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DECAY OF CORRELATIONS
IN ONE-DIMENSIONAL DYNAMICS

BY HENK BRUIN, STEFANO LUZZATTO AND

SEBASTIAN VAN STRIEN

ABSTRACT. – We consider multimodalC3 interval mapsf satisfying a summability condition on th
derivativesDn along the critical orbits which implies the existence of an absolutely continuousf -invariant
probability measureµ. If f is non-renormalizable,µ is mixing and we show that the speed of mixing (de
of correlations) is strongly related to the rate of growth of the sequence(Dn) asn → ∞. We also give
sufficient conditions forµ to satisfy the Central Limit Theorem. This applies for example to the quad
Fibonacci map which is shown to have subexponential decay of correlations.

 2003 Published by Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous considérons des applicationsC3 et multimodales de l’intervalle ayant des dérivé
Dn qui satisfont une condition de sommabilité le long de l’orbite critique, ceci entraînant l’exis
d’une mesure de probabilitéµ absolument continue par rapport à la mesure de Lebesgue. Sif n’est pas
renormalisable,µ est mélangeante et nous montrons que l décroissance de corrélation est fortemen
rapport de croissance de la suite(Dn) lorsquen →∞. Nous donnons également une condition suffisa
pour queµ satisfasse au Théorème Central Limite. Ceci implique par exemple que l’application quad
de Fibonacci possède une décroissance des corrélations sous-exponentielle.

 2003 Published by Éditions scientifiques et médicales Elsevier SAS

1. Introduction

1.1. Statement of results

Let f : I→ I be aC3 interval or circle map with a finite critical setC and no stable or neutra
periodic orbit. All critical points are assumed to have the same finitecritical order � ∈ (1,∞).
This means that forc ∈ C, there exist a diffeomorphismϕ :R→ R fixing 0 such that forx close
to c,

f(x) =±
∣∣ϕ(x− c)

∣∣� + f(c),

where the± may depend on sgn(x− c). For a critical pointc, let

Dn(c) =
∣∣(fn

)′(
f(c)

)∣∣.
The aim of this paper is to prove the existence of an absolutely continuous invariant prob
measure under sufficient growth conditions ofDn(c) and to study its statistical properties (ra
of mixing, Central Limit Theorem). In the proofs we will use distortion estimates valid for m
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2 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

with negative Schwarzian derivative. By a result of Kozlovski [14] (generalized to the multimodal
setting by van Strien and Vargas [24]), similar estimates hold iff is C3 and has no stable or
neutral periodic orbit.
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THEOREM 1 (Existence of invariant probability measures). –If f satisfies∑
n

D−1/(2�−1)
n (c)<∞ for eachc ∈ C,(∗)

then there exists anf -invariant probability measureµ absolutely continuous with respect
Lebesgue measure(acip).

Moreover, as was shown in general in [12], supp(µ) is an interval or cycle of intervals. In th
unimodal case, Nowicki and van Strien [22] proved the same result under the assumption∑

nD
−1/�
n <∞. Theorem 1 is the first general existence theorem in the multimodal case, s5].

Bruin and van Strien [8] later proved the following generalization: if
∑

nD
−1/�max
n (c)<∞ for

all c ∈ C and�max =max �(c), thenf has an acip. In the holomorphic case, Przytycki proved
for everyα-conformal measureµ on J (satisfying an additional assumption), assumingDn(c)
grows exponentially, there exists an invariant probability measure which is absolutely cont
with respect toµ, see [23]. Condition (∗) is equivalent to the following (see Lemma 2.1):

There exists a sequence{γn}, 0< γn <
1
2 , such that

∑
n γn <∞ and∑

n

[
γ�−1
n Dn(c)

]−1/�
<∞ for all c ∈ C.(∗∗)

We prefer to use this version of (∗), as theγi play an important role in the binding method in t
proof, and in the formulation of the other theorems. Let us also abbreviate

bn(c) :=
[
γ�−1
n Dn(c)

]−1/�
.(1)

The measureµ need not be unique iff is multimodal and not Lebesgue ergodic (unimo
maps with negative Schwarzian derivative are Lebesgue ergodic, [4]). Let X be a closed
f -invariant set of positive Lebesgue measure such thatX contains no smaller set with the
properties. Misiurewicz [20] proved thatX contains a critical point. We do not know ifX can
be a Cantor set (however, cf. [28]), but if X supports the measureµ from Theorem 1, thenX has
a non-empty interior. By a result of Ledrappier [15], µ is mixing if and only iff :X→X is not
renormalizable, i.e.X is not a cycle of intervals permuted byf . In this case it is natural to as
about the speed of mixing, quantified through thecorrelation function

Cn = Cn(ϕ,ψ) =
∣∣∣∣ ∫ (ϕ ◦ fn)ψ dµ−

∫
ϕdµ

∫
ψdµ

∣∣∣∣,
whereϕ andψ are respectively bounded and Hölder continuous functions onX .

