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DECAY OF CORRELATIONS
IN ONE-DIMENSIONAL DYNAMICS

By HENK BRUIN, STEFANO LUZZATTO AND
SEBASTIAN VAN STRIEN

ABSTRACT. — We consider multimodal’® interval mapsf satisfying a summability condition on the
derivativesD,, along the critical orbits which implies the existence of an absolutely continfiengariant
probability measure. If f is non-renormalizable, is mixing and we show that the speed of mixing (decay
of correlations) is strongly related to the rate of growth of the sequéhgg asn — co. We also give
sufficient conditions foy to satisfy the Central Limit Theorem. This applies for example to the quadratic
Fibonacci map which is shown to have subexponential decay of correlations.

0 2003 Published by Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous considérons des applicatiof$ et multimodales de lintervalle ayant des dérivées
D,, qui satisfont une condition de sommabilité le long de I'orbite critique, ceci entrainant I'existence
d’une mesure de probabilit¢ absolument continue par rapport a la mesure de Lebesgyen®st pas
renormalisabley est mélangeante et nous montrons que | décroissance de corrélation est fortement liée au
rapport de croissance de la suft@,,) lorsquen — co. Nous donnons également une condition suffisante
pour quey satisfasse au Théoreme Central Limite. Ceci implique par exemple que I'application quadratique
de Fibonacci posséde une décroissance des corrélations sous-exponentielle.

0 2003 Published by Editions scientifiques et médicales Elsevier SAS

1. Introduction
1.1. Statement of results

Let f: I — I be aC? interval or circle map with a finite critical s€tand no stable or neutral
periodic orbit. All critical points are assumed to have the same fariteeal order £ € (1, c0).
This means that for € C, there exist a diffeomorphisg: R — R fixing 0 such that forz close
to c,

(@) = %|plz - )" + f(o),

where thet may depend on sd@m — ¢). For a critical point, let

Da(e) = (") (f(e)]-

The aim of this paper is to prove the existence of an absolutely continuous invariant probability
measure under sufficient growth conditions/®f(c) and to study its statistical properties (rate
of mixing, Central Limit Theorem). In the proofs we will use distortion estimates valid for maps
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2 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

with negative Schwarzian derivative. By a result of Kozlov4ki[(generalized to the multimodal
setting by van Strien and Vargag/]), similar estimates hold iff is C® and has no stable or
neutral periodic orbit.

THEOREM 1 (Existence of invariant probability measures)if-f satisfies

(%) > D V() <00 foreachceC,

then there exists arf-invariant probability measurg: absolutely continuous with respect to
Lebesgue measufacip).

Moreover, as was shown in general it?], supfx) is an interval or cycle of intervals. In the
unimodal case, Nowicki and van Striep?Z] proved the same result under the assumption that

>on Dy " < 00. Theorem 1 s the first general existence theorem in the multimodal casB].see [

Bruin and van Striend] later proved the following generalization:}f,,, D;l/e“‘*‘*(c) < oo for
all ¢ € C and/,,.x = max ¢(c), thenf has an acip. In the holomorphic case, Przytycki proved that
for everya-conformal measurg on J (satisfying an additional assumption), assuming(c)
grows exponentially, there exists an invariant probability measure which is absolutely continuous
with respect tqu, see P3]. Condition ) is equivalent to the following (see Lemma 2.1):

There exists a sequenée, }, 0 < v, < 1, such thafy", v, < oo and

(%) Z[wﬁ‘an(cﬂ_l/Z <oo forallcecC.

n

We prefer to use this version of), as they; play an important role in the binding method in the
proof, and in the formulation of the other theorems. Let us also abbreviate

(1) bu(c) == v Dule)] V"

The measure: need not be unique if is multimodal and not Lebesgue ergodic (unimodal
maps with negative Schwarzian derivative are Lebesgue ergafjc,Llet X be a closed
f-invariant set of positive Lebesgue measure such fhatontains no smaller set with these
properties. MisiurewiczZ40] proved thatX contains a critical point. We do not know i can
be a Cantor set (however, c2q]), but if X supports the measurefrom Theorem 1, theX has
a non-empty interior. By a result of Ledrappiéf], x is mixing if and only if f : X — X is not
renormalizablei.e. X is not a cycle of intervals permuted Ky In this case it is natural to ask
about the speed of mixing, quantified through tloerelation function

Cn=Cn(sD7w)=‘/(swf")wdu—/wdu/zﬂdu’,

wherep and+ are respectively bounded and Hoélder continuous function® on
Write

@) dn(¢) =min 7/ Di(e)] | F'(e) — .
Obviously,d,, (¢) < Yn—1bn—1(c) < bp_1(c).

THEOREM 2 (Decay of correlations). +et f satisfy(x) and letu be an absolutely continuous
invariant probability measure with supparipp(). If f is not renormalizable osupp(u), then
(supp(p), i, f) is mixing with the following rates
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DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 3

Polynomial caself
dp(c) <Cn™

forall c € C, somex > 1 and alln > 1, then for each
a<a-—1.
there exisC = C/(i, ) > 0 such that
C,<Cn~% foralln>1.

Stretched exponential cadé:
bn(c) < Ce™Pm"

for all ¢ € C, someC,3 >0, « € (0,1) and all n > 1, then for all @ € (0,«) there exist
C =C(p,v), 8> 0 such that

C,<Ce P foralln>1.

Exponential casdf
bn(c) < Ce Pn
forall c € C, someC, 8> 0 andn > 1, then there exist’ = C(¢, 1), 3 > 0 such that

C, <Ce P foralln>1.

Notice thatd,, may decay much more rapidly than the terms of the series in condition
The formulation in terms of,, gives us an edge in the polynomial case. As an illustration, let us
consider the casd),,(¢c) > Cn™, 7> 2¢ — 1 for all c€ C andn > 1. Theorem 2 then tells us
thatC,, < Cn~7 for anyT < Z%} — 1. Another use of thé,,’s involves the quadratic Fibonacci
map, see Corollary 1.1

If 1 is an f-invariant probability measure, we say that the Central Limit Theorem holds if
given a Holder continuous functigmwhich is not a coboundaryA+# v o f — 1 for any)) there
existso > 0 such that for every interval C R,

,u{xeX: %j;ol(cp(fj(x)) —/cpd,u) 6J}—> G\}E]/e_t2/2”2dt.

This property is indicative of a certain regularity in the way Birkhoff averages of Holder
observable approach their expected asymptotic values.

THEOREM 3 (Central Limit Theorem). tet f satisfy (). If f is not renormalizable and
dn(c) <Cn~% a>2,forall ceC andn > 1, then the measurg of Theoreml satisfies the
Central Limit Theorem.

The statements about decay of correlations and Central Limit Theorem in the unimodal
exponential case were proved ih3[3(J. As far as we know the results in all other cases are
new. Most known examples of systems with strictly subexponential decay of correlations consist
of maps which are uniformly expanding except for the presence of some neutral fixed point, see
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4 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

for example [L6,3]]. The situation here is more subtle as the cause for the loss of exponential
estimates is not so localized.

In fact in the unimodal casd),, > Ce”™ if and only if (X, u, f) has exponential decay of
correlations 21].

