 in
this setting. We will skip the prove in the general setting, but
the next example shows what happens if there is no basis of
eigenvectors.

In fact, when we prove that x(t) by showing that |y(t)|2
tends to zero, we use the function U(x) := |T−1(x)|2. Later
we will call this a Lyapounov function.
Example 8.3

Let us consider a situation when the matrix does not have

a basis of eigenvectors. Let A =

(
−1 Z
0 −1

)
where

Z ∈ R. This has eigenvalues −1 (with double multiplic-
ity). Take U(x, y) = ax2 + bxy + cy2. Then

U̇ = 2axẋ+ bẋy + bxẏ + 2cyẏ
= 2ax(−x+ Zy) + b(−x+ Zy)y + bx(−y) + 2cy(−y)
= −2ax2 + (2Za− b− b)xy + (Zb− 2c)y2.
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Case 1: If Z ≈ 0, then we can take a = 1, b = 0, c = 1
because then U̇ = −2x2+(2Z)xy−2y2 ≤ 0 (since Z ≈ 0).

Case 2: If Z is large and a = 1, b = 0, c = 1 then we
definitely don’t get U̇ ≤ 0. However, in this case we can
set b = 0, and write

U̇ = −2ax2 + (2Za)xy − 2cy2

= −2a[x− (Z/2)y]2 + (aZ2/2− 2c)y2

= −2[x− (Z/2)y]2 − y2 < 0.

where in the last line we substitutes a = 1 and c = 1/2 +
Z2/4. Thus U = c corresponds to a ‘flat’ ellipse when Z is
large.

General case: This all seems rather ad hoc, but the
Jordan normal form suggests a general method. Indeed A

has an eigenvector v1 =

(
1
0

)
(i.e. (A+I)v1 = 0) and we

can choose a 2nd vector v2 so that (A + I)v2 = εv1 where

ε > 0 is small. So v2 =

(
0
ε/Z

)
. Taking T = (v1v2)

gives T−1AT =

(
−1 ε
0 −1

)
. In this new coordinates we

are in the same position as if Z ≈ 0. So we can argue as in
the first case.

8.4 Hartman-Grobman
Theorem 8.4

Hartman-Grobman Let x0 be a singularity and that A =
Df(x0) is a hyperbolic matrix. Then there exists a contin-
uous bijection (a homeomorphism) h : Rn → Rn so that
h(x0) = 0 and so that near x0,

h sends orbits of x′ = f(x) to orbits of y′ = Ay.
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In other words, if x(t), is a solution of x′ = f(x) and x(t)
is close to x0 for t ∈ [a, b] then y(t) = h(x(t)) is a solution
of y′ = Ay for t ∈ [a, b].

Remark: In other words, there exists an open set U 3 x0 so
that h ◦ φt(x) = φAt ◦ h(x) for each x, t so that ∪0≤s≤tφs(x) ⊂
U . Here φAt is the flow associated to y′ = Ay and φt the flow
for x′ = f(x).

Remark: A homeomorphism is a continuous bijection whose
inverse is also continuous. In Euclidean space (and ‘mani-
folds’), this is the same as saying that it is continuous bijection.

8.5 Lyapounov functions
Using a suitable function to measure the ‘distance’ to a singu-
larity, as in Theorem 8.1, is a very common method.

In actual fact, we will use the notion of Lyapounov
function more loosely, and for example sometimes give the
same name to a function for which merely V̇ ≤ 0 and then
we need the ideas of the proofs of Lemma 8.8 rather then
the statement of this lemma itself.

Definition 8.5
Let W ⊂ Rn be an open set containing x0. V : W → R is
a Lyapounov function for x0 if it is C1 and

• V (x0) = 0, V (x) > 0 for x ∈ W \ {x0};

• V̇ (x) ≤ 0 for x ∈ W .

Here V̇ (x) :=
dV (x(t))

dt

∣∣∣
t=0

= DVx(t)
dx

dt

∣∣∣
t=0

= DVx(0)f(x(0))

where x(t) is the solution of the IVP ẋ = f(x), x(0) = x.
Note that x is used both for a point x ∈ Rn and for a curve
x(t) ∈ Rn.

Remarks: V should be thought of as a way to measure the
distance to x0. That V̇ ≤ 0 means that this ‘distance’ is non-
increasing. In quite a few textbooks a Lyapounov function is
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one which merely satisfies the first property; let us call such
functions weak-Lyapounov functions.

Warning: In some cases one calls a function Lyapounov
even if it does not satisfies all its properties.

Definition 8.6

• x0 is called stable if for each ε > 0 there exists δ > 0
so that if x ∈ Bδ(x0) implies φt(x) ∈ Bε(x0) for all
t ≥ 0. (So you nearby points don’t go far.)

• x0 is called asymptotically stable if, it is stable and
if for each x near x0, one has φt(x)→ x0.

Remark 8.7
The following lemma implies that if there exists a Lya-
punov function V with V̇ < 0 (outside x0)) then there ex-
ists no other Lyapunov function U so that U̇ ≥ 0. It is
however possible that there exists a Lyapunov function U
so that U̇ ≤ 0; then V will tell you that x0 is asymptotically
stable, while U would only tell you that x0 is stable.

Lemma 8.8
Lyapounov functions

1. If V̇ ≤ 0 then x0 is stable. Moreover, φt(x) exists for
all t ≥ 0 provided d(x, x0) is small.

2. If V̇ < 0 for x ∈ W \ {x0} then ∀x is close to x0 one
gets φt(x) → x0 as t → ∞, i.e. x0 is asymptotically
stable.

Proof : (1) It is enough to assume to consider the case that ε > 0
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is small. So take ε > 0 so that B2ε(x0) ⊂W . Let

τ := inf
y∈∂Bε(x0)

V (y).

Since V > 0 except at x0 we get τ > 0. It follows that

V −1[0, τ) ∩ ∂Bε(x0) = ∅. (29)

Take x ∈ V −1[0, τ) ∩ Bε(x0) Since φ0(x) = x and t →
V (φt(x)) is non-increasing, φt(x) ∈ V −1[0, τ) for all t ≥ 0.
Since t → φt(x) is continuous curve, φ0(x) = x ∈ Bε(x0)
and (29), it follows that φt(x) ∈ Bε(x0) for all t ≥ 0. In
particular φt(x) remains bounded, and so φt(x) exists ∀t.

Since V (x0) = 0 there exists δ > 0 so that Bδ(x0) ⊂
V −1[0, τ) ∩ Bε(x0). So x ∈ Bδ(x0) =⇒ φt(x) ∈ Bε(x0)
for all t ≥ 0.

(2) V̇ < 0 implies that t → V (φt(x)) is strictly de-
creasing. Take x ∈ Bδ(x0) and suppose by contradiction
that V (φt(x)) does not tend to 0 as t → ∞. Then, since
t 7→ V (φt(x)) is decreasing, there exists V0 > 0 so that
V (ρt(x)) ≥ V0 > 0. Hence ∃ρ > 0 with φt(x) /∈ Bρ(x0)
∀t ≥ 0. Combining this with part (1) gives that

φt(x) ∈ Bε(x0) \Bρ(x0) for all t ≥ 0.

But V̇ < 0, V̇ is only zero at x0 and therefore V̇ attains its
maximum in a compact set Bε(x0) \Bρ(x0). Hence ∃κ > 0
so that

V̇ ≤ −κ whenever x(t) ∈ Bε(x0) \Bρ(x0).

But since x(t) is in this compact set for all t ≥ 0,

V̇ ≤ −κ,∀t ≥ 0.

Hence

V (φt(x))− V (x) ≤ −κt→ −∞ as t→∞,
contradicting V ≥ 0.
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Example 8.9

x′ = 2y(z − 1)
y′ = −x(z − 1)
z′ = xy

Its linearisation isA :=




0 −2 0
1 0 0
0 0 0


. NoteA has eigen-

values ±
√

2i and 0. So A is not hyperbolic, and theo-
rem 8.1 does not apply.

Take V (x, y, z) = ax2 + by2 + cz2. Then

V̇ = 2(axẋ+byẏ+czż) = 4axy(z−1)−2bxy(z−1)+2cxyz.

We want V ≥ 0 and V̇ ≤ 0. We can achieve this by setting
c = 0, 2a = b. This makes V̇ = 0. It follows that solutions
stay on level sets of the function V = x2 + 2y2. x0 =
(0, 0, 0) is not asymptotically stable. Strictly speaking V
is not a Lyapounov function because V (0, 0, z) = 0: more
work is needed to check if x0 is stable.

Example 8.10
Consider the system x′ = −y−xy2, y′ = x−yx2. The only
singularity of this system is at (0, 0). Indeed, if x′ = 0, then
either y = 0 or 1 + xy = 0; if y = 0 then x(1 − xy) = 0
implies x = 0; if 1 + xy = 0 then 0 = x(1 − xy) = 2x
implies x = 0 which contradicts 1 + xy = 0.

Let us show that (0, 0) is asymptotically stable. To do
this, take the quadratic function V (x, y) = x2 + y2. Then
V̇ = 2xẋ+2yẏ = −4x2y2 ≤ 0, so (0, 0) is stable. Note that V̇ (x, y) = 0 along the two axis, so we do NOT

have that V̇ < 0 outside (0, 0). Nevertheless we can
conclude that (0, 0) is asymptotically stable, see the main
text.

Since V
is decreasing (non-increasing), this implies that there exists
V0 ≥ 0 so that V (x(t), y(t)) ↓ V0. If V0 = 0 then the
solution converges to (0, 0) as claimed. If V0 > 0 then the
solution would converge to the circle {(x, y);x2+y2 = V0}
and so this circle would be a periodic orbit. (This follows

94



from the arrows.)
Note that the set V (x, y) = x2 + y2 = V0 does not

contain singular points and so there exists δ > 0 so that
|ẋ|+ |ẏ| ≥ δ > 0 along this set. It follows that (x(t), y(t))
does not converge to a point of the circle V (x, y) = x2 +
y2 = V0. But the orbit can also not tend to a periodic orbit,
since V̇ < 0 except when x = 0 or y = 0. (By looking
at the arrows, one concludes that the orbits are tangent to
circles when x = 0 or when y = 0 but otherwise spiral
inwards.) It follows that V0 = 0 and so we are done.

8.6 The pendulum
Consider a pendulum moving along a circle of radius l, with
a mass m and friction k. Let θ(t) be the angle from the ver-

tical at time t. The force tangential to the circle is −(kl
dθ

dt
+

mg sin(θ)). So Newton’s law gives
mlθ′′ = −klθ′ −mg sin θ i.e. θ′′ = −(k/m)θ′ − (g/l) sin θ.

Taking ω = θ′ gives

θ′ = ω

ω′ =
−g
l

sin(θ)− k

m
ω.

Singularities are (nπ, 0) which corresponds to the pendulum
being in vertical position (pointing up or down). Linearizing
this at (0, 0) gives

(
0 1
−g/l −k/m

)

which gives eigenvalues (−k/m±
√

(k/m)2 − 4g/l)/2.
Note that, as l > 0, the real part of (−k/m±

√
(k/m)2 − 4g/l)/2

is negative. (If (k/m)2 − 4g/l < 0 then both e.v. are complex
and if (k/m)2− 4g/l > 0 then both e.v. are real and negative.)
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Figure 2: The phase portrait of the pendulum (no friction).
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Figure 3: The phase portrait of the pendulum (with fric-
tion). The labels in the axis of this figure should have been
−4π,−2π, 0, 2π, 4π.

Let us construct a Lyapounov function for this:

E = kinetic energy + potential energy
= (1/2)mv2 +mg(l − l cos(θ))
= (1/2)ml2ω2 +mgl(1− cos(θ)).

Then E ≥ 0 and E = 0 if and only if ω = 0 and θ = nπ.
Moreover,

Ė = ml(lωω′ + gθ′ sin θ)

= ml(lω(
−g
l

sin(θ)− k

m
ω) + gω sin θ)

= −kl2ω2

.