Write

dn(c) := min
i<n

[
γi/Di(c)

]1/�∣∣f i(c)−C
∣∣.(2)

Obviously,dn(c)� γn−1bn−1(c)< bn−1(c).

THEOREM 2 (Decay of correlations). –Letf satisfy(∗) and letµ be an absolutely continuou
invariant probability measure with supportsupp(µ). If f is not renormalizable onsupp(µ), then
(supp(µ), µ, f) is mixing with the following rates:

4e SÉRIE– TOME 0 – 2003 –N◦ 0
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Polynomial case:If

dn(c) �Cn−α
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for all c ∈ C, someα > 1 and alln� 1, then for each

α̃ < α− 1.

there existC̃ = C̃(ϕ,ψ)> 0 such that

Cn � C̃n−α̃ for all n� 1.

Stretched exponential case:If

bn(c) �Ce−βnα

for all c ∈ C, someC,β > 0, α ∈ (0,1) and all n � 1, then for all α̃ ∈ (0, α) there exist
C̃ = C̃(ϕ,ψ), β̃ > 0 such that

Cn � C̃e−β̃nα̃

for all n� 1.

Exponential case:If

bn(c) �Ce−βn

for all c ∈ C, someC,β > 0 andn� 1, then there exist̃C = C̃(ϕ,ψ), β̃ > 0 such that

Cn � C̃e−β̃n for all n� 1.

Notice thatdn may decay much more rapidly than the terms of the series in condition(∗∗).
The formulation in terms ofdn gives us an edge in the polynomial case. As an illustration, le
consider the case:Dn(c) � Cnτ , τ > 2�− 1 for all c ∈ C andn � 1. Theorem 2 then tells u
thatCn � C̃n−τ̃ for any τ̃ < τ−1

�−1 − 1. Another use of thedn’s involves the quadratic Fibonac
map, see Corollary 1.1

If µ is anf -invariant probability measure, we say that the Central Limit Theorem hol
given a Hölder continuous functionϕ which is not a coboundary (ϕ �= ψ ◦ f −ψ for anyψ) there
existsσ > 0 such that for every intervalJ ⊂R,

µ

{
x ∈X :

1√
n

n−1∑
j=0

(
ϕ
(
f j(x)

)
−

∫
ϕdµ

)
∈ J

}
→ 1

σ
√
2π

∫
J

e−t2/2σ2
dt.

This property is indicative of a certain regularity in the way Birkhoff averages of Hö
observable approach their expected asymptotic values.

THEOREM 3 (Central Limit Theorem). –Let f satisfy (∗). If f is not renormalizable and
dn(c) � Cn−α, α > 2, for all c ∈ C andn � 1, then the measureµ of Theorem1 satisfies the
Central Limit Theorem.

The statements about decay of correlations and Central Limit Theorem in the uni
exponential case were proved in [13,30]. As far as we know the results in all other cases
new. Most known examples of systems with strictly subexponential decay of correlations c
of maps which are uniformly expanding except for the presence of some neutral fixed po
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4 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

for example [16,31]. The situation here is more subtle as the cause for the loss of exponential
estimates is not so localized.

In fact in the unimodal case,Dn � Ceβn if and only if (X,µ, f) has exponential decay of
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correlations [21].
It is interesting to apply the results to theFibonacci maps, i.e. the conjugacy class of unimod

maps characterized by the property that the sequence of closest return times is exa
Fibonacci sequence. Lyubich and Milnor [17] proved that in the quadratic case, the Fibona
map satisfies Nowicki’s and van Strien’s summability condition. Here we show

COROLLARY 1.1. –Let f be a Fibonacci map with quadratic critical point. Then one h
(faster than) polynomial decay of correlations and the central limit theorem holds.

Proof. –In fact, the estimates in [17, Section 5] show that condition(∗) holds for e.g.

γi = 0.01
√
1/Di, so bn = 10D−1/4

n . In [17, Lemma 5.9], it is shown that
∑

nD
−α
n <∞ for

anyα > 0, which leads to the existence proof of an acip. Theorem 2 and 3 also hold. Ind
Sr ≈ γ−r is therth Fibonacci number (withγ = (

√
5− 1)/2), then∣∣fSr(c)− c

∣∣≈ e−β′r2 ≈ S−β logSr
r

for someβ′, β > 0. Let Sr−1 < k � Sr be arbitrary. Thendk � S
−β logSr−1
r−1 � (γk)−γβ log(γk),

which decreases faster than any polynomial, but more slowly than what we call str
exponentially. In particular, the Central Limit Theorem holds.✷
1.2. Techniques and conjectures

Our approach is to construct an induced Markov map and apply the result of L.-S. Youn32]
which shows that the decay of correlations is tightly linked to thetail estimatesof the inducing
times. However, the construction of Markov induced maps (and the corresponding tower) i
involved if the map has critical points. Expanding Markov induced maps have been cons
before, but only in the unimodal Collet–Eckmann setting tail estimates were undertake
our results, we need a new construction, which can be used for much weaker growth con
on the orbits of multiple critical points, and indeed enables tail estimates of the inducing
Apart from its use for estimating decay of correlations, towers were recently used by Co9]
to describe return time statistics to small neighbourhoods. Indeed, combining our results (
the tower structure with exponential tail behaviour, cf. Section 4.4) with Collet’s paper, w
conclude that for all Collet–Eckmann multimodal maps with constant critical order, the qu
supi�n− log |x− f i(y)| satisfies Gumbel’s law forµ-a.e.x, see [9, Theorem 1.1] for details.