Itis interesting to apply the results to tR#onacci mapsi.e. the conjugacy class of unimodal
maps characterized by the property that the sequence of closest return times is exactly the
Fibonacci sequence. Lyubich and Milndr7] proved that in the quadratic case, the Fibonacci
map satisfies Nowicki’s and van Strien’s summability condition. Here we show

CoROLLARY 1.1.-Let f be a Fibonacci map with quadratic critical point. Then one has
(faster than polynomial decay of correlations and the central limit theorem holds.

Proof. —In fact, the estimates inl[/, Section b show that condition(x) holds for e.g.
~i = 0.01,/1/D;, sob, = 10D, */*. In [17, Lemma 5.3 it is shown thaty" D* < oo for
any« > 0, which leads to the existence proof of an acip. Theorem 2 and 3 also hold. Indeed, if
S, ~~~" is therth Fibonacci number (with = (/5 — 1)/2), then

|fST(C) _ C‘ ~ 675/7«2 ~ S;ﬁlogsr

for somep’, 3 > 0. Let S,_, < k < S, be arbitrary. Thenl;, < S;_Bll‘)gs“l < (yk)7Blos(vk)|
which decreases faster than any polynomial, but more slowly than what we call stretched
exponentially. In particular, the Central Limit Theorem holds:

1.2. Techniques and conjectures

Our approach is to construct an induced Markov map and apply the result of L.-S. V&i}ng [
which shows that the decay of correlations is tightly linked totttikeestimatesf the inducing
times. However, the construction of Markov induced maps (and the corresponding tower) is quite
involved if the map has critical points. Expanding Markov induced maps have been constructed
before, but only in the unimodal Collet—-Eckmann setting tail estimates were undertaken. For
our results, we need a new construction, which can be used for much weaker growth conditions
on the orbits of multiple critical points, and indeed enables tail estimates of the inducing times.
Apart from its use for estimating decay of correlations, towers were recently used by Gbllet [
to describe return time statistics to small neighbourhoods. Indeed, combining our results (namely
the tower structure with exponential tail behaviour, cf. Section 4.4) with Collet's paper, we can
conclude that for all Collet-Eckmann multimodal maps with constant critical order, the quantity
sup;<,, —log |z — f'(y)| satisfies Gumbel's law fqi-a.e.z, see P, Theorem 1 Jifor details.

Since the growth of derivatives outside a neighbourhood of the critical set is exponential,
one can argue that the tail is exponential for intervals which spend most of the time outside
such neighbourhoods. Thus we need to concentrate particularly on intervals which fall inside
critical neighbourhoods. One of the key ideas is to use a shadowing (or binding) argument
to compare derivative growth for pieces of orbit to piece of critical orbit that they shadow.
Binding arguments were developed by Jakobsblj fnd Benedicks and Carlesof][ under
strong growth assumption®(, > eV™ or evenD,, > ¢*) and slow recurrence of the critical
point: | f™(c) — ¢| = e*™ for some smaltv. This is the so-called basic assumption&jf Similar
conditions were used in several papers concerned with dynamical and stability properties of
various classes of one-dimensional maps. We menfipm[particular where strong stochastic
stability (for random perturbations) was proved, see al§pwhere some similar conditions are
introduced in the context of maps with completely flat critical points.
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DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 5

We dispense with the slow recurrence assumption altogether, and introduce some new

arguments in the construction:

e Our definition of binding period (see (4)) incorporates the recurrence pattern of the critical
set. As a result, the partition of the space into intervals of constant induce time is not fixed
in advance, as is the case .

e In order to still count and measure the lengths of partition elements, we need intricate
combinatorial counting arguments, which involves assigniimgraries to the partition
elements, which indicate the “deepness” of the successive visits to a neighbourhood of the
critical point.

e Our inducing time consist of three explicit parts: the first part is used to recover from the
small derivatives near the critical set (thus achieving expansion); in the second intervals
reach “large scale” and the third part is used to reach a prefixed interval.

In spite of the many differences, we believe that the construction is sufficiently robust as to justify

CONJECTURE 1. — Multimodal Collet—Eckmann maps are strongly stochastically stable.

Tsuijii’s result on weak stochastic stabilit€] indicate in this direction. Possibly, the Collet—
Eckmann condition itself can be replaced by a much weaker growth condition.

Let A be a compact (forward) invariant set for a smooth nfapnd i be an f-invariant
ergodic probability measure. The measuris calledhyperbolicif all the Lyapunov exponents
corresponding tq. are non-zero (recall that by Oseledec’s Theorem, the Lyapunov exponents
associated to a measure are well defined); it is callebyasical measuré the set ofu-generic
points has positive probability with respect to the given reference (Lebesgue) measure. A non-
trivial invariant setA in general supports an infinite number of invariant measures some of which
may be hyperbolic and some of which may not. At this point in the theory it is not completely
clear how one could distinguish situations in which all invariant measure are hyperbolic and
situations in which they are not. For the moment we suggest the following definition: we
say that a compact invariant sétis totally hyperbolicif all invariant measures with support
on A are hyperbolic. We conjecture that the presence of (singular) invariant measures with
zero Lyapunov exponent (a natural generalization of the indifferent fixed point case), could
be the main mechanism for slowing down of the mixing process and thus giving rise to only
subexponential rates of decay of correlations.

CONJECTURE 2.—The mapf:A — A exhibits exponential decay of correlatiorfwith
respect to every physical measuravith support inA) if and only if A is totally hyperbolic.

Conjecture 2 is true in the case of unimodal interval mapsth negative Schwarzian derivative.
Indeed, as was shown i2]], f has exponential decay of correlations if and only if

Aper 1= inf{l log ‘ (f”)/(p) in>1, pis n-periodic} >0,
n

and [6, Proposition 3.]JLstates that the Lyapunov exponent of afsinvariant measure is at
least e, .

Different degrees of hyperbolicity might also influence the effect of small perturbations.
Tsujii [27] showed that for generic one-parameter families unimodal maps satisfying a strong
form of the Benedicks-Carleson conditions (and thus with exponential decay of correlations) are
Lebesgue density points of similar maps.

CONJECTURE 3. —For generic one-parameter families, maps with exponential decay of
correlations are Lebesgue density points of other maps with uniform exponential rates of decay
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6 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

of correlations. Maps with at least polynomial decay are Lebesgue density points of maps with
(arbitrarily small) exponential decay.

1.3. Overview of the paper

Our strategy is to define a Markov return mﬁ}& FR:Q — Qo on a suitable neighbourhood
of one of the critical points. We shall obtain estimates on thefaik Q: R > n}| of the return
times and apply the general framework of L.-S. YouBg] [linking these estimates with bounds
for the decay of correlation. The general philosophy is that intervals outside a neighbourhood
of the critical set grow exponentially fast (by a classical result of Misiurewid€y, gee [L8] for a
C? version) and therefore for these intervals during these times, the tail of the return times decays
exponentially fast. Many intervals however fall intobefore a good return 1@, occurs and are
strongly contracted in the next iterate. We estimate the time it takes for them to recover their
original size in terms of the derivatives along the critical orbits, which in turn provides bounds
for the decay of the tail of the return time function.

In Section 2 we consider intervals i and use a binding argument to obtain estimates
for their growth in terms of the derivative along the appropriate critical orbit. As mentioned
above, similar arguments have been applied before, notably by Jakdld$andl Benedicks and
Carleson P], under stronger conditions oR?,, and on the recurrence of the critical orbit. Here
we have generalized the argument to deal with slow derivative growth rates along the critical
orbits and arbitrary recurrence patterns.