If the friction k > 0 then Ė < 0 except when ω = 0. If the
friction k = 0 then Ė = 0 and so solutions stay on level sets of
E.
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8.7 Hamiltonian systems
When the friction k = 0 we obtain an example of a Hamil-
tonian system, i.e., a system for which there exists a function
H : R2 → R so that the equation of motion (i.e. the differential
equation):

ẋ =
∂H

∂y
(x, y)

ẏ = −∂H
∂x

(x, y)

H is the energy of the system, which is conserved over time:

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ

=
∂H

∂x

∂H

∂y
+
∂H

∂y
(−∂H

∂x
)

= 0.

8.8 Van der Pol’s equation
In electrical engineering the following equation often arrises

ẋ = y − x3 + x
ẏ = −x. (30)

This system has a singularity at (x, y) = (0, 0). Its linear part

at (0, 0) is
(

1 1
−1 0

)
. This has eigenvalues (1±

√
3i)/2 and

therefore (0, 0) is a source. What happens with other orbits?

Theorem 8.11
There is one periodic solution of this system and every

non-equilibrium solution tends to this periodic solution.
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Figure 4: The phase portrait of the van der Pol equation.

The proof of this theorem will occupy the remainder of this
section.

Define

v± = {(x, y);±y > 0, x = 0} and g± = {(x, y);±x > 0, y = x3−x}.

This splits up R2 in regions A,B,C,D where horizontal and
vertical speed is positive/negative.

ẋ = y − x3 + x
ẏ = −x.

Lemma 8.12
For any p ∈ v+, ∃t > 0 with φt(p) ∈ g+.

Proof : Define (xt, yt) = φt(p).

• Since x′(0) > 0, φt(p) ∈ A for t > 0 small.

• x′ > 0, y′ < 0 in A. So the only way the curve φt(p)
can leave the region A ∩ {(x, y); y < y0} is via g+.

• So φt(p) cannot go to infinity before hitting g+.

• Hence T = inf{t > 0;φt(p) ∈ g+} is well-defined.

• We need to show T <∞.
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• Choose t0 ∈ (0, T ) and let a = xt0 . Then a > 0 and
xt ≥ a for t ∈ [t0, T ].

• Hence ẏ ≤ −a for t ∈ [t0, T ] and therefore y(t) −
y(t0) ≤ −a(t− t0) for t ∈ [t0, T ].

• T = ∞ =⇒ limt→∞ y(t) → −∞ which gives a
contradiction since (x(t), y(t)) ∈ A for t ∈ (0, T ).

Similarly
Lemma 8.13

For any p ∈ g+, ∃t > 0 with φt(p) ∈ v−.

For each y > 0 define F (y) = φt(0, y) where t > 0 is min-
imal so that φt(0, y) ∈ v−. Similarly, define for y < 0 define
F (y) = φt(0, y) where t > 0 is minimal so that φt(0, y) ∈ v+.
By symmetry F (−y) = −F (y). Hence

P (p) = |F (|F (p)|)|.

Define the Poincaré first return map to v+ as

P : v+ → v+ by (0, y) 7→ (0, F 2(y)).

P (p) = φt(p) where t > 0 is minimal so that φt(p) ∈ v+.
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Figure 5: We will show that the graph of x 7→ |F (x)| looks
like this. Since G(x) = |F (|F (x)|)| the graph of G will look
similar, and the unique fixed point q of F is necessarily the
unique fixed point of G.
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Define

p∗ = (0, y∗) ∈ v+ so that ∃t > 0 with φt(p∗) = (1, 0)
and φs(p∗) ∈ A for 0 < s < t.

Lemma 8.14

1. P : v+ → v+ is continuous and increasing (here we
order v+ as (0, y1) < (0, y2) when y1 < y2);

2. P (p) > p when p ∈ [0, p∗];

3. P (p) < p when p is large;

4. P : v+ → v+ has a unique attracting fixed point q ∈
v+ ∈ [p∗,∞).

Proof : The proof of (1): That P is continuous follows from
the property that (t, x) 7→ φt(x) is continuous and from a
theorem we will only prove in the next chapter, specifically
Theorem . Uniqueness of solns =⇒ orbits don’t cross =⇒
P is increasing.

Instead of (2), (3) and (4) we shall prove the following
statement:

[p∗,∞) 3 p 7→ δ(p) := |F (p)|2 − |p|2
is strictly decreasing

(31)

δ(p) > 0 for p ∈ [0, p∗] (32)

δ(p)→ −∞ as p→∞ (33)

Claim: This implies that [p∗,∞) 3 p 7→ |P (p)|2 − |p|2 is
strictly decreasing.

Proof: Since [0,∞) 3 p 7→ |F (p| is increasing, |F (p∗)| >
|p∗| and [p∗,∞) 3 p 7→ |F (p)|2 − |p|2 is strictly decreasing,
it follows that [p∗,∞) 3 p 7→ (|F |F (p)|)|2 − |F (p)|2 is
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also strictly decreasing. Combining this with (31) proves the
claim.

From (31)-(33) we obtain that the graph of x 7→ |F (x)|
looks as in the above figure, and therefore imply assertions
(2) and (3) and (4) in the lemma (see lecture). So it is enough
to prove (31)-(33). Note that the fixed point q of F , is a zero
of the function p 7→ δ(p) and therefore p > p∗.

Step 1: A useful expression for δ(p). Define U(x, y) =
x2 + y2. Pick p ∈ v+ and let τ > 0 be minimal so that
φτ (p) ∈ v−. (So φτ (p) = F (p).) Hence

δ(p) : = |F (p)|2 − |p|2 = U(φτ (p))− U(φ0(p))

=
∫ τ

0 U̇(φt(p)) dt.

Note

U̇ = 2xẋ+ 2yẏ =

= 2x(y − x3 + x) + 2y(−x) = −2x(x3 − x) = 2x2(1− x2)

.

Hence

δ(p) = 2

∫ τ

0
[x(t)]2(1− [x(t)]2)dt = 2

∫ τ

0
x2(1− x2) dt.

Here γ is the curve [0, τ ] 3 t→ φt(p).

Step 2: δ(p) > 0 when p ∈ (0, p∗]. If p ∈ (0, p∗] then
δ(p) > 0 because then (1 − [x(t)]2) ≥ 0 for all t ∈ [0, τ).
So |F (p)| > p and P (p) > p for p ∈ (0, p∗]. So a periodic
orbit cannot intersect the line segment [0, p∗] in v+.

Step 3: δ(p) when p > p∗. Choose 0 = τ0 < τ1 < τ2 <
τ3 = τ so that

• the curve [τ1, τ2] 3 t 7→ γ(t) has both endpoint on the
line x = 1;
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• the curve [τ0, τ1] 3 t 7→ γ(t) connects p ∈ v+ to the
line x = 1;

• the curve [τ2, τ3] 3 t 7→ γ(t) connects F (p) ∈ v− to
the line x = 1.

Now consider

δi(p) := 2

∫ τi

τi−1

x2(t)(1− x2(t)) dt for i = 1, 2, 3.

Note that δ(p) = δ1(p) + δ2(p) + δ3(p).

Step 4: δ1(p) is decreasing when p > p∗.

• γ1 is a curve which can be regarded as function of x.

• Hence we can write
∫ τ1

0
x2(1−x2) dt =

∫ τ1

0

x2(1− x2)

dx/dt
dx =

∫ 1

0

x2(1− x2)

y(x)− (x3 − x)
dx

where y(x) is so that (x, y(x)) is the point on the curve
γ1 defined by [τ0, τ1] 3 t 7→ γ(t).

• As p moves up, the curve γ1 (connecting p ∈ v+ to a
point on the line x = 1) moves up and so y(x)− (x3−
x) (along this curve) increases.

• Hence p → δ1(p) = 2
∫ τ1

0 x2(1 − x2) dt decreases as
p increases.

Step 5: δ2(p) is decreasing when p > p∗.

• Along γ2, the solution x(t) is a function of y ∈ [y1, y2]
(where (1, y1), y1 > 0 and (1, y2), y2 < 0) are the
intersections points of γ with the line x = 1.

• Since −x = dy/dt we get in the 2nd integral one has
∫ y2
y1

because that corresponds to the
way the curve γ1 is oriented.∫ τ2

τ1
x2(1− x2) dt =

∫ y2
y1
−x(y)(1− [x(y)]2) dy

=
∫ y1
y2
x(y)(1− [x(y)]2) dy
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• Since x(y) ≥ 1 along γ2 (and y2 < y1), this integral is
negative.

• As p increases, the interval [y1, y2] gets larger, and the
curve γ2 moves to the right and so x(y)(1−[x(y)]2) de-
creases. It follows that δ2(p) decreases as p increases.

• It is not hard to show that δ2(p) → −∞ as p → ∞,
see lecture.

Exactly as for δ1(p), one also gets that δ3(p) decreases
as p increases. This completes the proof of the equation (??)
and therefore the proof of Lemma 8.14 and Theorem 8.11.
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8.9 Population dynamics
A common predator-prey model is the equation

ẋ = (A−By)x
ẏ = (Cx−D)y.

where A,B,C,D > 0

Here x are the number of rabbits and y the number of foxes.
For example, x′ = Ax−Bxy expresses that rabbits grow with
speed A but that the proportion that get eaten is a multiple of
the number of foxes.

Let us show that the orbits look like the following diagram:

MathCapstone.pdf http://www.cs.utexas.edu/~schrum2/MathCapstone.pdf

5 of 23 23/02/2013 10:47
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• Singularities are (x, y) = (0, 0) and (x, y) = (D/C,A/B).

• If p is on the axis, then φt(x) is on this axis for all t ∈ R.

• At (0, 0) the linearisation is
(
A 0
0 −D

)
, so eigenval-

ues are A,−D and (0, 0) is a saddle point.

• At (x, y) = (D/C,A/B) the linearisation is
(
A−By −Bx
Cy Cx−D

)
=

(
0 −BD/C

CA/B 0

)
which has eigenvalues±ADi (purely

imaginary).
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ẋ = (A−By)x
ẏ = (Cx−D)y.

where A,B,C,D > 0

• Analysing the direction field, suggests that orbits cycle
around (D/C,A/B) (see lecture).

• Try to find Lyapounov of the form H(x, y) = F (x) +
G(y).

• Ḣ = F ′(x)ẋ+G′(y)ẏ = xF ′(x)(A−By)+yG′(y)(Cx−
D).

• If we set (that is, insist on) Ḣ = 0 then we obtain

xF ′

Cx−D =
yG′

By − A (34)

• LHS of (34) only depends on x and RHS only on y. So
expression in (34) = const.

• We may as well set const = 1. This gives F ′ = C−D/x
and G′ = B − A/y.

• So F (x) = Cx − D log x,G(y) = By − A log y + F0

and H(x, y) = Cx−D log x+By−A log y+G0 where
F0, G0 are constants. Note that F (x) andG(y) both have
unique minima at x = D/C and y = A/B. Let us take
F0, G0 so that the minima values so that F (D/C) = 0
and G(A/B) = 0. Then F,G ≥ 0, F,G both have their
minima values 0 and go to infinity as x, y → 0 or x, y →
∞, see the figure.

From this one concludes that the level sets {(x, y) : H(x, y) =
c} are smooth closed curves when c > 0, a single point
if c = 0 and empty when c < 0.

Summarising:
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Theorem 8.15
Take (x, y) 6= (D/C,A/B) with x, y > 0 and consider its
orbits under

ẋ = (A−By)x
ẏ = (Cx−D)y.

where A,B,C,D > 0.

Then t 7→ φt(x, y) is periodic (i.e. is a closed curve).

Proof : Take H0 = H(x, y) and let Σ = {(u, v);H(u, v) =
H0}.

• The orbit φt(x, y) stays on the level set Σ of H .

• It moves with positive speed.

• So it returns in finite time.

• Orbits exist for all time, because it remains on Σ (and
therefore cannot go to infinity).
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9 Dynamical Systems
So far we saw:

• Most differential equations cannot be solved explicitly.

• Nevertheless in many instances one can still prove many
properties of its solutions.

• The point of view taken in the field dynamical systems
is to concentrate on

– attractors and limit sets: what happens eventually;

– statistical properties of orbits.

In this chapter we will discuss a result which describes the
planar case (i.e. the two-dimensional case).