Since the growth of derivatives outside a neighbourhood of the critical set is expon
one can argue that the tail is exponential for intervals which spend most of the time o
such neighbourhoods. Thus we need to concentrate particularly on intervals which fall
critical neighbourhoods. One of the key ideas is to use a shadowing (or binding) arg
to compare derivative growth for pieces of orbit to piece of critical orbit that they sha
Binding arguments were developed by Jakobson [11] and Benedicks and Carleson [2], under
strong growth assumptions (Dn � e

√
n or evenDn � eλn) and slow recurrence of the critic

point: |fn(c)− c|� eαn for some smallα. This is the so-called basic assumption of [2]. Similar
conditions were used in several papers concerned with dynamical and stability prope
various classes of one-dimensional maps. We mention [1] in particular where strong stochas
stability (for random perturbations) was proved, see also [25] where some similar conditions a
introduced in the context of maps with completely flat critical points.

4e SÉRIE– TOME 0 – 2003 –N◦ 0
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DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 5

We dispense with the slow recurrence assumption altogether, and introduce some new
arguments in the construction:
• Our definition of binding period (see (4)) incorporates the recurrence pattern of the critical
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set. As a result, the partition of the space into intervals of constant induce time is no
in advance, as is the case in [2].

• In order to still count and measure the lengths of partition elements, we need in
combinatorial counting arguments, which involves assigningitineraries to the partition
elements, which indicate the “deepness” of the successive visits to a neighbourhood
critical point.

• Our inducing time consist of three explicit parts: the first part is used to recover fro
small derivatives near the critical set (thus achieving expansion); in the second in
reach “large scale” and the third part is used to reach a prefixed interval.

In spite of the many differences, we believe that the construction is sufficiently robust as to

CONJECTURE 1. – Multimodal Collet–Eckmann maps are strongly stochastically stable

Tsujii’s result on weak stochastic stability [26] indicate in this direction. Possibly, the Colle
Eckmann condition itself can be replaced by a much weaker growth condition.

Let Λ be a compact (forward) invariant set for a smooth mapf andµ be anf -invariant
ergodic probability measure. The measureµ is calledhyperbolicif all the Lyapunov exponent
corresponding toµ are non-zero (recall that by Oseledec’s Theorem, the Lyapunov expo
associated to a measure are well defined); it is called aphysical measureif the set ofµ-generic
points has positive probability with respect to the given reference (Lebesgue) measure.
trivial invariant setΛ in general supports an infinite number of invariant measures some of w
may be hyperbolic and some of which may not. At this point in the theory it is not comp
clear how one could distinguish situations in which all invariant measure are hyperbol
situations in which they are not. For the moment we suggest the following definition
say that a compact invariant setΛ is totally hyperbolicif all invariant measures with suppo
on Λ are hyperbolic. We conjecture that the presence of (singular) invariant measure
zero Lyapunov exponent (a natural generalization of the indifferent fixed point case),
be the main mechanism for slowing down of the mixing process and thus giving rise to
subexponential rates of decay of correlations.

CONJECTURE 2. –The mapf :Λ → Λ exhibits exponential decay of correlations(with
respect to every physical measureµ with support inΛ) if and only ifΛ is totally hyperbolic.

Conjecture 2 is true in the case of unimodal interval mapsf with negative Schwarzian derivativ
Indeed, as was shown in [21], f has exponential decay of correlations if and only if

λper := inf
{
1
n
log

∣∣(fn
)′(p)∣∣; n� 1, p is n-periodic

}
> 0,

and [6, Proposition 3.1] states that the Lyapunov exponent of anyf -invariant measure is a
leastλper .

Different degrees of hyperbolicity might also influence the effect of small perturba
Tsujii [27] showed that for generic one-parameter families unimodal maps satisfying a
form of the Benedicks-Carleson conditions (and thus with exponential decay of correlatio
Lebesgue density points of similar maps.