__In Section 3 we consider an arbitrary intervBIC I and show that there exists a partition

P of J and a stopping time functiof such that the imageg’“) (w) are uniformly large for

all w € P, i.e. almost every point of belongs to an interval which achievizsge scale We
describe a combinatorial structure 5t on J which keeps track of the pattern of returns/fo

of eachw. By combining this information with some analytic estimates on the size of elements
with given combinatorics, we obtain key estimates on the size of théatadl J: p > n} of the
stopping time functiorp. A variety of arguments is used here to deal with the various possible
rates (polynomial, stretched exponential or exponential).

In Section 4 we show that once an interval has achieved large scale there is a fixed proportion
of it which has a full return to the original interval, within a fixed number of iterates. It
follows that the transition from large scale to full return occurs exponentially fast and does not
significantly affect the tail estimates. We also state precisely the results of Young which we apply
to our return map to obtain the conclusions of our theorems.

2. Inducing to small scales

We define a partitiof® of a critical neighbourhood and a stopping time functignsuch that
the induced mag’ = f? on A is expanding. The images of partition elements are not uniformly
large, i.einf{|fP“)(w)|: w € P} =0, and therefore we call thiaducing to small scales

2.1. Definitionsand notation

LEMMA 2.1.-The conditiongx) and (xx) are equivalent.

Proof. —Condition () implies (%) because if we takey, so thaty2~! = D-! then

V1D, (e)] "¢ = 4, = Dy /7Y so the terms in each of the two sums in)are equal
to each other and equal to thosg#).

To see that{x) implies (+) note that by the duality df andi? whens +1 =1, 3" af < oo,
STbe < oo impliesy” a, b, < co. Assume £x) holds and take? = v, b% = [y.~1D,,(c)] /¢,
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DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 7

1/¢q=1¢/(2¢ —1) and thereford /p=1—-1/¢= (¢ — 1)/(2£ —1). ThenZaP andeq are
Vi —

—11

both finite and therefor®” a,,b,, < co. But sincea,,b,, = v vn * qDﬁq — D=1, condition
(x) follows. O

We use the symbat to indicate that two terms are equal up to a factor depending onfy; on
Because < o,
(@) = |z — [

for all x € X close toc. Also there exists such that

@)~ Fwl el
@l S e=c

for all 2, y such thafx — y| < %max{|x —C|,|ly —C|}. Here|x — C| = min{|x — ¢|;c € C}. Let
I =exp(r Z;)O:l 111” ).

Forz € X, let ¢ = ¢(x) € C be the critical point closest te. This is well defined forz
sufficiently close taC. Given a critical neighbourhood of C we define thebinding periodas
follows: If x € A, then

(3)

(4) p(z) :=max{p: |f*(z) — f*(c)| <w|ffe)—C| YEk<p—1},

whilep(z) :=0if = ¢ A. Clearlyp — co monotonically ass — ¢(x). In order to choose the size
of our critical neighbourhoodk we need the following lemma.

LEMMA 2.2. —Suppose that, > 0 andzp Gp < co. Then for any > 0 there exist®, such

that
p=> > Il <t
521 (p1,..., ps) Pi
pz'Zpo

Proof. —Let Sp = > -, (Gp. Then bothS, and S := > ., S tend to0 as py — oc.
Developing term by term we see th&t< S. This proves the lemma.o

LEMMA 2.3.— There exists: > 0 such that for alléy > 0, there exists) € (0, dy) such that
for A={J.(c—9d,c+6) and everyr

(BBC) ‘(f”)( )| 2k forn=min{i>0;f"(z) € A}.

We call this propertypounded backward contractiom an earlier version of this papés][ we
had to state (BBC) as an assumption. For (symmetric) S-unimodal maps, (BBC) is well-known
to hold, cf. [LO], and recently the multimodal case it is proven . [It is essential for (BBC)
that all critical orders are the same, see the counterexamplésSegtion b

Taking advantage of Lemma 2.2 and conditier)(we fix for the rest of the paper a critical
neighbourhood\ = As = J, .. (c—d,c+J) whered > 0 is such that (BBC) holds and so small
that

® S Y TG D) <

SN (p1,...,ps) Pi

Zimén

PiZPs

forall c € C, ps :=p(c£9), ( =64Ky/kCy, Cy the constant introduced in Lemma 2.5, dkig
a fixed Koebe distortion constant, which turns out tob#6.
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Forp > 0 we letl, = {z: p(z) = p} denote the level sets of the functipnLet P denote the
corresponding partition oK. Note that sincey(x) = 0 outsideA, I = X \ A is the “zeroth”
partition element. Notice thd}, can be empty for some valuesfand that it has at mo&tC
components. Defind’: X — X by letting F(z) = fP(*)(z) for x € A and F(z) = f(z) for
rze X\ A.

2.2. Expansion estimates

We have two main expansion estimates.
LEMMA 2.4 (Derivative growth for pieces of orbit outside There exist constants; > 0
and\;s > 0 such that for every piece of orbjtf’(x )} ! lying completely outsid& we have

|(£) ()] > Cse.

If moreoverf*(z) € A, then

|(fk)/(x)‘ > max{x, C’gek“k}.
Notice that the first estimate clearly implies the second i§ large. The second however is

extremely useful when considering small valueg of

Proof. —The first estimate is well known for maps with negative Schwarzian derivative, and
also for maps without periodic attractors or neutral orbits (Mafié’s result), for see Chapter Il
in [19]. So this covers our case. The second statement follows from (BBG).

The following expansion bound will be of importance. Let

F!(c) := min{| (fp)l(x)

(c—d,c+0)}.

LEmMA 2.5 (Derivative growth for pieces of orbit starting iv). — There existCy > 0
(independently of and hence\) such that for every € C andp > ps with I,, # () we have

(6) Fi(¢) > Co [yt Dy(e)] V",

In the sequel, we will writef") instead off)(c) when no confusion can arise. We shall need
an intermediate result for the proof.
LEMMA 2.6.—-For z € A we have

(Y @)l

(£ (2)l

Remark—In Section 3.1 we will use this estimate on a slightly bigger interval than
[f(x), f(c)], but this does not seriously affect the estimates.

<T forally,z€ [f(z),f(c)] andall i < p(z) — 1.

Proof. —Lettingy; = f7(y) andz; = f7(z) for j > 0 we have by the chain rule

|- (1 Ll

i—1

11 f%

=0

’ (f)' )
(f1)(2)
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DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 9

By (3),
| (z3) = )| /| (i) < 7lz5 — yil/ly; = Cl

and so, using the elementary fact that(1 4+ x) < = for all z > 0 we get

log ’ E;%;E‘Z; ‘ < Slog (1 + 7%) < Ti(%)

=0 =0
By definition of p we have
l2j =yl <[ (@) = F7He)| <y [ F7H(e) = C]
and

ly; = Cl = (1 —~v1) |77 (e) —C|.