Throughout the remainder of these notes, we will tacitly
assume the solution φt(x) through x exists for all t ≥ 0.

9.1 Limit Sets
Let φt be the flow of a dynamical system and take a point x.
Definition 9.1

Then the ω-limit set of x, denoted by ω(x), is defined as

{y;∃tn →∞ so that φtn(x)→ y}.

So ω(x) describes where the point x eventually goes. It
turns out that ω(x) is a closed set, see the next lemma, but it is
possible that ω(x) = ∅.

108



Lemma 9.2
ω(x) is closed.

Proof : Take a point y /∈ ω(x). Then there exists no sequence
tn →∞ so that φtn(x)→ y. So there exists an open neigh-
bourhood U of y so that φt(x) ∩ U = ∅ for all t large. But
then each point in U is in the complement of ω(x). Hence
the complement of ω(x) is open, proving the lemma.

We say that x lies on a periodic orbit if φT (x) = x for
some T > 0. The smallest such T > 0 is called the period of
x. Note that then

• γ = ∪t∈[0,T )φt(x) is closed curve without self-intersections,
and

• ω(x) = γ.

9.2 Local sections
Definition 9.3

A hyperplane S 3 p in Rn is a called a local section at p for
the autonomous differential equation x′ = f(x) if: f(p) 6=
0 and the vector f(p) at p does not lie in the hyperplane.

Definition 9.4
A subset S of a hyperplane in Rn is a called a section for the
autonomous differential equation x′ = f(x) if: for every
p ∈ S, f(p) 6= 0 and the vector f(p) at p does not lie in the
hyperplane.

109



Theorem 9.5 (Flow Box Theorem)
Assume S is a local section at p and assume q is that

φt0(q) = p for some minimal t0 > 0. Then there exists a
neighbourhood U of q and a smooth function τ : U → R so
that τ(q) = t0 and so that φτ(x)(x) ∈ S for each x ∈ U .

Remark 9.6
If t0 > 0 is the minimal positive time so that φt0(q) ∈
S then τ(x) > 0 will also be minimal so that φτ(x)(x) ∈
S. τ(x) is then called the first arrival time and the map
P (x) = φτ(x)(x) the Poincaré entry map to S.

Proof : Let g : Rn → R be an affine function of the form g(x) =
a ·x+ b which determines S, i.e. so that S = {x; g(x) = 0}.
Define G(x, t) = g(φt(x)). Then G(q, t0) = g(φt0(q)) =
g(p) = 0. Moreover,

∂G

∂t
(q, t0) = Dg(φt0(q))

∂φt
∂t

(q)
∣∣
t=t0

= Dg(p)f(φt0(q))

= Dg(p)f(p) = a · f(p) 6= 0 (because S is a section at p).

Hence by the implicit function theorem there exists a func-
tion x 7→ τ(x) so that G(x, τ(x)) = 0 for x near q. Hence
φτ(x) ∈ S for x near q.

Remark 9.7

1. If S is a section at p and x is close to p, then there ex-
ists t close to zero so that φt(x) ∈ S and so that φt(x)
is still close to zero. This follows from the previous
theorem (by taking q = p and t0 = 0).

2. From the precious remark it follows that if φtn(x)→
p for some sequence tn → ∞ then there exists t′n →
∞ so that φt′n(x) → p and φt′n(x) ∈ S and so that
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|tn′ − tn| → 0.

3. If p lies on a periodic orbit with period T and S is
a local section at p, then φT (p) = p and then there
exists a neighbourhood U of p and a map P : S ∩
U → S so that P (p) = p. This is called the Poincaré
return map.

4. As in the example of the van der Pol equation, one
can use the Poincaré map to check whether the peri-
odic orbit is attracting.
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224 Chapter 10 Closed Orbits and Limit Sets

Y1

Y0
I0

I1

T

D

Figure 10.7 Solutions exit
the region D through T.

Proposition. For a planar system, suppose that Y ∈ ω(X). Then the solution
through Y crosses any local section at no more than one point. The same is true if
Y ∈ α(X).

Proof: Suppose for the sake of contradiction that Y1 and Y2 are distinct points
on the solution through Y and S is a local section containing Y1 and Y2.
Suppose Y ∈ ω(X) (the argument for α(X) is similar). Then Yk ∈ ω(X) for
k = 1, 2. Let Vk be flow boxes at Yk defined by some intervals Jk ⊂ S ; we
assume that J1 and J2 are disjoint as depicted in Figure 10.8. The solution
through X enters each Vk infinitely often; hence it crosses Jk infinitely often.

X
Y1

Y2

m2

m1

Figure 10.8 The solution
through X cannot cross V1 and
V2 infinitely often.

9.3 Planar Systems, i.e. ODE in R2

Theorem 9.8
Let S be a section for a planar differential equation, so S
is a piece of a straight line. Let γ = ∪t≥0φt(x) and let
y0, y1, y2 ∈ S ∩ γ. Then y0, y1, y2 lie ordered on γ if and
only if they lie ordered on S.

In this chapter we tacitly assume that if γ is a closed curve
in R2 without self-intersections, then the complement of γ
has two connected components: one bounded one and the
other unbounded. This result is called the Jordan curve
theorem which looks obvious, but its proof is certainly not
easy. It can be proved using algebraic topology.

Proof : Take y0, y1, y2 ∈ γ ∩ c. Assume that y0, y1, y2 are con-
secutive points on γ, i.e. assume y2 = φt2(y0), y1 = φt1(y0)
with t2 > t1 > 0. Let γ′ = ∪0≤s≤t1φs(y0) and consider the
arc c in S connecting y0 and y1. Then

• c ∪ γ′ is a closed curve which bounds a compact set D
(here we use a special case of a deep result namely the
Jordan theorem).

• Either all orbits enter D along c or they all leave D
along c.

• Either way, since the orbit through y does not have self-
intersections and because of the orientation of x′ =
f(x) along S, φt2(y0) cannot intersect c, see figure.
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Lemma 9.9
If y ∈ ω(x). Then the orbit through y intersects any section
at most once.

Proof : Assume by contradiction that y1 = φu(y) and y2 =
φv(y) (where v > u ≥ 0) are contained on a local section S.

Since y ∈ ω(x) where exists tn → ∞ so that φtn(x) →
y. Hence φtn+u(x) → y1 and φtn+v(x) → y2. Because
y1, y2 ∈ S, this implies that for n large there exists un, vn →
0 so that

φtn+u+un(x) ∈ S, φtn+v+vn(x) ∈ S for all n ≥ 0,

φtn+u+un(x)→ y1, φtn+v+vn(x)→ y2 as n→∞.
Here we use Remark 9.7(2).

Take n′ > n so large that

tn + u+ un < tn + v + vn < tn′ + u+ vn′ . (35)

Here the first inequality holds when n is sufficiently large be-
cause un, vn → 0 and u < v and the second inequality holds
when n′ >> n because then tn′−tn is large and vn, vn′ ≈ 0.

Provided n′ > n are large, the three points

φtn+u+un(x), φtn+v+vn(x), φtn′+u+vn′ (x)

do NOT lie ordered on S. Indeed, the first and last points are
close to y1 and the middle one is close to y2.

This and (35) contradict the previous theorem.
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9.4 Poincaré Bendixson
Theorem 9.10 (Poincaré-Bendixson Theorem)

Consider a planar differential equation, take x ∈ R2 and
assume that ω := ω(x) is non-empty, bounded and does not
contain a singular point of the differential equation. Then
ω is a periodic orbit.

That is, we have an autonomous differential equation in
R2, ẋ = f(x) with x ∈ R2.Proof : • Assume that ω does not contain a singular point.

• Take y ∈ ω. Then there exists sm → ∞ so that
φsm(x)→ y. Hence for each fixed t > 0, φsm+t(x)→
φt(y) asm→∞. It follows that the forward orbit γ =
∪t≥0φt(y) is contained in ω. Since ω is compact, any
sequence φtn(y) has a convergent subsequence (which
is contained in ω). Hence ω(y) 6= ∅ and ω(y) ⊂ ω.

• Take z ∈ ω(y). Since z is not a singular point, there
exists a section S containing z. Since z ∈ ω(y), there
exists tn →∞ so that φtn(y)→ z and φtn(y) ∈ S.

• By the previous lemma, φtn(y) = φtn′ (y) for all n, n′.
So ∃T > 0 so that φT (y) = y and y lies on a periodic
orbit.

• We will skip the proof that ω is equal to the orbit through
y.
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9.5 Consequences of Poincaré-Bendixson
Definition 9.11

We say that A is a forward invariant domain in R2 if x ∈ A
implies that φt(x) ∈ A for t > 0.

Using the Lefschetz index formula (which we have not dis-
cuss in this course and is related to the Euler index) one can
deduce the following:
Theorem 9.12

Let γ be a periodic orbit of a differential equation x′ =
f(x) in the plane surrounding a region D. Then

• D contains a singularity;

• if, moreover, all singularities of f are hyperbolic,
then D contains a singularity which is either a sink
or a source.
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9.6 Further Outlook
• The Poincaré Bendixson theorem implies that planar dif-

ferential equations cannot have ‘chaotic’ behaviour.

• Differential equations in dimension ≥ 3 certainly can
have chaotic behaviour, see the 3rd year course dynam-
ical systems (M3PA23) and for example http://www.
youtube.com/watch?v=ByH8_nKD-ZM and can un-
dergo bifurcations (discussed in the 3rd year course bi-
furcatiom theory M3PA24).

• To describe their statistical behaviour one uses proba-
bilistic arguments; this area of mathematics is called er-
godic theory. This is a 4th year course ( M4PA36). For
more information see for example, http://en.wikipedia.
org/wiki/Ergodic_theory

• Instead of differential equations one also studies discrete
dynamical systems, xn+1 = f(xn). When f : C → C
is a polynomial this leads to the study of Julia sets us-
ing tools from complex analysis. For more information,
see http://en.wikipedia.org/wiki/Julia_
set.

• Ideas from the field of dynamical systems are increas-
ingly used in modern applications of mathematics in for
example biology, economics, machine learning, game
theory etc.

• Next year I will be teaching a course on this topic: games
and dynamics (M3PA48), which will cover various learn-
ing models. For example, I will discuss reinforcement
learning, which is used by Artificial Intelligence compa-
nies such as Deep Mind.
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9.7 Dynamical Systems
Dynamical systems is an extremely active area, and is both in-
teresting for people focusing on pure as well as those more
interested in applied mathematics.

For example, Fields Medalists whose work is in or related
to this area, include: Avilla (2014, complex dynamics), Lin-
denstrauss (2010, ergodic theory), Smirnov (2010, part of his
work relates to complex dynamics), Tao (2006, part of his work
related to ergodic theory), McMullen (1998, complex dynam-
ics), Yoccoz (1994, complex dynamics), Thurston (1982, a sig-
nificant amount of work was about low and complex dynam-
ics), Milnor (1962, his current work is in complex dynamics).

Applied dynamicists often aim to understand specific dy-
namical phenomena, related to for example biological systems,
network dynamics, stability and bifurcation issues etc.

One of the appeals of dynamical systems that it uses math-
ematics from many branches of mathematics, but also that it is
so relevant for applications.
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Appendix A Multivariable calculus
Some of you did not do multivariable calculus. This note pro-
vides a crash course on this topic and includes some very im-
portant theorems about multivariable calculus which are not
included in other 2nd year courses.

A.1 Jacobian
Suppose that F : U → V where U ⊂ Rn and V ⊂ Rp. We
say that F is differentiable at x ∈ U if there exists a linear map
A : Rn → Rm (i.e. a m× n matrix A)

|(F (x+ u)− F (x))− Au|
|u| → 0

as u→ 0. In this case we define DFx = A.

• In other words F (x + u) = F (x) + Au + o(|u|). (A is
the linear part of the Taylor expansion of F ).

• How to compute DFx? This is just the Jacobian matrix,
see below.

• If f : Rn → R then Dfx is a 1 × n matrix which is also
called grad(f) or∇f(x).

Example A.1

Let F (x, y) =

(
x2 + yx
xy − y

)
then

DFx,y =

(
2x+ y x
y x− 1

)
.