CONJECTURE 3. –For generic one-parameter families, maps with exponential deca
correlations are Lebesgue density points of other maps with uniform exponential rates of

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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6 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

of correlations. Maps with at least polynomial decay are Lebesgue density points of maps with
(arbitrarily small) exponential decay.
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1.3. Overview of the paper

Our strategy is to define a Markov return mapf̂ = fR :Ω0→Ω0 on a suitable neighbourhoo
of one of the critical points. We shall obtain estimates on the tail|{x∈Ω0: R> n}| of the return
times and apply the general framework of L.-S. Young [32] linking these estimates with bound
for the decay of correlation. The general philosophy is that intervals outside a neighbourh∆
of the critical set grow exponentially fast (by a classical result of Misiurewicz [20], see [18] for a
C2 version) and therefore for these intervals during these times, the tail of the return times
exponentially fast. Many intervals however fall into∆ before a good return toΩ0 occurs and are
strongly contracted in the next iterate. We estimate the time it takes for them to recove
original size in terms of the derivatives along the critical orbits, which in turn provides bo
for the decay of the tail of the return time function.

In Section 2 we consider intervals in∆ and use a binding argument to obtain estima
for their growth in terms of the derivative along the appropriate critical orbit. As menti
above, similar arguments have been applied before, notably by Jakobson [11] and Benedicks an
Carleson [2], under stronger conditions onDn and on the recurrence of the critical orbit. He
we have generalized the argument to deal with slow derivative growth rates along the
orbits and arbitrary recurrence patterns.

In Section 3 we consider an arbitrary intervalJ ⊂ I and show that there exists a partiti
P̂ of J and a stopping time function̂p such that the imagesf p̂(ω)(ω) are uniformly large for
all ω ∈ P̂ , i.e. almost every point ofJ belongs to an interval which achieveslarge scale. We
describe a combinatorial structure off p̂ on J which keeps track of the pattern of returns to∆
of eachω. By combining this information with some analytic estimates on the size of elem
with given combinatorics, we obtain key estimates on the size of the tail{x ∈ J : p̂ > n} of the
stopping time function̂p. A variety of arguments is used here to deal with the various pos
rates (polynomial, stretched exponential or exponential).

In Section 4 we show that once an interval has achieved large scale there is a fixed pro
of it which has a full return to the original intervalΩ0 within a fixed number of iterates.
follows that the transition from large scale to full return occurs exponentially fast and do
significantly affect the tail estimates. We also state precisely the results of Young which we
to our return map to obtain the conclusions of our theorems.

2. Inducing to small scales

We define a partitionP of a critical neighbourhood∆ and a stopping time functionp such that
the induced mapF = fp on∆ is expanding. The images of partition elements are not unifo
large, i.e.inf{|fp(ω)(ω)|: ω ∈P}= 0, and therefore we call thisinducing to small scales.

2.1. Definitions and notation

LEMMA 2.1. –The conditions(∗) and(∗∗) are equivalent.

Proof. –Condition (∗) implies (∗∗) because if we takeγn so that γ2�−1 = D−1
n then

[γ�−1
n Dn(c)]−1/� = γn = D

−1/(2�−1)
n , so the terms in each of the two sums in (∗∗) are equa

to each other and equal to those in(∗).
To see that (∗∗) implies(∗) note that by the duality oflp andlq when 1

p +
1
q = 1,

∑
apn <∞,∑

bqn <∞ implies
∑

anbn <∞. Assume (∗∗) holds and takeapn = γn, bqn = [γ�−1
n Dn(c)]−1/�,

4e SÉRIE– TOME 0 – 2003 –N◦ 0
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DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 7

1/q = �/(2�− 1) and therefore1/p = 1 − 1/q = (�− 1)/(2�− 1). Then
∑

apn and
∑

bqn are

both finite and therefore
∑

anbn <∞. But sinceanbn = γ
1
p
n γ

− �−1
�

1
q

n D
−1
�q
n =D

1
2�−1 , condition
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(∗) follows. ✷
We use the symbol≈ to indicate that two terms are equal up to a factor depending only of .

Because� <∞, ∣∣f ′(x)
∣∣≈ |x− c|�−1.

for all x ∈X close toc. Also there existsτ such that

|f ′(x)− f ′(y)|
|f ′(x)| � τ

|x− y|
|x− C| ,(3)

for all x, y such that|x− y|� 1
2 max{|x−C|, |y−C|}. Here|x−C|=min{|x− c|; c ∈ C}. Let

Γ= exp(τ
∑∞

j=1
γj

1−γj
).

For x ∈ X , let c = c(x) ∈ C be the critical point closest tox. This is well defined forx
sufficiently close toC. Given a critical neighbourhood∆ of C we define thebinding periodas
follows: If x ∈∆, then

p(x) := max
{
p:

∣∣fk(x)− fk(c)
∣∣ � γk

∣∣fk(c)−C
∣∣ ∀ k � p− 1

}
,(4)

while p(x) := 0 if x /∈∆. Clearlyp→∞monotonically asx→ c(x). In order to choose the siz
of our critical neighbourhood∆ we need the following lemma.

LEMMA 2.2. –Suppose thatGp � 0 and
∑

pGp <∞. Then for anyζ > 0 there existsp0 such
that

P =
∑
s�1

∑
(p1,...,ps)
pi�p0

∏
pi

ζGpi � 1.