Herec is again the critical point closest 10 Substituting these inequalities into the last formula
yields the desired statement

Proof of Lemma 2.5. ket c be the critical point closest te. By Lemma 2.6 and the fact that

‘f’(x)‘ ~ | — C|l71 ~ }f(:z:) — f(c)‘(zfl)/f

we have

Y/ [/ (@)|Dp—1(¢) _ |f(x) = f(c)|“"D/ Dyi(c)

By the Mean Value Theorem, the definition pfind the distortion estimate in Lemma 2.6 we
have

TD, 1| f(x) = f(e)] = [P (x) = fP(c)| = 7| f7(c) = C]|
and therefore

Wl f*(e) =€
(8) |f($)—f(0)|>w

Substituting (8) into (7) gives

‘(fp)/(x)‘ > O(F72+1/5)V1()571)/2Dp71(C)l/l’fp(c) o C’(z—n/e'

Because
‘571

[f' (7)) [ =[f7(c) - C

)

the Chain Rule gives
‘ (fp)/(x)‘ > O(F72+1/5)V}()efl)/sz(c)l/z.
This proves the lemma.o
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3. Inducing to large scales

The main result of this section is the following

PrROPOSITION 3.1. — Suppose thaif satisfies(x). Then there exist’ > 0 such that for
all 6” > 0 the following properties hold. For an arbitrary interval C X with |J| > §”
there exists a partitiorv3 of J (mod 0) and a stopping time functio;ﬁ:?3 — N such that
for all w € P, 13|w = fP@|w is a diffeomorphism with uniformly bounded distortion and

|F(w)| = | /7 (w)| = &'. Moreover the following estimates hold
Summable cas&inder no conditions o, (¢) other than which stem frorfx)

>

n

{p>n|J}| <.

Polynomial caself d,,(¢c) < Cn~* for all c € C andn > 1, then there exist€’ > 0 such that
[{p > nl|J}| < Cn™.

Stretched exponential casé:b,, (c) < Ce " a € (0,1), >0 forall ceC andn > 1,
then for eachy € (0, ) there exisf3, C' > 0 such that

[{p>n|J}| < Ce P,

Exponential casdf b,,(c) < Ce™#", 3> 0 for all c € C andn > 1, then there exis;é, C>0
such that

|{p > n|J}| < Ce= P,

Let us try to clarify the role of the constants in this proposition, and their interdependence. In
the previous section we have fixédBy the Contraction Principle (see e.d9] Section I\V.}),
there existd’ such that for each componélit of A\ C and eactn > 0, | f*(W)| > ¢’. This is
thed’ of Proposition 3.1.

The expression{p > n|.J}| denotes the conditional probabilityz € J;p(z) > n}|/|J|. In
Section 3.1 we define and describe the combinatorics of the parﬁtioﬁJ and the stopping
a given combinatorics. In Section 3.3 we combine these with some counting arguments to obtain
estimates o{p > n|J}. Note that the supremum df > n|J}, when taken over all intervals
J, will be infinite, because tiny intervals take a long time to reach large scale. When applying
Proposition 3.1 in Section 4, we will fix the minimal interval length := min{d’/3, |Q0|}.
where(), is an interval specified in Section 4.1. In this way, we obtain a bound of

{[{p>nlJ}

,|J|>§H}

which depends only o, that is: theC’s in Proposition 3.1 depend @i/ but not on.J.
3.1. Combinatorial structure of F'
We start with any interval € P|J, i.e.w = I, N J for somep > 0, and let
vi=min{n>0; f"(w)NA#0}
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Fig. 1. Construction of partition@n. The middle part ofv reaches large scale after iterates; the upper
part has a shallow return, and the lower part has a deep return.

be the first visit toA. Write © = f** (w). There are two (mutually exclusive) cases:
o |@| < ¢'. We partitionw by intersectingo with the elementg7,,}. Each intervall, N & for
p > 0is labeled aPeep ReturnThe intervall, N& is taken together with the intervg) N
adjacent to it. Becausg is not too large compared to this particular component,othe
estimates of the binding period 8f go through, see Lemma 2.6 and the remark below it.

e |©| = ¢'. We cut off the outmost intervals of lengthfrom @, and stop with the remaining

middle part; it has reachddrge scale The subintervaly C w such thatf** (wy) equals
this middle part ofv is added to the partitioﬂ?. Heree < ¢’ is a constant to be fixed in
the proof of Lemma 3.6. The will be used effectively in Lemma 4.2. For the moment it
suffices to know that is smaller than each componentffand each component &f \ A.
The outmost intervald.. of lengthe are partitioned by intersecting them with the elements
{I,}. Each intervall, N @4 for p > 0 is labeled aPeep ReturnThe intervally N w4 (if it
exists) is labeled aShallow Return

Note that ifz € w, thenf™(z) € A only if nis in a binding period ok, « has a deep return or if

n = p(z). At shallow return times,, f"(x) ¢ A.

Now let w’ be an interval which results from this partitioning ®f which has not reached
large scale, see Fig. 1. We first apply the binding period, i.e. we f&ke’) for the stopping
time p = p(w’) (which is possibly0, namely ifw’ N A = (§), and then take the second return
vo = min{n > p(v’); f"(w’) N A # 0}. Subdivide f*2(w’) according to the above rules,
distinguishing between large and deep returns.

Let P, be the partition which we obtain by only considering at mogerates off and? the
partition of J by considering all iterates gf. We should emphasize that the procedure and hence
the partitions depend on the choice made Joand one). For example, ifJ; and J, are two
intersecting intervals, then one could get two different partitions created at axp®isit N Js.

Next we define thestopping time at large scalg;: At points z € w where the procedure
eventually stops, i.e., for which there exists> 0 so that thenth iterate of the interval irP,,
containingz has reached large scale, get(x) = n. At other pointsz € J setp;(z) = co.
Finally to defineF;, letJ = {x € J: p;(z) < oo} and defineF; : J — I by F;(z) = f77() ().
We shall prove thafl = J up to sets of zero Lebesgue measure.

Taken < co. To eachw,, € P,, we assign a formatinerary

(Vlvpl)’ R (Vsaps)a
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consisting of the stopping times and lengths of the corresponding binding perisdsaximal
for v, < n. Depending on the depth of the return at timev, + p, can be arbitrarily large. If the
return at timey; is shallow, therp; = 0. If w is an interval on whiclvy,p1),.. ., (vj—1,pj-1)
is constant and for which; = v;(w) is the next return ta\, then the se{z € w;p;(x) = p}
has at mostt components. This maximum is attained whgt# (“)| > ¢, the radius ofA, and
the outmost intervals of size both contain a critical point. It can happen th&t (w) covers
many more critical points, but sineghas reached large scajsg, is only defined on the outmost
intervals. We will take care of this multiplicity in the estimates in Section 3.3. But apart from
this multiplicity, a sequence;, ..., p, uniquely determines a partition elemesy, .. ,. € P,
(or perhaps the empty set). Indepg determines the position of theh return ofw,, .. ,., and
from the previou®s, ..., p;—1 and the starting interval one can compute the next return time.
Hence the information, . . ., v, is strictly speaking superfluous. Observe however that there are
many itineraries that do not correspond to partition elements. Notef thata diffeomorphism
on each interval from the partitioR,, .

For a given sequendes, ..., ps), let

Sq={i<s;v;isadeepreturh={i < s;p; >0}

and
Ss ={i < s;v; is ashallowreturh={i < s;p; =0} =S\ Sg.
Moreover, let
Ss,s ={i < s;p; =0 andp; 1 = 0}.