Usually one denotes by (Dfξ)u is the directional derivative
of f (in the direction u) at the point ξ.
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Example A.2

IfF (x, y) =

(
x2 + yx
xy − y

)
and e1 =

(
1
0

)
then (DFx,y)e1 =

(
2x+ y x
y x− 1

)
e1 =

(
2x+ y
y

)
. This is what you

get when you fix y and differentiate w.r.t. x in F (x, y).

For each fixed y one has a curve x 7→ F (x, y) =

(
x2 + yx
xy − y

)

and (DFx,y)e1 =

(
2x+ y
y

)
gives its speed vector.

Remark: Sometimes one writesDF (x, y)u instead ofDFx,yu.
If u is the i-th unit vector ei then one often writes DiFx,y

and if i = 1 something like DxF (x, y).

Theorem A.3 (Multivariable Mean Value Theorem)
If f : R → Rm is continuously differentiable then ∀x, y ∈
R there exists ξ ∈ [x, y] so that |f(x)− f(y)| ≤ |Dfξ||x−
y|.

Proof : By the Main Theorem of integration, f(y) − f(x) =∫ y
x Dfs ds (whereDft is the n×1 matrix (i.e. vertical vector)

of derivatives of each component of f . So

|f(x)− f(y)| = |
∫ y
x Dfs ds| ≤

∫ y
x |Dfs| ds

≤ maxs∈(x,y) |Dfs| |x− y| ≤ |Dfξ||x− y|

for some ξ ∈ [x, y].

Corollary: If f : Rn → Rm is continuously differentiable
then for each x, y ∈ Rn there exists ξ in the arc [x, y] connect-
ing x and y so that |f(x) − f(y)| ≤ |Dfξ(u)||x − y| where
u = (x − y)/|x − y|. Proof: just consider f restricted to the
line connecting x, y and apply the previous theorem.
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A.2 The statement of the Inverse Function The-
orem

Theorem A.4 (The Inverse Function Theorem)
Let U ⊂ Rn be open, p ∈ U and F : U → Rn be con-
tinuously differentiable and suppose that the matrix DFp is
invertible. Then there exist open sets W ⊂ U and V ⊂ Rn

with p ∈ W and F (p) ∈ V , so that F : W → V is a
bijection and so that its inverse G : V → W is also differ-
entiable.

Definition A differentiable map F : U → V which has a
differentiable inverse is called a diffeomorphism.

Proof: Without loss of generality we can assume that p =
0 = F (p) (just apply a translation). By composing with a linear
transformation we can even also assume DF0 = I . Since we
assume that x 7→ DFx is continuous, there exists δ > 0 so that

|| I −DFx|| ≤ 1/2 for all x ∈ Rn with |x| ≤ 2δ. (36)

Here, as usual, we define the norm of a matrix A to be

||A|| = sup{|Ax|; |x| = 1}.
Given y with |y| ≤ δ/2 define the transformation

Ty(x) = y + x− F (x).

Note that
Ty(x) = x⇐⇒ F (x) = y.

So finding a fixed point of Ty gives us the point x for which
G(y) = x, where G is the inverse of F that we are looking for.

We will find x using the Banach Contraction Mapping The-
orem.

(Step 1) By (36) we had || I−DFx|| ≤ 1/2 when |x| ≤ 2δ.
Therefore, the Mean Value Theorem applied to x 7→ x− F (x)
gives
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|x− F (x)− (0− F (0))| ≤ 1

2
|x− 0| for |x| ≤ 2δ

Therefore if |x| ≤ δ (and since |y| ≤ δ/2),

|Ty(x)| ≤ |y|+ |x− F (x)| ≤ δ/2 + δ/2 = δ.

So Ty maps the closed ball B := Bδ(0) into itself.
(Step 2) Ty : B → B is a contraction since if x, z ∈ Bδ(0)

then |x−z| ≤ 2δ and so we obtain by the Mean Value Theorem
again

|Ty(x)−Ty(z)| = |x−F (x)− (z−F (z))| ≤ 1

2
|x− z|. (37)

(Step 3) Since Bδ(0) is a complete metric space, there ex-
ists a unique x ∈ Bδ(0) with Ty(x) = x. That is, we find a
unique x with F (x) = y.

(Step 4) The upshot is that for each y ∈ Bδ/2(0) there is
precisely one solution x ∈ Bδ(0) of the equation F (x) = y.
Hence there exists W ⊂ Bδ(0) so that the map

F : W → V := Bδ/2(0)

is a bijection. So F : W → V has an inverse, which we denote
by G.

(Step 5) G is continuous: Set u = F (x) and v = F (z).
Applying the triangle inequality in the first inequality and equa-
tion (37) in the 2nd inequality we obtain,

|x− z| = |(x− z)− (F (x)− F (z)) + (F (x)− F (z))| ≤

≤ |(x− z)− (F (x)− F (z))|+ |F (x)− F (z)| ≤

≤ 1

2
|x− z|+ |F (x)− F (z)|.
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So |G(u)−G(v)| = |x− z| ≤ 2|F (x)− F (z)| = 2|u− v|.

(Step 6) G is differentiable:

|(G(u)−G(v))−(DFz)
−1(u−v)| = |x−z−(DFz)

−1(F (x)−F (z))| ≤

||(DFz)−1||·|DFz(x−z)−(F (x)−F (z))| = o(|x−z|) = 2o(|u−v|).
as ||(DFz)−1|| is bounded, using the definition and the last in-
equality in step 5. Hence

|G(u)−G(v)− (DFz)
−1(u− v)| = o(|u− v|)

proving that G is differentiable and that DGv = (DFz)
−1.

Example A.5
Consider the set of equations

x2 + y2

x
= u, sin(x) + cos(y) = v.

Given (u, v) near (u0, v0) = (2, cos(1) + sin(1)) is it possi-
ble to find a unique (x, y) near to (x0, y0) = (1, 1) satisfy-
ing this set of equations? To check this, we define

F (x, y) =

(
x2+y2

x

sin(x) + cos(y)

)
.

The Jacobian matrix is
(

x2−y2
x2

2y
x

cos(x) − sin(y)

)
.

The determinant of this is y2−x2
x2

sin(y) − 2y
x

cos(x) which
is non-zero near (1, 1). So F is invertible near (1, 1) and
for every (u, v) sufficiently close to (u0, v0) one can find
a unique solution near to (x0, y0) to this set of equations.
Near (π/2, π/2) the map F is probably not invertible.
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A.3 The Implicit Function Theorem
Theorem A.6 (Implicit Function Theorem)

Let F : Rp × Rn → Rn be differentiable and assume that
F (0, 0) = 0. Moreover, assume that n× n matrix obtained
by deleting the first p columns of the matrix DF0,0 is in-
vertible. Then there exists a function G : Rp → Rn so that
for all (x, y) near (0, 0)

y = G(x)⇐⇒ F (x, y) = 0.

The proof is a fairly simple application of the inverse func-
tion theorem, and won’t be given here. The Rp part in Rp×Rn

can be thought as parameters.
Example A.7

Let f(x, y) = x2 + y2 − 1. Then one can consider this as
locally as a function y(x) when ∂f/∂y = 2y 6= 0.

Example A.8
Consider the following equations:

x2 − y2 − u3 + v2 + 4 = 0,
2xy + y2 − 2u2 + 3v4 + 8 = 0.

Can one write u, v as a function of x, y in a neighbourhood
of the solution (x, y, y, v) = (2,−1, 2, 1)? To see this, de-
fine

F (x, y, u, v) = (x2−y2−u3+v2+4, 2xy+y2−2u2+3v4+8).

We have to consider the part of the Jacobian matrix which
concerns the derivatives w.r.t. u, v at this point. That is

(
−3u2 2v
−4u 12v3

)∣∣∣∣
(2,−1,2,1)

=

(
−12 2
−8 12

)
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which is an invertible matrix.
So locally, near (2,−1, 2, 1) one can write

(u, v) = G(x, y) that is F (x, y,G1(x, y), G2(x, y)) = 0.

It is even possible to determine ∂G1/∂x (i.e. ∂u/∂x). In-
deed, writing u = G1(x, y) and v = G2(x, y) and differentiate:

x2 − y2 − u3 + v2 + 4 = 0,
2xy + y2 − 2u2 + 3v4 + 8 = 0,

with respect to x. This gives

2x− 3u2 ∂u
∂x

+ 2v ∂v
∂x

= 0,
2y − 4u∂u

∂x
+ 12v3 ∂v

∂x
= 0.

So
(

∂u
∂x
∂v
∂x

)
=

(
3u2 −2v
4u −12v3

)−1(
2x
2y

)

=
1

8uv − 36u2v2

(
−12v3 2v
−4u 3u2

)(
2x
2y

)

Hence
∂u

∂x
=

(−24xv3 + 4vy)

8uv − 36u2v2
.
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Appendix B Prerequisites

B.1 Function spaces
1. Let f : [0, 1] → R be a function and fn : [0, 1] → R be

a sequence functions. Define what it means to say that
fn → f uniformly.

Answer: for all ε > 0 there exists n0 so that for all n ≥
n0 and all x ∈ [0, 1] one has |fn(x)− f(x)| < ε.

Answer 2: ||fn − f ||∞ → 0 as n → ∞ where ||fn −
f ||∞ = supx∈[0,1] |fn(x)− f(x)|.

2. Let f : [0, 1] → R be a function and fn : [0, 1] → R be
a sequence functions. Define what it means to say that
fn → f pointwise.

Answer: for all ε > 0 and all x ∈ [0, 1] there exists n0 so
that for all n ≥ n0 one has |fn(x)− f(x)| < ε.

3. Let f : [0, 1] → R be a function and fn : [0, 1] → R be a
sequence functions. Assume that fn → f uniformly and
that fn is continuous. Show that f is continuous.

Answer: Take ε > 0, x ∈ [0, 1]. Choose n0 so that
|fn − f |∞ < ε/3 for n ≥ n0 and pick δ > 0 so that
|fn0(x)− fn0(y)| < ε/3 for all y with |y − x| < δ. Then
for all y with |y − x| < δ, |f(x) − f(y)| < |f(x) −
fn0(x)| + |fn0(x) − fn0(y)| + fn0(y) − f(y)| < ε/3 +
ε/3 + ε/3 = ε.

4. Let f : [0, 1] → R be a function and fn : [0, 1] → R be
a sequence functions. Assume that fn → f pointwise
and that fn is continuous. Show that f is not necessarily
continuous.

Answer: Take fn(x) = (1 − nx) for x ∈ [0, 1/n] and
fn(x) = 0 elsewhere. Then fn → f pointwise, where
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f(0) = 1 and f(x) = 0 for x ∈ (0, 1].

Appendix C Explicit methods for solv-
ing ODE’s

This Appendix summarises explicit methods for solving ODE’s.
Since most of the material is already covered in first year ma-
terial, it will not be covered in the lectures.

C.1 State independent
• This section summarises techniques for solving ODE’s.

• The first subsections are about finding x : R→ R so that
x′ = f(x, t) and x(0) = x0 where f : R2 → R.

• So the issue is to find curves with prescribed tangents.

• Let us first review methods for explicitly solving such
equations (in part reviewing what you already know).

C.2 State independent ẋ = f(t).

In this case, each solution is of the form x(t) =
∫ t

0
f(s) ds +

x(0).

Example C.1
Assume the graph t 7→ (t, x(t)) has tangent vector (1, sin(t))
at t. Then x′(t) = sin(t) and so x(t) = − cos(t) + c. So
the solution of the ODE x′(t) = sin(t) finds a curve which
is tangent to the arrows of the vector field.
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C.3 Separation of variables
Separation of variables: ẋ = f(t)g(x). Then one can find
solutions as follows.

∫ x(T )

x(0)

dy

g(y)
=

∫ T

0

1

g(x(t))

dx

dt
dt =

∫ T

0

f(t) dt.

Here the first equality follows from the substitution rule (taking
y = x(t)) and 2nd from 1

g(x(t))
dx
dt

= f(t).