Proof. –Let S0 =
∑

p�p0
ζGp. Then bothS0 and S :=

∑
s�1 S

s
0 tend to 0 as p0 → ∞.

Developing term by term we see thatP � S. This proves the lemma.✷
LEMMA 2.3. – There existsκ > 0 such that for allδ0 > 0, there existsδ ∈ (0, δ0) such that

for ∆=
⋃

c(c− δ, c+ δ) and everyx∣∣(fn
)′(x)∣∣ � κ for n=min

{
i� 0;f i(x) ∈∆

}
.(BBC)

We call this propertybounded backward contraction. In an earlier version of this paper [5], we
had to state (BBC) as an assumption. For (symmetric) S-unimodal maps, (BBC) is well-
to hold, cf. [10], and recently the multimodal case it is proven in [7]. It is essential for (BBC)
that all critical orders are the same, see the counterexamples in [7, Section 5].

Taking advantage of Lemma 2.2 and condition (∗∗) we fix for the rest of the paper a critic
neighbourhood∆=∆δ =

⋃
c∈C(c− δ, c+ δ) whereδ > 0 is such that (BBC) holds and so sm

that ∑
s�n

∑
(p1,...,ps)∑

i
pi�n

pi�pδ

∏
pi

ζ
(
γ�−1
pi

Dpi(c)
)1/� � 1(5)

for all c ∈ C, pδ := p(c± δ), ζ = 64K0/κC0, C0 the constant introduced in Lemma 2.5, andK0

a fixed Koebe distortion constant, which turns out to be� 16.
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8 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

Forp� 0 we letIp = {x: p(x) = p} denote the level sets of the functionp. LetP denote the
corresponding partition ofX . Note that sincep(x) ≡ 0 outside∆, I0 =X \∆ is the “zeroth”
partition element. Notice thatIp can be empty for some values ofp, and that it has at most2#C
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components. DefineF :X → X by letting F (x) = fp(x)(x) for x ∈ ∆ andF (x) = f(x) for
x∈X \∆.

2.2. Expansion estimates

We have two main expansion estimates.

LEMMA 2.4 (Derivative growth for pieces of orbit outside∆). – There exist constantsCδ > 0
andλδ > 0 such that for every piece of orbit{f i(x)}k−1

i=0 lying completely outside∆ we have∣∣(fk
)′(x)∣∣ �Cδeλδk.

If moreoverfk(x) ∈∆, then ∣∣(fk
)′(x)∣∣ � max

{
κ,Cδeλδk

}
.

Notice that the first estimate clearly implies the second ifk is large. The second however
extremely useful when considering small values ofk.

Proof. –The first estimate is well known for maps with negative Schwarzian derivative
also for maps without periodic attractors or neutral orbits (Mañé’s result), for see Cha
in [19]. So this covers our case. The second statement follows from (BBC).✷

The following expansion bound will be of importance. Let

F ′
p(c) := min

{∣∣(fp
)′(x)∣∣;x∈ Ip ∩ (c− δ, c+ δ)

}
.

LEMMA 2.5 (Derivative growth for pieces of orbit starting in∆). – There existsC0 > 0
(independently ofδ and hence∆) such that for everyc ∈ C andp� pδ with Ip �= ∅ we have

F ′
p(c)�C0

[
γ�−1
p Dp(c)

]1/�
.(6)

In the sequel, we will writeF ′
p instead ofF ′

p(c) when no confusion can arise. We shall ne
an intermediate result for the proof.

LEMMA 2.6. –For x ∈∆ we have

|(f i)′(y)|
|(f i)′(z)| � Γ for all y, z ∈

[
f(x), f(c)

]
and all i� p(x)− 1.

Remark. – In Section 3.1 we will use this estimate on a slightly bigger interval
[f(x), f(c)], but this does not seriously affect the estimates.

Proof. –Lettingyj = f j(y) andzj = f j(z) for j � 0 we have by the chain rule

∣∣∣∣ (f i)′(y)
(f i)′(z)

∣∣∣∣ = i−1∏
j=0

∣∣∣∣f ′(yj)
f ′(zj)

∣∣∣∣ = i−1∏
j=0

(
1+

|f ′(zj)− f ′(yj)|
|f ′(yj)|

)
.
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By (3), ∣∣f ′(zj)− f ′(yj)
∣∣/∣∣f ′(yj)

∣∣ � τ |zj − yj |/|yj −C|
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and so, using the elementary fact thatlog(1 + x) � x for all x> 0 we get

log
∣∣∣∣(f i)′(y)
(f i)′(z)

∣∣∣∣ �
i−1∑
j=0

log
(
1 + τ

|zj − yj|
|yj −C|

)
� τ

i−1∑
j=0

(
|zj − yj |
|yj − C|

)
.