Because each index i \ S; s either equals or is followed by an index irb;, we get
€) #85 < H#Sss +#Sa+1.
3.2. Metric and combinatorial estimates

LEMMA 3.2.-LetC = Cys and )\ = \s be as in Lemma.4. There existd(, > 0 independent
of e and p € (0,1) (p — 0 ase — 0), with the following properties. For a given sequence
(v1,01),- .- (Vs,ps) With vs < n we have

R S22 (Ko™ s 1

|f™(Wpr,....p.) K icS,
for m = max{n,vs + ps }. Moreover there exist& > 0 which can be chosen arbitrarily large if
¢ is small, such that;,; — v; > T whenevep; = p;+1 = 0.

Proof. —By construction f™|w,, ... ». is a diffeomorphism onto its image. Take= wy, ... ,
and divide its orbit into pieces separated by returns (both deep and shallow):

s

[layl - 1]7 [Vlvl/? - 1]3 [V27V3 - 1]7 AR [Vsam]'
Lety; < v be two consecutive deep returns. That is, assumethat), p; 1 =---=py_1 =0
andp;, > 0 (with possibly:’ = i + 1). Because each such interval lasts at least the corresponding
binding period, and in the remaining time the pointdoes not visitA, Lemma 2.4 and the
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definition of 7} give
o —vi)! i Avyr —(vitpi /
‘(fw u)(fl/(x))|>ce (vyr—(v p))Fpi'
Hence the chain rule and the Mean Value Theorem show that

< C*#Sde*A(m*Z i)

fm (Wpl »»»»» Ps )

|Wp1 »»»»» Ps

To prove the other inequality, let andv; be subsequent deep return times. First let us treat the
step fromy; 1 + py—1 t0 vy, SO @assume thaty 1 + py—1 < wvp. (If vy_1 + py_1 = vy We

can skip this step.) Therefoy:' -1 P 1 (w,, )N A =0, while there is at least one point

Y € wp, ... p, SUCh thatf* (y) € A. Lemma 2.3 yields that

’(f’ji’_(Vi/—1+pi’—1))l(fVi/—1+pi/fl(y))’ > K.

Because;s <n, | ¥’ (wp,,...p.)| < 0. TakeH D f¥#-1+Pi-1(w, ., )the largestinterval on
which fv*~(vv-1FP#-1) is monotone. Then by the choice &f f”i/*&/fﬁpi/fl)(H) contains
a 1-scaled neighbourhood gF’ (wy, ... ., ). Therefore the derivative of* ~(*-1P-1) has
distortion bounded by som&, = K (%) < 16. This follows from the Koebe Lemma, se&]
Chapter I\]. Hence

‘(fVi’*(Vi’71+Pi’71))/(fVi’flJFPi’fl (I))‘ > K/Ko-

If ' < i+ 2, the same argument givig ~(vitPd) Y/ (fri—1+Pi-1(2))| > /Ko, and indeed
in this case there are no entriesf, between andi’.

If i > i+ 2, then the differences; ;o — (v; +p;), Vits — Vito,...,Vii—1 — Vpy—o are all large
if € is small. Indeed, in these times an interval of sizmust have expanded to an interval of
sized’ > ¢. Becauser does not visitA during these iterates (recall that the binding periods at
shallow returns have lengtlj, the first part of Lemma 2.4 gives

i’ —(i+2)
(ptmy peom) > (1)

wherep — 0 ase — 0. (In Lemma 3.6 we will fixp at 1/8.) Adding the numberg’ — i — 2
(running over all pairg:’, i) of subsequent deep returns with> i + 2) gives#3S; . This proves
the lemma. O

LEMMA 3.3. - There existds > 0 depending only om such that for all starting intervalg/
andw € P, the distortion ofF;|w is bounded byx'.

Proof. —If p(w) = n, then by construction, there is an interab w such thatf™ mapsT’
monotonically onto ar-scaled neighbourhood ¢f*(w), i.e. both components gf*(T") \ f™(w)
have size> ¢|f™(w)|. The Koebe Principle (see e.dlq and in the setting when we do not
assumes f < 0, [24]) gives the result. O

The following lemma contains combinatorial estimates needed in the next section.

LEmmA 3.4.-Let Ny ; be the number of integer sequenges, . . ., ps) such that
pr+--+ps=k and p; >0 foralls.
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Let N,', be the same number for sequences with 0 for all <. Then

< 98 +‘ k+571'
(20) Ni,s <2 rJngg{Nm <2

Given¢ > 0 small anda € (0, 1], there existg = (¢, o) with ¢ — 0 as¢ — 0 such that
Ck%logk ;

(11) N;js < eA if s

" ek if s

Proof. —Say;j > 1 terms in the sump; + - - - + p, are nonzero. There a(?) ways to distribute
them. This gives

- S + + S\ _ (os +
N’C»S_Z<j>Nk,j<m?XNk,j (j)‘@ _1)m?XNk,j'
j=1 J=1

Next, supposing that; > 0 for all ¢, there ares — 1 partial sumszzzlpi different from k.

ThereforeN,". = (’;:}). In particular,max; N,”. < 2~'. This proves (10). Let us estimate

N,j,s more precisely ifs < Ck® < k/2. By Stirling’s formula

() s () () <() ()

Because1 + 22)F Cexp(klog(l + 22)) < exp(2s), it follows that

1—a\ Ck”
Nljj,s <e25<T> < eC(QflogCJr(lfa)logk)k"‘

if s <Ck*. If 5 < Ck, this simplifies toN,! | < e¢(2~1°e Ok proving (11). O
3.3. Stopping time estimates

The aim of this section is to estimate the tail behaviour of the return time fungtioe. to
obtain an upper bound for the Lebesgue measure of thferset/: p(z) > n} which we shall
henceforth (suppressing the dependencdpdenote by{p > n}. We shall always assume the
notation of Proposition 3.1, particularly when referring to the polynomial, stretched exponential
and exponential cases. R

We fix n for the rest of this section. For eache P we consider the sequenge,...,ps as
defined above, with some terms possibly equal.t&ecall thats is given by the number of
returns occurring before time. Let > 0 be a small constant to be determined in Lemma 3.5.
The set of partition elements € P,, with p|w > n can be divided into

S
Po={oePitonn Sonem|
i=1
and
S
Py = {w € Pp; plw >n, Zpi >77n}.
i=1
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Clearly we have

{p>n}|= D lwl+ D vl

weP}, wePy

To treat the exponential and stretched exponential case we shall need to su@;ﬁvﬂdﬂher
into

,:{weﬁ;{;sgpnd} and 737'{+:{w673,'{;5>pnd},

whered € (0, 1] andp > 0 will be chosen below.

Intuitively elements in73,’1 spend most of their time in the “uniformly expanding” region
X \ A. Thus intervals are growing in size at a uniform exponential rate and achieve large scale
exponentially fast. Elements @’{ on the other hand spend much time in binding periods. In this
case the upper bound will more closely reflect the expanding properties of the critical orbit. We
shall apply various combinations of the estimates obtained in Section 3.2 to obtain bounds on the
total measure of the elements of the subpartitions defined above under the required assumptions
on the growth ofD,,.