Example C.2
dx
dt

= ax+ b, x(t) = x0. Then dx
ax+b

= dt, x(0) = x0 which
gives, when a 6= 0,

(1/a)[log(ax+ b)]x(T )
x0

= T,

log((ax(T ) + b)/(ax0 + b)) = aT

and therefore

x(T ) = x0e
aT +

eaT − 1

a
b for T ∈ (−∞,∞)

Example C.3
dx
dt

= x2, x(0) = x0. Then dx
x2

= dt, x(0) = x0. Hence
[−1/x]

x(t)
x0 = t and so x(t) = 1

1/x0−t . Note that x(t) is well-
defined for t ∈ (−∞, 1/x0) but that x(t)→∞ as t ↑ 1/x0.
The solution goes to infinity in finite time.

Example C.4
dx
dt

=
√
|x|, x(0) = x0. If x0 > 0 and x(t) > 0 then we

obtain dx√
x

= dt, x(0) = x0 and so 2
√
x(t) − 2

√
x0 = t.
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Thus x(t) = (
√
x0 + t/2)2 for t ∈ (−2

√
x0,∞). When

t = −2
√
x0 then x(t) = 0, so need to analyse this directly.

When x0 = 0 then there are many solutions (non-uniqueness).
For any −∞ ≤ t0 ≤ 0 ≤ t1 ≤ ∞

x(t) =




−(t− t0)2/4 for t ∈ (−∞, t0)

0 for t ∈ [t0, t1]
(t− t1)2/4 for t ∈ (t1,∞)

is a solution.

So, without imposing some assumptions, solutions need
not be unique.

C.4 Linear equations x′ + a(t)x = b(t).
To solve this, first consider the homogeneous case x′+a(t)x =
0. This can be solved by separation of variables: dx/x=-a(t)dt
and so x(t) = x0 exp[−

∫ t
0
a(s) ds].

To find the solution of the ODE, apply the variation of vari-
ables ‘trick’: substitute x(t) = c(t) exp[−

∫ t
0
a(s) ds] in the

equation and obtain an equation for c(t).

Example C.5
x′+ 2tx = t. The homogeneous equation x′+ 2tx = 0 has
solution x(t) = ce−t

2 .
Substituting x(t) = c(t)e−t

2 into x′ + 2tx = t gives
c′(t)e−t

2
+c(t)(−2t)e−t

2
+2tc(t)e−2t2 = t, i.e. c′(t) = tet

2 .
Hence c(t) = c0 + (1/2)et

2 and therefore x(t) = c0e
−t2 +

(1/2). That the equation is of the form

c0 · solution of hom.eq + special solution

is due to the fact that the space of solutions x′ + 2tx = 0 is
linear (linear combination of solutions are again solutions).
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C.5 Exact equationsM(x, y)dx+N(x, y)dy = 0
when ∂M/∂y = ∂N/∂x.

Suppose f(x, y) ≡ c is a solution. Then df = (∂f/∂x)dx +
(∂f/∂y)dy = 0 and this corresponds to the ODE if ∂f/∂x =
M and ∂f/∂y = N . But if f is twice differentiable we have

∂M/∂y = ∂2f/∂x∂y = ∂2f/∂y∂x = ∂N/∂x.

It turns out that this necessary condition for ‘exactness’ is also
sufficient if the domain we consider has no holes (is simply
connected).

Example C.6
(y − x3)dx + (x + y2)dy = 0. The exactness condition
is satisfied (check!). How to find f with ∂f/∂x = y − x3

and ∂f/∂y = x + y2? The first equation gives f(x, y) =
yx − (1/4)x4 + c(y). The second equation then gives x +
c′(y) = ∂f/∂y = x + y2. Hence c(y) = y3/3 + c0 and
f(x) = yx− (1/4)x4 + y3/3 + c0 is a solution.

Sometimes you can rewrite the equation to make it exact.

Example C.7
ydx+(x2y−x)dy = 0. This equation is not exact (indeed,
∂y

∂y
6= ∂(x2y − x)

∂x
). If we rewrite the equation as y/x2dx+

(y − 1/x)dy = 0 then it becomes exact.

Clearly this was a lucky guess. Sometimes one can guess
that by multiplying by a function of (for example) x the ODE
becomes exact.

Example C.8
The equation (xy − 1)dx + (x2 − xy)dy = 0 is not exact.
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Let us consider the equation µ(x)(xy − 1)dx+ µ(x)(x2 −
xy)dy = 0. The exactness condition is µx = µ′(x2−xy)+
µ(2x− y). Rewriting this gives µ′(x)x(x− y) + µ(x)(x−
y) = 0, and so xµ′+µ = 0 implies the exactness condition.
So we can take µ(x) = 1/x. So instead of the original ODE
we solve (y − 1/x)dx + (x − y)dy = 0 as in the previous
example.

C.6 Substitutions
• Sometimes one can simplify the ODE by a substitution.

• One instance of this method, is when the ODE is of the
form M(x, y)dx + N(x, y)dy = 0 where M,N are ho-
mogeneous polynomials of the same degree.

In this case we can simplify by substituting z = y/x.

Example C.9

(x2 − 2y2)dx + xydy = 0. Rewrite this as dy
dx

= −x2+2y2

xy
.

Substituting z = y/x, i.e. y(x) = z(x)x gives

x
dz

dx
+ z =

dy

dx
=
−1 + 2z2

z
.

Hence
dz

dx
=
−1

z
+ z.

This can be solved by separation of variables.

C.7 Higher order linear ODE’s with constant
coefficients

Note that each y1 and y2 are solutions of

y(n) + an−1y
(n−1) + · · ·+ a0y = 0 (38)
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then linear combinations of y1 and y2 are also solutions.
Substituting y(x) = erx in this equation gives:

ern
(
rn + an−1r

n−1 + · · ·+ a0

)
= 0.

Of course the polynomial equation rn+an−1r
n−1+· · ·+a0 = 0

has n solutions r1, . . . , rn ∈ C.

Case 1: If these ri’s are all different (i.e. occur with single
multiplicity), then we obtain as a solution:

y(x) = c1e
r1x + · · ·+ cne

rnx.

Case 2: What if, say, r1 is complex? Then r̄1 is also a
root, so we may (by renumbering) assume r2 = r̄1 and write
r1 = α + βi and r2 = α− βi with α, β ∈ R. So

er1x = eαx(cos(βx)+sin(βx)i), er2x = eαx(cos(βx)−sin(βx)i),

and c1e
r1x+c2e

r2x = (c1+c2)eαx cos(βx)+(c1−c2)ieαx sin(β).
Taking c1 = c2 = A/2 ∈ R =⇒ c1e

r1x + c2e
r2x =

Aeαx cos(βx) On the other hand, taking c1 = −(B/2)i =
−c2 =⇒ c1e

r1x + c2e
r2x = Beαx sin(βx) (nothing prevents

us choosing ci non-real!!).

So if r1 = r̄2 is non-real, we obtain as a general solution

y(x) = Aeαx cos(βx) +Beαx sin(βx) + c3e
r3x + · · ·+ cne

rnx.

Case 3: Repeated roots: If r1 = r2 = · · · = rk then one
can check that c1e

r1x + c2xe
r2x + · · ·+ ckx

ker1x is a solution.

Case 4: Repeated complex roots: If r1 = r2 = · · · =
rk = α + βi are non-real, then we have corresponding roots
rk+1 = rk+2 = · · · = r2k = α− βi and we obtain as solution

c1e
αx cos(βx) + · · ·+ ckx

keαx cos(βx)+

+ck+1e
αx sin(βx) + · · ·+ c2kx

keαx sin(βx).
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Example C.10
Vibriations and oscillations of a spring

One can model an object attached to a spring byMx′′ =
Fs +Fd where Fd is a damping force and Fs a spring force.
Usually one assumes Fd = −cx′ and Fs = −kx. So

Mx′′ + cx′ + kx = 0 or x′′ + 2bx′ + a2x = 0

where a =
√
k/M > 0 and b = c/(2M) > 0.

Using the previous approach we solve r2 +2br+a2, i.e.
r1, r2 = −2b±

√
4b2−4a2

2
= −b±

√
b2 − a2.

Case 1: If b2 − a2 > 0 then both roots are real and
negative. So x(t) = x0(er1t + Ber2t) is a solution and as
t→∞ we get x(t)→ 0.

Case 2: If b2 − a2 = 0 then we obtain r1 = r2 = −a and
x(t) = Ae−at +Bte−at. So x(t) still goes to zero as→∞, but
when B is large, x(t) can still grow for t not too large.

Case 3: If b2 − a2 < 0. Then x(t) = e−bt(A cos(αt) +
B sin(αt)) is a solution. Solutions go to zero as t → ∞ but
oscillate.
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Example C.11
Vibriations and oscillations of a spring with forcing

Suppose one has external forcing

Mx′′ + cx′ + kx = F0 cos(ωt).

If b2 − a2 < 0 (using the notation of the previous example)
then

e−bt(A cos(αt) +B sin(αt))

is still the solution of the homogeneous part and one can
check

F0√
(k − ω2M)2 + ω2c2

(ωc sin(ωt)+(k−ω2M) cos(ωt) =
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F0√
(k − ω2M)2 + ω2c2

cos(ωt− φ)

is a particular solution where ω = arctan(ωc/(k−ω2M)).

F0√
(k − ω2M)2 + ω2c2

cos(ωt− φ)

is a particular solution where ω = arctan(ωc/(k−ω2M)).
Here c is the damping,M is the mass and k is the spring

constant.

• If damping c ≈ 0 and ω ≈ k/M then the denomina-
tor is large, and the oscillation has large amplitude.

• (k−ω2M)2+ω2c2 is minimal for ω =

√
k

M
− c2

2M2

and so this is the natural frequency (or eigen-frequency).

• This is important for bridge designs (etc), see

– http://www.ketchum.org/bridgecollapse.
html

– http://www.youtube.com/watch?v=3mclp9QmCGs

– http://www.youtube.com/watch?v=gQK21572oSU

C.8 Solving ODE’s with maple
Example C.12

> ode1 := diff(x(t), t) = x(t)^2;
d 2
--- x(t) = x(t)
dt

> dsolve(ode1);
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Figure 6: The vector field (1, sin(t)) drawn with the Maple
command: with(plots):fieldplot([1, sin(t)], t = -1 .. 1, x = -1 ..
1, grid = [20, 20], color = red, arrows = SLIM);

1
x(t) = --------

-t + _C1
> dsolve({ode1, x(0) = 1});

1
x(t) = - -----

t - 1

Example C.13
Example: y′′ + 1 = 0.

> ode5 := diff(y(x), x, x)+1 = 0;
/ d / d \\
|--- |--- y(x)|| + 1 = 0
\ dx \ dx //

> dsolve(ode5);
1 2

y(x) = - - x + _C1 x + _C2
2
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C.9 Solvable ODE’s are rare
It is not that often that one can solve an ODE explicitly. What
then?

• Use approximation methods.

• Use topological and qualitative methods.

• Use numerical methods.

This module will explore all of these methods.

In fact, we need to investigate whether we can even speak
about solutions. Do solutions exist? Are they unique? Did we
find all solutions in the previous subsections?

C.10 Chaotic ODE’s
Very simple differential equations can have complicated dy-
namics (and clearly cannot be solved analytically). For exam-
ple the famous Lorenz differential equation

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz

(39)

with σ = 10, r = 28, b = 8/3.
has solutions which are chaotic and have sensitive depen-

dence (the butterfly effect).

http://www.youtube.com/watch?v=ByH8_nKD-ZM
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Appendix D A proof of the Jordan nor-
mal form theorem

In this section we will give a proof of the Jordan normal form
theorem.
Lemma D.1

Let L1, L2 : V → V where V is a finite dimensional vector
space. Assume L1L2 = 0 and ker(L1) ∩ ker(L2) = {0}.
Then V = ker(L1)⊕ ker(L2).

Proof : Let n be the dimension of V and let =(L2) stands for
the range of L2. Note that dim ker(L2) + dim=(L2) = n,
Since L1L2 = 0 it follows that ker(L1) ⊃ =(L2) and there-
fore dim ker(L1) ≥ dim=(L2) = n − dim ker(L2). As
ker(L1) ∩ ker(L2) = {0}, equality holds in dim ker(L1) +
dim ker(L2) ≥ n and the lemma follows.