By definition ofp we have

|zj − yj |�
∣∣f j+1(x)− f j+1(c)

∣∣ � γj+1

∣∣f j+1(c)− C
∣∣

and

|yj − C|� (1− γj+1)
∣∣f j+1(c)−C

∣∣.
Herec is again the critical point closest tox. Substituting these inequalities into the last form
yields the desired statement.✷

Proof of Lemma 2.5. –Let c be the critical point closest tox. By Lemma 2.6 and the fact tha

∣∣f ′(x)
∣∣≈ |x− c|�−1 ≈

∣∣f(x)− f(c)
∣∣(�−1)/�

we have ∣∣(fp
)′(x)∣∣ � |f

′(x)|Dp−1(c)
Γ

≈ |f(x)− f(c)|(�−1)/�Dp−1(c)
Γ

.(7)

By the Mean Value Theorem, the definition ofp and the distortion estimate in Lemma 2.6
have

ΓDp−1

∣∣f(x)− f(c)
∣∣ �

∣∣fp(x)− fp(c)
∣∣ � γp

∣∣fp(c)− C
∣∣

and therefore ∣∣f(x)− f(c)
∣∣ � γp|fp(c)− C|

ΓDp−1(c)
.(8)

Substituting (8) into (7) gives

∣∣(fp
)′(x)∣∣ �O

(
Γ−2+1/�

)
γ(�−1)/�
p Dp−1(c)1/�

∣∣fp(c)− C
∣∣(�−1)/�

.

Because ∣∣f ′(fp(c)
)∣∣≈ ∣∣fp(c)− C

∣∣�−1
,

the Chain Rule gives ∣∣(fp
)′(x)∣∣ �O

(
Γ−2+1/�

)
γ(�−1)/�
p Dp(c)1/�.

This proves the lemma.✷
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3. Inducing to large scales

The main result of this section is the following

nd

ce. In

obtain
ls
plying
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

PROPOSITION 3.1. – Suppose thatf satisfies(∗). Then there existδ′ > 0 such that for
all δ′′ > 0 the following properties hold. For an arbitrary intervalJ ⊂ X with |J | � δ′′

there exists a partitionP̂ of J (mod 0) and a stopping time function̂p : P̂ → N such that
for all ω ∈ P̂ , F̂ |ω := f p̂(ω)|ω is a diffeomorphism with uniformly bounded distortion a
|F̂ (ω)|= |f p̂(ω)(ω)|� δ′. Moreover the following estimates hold:

Summable case:Under no conditions ondn(c) other than which stem from(∗)∑
n

∣∣{p̂ > n|J}
∣∣<∞.

Polynomial case:If dn(c)�Cn−α for all c ∈ C andn� 1, then there existsC > 0 such that∣∣{p̂ > n|J}
∣∣ � Ĉn−α.

Stretched exponential case:If bn(c) � Ce−βnα

, α ∈ (0,1), β > 0 for all c ∈ C andn � 1,
then for eacĥα ∈ (0, α) there existβ̂, Ĉ > 0 such that∣∣{p̂ > n|J}

∣∣ � Ĉe−β̂nα̂

.

Exponential case:If bn(c) � Ce−βn, β > 0 for all c ∈ C andn� 1, then there exist̂β, Ĉ > 0
such that ∣∣{p̂ > n|J}

∣∣ � Ĉe−β̂n.

Let us try to clarify the role of the constants in this proposition, and their interdependen
the previous section we have fixedδ. By the Contraction Principle (see e.g. [19, Section IV.5]),
there existsδ′ such that for each componentW of ∆ \ C and eachn� 0, |fn(W )|� δ′. This is
theδ′ of Proposition 3.1.

The expression|{p̂ > n|J}| denotes the conditional probability|{x ∈ J ; p̂(x) > n}|/|J |. In
Section 3.1 we define and describe the combinatorics of the partitionP̂ of J and the stopping
time p̂. In Section 3.2 we prove some key estimates on the size of an intervalωp1,...,ps ∈ P̂ with
a given combinatorics. In Section 3.3 we combine these with some counting arguments to
estimates on{p̂ > n|J}. Note that the supremum of{p̂ > n|J}, when taken over all interva
J , will be infinite, because tiny intervals take a long time to reach large scale. When ap
Proposition 3.1 in Section 4, we will fix the minimal interval lengthδ′′ := min{δ′/3, |Ω0|},
whereΩ0 is an interval specified in Section 4.1. In this way, we obtain a bound of{∣∣{p̂ > n|J}

∣∣; |J |� δ′′
}

which depends only onδ′′, that is: theĈ ’s in Proposition 3.1 depend onδ′′ but not onJ .