LeEmMA 3.5.— For any# > 0 there exists), > 0 such that for all0 < n < 79 and for alln

sufficiently large,
Z |w| < e—()\—G)n.
weﬁ,g
Proof. —As in Lemma 3.4, lefV;, ; denote the number of possible sequer(ggs. . ., p,) with

>0andp; + - - -+ ps = k. Then by the definition oP’ and the first statement of Lemma 3.2
we have

n

(12) Z|w| ZZ > |wprp. ZZZLN;CCS*’”")"

WGP’ 81k0p1,7p s=1 k=0

D pi=k

Here the factor® expresses the maximal number of componentg,ofor each return, see
the argument in Section 3.1. We use the bouvid; < 2k+s from Lemma 3.4. Recall that
k < mn. Sincev,11 — v; 2 T whenp; = p;+1 = 0 (see the previous lemma) formula (9) gives
S=H#Sqg+ #5:<2#Sa+ #Sss+1<2nmm+n/T+1.Soin (12),s only ranges up to this
bound. Writing’ = (3n + 1/T + 1/n)(3log2 + logC~1), we get4* N, ,C~* < "™, Taking

6 =2(n+n'/)\) and substituting in (12) gives

nn
Z |w| < nzen/ne—k(l—n)n < ane—(A—%)n < e—(A—é))n
k=1

we”;’\{l
providedn andr’ are sufficiently small and sufficiently large. O

LEMMA 3.6.— Recall from (2) that d,,(c¢) = min; <, (vi/Di(c))*/*|fi(c) — C|. Fix L €
{1,...,n} arbitrary and let

d.s(c) =di(c) fori= Inax{ B—”W ,L}.

52
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Write s(w) = s if the itinerary (py, ..., ps) of w has lengths. For anyn > 0 there exists”; > 0
such that

n
—8 3
Z lw| < Ch rilggcz 2%y, s (c).
wepP)! s=L
s(w)=L
Proof. —-Given a sequencéps,...,p,), let p;; be the first term such that; > nm/(25'%).
Because; + - - - + ps = nn, suchj’ exists. Takel = max{L,j'}.
Let @, ..., be the union of adjacent intervals,, ., ,, with common return times
v1,...,v; andp > p;. Then f*5 mapsw,, .., difftomorphically into an intervalz,y) such

that p(x), p(y) = p;. Assume without loss of generality that — ¢| > |y — ¢|. Therefore, for
eachi < p;,

ilfi(e) =Cl = [f'(x) = f{(e)] =T 7' Dica(e) | f(2) = f(c))|
Di(c)|x —cf*
> - —cf' > e
> O(1/T)D;—1(c)|z —c|* = O(1/T) Fi(0) — i1
This gives

|z —y| <2z —¢| < O(?Fl/g)dp(c) < (’)(21"1/@) max d,(c) = (9(21"1/5)czn7j(c).

p=nn/2j2

Let Sy andS; be the indices< j corresponding to shallow respectively deep returns. Also let
S, =Sq\ {7} and letS, ; be the indices< j of shallow returns that are followed by another
shallow return. Now Lemma 3.2 applieddg, ... ,; and the iterate; gives

n
Z |W|<Z Z |©@p1seeesps |

weP! J=L (p1,..,p;)
s(w)=L

.....

. 1/¢ 7 j Ko s #Ss,s 1
<Y o )maxdy () > 4(—=) ] 5

j=L (P15e-Pj—1) ies), P

The factord’ expresses the different components of the levelGgtsat intersect forward iterates
of w (see the argumentin Section 3.1), and the fagkay/x ) p#S+= comes from Lemma 3.2.
Using (9) and the fact thatS’, = #5; — 1 we can writed’ = 27787 and

8 = g#Sst#5a  g#Sa A2 S+ _ g#S. g4 #5ug — 512 ]#Ss.sg4# 5.

Then

#5Sa
() TR X et T

K . .
ies, = Pi (P15e-sPj—1) i€S) pi

Takee in Lemma 3.2 so small that = % and recall thatp; > ps for all ¢ € S;. Therefore

Lemma 2.5 and formula (5) (with= 64K,/ ) give that

> ep* ] 1450 <1

(P1ye-5Pj—1) i€S) Pi
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By (6), the lemma follows withC; = O(2I'Y/¢)512K/k. O

The previous lemma is not so useful in the exponential and stretched exponential cases for
relatively small values of. Indeed, consider for example the situation #at= e 7. Then the
term in the sum in Lemma 3.6 correspondingste: \/n givesC12~ V" - e~"8/2_ Clearly this
decreases merely subexponentially:ir_et us improve on this.

LEMMA 3.7.—Assume that there exist§ 3 > 0 and« € (0, 1] such thatD,, '/ < CePn”
for all n. Then for eachiv € (0, ) (or & =1 if a = 1) there existp, C’, 3’ > 0 such that

> el <l
wef?\L

for all n. Note that the seP;/_ depends op anda.

Proof. —First notice that since: € (0,1] one hag{ + p$ > (p1 + p2)“. Using Lemmas 2.5
and 3.2 this gives that there exigt$ > 0 andC such that

|Wp1 »»»»» Ps

e1x 1 T e (S e
<C HF_’ < C7°C, HI?EaCXbPi(C) < Cse B 0P,
i=1" Pi i=1

Reasoning as in the proof of Lemma 3.5, we wkite p; + - - - + ps and we obtain

pnd [e’e}
(13) Dol <D Y 4N O T

WG%\;LL s=1k=nn

Taking¢ = p/n® respectivelyl = p/n in Lemma 3.4, we get that for songe= j(p,7, &) with
p—0asp—0,

N < d BT s < (p/n)ke,
’ 25¢Pk if s<

(The second case applies whenr- 1.) Becausey < « and takingp and thereforg sufficiently
small, we get in either case

S AN, OB <850 B 2,

k=nn

Using again thatv < « and the fact thap is small, inequality (13) gives

Pnd o]
7wl <Y AN O PR L e A
wGﬁ;{i s=1k=nn

for some constar®’. This proves the lemma with' =»n*5"/4. O

Proof of Proposition 3.1. We show first of all that/ has full measure id, i.e.|{p > n}| — 0
asn — oo. By (for example) Lemma 2.4, it follows that almost alk J, f"(x) accumulates
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ontoC. Hencex has infinitely many deep return times, and it is contained in sets of the form
wp,,....p. fOr itineraries of arbitrary length. Becausg(wy, ... .) = s — oo ass — oo, the proofs
of Lemmas 3.5 and 3.6 show that, ) |wp,....p.| — 0 @ss — oco. Therefore.J \ J=0

To prove the remaining estimates in the four cases mentioned in the proposition, notice that
we have exponential bounds &, and therefore we only need to concentrate her@®nThe
sequencéd,, ,(c)} is decreasing im, and for eachk there are at most

#{nk—1<nn/(2s*) <k} <25°/n

numbers: such thatt = [nn/(2s%)]. Therefore, using Lemma 3.6 with= 1:

IDILRTNCES SE-) BRI VI CR

n>1 s=1 s>1 E>1
12 12 B
<= Y Iw/De@)] Y < = Y[ Dale)] "
= T =1

Hence the summable case follows fromx). Lemma 3.6 with, = 1 gives for the polynomial
case

n

w C’lmax 2- dnS <Cy 27° 28 <1201 “n™¢
3 Jwl< Z 2

weP!!

as required. In the exponential and stretched exponential cases we use Lemma 3.6 applied to
P, with L = pn® to get

5 i <Come T 20 i

weP, s=pn®

for someC; > 0. Lemma 3.7 takes care of the remaining collectiRlh . O

4. Thefull return map

In this section we construct the full return map$, — € and carry out its tail estimates.