Proposition D.2
Let L : V → V where V is a finite dimensional vector
space. Let λ1, . . . , λs be its eigenvalues with (algebraic)
multiplicitymi. Then one can write V = V1⊕V2⊕· · ·⊕Vs
where Vi = ker((L− λiI)mi) and so L(Vi) ⊂ Vi.

Proof : Consider the polynomial p(t) = det(tI − L). This is a
polynomial of degree n, where n is the dimension of the vec-
tor space and with leading term tn. By the Cayley-Hamilton
theorem one has p(L) = 0 and of course p(L) is also of the
form Ln + c1L

n−1 + · · ·+ cn = 0. This can be factorised as

(L− λ1I)m1(L− λ2I)m2 · · · (L− λsI)ms = 0,

where all λi’s are distinct - here we use that the factors (L−
λiI) commute.

We claim that ker((L − λiI)mi) ∩ ker(L − λjI)mj =
0. Indeed, if not then we can take a vector v 6= 0 which
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is in the intersection. We may assume mi ≥ mj . Choose
1 ≤ m′j ≤ mj minimal so that (L − λjI)m

′
jv = 0 and

(L− λjI)m
′
j−1v 6= 0. Since v ∈ ker((L− λiI)mi) we have

that w := (L− λjI)m
′
j−1(L− λiI)miv is equal to 0, but on

the other handw is equal to (L−λjI)m
′
j−1((L−λjI)+(λj−

λi))
miv which, by expanding the latter expression (and using

that v ∈ ker((L− λiI)mi)) is equal to (L− λjI)m
′
j−1(λj −

λi)
miv 6= 0. This contradiction proves the claim.

This means that we can apply the previous lemma induc-
tively to the factors (L− λiI)mi , and thus obtain the propo-
sition.

It follows that if we choose T so that it sends the decom-
position Rn1 ⊕ . . .Rnk , where ni = dimVi, to V1 ⊕ · · · ⊕ Vk

then T−1LT is of the form




A1

. . .
Ap


 where Ai are

square matrices corresponding to Vi (and the remaining entries
are zero). The next theorem gives a way to find a more precise
description for a linear transformation T so that T−1LT takes
the Jordan form. Indeed, we apply the next theorem to each
matrix Ai separately. In other words, for each choice of i, we
take W = Vi, A = (L − λiI)|Vi and m = mi in the theorem
below.
Theorem D.3

Let A : W → W be a linear transformation of a finite di-
mensional vector space so that Am = 0 for some m ≥ 1.
Then there exists a basis W of the form

u1, Au1, . . . , A
a1−1u1, . . . , us, . . . , A

as−1(us)

where ai ≥ 1 and Aai(ui) = 0 for 1 ≤ i ≤ s.

Remark: Note thatAaj−1(uj) = (T−λi)aj−1(uj) is in the ker-
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nel of A = T −λiI , so is an eigenvector of A corresponding to
eigenvalues 0 (i.e. an eigenvector of T corresponding to eigen-
value λi. The vector w1

j = Aaj−2(uj) = (T−λiI)aj−2(uj) cor-
responds to a vector so that Aw1

j = wj , so Tw1
j = λw1

j + wj ,
and so on. So as in Chapter 4, if we take the matrix T with
columns

Aa1−1u1, . . . , u1, A
a2−1u2, . . . , u2, A

as−1us, . . . , us

then T−1LT will have the required Jordan form with λ on the
diagonal, and 1’s in the off-diagonal except in columns a1, a1 +
a2, . . . , a1 + a2 + · · ·+ as.
Proof : The proof given below goes by induction with respect

to the dimension of W . When dimW = 0 the statement is
obvious. Assume that the statement holds for dimensions <
dim(W ). Note that A(W ) 6= W since otherwise AW = W
and therefore Am(W ) = Am−1(W ) = · · · = W which is
a contradiction. So dimA(W ) < dimW and by induction
there exists v1, . . . , vl ∈ A(W ) so that

v1, Av1, . . . , A
b1−1(v1), . . . , vl, Avl, . . . , A

bl−1vl (40)

is a basis for A(W ) and Abi(vi) = 0 for 1 ≤ i ≤ l. Since
vi ∈ A(W ) one can choose ui so that Aui = vi. The vectors
Ab1−1v1, . . . , A

bl−1vl are linearly independent and are con-
tained in ker(A) and so we can find vectors ul+1, . . . , um so
that

Ab1−1v1, . . . , A
bl−1vl, ul+1, . . . , um (41)

forms a basis of ker(A). But then

u1, Au1, . . . , A
b1(u1), . . . , ul, . . . , A

blul, ul+1, . . . , um
(42)

is the required basis of W . Indeed, consider a linear combi-
nation of vectors from (42) and apply A. Then, because vi =
Aui, we obtain a linear combination of the vectors from (40)
and so the corresponding coefficients are zero. The remain-
ing vectors are in the kernel ofA and are linearly independent
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because they correspond to (41). This proves the linear in-
dependence of (42). That (42) spans W holds, because the
number of vectors appearing in (42) is equal to dim ker(A)+
dimAW . Indeed, Ab1(u1), . . . , Ablul, ul+1, . . . , um are all
in ker(A) (they are the same vectors as the vectors appearing
in (41)). The remaining number of vectors is b1 + · · · + bl
which is the same as the dimension of AW , as (40) forms a
basis of this space. It follows that the total number of vec-
tors in (42) is the same as dim(ker(A)) + dim(AW ) and so
together with their linear independence this implies that (42)
forms a basis of W .
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Appendix E Calculus of Variations
Many problems result in differential equations. In this chapter
we will consider the situation where these arise from a min-
imisation (variational) problem. Specifically, the problems we
will consider are of the type

• Minimize

I[y] =

∫ 1

0

f(x, y(x), y′(x)) dx (43)

where f is some function and y is an unknown function.

• Minimize (43) conditional to some restriction of the type
J [y] =

∫ 1

0
f(x, y(x), y′(x)) dx = 1.

E.1 Examples (the problems we will solve in this
chapter):

Example E.1
Let A = (0, 0) and B = (1, 0) with l, b > 0 and consider a
path of the form [0, 1] 37→ c(t) = (c1(t), c2(t)), connecting
A and B. What is the shortest path?

Task: Choose [0, 1] 3 t 7→ c(t) = (c1(t), c2(t)) with
c(0) = (0, 0) and c(1) = (1, 0) which minimises

L[c] =

∫ 1

0

√
c′1(t)2 + c′2(t)2 dt.

Of course this is a line segment, but how to make this pre-
cise?

If we are not in a plane, but in a surface or a higher dimen-
sional set, these shortest curves are called geodesics, and these
are studied extensively in mathematics.
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Example E.2
Let A = (0, 0) and B = (l,−b) with l, b > 0 and consider

a path of the form (x, y(x)), x ∈ [0, l], connectingA andB.
Take a ball starting at A and rolling along this path under
the influence of gravity to B. Let T be the time this ball
will take. Which function x 7→ y(x) which will minimise
T ?

The sum of kinetic and potential energy is constant

(1/2)mv2 +mgh = const.

Since the ball rolls along (x, y(x)) we have v(x) =√
−2gy(x). Let s(t) be the length travelled at time t. Then

v = ds/dt. Hence dt = ds/v or

T [y] :=

∫ l

0

√
1 + y′(x)2

√
−2gy(x)

dx.

Task: minimise T [y] within the space of functions x 7→
y(x) for which y and y′ continuous and y(0) = 0 and y(l) =
−b. This is called the Brachisotochrome, going back to
Bernouilli in 1696.

Example E.3
Take a closed curve in the plane without self-intersections
and of length one. What is the curve cwhich maximises the
areaD it encloses? Again, let [0, 1] 37→ c(t) = (c1(t), c2(t))
with c(0) = c(1) and so that s, t ∈ [0, 1) and s 6= t implies
c(s) 6= c(t).

The length of the curve is againL[c] =
∫ 1

0

√
c′1(t)2 + c′2(t)2 dt.

To compute the area of D we use the Green theorem:

∫

c

Pdx+Qdy =

∫ ∫

D

(
∂Q

∂x
− ∂P

∂y
)dxdy

Take P ≡ 0 and Q = x. Then
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∫ ∫

D

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∫ ∫

D

1 dxdy = area of D.

So

A[c] =

∫ ∫

D

1 dxdy =

∫

c

xdy =

∫ 1

0

c1(t)c′2(t) dt.

This is an isoperimetric problem: find the supremum of
A[c] given L[c] = 1.

E.2 Extrema in the finite dimensional case
We say that F : Rn → R take a local minimum at x̃ if there
exists δ > 0 so that

F (x) ≥ F (x̃) for all x with |x− x̃| < δ.

Theorem E.4
Assume that F is differentiable at a and also has a mini-

mum at x̃ then DF (x̃) = 0.

Proof : Let us first assume that n = 1. Then that f has a mini-
mum means that F (x̃ + h) − F (x̃) ≥ 0 for all h near zero.
Hence

F (x̃+ h)− F (x̃)

h
≥ 0 for h > 0 near zero and

F (x̃+ h)− F (x̃)

h
≤ 0 for h < 0 near zero.

Therefore

F ′(x̃) = lim
h→0

F (x̃+ h)− F (x̃)

h
= 0
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Let us consider the case that n > 1 and reduce to the
case that n = 1. So take a vector v at x̃, define l(t) = x̃+ tv
and g(t) := F ◦ l(t). So we can use the first part of the
proof and thus we get g′(0) = 0. Applying the chain rule
0 = g′(0) = Dg(0) = DF (l(0))Dl(0) = DF (x̃)v and so

∂F

∂x1
(x̃)v1 + · · ·+ ∂F

∂xn
(x̃)vn = 0.

Hence DF (x̃)v = 0 where DF (x̃) is the Jacobian matrix at
x̃. Since this holds for all v, we get DF (x̃) = 0.

Remember we also wrote sometimes DFx̃ for the matrix
DF (x̃) and that DF (x̃)v is the directional derivative of f at x̃
in the direction v.

E.3 The Euler-Lagrange equation
The infinite dimensional case: the Euler-Lagrange equation

• In the infinite dimensional case, we will take F : H → R
where H is some function space. The purpose of this
chapter is to generalise the previous result to this setting,
and show that the solutions of this problem gives rise to
differential equations.

• Mostly the function space is the space C1[a, b] of C1

functions y : [a, b] → Rn. This space is an infinite di-
mensional vector space (in fact, a Banach space) with
norm |y|C1 = supx∈[a,b](|y(x)|, |Dy(x)|).

• Choose some function f : [a, b] × Rn × Rn → R. Take
(x, y, y′) ∈ [a, b]×Rn×Rn denote by fy, fy′ the corre-
sponding partial derivatives. So fy(x, y, y′) and fy′(x, y, y′)
vectors. Attention: here y and y′ are just the names of
vectors in Rn (and not - yet - functions or derivatives of
functions).
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• Here fy is the part of the 1×(1+n+n) vectorDf which
concerns the y derivatives.

Assume f : [a, b] × Rn × Rn → R with fy, fy′ continuous
and define I : C1[a, b]→ R by,

I[y] =

∫ b

a

f(x, y(x), y′(x)) dx.

Given ỹ : [a, b]→ Rn, let’s denote f [ỹ](x) = f(x, ỹ(x), ỹ′(x)),

fy[ỹ](x) = fy(x, ỹ(x), ỹ′(x)) and fy′ [ỹ](x) = fy′(x, ỹ(x), ỹ′(x))

where fy, fy′ are the corresponding partial derivatives of f . Fix
ya, yb ∈ Rn and define

A = {y; y : [a, b]→ Rn is C1 and y(a) = ya, y(b) = yb}.

Theorem E.5
If A 3 y 7→ I[y] has a minimum at ỹ then

1. for every v ∈ C1[a, b] with v(a) = v(b) = 0 we get∫ b
a
(fy[ỹ] · v + fy′ [ỹ]v′) dx = 0.

2. fy′ [ỹ] exists, is continuous on [a, b] and

d

dx
fy′ [ỹ] = fy[ỹ].