3.1. Combinatorial structure of F̂

We start with any intervalω ∈P|J , i.e.ω = Ip ∩ J for somep� 0, and let

ν1 =min
{
n� 0;fn(ω)∩∆ �= ∅

}
4e SÉRIE– TOME 0 – 2003 –N◦ 0
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Fig. 1. Construction of partitionŝPn. The middle part ofω reaches large scale afterν1 iterates; the uppe
part has a shallow return, and the lower part has a deep return.

be the first visit to∆. Write ω̃ = fν1(ω). There are two (mutually exclusive) cases:
• |ω̃|< δ′. We partitionω̃ by intersecting̃ω with the elements{Ip}. Each intervalIp ∩ ω̃ for
p > 0 is labeled asDeep Return. The intervalI0∩ ω̃ is taken together with the intervalIp∩ ω̃
adjacent to it. Becausẽω is not too large compared to this particular component ofIp, the
estimates of the binding period ofIp go through, see Lemma 2.6 and the remark below

• |ω̃|� δ′. We cut off the outmost intervals of lengthε from ω̃, and stop with the remainin
middle part; it has reachedlarge scale. The subintervalω0 ⊂ ω such thatfν1(ω0) equals
this middle part of̃ω is added to the partition̂P . Hereε� δ′ is a constant to be fixed i
the proof of Lemma 3.6. Theε will be used effectively in Lemma 4.2. For the momen
suffices to know thatε is smaller than each component of∆ and each component ofX \∆.
The outmost intervals̃ω± of lengthε are partitioned by intersecting them with the eleme
{Ip}. Each intervalIp ∩ ω̃± for p > 0 is labeled asDeep Return. The intervalI0 ∩ ω̃± (if it
exists) is labeled asShallow Return.

Note that ifx∈ ω, thenfn(x) ∈∆ only if n is in a binding period ofx, x has a deep return or
n= p̂(x). At shallow return timesn, fn(x) /∈∆.

Now let ω′ be an interval which results from this partitioning ofω̃, which has not reache
large scale, see Fig. 1. We first apply the binding period, i.e. we takefp(ω′) for the stopping
time p = p(ω′) (which is possibly0, namely ifω′ ∩∆ = ∅), and then take the second retu
ν2 = min{n � p(ω′);fn(ω′) ∩ ∆ �= ∅}. Subdividefν2(ω′) according to the above rule
distinguishing between large and deep returns.

Let P̂n be the partition which we obtain by only considering at mostn iterates off andP̂ the
partition ofJ by considering all iterates off . We should emphasize that the procedure and h
the partitions depend on the choice made forJ and onε). For example, ifJ1 andJ2 are two
intersecting intervals, then one could get two different partitions created at a pointx ∈ J1 ∩ J2.

Next we define thestopping time at large scalêpJ : At points x ∈ ω where the procedur
eventually stops, i.e., for which there existsn > 0 so that thenth iterate of the interval in̂Pn

containingx has reached large scale, setp̂J(x) = n. At other pointsx ∈ J set p̂J(x) =∞.
Finally to defineF̂J , let Ĵ = {x∈ J : p̂J(x)<∞} and definêFJ : Ĵ → I by F̂J (x) = f p̂J (x)(x).
We shall prove that̂J = J up to sets of zero Lebesgue measure.

Taken <∞. To eachωn ∈ P̂n we assign a formalitinerary

(ν1, p1), . . . , (νs, ps),
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consisting of the stopping times and lengths of the corresponding binding periods;s is maximal
for νs � n. Depending on the depth of the return at timeνs, νs+ps can be arbitrarily large. If the
return at timeνj is shallow, thenpj = 0. If ω is an interval on which(ν1, p1), . . . , (νj−1, pj−1)
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is constant and for whichνj = νj(ω) is the next return to∆, then the set{x ∈ ω;pj(x) = p}
has at most4 components. This maximum is attained when|fνj(ω)| � δ, the radius of∆, and
the outmost intervals of sizeε both contain a critical point. It can happen thatfνj (ω) covers
many more critical points, but sinceω has reached large scale,pj is only defined on the outmo
intervals. We will take care of this multiplicity in the estimates in Section 3.3. But apart
this multiplicity, a sequencep1, . . . , ps uniquely determines a partition elementωp1,...,ps ∈ P̂n

(or perhaps the empty set). Indeed,pi determines the position of theith return ofωp1,...,ps , and
from the previousp1, . . . , pi−1 and the starting intervalJ one can compute the next return tim
Hence the informationν1, . . . , νs is strictly speaking superfluous. Observe however that ther
many itineraries that do not correspond to partition elements. Note thatfn is a diffeomorphism
on each interval from the partition̂Pn.

For a given sequence(p1, . . . , ps), let

Sd = {i� s;νi is a deep return}= {i� s;pi > 0}

and

Ss = {i� s;νi is a shallow return}= {i� s;pi = 0}= S \ Sd.

Moreover, let

Ss,s = {i < s;pi = 0 andpi+1 = 0}.