PROPOSITION 4.1. — Suppose thaff satisfies(x). Then for anyc € C N X there exists
a neighbourhoodQ), of ¢, a countable partitionQ of Qy (mod 0) and a return time
function R: Q — N with the following properties. For each € Q, f := f® mapsw to
diffeomorphically with bounded distortioketting

(14) s(z,y) = min{n; f"(z), f"(y) belong to different elements &'},

there exists? € (0,1) andC > 0 such that for allv € Q and allz,y € w,

(15)

f'(y)

Moreover the tail{ R > n}| of the return times satisfy the following estimates

.fAI(I) _ 1‘ < Cﬂs(zy)
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Summable caséinder no conditions od,, (c) other than which stem frorfx)

> |{R>n}| <.

Polynomial caself d,,(c) < Cn~* forall ce C andn > 1, then there exist€' > 0 such that
{R>n}| < Cn=?.

Stretched exponential casé:b,, (c) < Ce ?"" a € (0,1), >0 forall ceC andn > 1,
then for each € (0, «) there exist3, C' > 0 such that

{R>n}| < CePn®,

Exponential casdf b,,(c) < Ce™#", 3> 0 for all c € C andn > 1, then there exis;é, C>0
such that

{R>n}| < Ce P,

In Section 4.1 we explain how to choo8g and how to define the partitio@ and the return
time functionR. Notice thatR is not a first return time. In Section 4.2 we prove the distortion
bound and in Section 4.3 we prove the estimates on the return times.

4.1. Largescalesand full returns

Let 2y C A be a small neighbourhood of a point C (the precise requirements on its size
will be given in the proof of Lemma 4.2 below). LgtC X be an arbitrary interval. Consider
the mapF = f?:.J — X and the associated partitigh on .J with the stopping time functiop
as defined in Section 3.

LEMMA 4.2, —There existy € N and¢ > 0 independent off such that for every € P there
existsw C w satisfying the following properties

o [P+t mapsy diffeomorphically ontd for somet < to;

o |0 >¢lwl;

e both components gf*(*) (w \ @) have length> ¢’ /3.

Proof. —By definition of X, the preimages of are dense inY. Therefore there existg > 1
such that every interval of length ¢’ contains a point: € {J,,, F~te) in its middle fifth.
Say f(x) = c. Now choose sufficiently small neighbourhoagsof each such: not containing
any points of f=7(C) for any j < t. Clearly f* mapsw, diffeomorphically to some critical
neighbourhood. By adjusting the sizewf we can make sure that they all (i.e. for all poim)s
map onto exactly the same critical neighbourhéldand thatjw,| < §’/15. Let@ C w be the
interval that is mapped onto, by (<), This proves the first and third statement.

From Lemma 3.3 we know that the distortigf(”) |w is bounded byK = K (). The second
statement follows immediately.O

Having fixedQ, let 0" = min{é’/3, |Q|}. In the remainder we will only need to consider
intervalsJ of size> ¢§”.

We now definef: Qy — Qo, the associated partitio@ and the stopping time functiof
constant on elements @ such thatf: R« onw e Q. For eachw in the partition73 of
Qo, let & denote the subinterval given in Lemma 4.2,|$6(“) ()| > 6’. We put® € Q by

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



10.1016/S0012-9593(03) 00025-9/FLA  AID:20 p. 20 (2279-2386)
PARISGML 2003/03/21,v 1.30 Prn:15/04/2003; 12:29 F:ansens20.tex; by:violeta

20 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

definition andR(&) = p(w) + t. Both components of?“)(w) \ w, have size at least'/3.
Considering them as new starting intervals we carry out the construction of Section 3 and repeat
the procedure described above. This determines all the necessary objects. In this way&ach
also has an associated sequendargle scale timebefore &ull return. We writep; = p(x) and
pira(z) = pi(z) + p(fP®)(x)) so thatp;, (x) denotes the total number of iterates making up
the firsti + 1 large scale stopping times associated to the pailiYe haveR(w) = ps(w) + ¢ for
somes > 1,t < to.

We prove two easy but important consequences of the construction.

LAEMMA 4.3. —For eachn > 0 and each intervab on Whichf" is continuous, the distortion
of f™|w is uniformly boundedindependently ab).

Proof. —The statement follows directly from the construction and Lemma 4.2. Indeed, the
third item of Lemma 4.2 shows that the Koebe space argifid is at least’ /3. The additional
t iterates do not significantly affect the distortion

LEMMA 4.4.—Foreveryi,

3K
5

[{@; pit1(x) exists andh; 1 > p; + k[pi }| < {p> k}|.
Here the expression on the left denotes the conditional probabiliy.qf> p; + & on the set of
intervals on whichp; is defined.

Proof. —The statement follows immediately from Lemmas 4.2 and 4.3. Indeed; ke a
maximal interval on whiclp; is defined and constant, sﬁfﬁ(“)(w) =J D w,;, Wwherew, is asin
Lemma 4.2. Lets’ C w be such thal’ = f7:(<) () is a component of \ w,.. By construction
|J’| > &'/3. As the transformatiort?: () |w has distortion bounded bl = K (<), we get

!
{z € wspir1(x) > pi(z) + k}| <K%‘{y€J';ﬁ1/(y) >k}

Becausé{p, > k}| < |{p > k}| the result follows by summing over all the intervals O
4.2. Bounded distortion

The functions from (14) is called theseparation time functiarNotice thats(z,y) is finite
for all = # y, because otherwisg”|(z,y) would be homeomorphic for all. The assumptions
on D,, imply that|(f™)’(x)| does not converge tfor anyz € X \ |J,, f~"(C), so this cannot
happen. By the same token one can show that some itergtis afiformly expanding, i.e. there
existsN such that(f™)’(z)| > 2 wherever it is defined.

LEMMA 4.5.— There existg € (0,1) andC > 0 such that for alkw € Q and allz, y € w,

(16)

£r

Proof. —For small values o&(z,y), (16) follows immediately from Lemma 4.3 Otherwise,
uniform expansion of ¥ and Lemma 4.3 imply thayf () — f(y)| < |Q0|K2*=¥)/N Because
the Koebe space arourfidt is at least’/3, we get
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o=l )

—s(x,y)/N 2
<’<5'+3|Qo|f(§2 @)/ ) _1’<C2—s<w,y>/N7

where ¢ = K12l | (31%IK )2 Here we usedk (¢/3) = (1;‘%3)2 as Koebe distortion

constant, seelP, Chapter Y in the negative Schwarzian case. In the general case, we take
the constant from Theorem B ia4]. O

4.3. Return time estimates

We fix n > 1 and consider the taifR > n} of the return times forf on Q. Let us
agree to use the notatidfp > n}| := sup{|{z € J; p(x) > n}|/|J|; |J| = ¢"}, which was
estimated in Proposition 3.1. In the summable case, no explicit estimates were given, except that

2 {p>n}| <oo.
Before starting the proof we introduce some notation. Recall that by constructioneach
has an associated sequence

0=pp <p1<pa<--- <ﬁs(w) < R(w)
with R(w) = py(.) + t and clearlys < R. Write Q™) = {w € Q; R(w) > n} and let

an) ={we Q":p; 1 <n <hi}

denote the set of elements @fwith R(w) > n and having exactly — 1 large scale times before
timen. Moreover, for each and every sequencé, . . ., k;) of positive integers withy " k; =n
we write

Q" (kr, ... ki) = {we QM iky =p; —pj_1for j<i—1, ki=n—p;_1}.