Proof : Remember that

A = {y; y : [a, b]→ Rn is C1 and y(a) = ya, y(b) = yb}.

Hence v ∈ C1[a, b] with v(a) = v(b) = 0, then y + hv ∈ A
for each h. So the space A is affine.
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Assume that I : C1[a, b]→ R has a minimum at ỹ, which
means that

I[ỹ + hv] ≥ I[ỹ] ∀v ∈ C1[a, b], v(a) = v(b) = 0 ∀h ∈ R

I[ỹ + hv]− I[ỹ] =

=

∫ b

a
f(x, (ỹ+hv)(x), (ỹ+hv)′(x))−f(x, ỹ(x), ỹ′(x))dx.

By Taylor’s Theorem,

f(x, (ỹ + hv)(x), (ỹ + hv)′(x))− f(x, ỹ(x), ỹ′(x)) =

fy[ỹ]hv + fy′ [ỹ]hv′ + o(h).

So

I[ỹ+ hv]− I[ỹ] = h ·
[∫ b

a

[
fy[ỹ]v + fy′ [ỹ]v′

]
dx

]
+ o(h).

Hence a necessary condition for ỹ to be a minimum of I is
∫ b

a

[
fy[ỹ]v + fy′ [ỹ]v′

]
dx = 0

for each v ∈ C1[a, b] with v(a) = v(b) = 0.

Partial integration gives
∫ b

a
fy′ [ỹ]v′ dx = (fy′ [ỹ]v)

∣∣b
a
−
∫ b

a

d

dx
fy′ [ỹ]v dx.

Remember v(a) = v(b) = 0, so (fy′ [ỹ]v)
∣∣b
a

= 0. Therefore
a necessary condition for ỹ to be a minimum of I is:

v ∈ C1[a, b] with v(a) = v(b) = 0 =⇒∫ b

a

[
fy[ỹ]− d

dx
fy′ [ỹ]

]
v dx = 0.

This prove first assertion of Theorem and also the 2nd asser-
tion because of the following lemma:

146



Lemma E.6

If G : [a, b] → R is continuous and
∫ b
a
Gv dx = 0 for each

v ∈ C1[a, b] with v(a) = v(b) = 0, then G ≡ 0.

Proof : If G(x0) > 0 then ∃δ > 0 so that G(x) > 0, ∀x with
|x− x0| < δ. Choose v ∈ C1[a, b] with v(a) = v(b) = 0, so
that v > 0 on x ∈ (x0 − δ, x0 + δ) ∩ (a, b) and zero outside.
Then

∫ b
a G(x)v(x) dx > 0.

Quite often x does not appear in f . Then it is usually more
convenient to rewrite the Euler-Lagrange equation:

Lemma E.7

If x does not appear explicitly in f , then
d

dx
fy′ [ỹ] = fy[ỹ]

implies fy′ [ỹ]ỹ′ − f [ỹ] = C.

Proof :

d

dx
(fy′ [ỹ]ỹ′ − f [ỹ]) = (

d

dx
fy′ [ỹ])ỹ′ + fy′ [ỹ]ỹ′′

−(fx[ỹ] + fy[ỹ]ỹ′ + fy′ [ỹ]ỹ′′)

= y′
{
d

dx
fy′ [ỹ]− fy[ỹ]

}
− fx[ỹ].

Since fx = 0, and by the E-L equation, the term {·} = 0 this
gives the required result.

Example E.8
Shortest curve connecting two points (0, 0) and (1, 0). Let
us consider curves of the form x 7→ (x, y(x)) and min-
imise the length: I[c] =

∫ b
a

√
1 + y′(x)2 dx. The Euler-
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Lagrange equation is
d

dx
fy′ [ỹ] = fy[ỹ] = 0. Note fy′ =

y′√
1 + (y′)2

, so
d

dx

y′√
1 + (y′)2

= 0. Hence the EL equa-

tion gives
ỹ′√

1 + (ỹ′)2
= C. This means that ỹ′ = C1.

Hence ỹ(x) = C1x + C2. With the boundary conditions
this gives ỹ(x) = 0.

E.4 The brachistochrone problem
Example E.9

(See Example E.2) The curve x → (x, y(x)) connecting
(0, 0) to (l,−b) with the shortest travel time brachistochrone.

Then f(x, y, y′) =

√
1 + (y′)2

√−2gy
. Since y < 0, we orient

the vertical axis downwards, that is we write z = −y and

z′ = −y′, i.e. take f(x, z, z′) =

√
1 + (z′)2

√
2gz

. Note that

fz′ = (1/2)
1√

1 + (z′)2
√

2gz
2z′.

The EL equation from the previous lemma gives f ′z′ [z̃]z̃′−
f [z̃] = const, i.e. (writing z instead of z̃):

(z′)2

√
1 + (z′)2

√
z
−
√

1 + (z′)2

√
z

= const.

Rewriting this gives

z[1 + (z′)2] = const.
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Rewriting this again gives the differential equation

dz

dx
=

√
C − z
z

or
dx

dz
=

√
z

C − z

withC > 0. As usual we solve this by writing dx =

√
z

C − zdz
and so

x =

∫ √
z

C − z dz.

Substituting z = C sin2(s), where s ∈ [0, π], gives

x =

∫ √
sin2(s)

1− sin2(s)
(2C) sin(s) cos(s) ds =

2C

∫
sin2(s) dt = C

∫
(1−cos(2s)) dt = (C/2)(2s−sin(2s))+A

Since the curve starts at (0, 0) we have A = 0.
So we get

x(s) =
C

2
(2s− sin(2s)),

z(s) = C sin2(s) =
C

2
(1− cos(2s)).

(44)

Here we choose C so that z = b when x = L. This is called
a cycloid, an evolute of the circle. This is the path of a fixed
point on a bicycle wheel, as the bicycle is moving forward.

Substituting 2s to φ and taking a = C/2 we get

x(φ) = a(φ− sin(φ)),
z(φ) = a(1− cos(φ)).

(45)

What is a? Given L = x0 and −b = y0 we need to choose
a, φ so that x(φ) = L and z(φ) = b. This amounts two equa-
tions and two unknowns.

Two special cases:
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• The right endpoint is (L, 0), the top of the curve: then
take φ = 2π and we have x(2π) = 2πa and z(2π) = a.

• The right endpoint is (L, 2a) and this is the bottom of the
curve: then φ = π and x(π) = aπ and y(π) = 2a.

2.2. Calculus of variations: some classical problems 33

PSfrag replacements

δy

δx

δs

Figure 2.4: Element of arc length.

Hence the time of descent is given by

T =

∫

curve

ds√
2gy

=
1√
2g

∫ y0

0

√√√√1 +
(

dx
dy

)2

y
dy.

Our problem is to find the path {x(y), y ∈ [0, y0]}, satisfying x(0) = 0 and x(y0) = x0, which
minimizes T , that is, to determine the minimizer for the function I : S → R, where

I(x) =
1√
2g

∫ y0

0

(
1 + (x′(y))2

y

) 1
2

dy, x ∈ S,

and S = {x ∈ C1[0, y0] | x(0) = 0 and x(y0) = x0}. Here2 F (α, β, γ) =
√

1+β2

γ is independent of

α, and so the Euler-Lagrange equation becomes

d

dy

(
x′(y)√

1 + (x′(y))2
1√
y

)
= 0.

Integrating with respect to y, we obtain

x′(y)√
1 + (x′(y))2

1√
y

= C,

where C is a constant. It can be shown that the general solution of this differential equation is
given by

x(Θ) =
1

2C2
(Θ − sin Θ) + C̃, y(Θ) =

1

2C2
(1 − cosΘ),

where C̃ is another constant. The constants are chosen so that the curve passes through the points
(0, 0) and (x0, y0).

PSfrag replacements
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y

Figure 2.5: The cycloid through (0, 0) and (x0, y0).

This curve is known as a cycloid, and in fact it is the curve described by a point P in a circle
that rolls without slipping on the x axis, in such a way that P passes through (x0, y0); see Figure
2.5.

2Strictly speaking, the F here does not satisfy the demands made in Theorem 2.1.1. Notwithstanding this fact,
with some additional argument, the solution given here can be fully justified.

A remarkable property of the brachistochrone: Take an ini-
tial point (x̂, ŷ) on this curve, and release it from rest. Then the
time to hit the lower point of the curve is independent of the
choice of the initial point!!!
Theorem E.10

For any initial point (x̂, ŷ) (i.e. for any initial φ̂)

T =

∫ L

x̂

√
1 + (z′)2

2g(z − z0)
dx =

√
a

g

∫ π

φ=φ̂

√
1− cos(φ)

cos(φ̂)− cos(φ)
dφ

is equal to = π
√
a/g. Wow!

Proof : Not examinable Let us first show the integrals are equal:

x(φ) = a(φ− sin(φ)), z(φ) = a(1− cos(φ)) =⇒

z′ =
dz

dx
=

dz

dφ
dx

dφ

=
a sin(φ)

a(1− cos(φ))
=⇒

√
1 + (z′)2 =

√
(1− cos(φ))2 + sin2(φ)

(1− cos(φ))2
=

√
2(1− cos(φ))

(1− cos(φ))2
.
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x(φ) = a(φ− sin(φ)), z(φ) = a(1− cos(φ)) =⇒

z′ =
dz

dx
=

dz

dt
dx

dt

=
a sin(φ)

a(1− cos(φ))
=⇒

√
1 + (z′)2 =

√
(1− cos(φ))2 + sin2(φ)

(1− cos(φ))2
=

√
2(1− cos(φ))

(1− cos(φ))2
.

Since dx = a(1− cos(φ)) dφ this gives
√

1 + (z′)2

2g(z − z0)
dx =

√
a√
g

√
1− cos(φ)

cos(φ̂)− cos(φ)
dφ.

Showing the two integrals the same.
Claim: the following integral does not depend on φ̂:

∫ π

φ=φ̂

√
1− cos(φ)

cos(φ̂)− cos(φ)
dφ

Substitute sin(φ/2) =
√

1− cosφ/
√

2 and cosφ = 2 cos2(φ/2)−
1 gives:
√

1− cos(φ)

cos(φ̂)− cos(φ)
=
√

2
sin(φ/2)√

2[cos2(φ̂/2)− cos2(φ/2)]

Substitute u = cos(φ/2)/ cos(φ̂/2), then as φ varies between
[φ̂, π] then u varies from 1 to 0.

∫ π

φ̂

sin(φ/2)√
cos2(φ̂/2)− cos2(φ/2)

dφ
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Substitute u = cos(φ/2)/ cos(φ̂/2) gives

sin(φ/2)√
cos2(φ̂/2)− cos2(φ/2)

=
sin(φ/2)

cos(φ̂/2)
√

1− u2
.

Since du = −(1/2)
sin(φ/2)

cos(φ̂/2)
dφ and since u varies from 1 to 0

the integral is equal to
∫ 1

0

2√
1− u2

du = 2 arcsin(u)
∣∣1
0

= π

So the time to decent from any point is π
√
a/g.

For history and some movies about this problem:

• http://www.sewanee.edu/physics/TAAPT/TAAPTTALK.
html

• http://www-history.mcs.st-and.ac.uk/HistTopics/
Brachistochrone.html

• http://www.youtube.com/watch?v=li-an5VUrIA

• http://www.youtube.com/watch?v=gb81TxF2R_
4&hl=ja&gl=JP

• http://www.youtube.com/watch?v=k6vXtjne5-c

• Check out this book: Nahin: When Least Is Best. Great
book!

• A student sent me the following link: https://www.
youtube.com/watch?v=Cld0p3a43fU
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E.5 Are the critical points of the functional I
minima?

Are the critical points of I minima?

• In general we cannot guarantee that the solutions of the
Euler-Lagrange equation gives a minimum.

• This is of course is not surprising: a minimum x̃ ofF : Rn →
R satisfies DF (x̃) = 0, but the latter condition is not
enough to guarantee that x̃ is a minimum.

• It is also not always the case that a functional of the
form I[y] =

∫ b
a
f(x, y(x), y′(x)) dx over the set A =

{y; y : [a, b] → Rn is C1 and y(a) = ya, y(b) = yb}
does have a minimum.

• Additional considerations are often required.

E.6 Constrains in finite dimensions
Often one considers problems where one has a constraint. Let
us first consider this situation in finite dimensions:

E.6.1 Curves, surfaces and manifolds

Definition: We define a subset M of Rn to be a manifold (of
codimension k) if M = {x ∈ Rn; g(x) = 0} where g : Rn →
Rk and k < n where the matrix Dg(x) has rank k for each
x ∈M .

Remark: There are other, equivalent, definitions of mani-
folds and also some more general definitions of the notion of a
manifold, but this goes outside the scope of this course.
Theorem E.11

Let M ⊂ Rn be a manifold of codimension k. Then near
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every x ∈M one can write M as the graph of a function of
(n− k) of its coordinates.

Examples. M = {(x, y) ∈ R2;x2 + y2 = 1} can be
described locally in the form x 7→ (x, y(x)) or in the form
y 7→ (x(y), y).
Proof : Consider x0 ∈ M and for simplicity assume that the

last k columns of the k × n matrix Dg(x) are linearly in-
dependent. Then the k × k matrix made up of the last k
columns of the k × n matrix Dg(x) is invertible. This puts
us in the position of the Implicit Function Theorem. Indeed,
write x = (u, v) ∈ Rn−k ⊕ Rk. The Implicit Function The-
orem implies that there exists a function G : Rn−k → Rk so
that

g(u, v) = 0 ⇐⇒ v = G(u).

So M is locally a graph of a function G: the set is locally
of the form M = {(u,G(u));u ∈ Rn−k}. (If some other
combination of columns of Dg(x) are linearly independent
then we argue similarly.)

Examples:

• Assume that g : R3 → R and consider M = {x ∈
Rn; g(x) = 0}. Moreover assume that Dg(x) 6= 0 for
each x ∈ M . Then M is a surface. Any (orientable)
surface can be written in this form.

• The set x2 +2y2 = 1, x2 +y4 +z6 = 1 is a codimension-
two manifold (i.e. a curve) in R3.

Definition: The tangent plane at x̂ ∈ M is defined as the
collection of vectors v ∈ Rn (based at x̂) so that Dgx̂(v) = 0.

To motivate this definition consider a C1 curve γ : [0, 1]→
M ⊂ Rn with γ(0) = x̂. Since γ(t) ∈ M , it follows that
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g ◦ γ(t) = 0 for all t and therefore

∂g

∂x1

(x̂)γ′1(0) + · · ·+ ∂g

∂xn
(x̂)γ′n(0) = 0.

This if we write v = γ′(0) then Dg(x̂)v = 0. Hence 0 =
Dg(x̂)v = ∇g(x̂) · v where · is the usual dot product in Rn.
So the vector ∇g(x̂) is orthogonal to v := γ′(0) for each such
curve γ.

E.6.2 Minima of functions on constraints (manifolds)

Suppose x̃ is minimum of F : M → R where M = {x ∈
Rn; g(x) = 0} and g : Rn → R. What does this imply? Write
x̃ = (x̃1, . . . , x̃n−1, x̃n).

Theorem E.12
(Lagrange multiplier) If Dg(x̃) 6= 0 and x̃ is minimum of
F : M → R, then ∃λ ∈ R with DF (x̃) = λDg(x̃).

Proof : Since Dg(x̃) 6= 0, we get that
∂g

∂xi
(x̃) 6= 0 for some

i = 1, . . . , n. In order to be definite assume
∂g

∂xn
(x̃) 6=

0 and write w̃ = (x̃1, . . . , x̃n−1). By the Implicit Func-
tion Theorem, locally near w̃ there exits h so that g(x) =
0 ⇐⇒ xn = h(x1, . . . , xn−1). So w̃ is minimum of
(x1, . . . , xn−1) 7→ F ◦ (x1, x2, . . . , xn−1, h(x1, . . . , xn−1)).
This means for all i = 1, . . . , n− 1:

∂F

∂xi
(x̃) +

∂F

∂xn
(x̃)

∂h

∂xi
(w̃) = 0.

Since g(x1, . . . , xn−1, h(x1, . . . , xn−1)) = 0 we also get

∂g

∂xi
(x̃) +

∂g

∂xn
(x̃)

∂h

∂xi
(w̃) = 0 ∀i = 1, . . . , n− 1.
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Substituting these into the previous equation and writing

λ =

∂F

∂xn
(x̃)

∂g

∂xn
(x̃)

gives

∂F

∂xi
(x̃)− λ ∂g

∂xi
(x̃) = 0 ∀i = 1, . . . , n− 1.

(For i = n the last equation also holds, by definition.)

E.7 Constrained Euler-Lagrange Equations

Let I[y] =
∫ b
a
f(x, y(x), y′(x)) dx and J [y] =

∫ b
a
g(x, y(x), y′(x)) dx

be functionals on

A = {y; y : [a, b]→ Rn is C1 and y(a) = ya, y(b) = yb}.

as before. Define

M = {y; y ∈ A with J [y] = 0}.

Theorem E.13
If M 3 y 7→ I[y] has a minimum at ỹ then there exists
λ ∈ R so that the E-L condition hold for F = f −λg. That
is,

d

dx
Fy′ [ỹ] = Fy[ỹ].

The idea of the proof combines the Lagrange multiplier ap-
proach with the proof of the previous Euler Lagrange theorem.
Example E.14

Maximize the area bounded between the graph of y and the

156



line segment [−1, 1]×{0}, conditional on the length of the
arc being L. (This is a special case of Dido’s problem.)

Let A be the set of C1 functions y : [−1, 1] → R with
y(−1) = y(1) = 0. Fix L > 0 and let

I[y] =

∫ 1

1

y(x) dx and J [y] =

∫ 1

−1

√
1 + (y′)2 dx−L = 0.

Write

f = y, g =
√

1 + (y′)2, F = f − λg = y − λ
√

1 + (y′)2.

The Euler Lagrange equation in the version of Lemma E.7
gives Fy′ [ỹ]ỹ′ − F [ỹ[= C which amounts to (writing y in-
stead of ỹ):

−λ(y′)2

√
1 + (y′)2

− [y − λ
√

1 + (y′)2] = C.

Rewriting this gives

1 =
(y + C)2

λ2
(1 + (y′)2).

Substituting y + C = λ cos θ gives y′ = −λ sin θ
dθ

dx
. Sub-

stituting this in the previous equation gives

1 = cos2 θ

(
1 + λ2 sin2 θ

(
dθ

dx

)2
)
.

Since cos2 θ + sin2 θ = 1, this implies

λ cos θ
dθ

dx
= ±1, i.e.

dx

dθ
= ±λ cos θ

which means x = ±λ sin θ and y + C = λ cos θ: a circle
segment!
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Appendix F Some results on Fourier se-
ries

Lemma F.1
∑
n2|c1,n| <∞ and

∑
n2|c2,n| <∞ =⇒

u(x, t) =
∑

n≥1

(c1,n cos(nt) + c2,n sin(nt)) sin(nx)

is C2. (C2 means that the function is twice differentiable
and that the 2nd derivatives are continuous.)

Proof : That
∑N

n=1(c1,n cos(nt)+c2,n sin(nt)) sin(nx) converges
in this case follows from

Weierstrass test: ifMn ≥ 0,
∑
Mn <∞ and un : [a, b]→

R is continuous with supx∈[a,b] |un(x)| ≤ Mn then
∑
un

converges uniformly on [a, b] (and so the limit is continuous
too!).

To get that u is one differentiable, we need to consider for
example the convergence (asN →∞) of the d/dx derivative
of

N∑

n=1

(c1,n cos(nt) + c2,n sin(nt)) sin(nx)

which is equal to
∑N

n=1(c1,n cos(nt)+c2,n sin(nt))n cos(nx),
and since

∑
n|c1,n|,

∑
n|c2,n| <∞ the latter converges. In

this way we obtain that u(x, t) is differentiable w.r.t. x.

To check that u(x, t) is twice differentiable, we differen-
tiate the sum term by term once more, and to apply Weier-
strass again we need that

∑
n2|c1,n|,

∑
n2|c2,n| <∞.

Next we need to make sure that the boundary conditions are
satisfied.
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Lemma F.2
If f : [0, π]→ R and f(0) = f(π) = 0 then f has a Fourier
expansion of the form f(x) ∼∑∞n=1 s1,n sin(nx).

Proof : Define g : [0, 2π] → R so that g(x) = f(x) for x ∈
[0, π] and g(x) = f(2π − x) for x ∈ [π, 2π]. It follows
that g(π − x) = −g(π + x) for x ∈ [0, π]. So this means
that

∫ 2π
0 g(x) cos(nx) dx = 0 and therefore in the Fourier

expansion of g the cosine terms vanish, and we have g(x) =∑∞
n=1 s1,n sin(nx). In particular f(x) =

∑∞
n=1 s1,n sin(nx).

Theorem F.3
If f is C3 and f(0) = f(π) = f ′′(0) = f ′′(π) = 0, then

there are coefficients sn, cn so that

f(x) =
∑

n≥1

sn sin(nx) and f ′(x) =
∑

cn cos(nx)

and
∑
n2s2

n <∞ and
∑
n2c2

n <∞.

Proof : The proof below is in sketchy form only. Let us assume
that f is C2, f(0) = f(π) = 0. According to the Fourier
Theorem 7.2 one can write f(x) =

∑
n≥1 sn sin(nx). Let

us now show that if f is C3 and f(0) = f(π) = f ′′(0) =
f ′′(π) = 0 the assumptions in Lemma F.1 are satisfied, i.e.
that f and f ′ can be written in the form f(x) =

∑
sn sin(nx)

and f ′(x) =
∑
cn cos(nx) and that

∑
n2s2

n < ∞ and∑
n2c2

n <∞. (We change the notation from the coefficients
cn to sn in the main text since the new notation is more nat-
ural here.) Let us prove that

∑ |sn| <∞.

First choose constants sn and cn so that f(x) =
∑
sn sin(nx)

and f ′(x) =
∑
cn cos(nx) (by the Fourier theorem one can

write f ′ in this way since is C2 and since f ′′(0) = f ′′(π) =
0).
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Step 1:

(f ′, f ′) =
∑

n,m≥0

cncm(f ′)

∫ π

0
cos(nx) cos(mx) =

= (π/2)
∑

n≥1

|cn|2 + π|c0|2.

It follows that
∑

n≥0 |cn|2 <∞.

Step 2: for n ≥ 1 we have

sn = (2/π)

∫ π

0
f(x) sin(nx) dx

and
cn = (2/π)

∫ π

0
f ′(x) cos(nx) dx.

Using partial integration on the last expression, and using
that f(0) = f(π) = 0 gives for n ≥ 1,

cn = (2/π)

∫ π

0
f ′(x) cos(nx) dx = (2/π)[f(x) cos(nx)]π0 +

+n(2/π)

∫ π

0
f(x) sin(nx) dx = nsn.

It follows from this, f(0) = f(π) = 0 and Step 1 that∑
n2|sn|2 <∞.

Step 3: Now we use the Cauchy inequality
∑
anbn ≤∑

a2
n

∑
b2n. Taking an = 1/n and bn = n|sn| we get that∑ |sn| =
∑
anbn ≤

∑
a2
n

∑
b2n. By Step 2,

∑
b2n < ∞

and since
∑

1/n2 <∞, it follows that
∑ |sn| <∞.

In the same way, we can prove that if f is C3 and f(0) =
f(π) = f ′(0) = f ′(π) = f ′′(0) = f ′′(π) = 0 then

∑
n2|sn| <

∞. Therefore the assumptions in Lemma F.1 are satisfied.

If we assume f(0) = f(π) = f ′′(0) = f ′′(π) = 0
and consider g(x) = f(x)− a1 sinx− a2 sin 2x with a1, a2

so that g′(0) = g′(π) = 0 then we can apply the previous
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paragraph to g. It follows that
∑
n2|sn(g)| < ∞. This also

implies
∑
n2|sn| < ∞. This concludes the explanation of

item 2 above Theorem 7.2.
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