Finally we let

0= 3 vl and [@M|=3"|0")].

wea™ i<n

Obviously|{R > n}| = |Q™)|. We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. 4n the stretched exponential case, take< & < «, wherea is
as in Proposition 3.1. Both and& can be arbitrarily close te.. In the exponential case take
a=a=1.Letn e (0,1) be a small number to be determined below, depending and3 but
not onn. We write

(17) HR>n}[=>"1Qil= D> 1Qil+ > Qi

i<n i<nn® e <in

Lemma 4.2 says that a fixed proportidof every element irQZ(.’_‘)1 has a full return t@2, before
its next large scale time. Therefore

12| /|i" | <1 -¢.
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This impIies|Q§”)| < (1 - ¢)? and therefore the second term in (17) satisfies

(18) oM< Y n-¢i<

nma<ikn M <ikn

(1=

ml}—l

For the first term write

YoM=Y [ e k).

i<nn® i<nn® (ki,....k;)

For a given sequendg, ..., k;), Lemma 4.4 and Proposition 3.1 imply

‘an)(kla---vki”g|{ﬁi>ﬁi71+kifl_1|ﬁi71}|"'}{ﬁ1>ki71_1}‘
<I~(ZH ’{]5>/€j _1}‘ ggiHefﬁ(kjfl (Ke )z —pn®
i=1 =1

Here K = 3K/¢' is the constant in the statement of Lemma 4.4. From Lemma 3.4 we have that
the number of sequencék, ..., k;) as above equaIN;i and satisfies

N+

nz\

eim®logn  jf 1<nn%, a<l,
e if i<n

for somer = 7j(n, @) tending to0 asn — 0. In the stretched exponential case

Sal= > > @Mk, k)]

i<nn® i<nm® (k1,...,k:)

< Z eﬁno‘ logn(KeB)ze—ﬁno‘ < ae—ﬁlno‘
i<nné&

for someC ,8" >0 as long asi) is sufficiently small. In precisely the same way we get
D i 1Qil < Ce=#"" in the exponential case.

To treat the summable and polynomial case we wfife > n}| as in (17), with& =1 and
n =1/2. The same argument gives an exponential estimate as in (18) for the second term. To
estimate the first term, notice that for eachnd each sequends, ..., k; with > k; = n, the
largestk; satisfiesk; > n/i. Thus letting

n)*{wEQ( ", ik <njiforj <jandk; >n/i}

we have

S =Y Y Yja

n=li<n/2 n=l i<n/2 j=1
<D0 D i =9 {p > n/i}]
n=1l i<n/2
Z (1-¢)" 12‘{p>n/z}|
i>1 nz=1
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Substitutingt = |n/i], and using the fact that at modtifferent values of: give the same value
of k, we find that the above is bounded by, 7*(1 — £)"~' 3,5, [{p > k}| which is finite
(use Proposition 3.1).

In the polynomial case we get

YoM <om) Y it e =0(n ).

i<n/2 i<n/2

Together with the exponential estimate for the teﬁjbn/2 |Q§”)|, this yields the proposi-
tion. O

4.4. Proof of Theorems1, 2 and 3

We now state the assumptions and results of Young which we want to apply. Together with
the estimates obtained in Proposition 4.1, they easily imply Theorems 1, 2 ands3.dstote
Lebesgue measure oxi. L.-S. Young applies the following tower construction for her results.
Given a countably piecewise monotone and onto map

f:Uw_)QOa f'w:fR(W)a

we

define a tower

0<i S Rlw)
with an action
, (z,i+1) if rew,i+1<Rw),
9(, :{(f(a:),()) if 2cw i+tl=Rw).

The connection with the original mapis established by means of the projectidi, i) = fi(x).
Becausef® is smooth and has bounded distortion on each Q, i < R(w), this projection has
bounded distortion. Alsar o g = f o w. Therefore, ifv is a g-invariant absolutely continuous
probability measure oft, i := v o~ is an invariant absolutely continuous probability measure
on the interval.

We summarize Young's results frori]] as far as we need them. For a fix8dt (0,1) as in
Lemma 4.5, let

Csg= {(p:Q—>R; 3C>0Vz,y ’90(55) —SO(y)\ gCﬁS(z,y)}

and
C; ={peCs;p=>0}.

Here we have extended the separation tinie 2 in the obvious way. Also lethg be Lebesgue
measure o). (A priori, mq can be infinite.)

THEOREM (Young [32]). — Suppose thaf : Q, — € is as above, i.e.

m(QO\ U w) =0

weQ

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



10.1016/S0012-9593(03) 00025-9/FLA  AID:20 p. 24 (2706-2875)
PARISGML 2003/03/21,v 1.30 Prn:15/04/2003; 12:29 F:ansens20.tex; by:violeta

24 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

and (16) holds. Let{p,,} be a sequence of positive reals related to the tail behaviout af
follows. Ifm({R > n}) < n~*, thenp, =n'~2, if m({R>n}) <e P", thenp, =e 4" for
some(any) &' < B and ifm({R > n}) <e ™" for somea € (0,1), thenp, =e~"" for some
(any) o < . Then
(1) 1t Y, m({R > n}) < oo, then) carries ang-invariant absolutely continuous probability
measures (Kac's Theoreand -2~ ec;.

- dmgq
(2) For any measurer with d‘fr’;n € Ct, g"v — v and there exist®; > 0 such that
1987 — v| < Copn.

(3) For any pair of functionsp € L> (2, mq) andy € Cg, there exists”, ,, > 0 such that

‘/((pognﬁ[)du—/(pdy/d)dy

(4) fm({R>n}) <O(n™*) for somex > 2, then for anyp € C3 which is not a coboundary
(¢ # 1 o g — 1 for any), the Central Limit Theorem holds, i.e. there exists- 0 such
that ﬁ S oo g’ converges to the normal distributiod( [ ¢ dv, o).

< Coyppn-

Remark— Young states this theorem in terms of a stopping timehich is the extension of
R to the entire towef). As it happens

mg({ﬁ >n}) = Z m({R > k}),

k>2n

so that
me ({}AB >n})<O(n™) ifm({R>k})<O(n ).

This explains why the exponent in the polynomial case at first glance looks different from the
ones in Young’s version.

Using the projectionr, these results immediately carry over to the original nfapith
measureu = v o 7. Using the projectionr, immediately carry over to the original map
with measure: = v o 7~ 1. With respect to the support of the measure, note fhét, — € is
a mixing map, and its invariant measu;glmumo has the whole intervdl)y as support. The

formulay = v o 7~ shows thaf)y C supp(u).
Finally, recall from Proposition 4.1 how the tait({R > n}) is related tod,,(c). Therefore
Theorem 4.4 immediately gives Theorems 1, 2 and 3.
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