Because each index inSs \ Ss,s either equalss or is followed by an index inSd, we get

#Ss � #Ss,s +#Sd +1.(9)

3.2. Metric and combinatorial estimates

LEMMA 3.2. –LetC =Cδ andλ= λδ be as in Lemma2.4. There existsK0 > 0 independen
of ε and ρ ∈ (0,1) (ρ→ 0 as ε → 0), with the following properties. For a given sequen
(ν1, p1), . . . (νs, ps) with νs � n we have

|ωp1,...,ps |
|fm(ωp1,...,ps)|

� min
{
C−#Sde−λ(m−

∑s

i=0
pi),

(
K0

κ

)#Sd

ρ#Ss,s

} ∏
i∈Sd

(F ′
pi
)−1

for m=max{n, νs + ps}. Moreover there existsT > 0 which can be chosen arbitrarily large
ε is small, such thatνi+1 − νi � T wheneverpi = pi+1 = 0.

Proof. –By construction,fm|ωp1,...,ps is a diffeomorphism onto its image. Takex ∈ ωp1,...,ps

and divide its orbit into pieces separated by returns (both deep and shallow):

[1, ν1 − 1], [ν1, ν2 − 1], [ν2, ν3 − 1], . . . , [νs,m].

Let νi < νi′ be two consecutive deep returns. That is, assume thatpi > 0, pi+1 = · · ·= pi′−1 = 0
andpi′ > 0 (with possiblyi′ = i+1). Because each such interval lasts at least the correspo
binding period, and in the remaining time the pointx does not visit∆, Lemma 2.4 and th

4e SÉRIE– TOME 0 – 2003 –N◦ 0



ARTICLE IN PRESS
10.1016/S0012-9593(03)00025-9/FLA AID:20 p. 13 (1459-1565)
PARISGML 2003/03/21,v 1.30 Prn:15/04/2003; 12:29 F:ansens20.tex; by:violeta

DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 13

definition ofF ′
p give ∣∣(fνi′−νi

)′(
fνi(x)

)∣∣ �Ceλ(νi′−(νi+pi))F ′ .

t the

nt

of
s at

ot
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

pi

Hence the chain rule and the Mean Value Theorem show that

|ωp1,...,ps |�C−#Sde−λ(m−
∑

pi)
∣∣fm(ωp1,...,ps)

∣∣∏
i

1/F ′
pi
.

To prove the other inequality, letνi andνi′ be subsequent deep return times. First let us trea
step fromνi′−1 + pi′−1 to νi′ , so assume thatνi′−1 + pi′−1 < νi′ . (If νi′−1 + pi′−1 = νi′ we
can skip this step.) Thereforefνi′−1+pi′−1(ωp1,...,ps) ∩∆= ∅, while there is at least one poi
y ∈ ωp1,...,ps such thatfνi′ (y) ∈∆. Lemma 2.3 yields that∣∣(fνi′−(νi′−1+pi′−1)

)′(
fνi′−1+pi′−1(y)

)∣∣ � κ.

Becauseνi′ < n, |fνi′ (ωp1,...,ps)|< δ′. TakeH ⊃ fνi′−1+pi′−1(ωp1,...,ps) the largest interval on
whichfνi′−(νi′−1+pi′−1) is monotone. Then by the choice ofδ′, fνi′−(νi′−1+pi′−1)(H) contains
a 1

3 -scaled neighbourhood offνi′ (ωp1,...,ps). Therefore the derivative offνi′−(νi′−1+pi′−1) has
distortion bounded by someK0 =K0(1

3 ) � 16. This follows from the Koebe Lemma, see [19,
Chapter IV]. Hence ∣∣(fνi′−(νi′−1+pi′−1)

)′(
fνi′−1+pi′−1(x)

)∣∣ � κ/K0.

If i′ � i+2, the same argument gives|(fνi′−(νi+pi))′(fνi′−1+pi′−1(x))|� κ/K0, and indeed
in this case there are no entries ofSs,s betweeni andi′.

If i′ > i+2, then the differencesνi+2− (νi+ pi), νi+3− νi+2, . . . , νi′−1− νi′−2 are all large
if ε is small. Indeed, in these times an interval of sizeε must have expanded to an interval
sizeδ′� ε. Becausex does not visit∆ during these iterates (recall that the binding period
shallow returns have length0), the first part of Lemma 2.4 gives

∣∣(fνi′−1−(νi+pi)
)′(

fνi+pi(x)
)∣∣ �

(
1
ρ

)i′−(i+2)

,

whereρ→ 0 asε→ 0. (In Lemma 3.6 we will fixρ at 1/8.) Adding the numbersi′ − i − 2
(running over all pairs(i′, i) of subsequent deep returns withi′ > i+2) gives#Ss,s. This proves
the lemma. ✷

LEMMA 3.3. – There existsK > 0 depending only onε such that for all starting intervalsJ
andω ∈ P̂ , the distortion ofF̂J |ω is bounded byK .

Proof. –If p̂(ω) = n, then by construction, there is an intervalT ⊃ ω such thatfn mapsT
monotonically onto anε-scaled neighbourhood offn(ω), i.e. both components offn(T )\fn(ω)
have size� ε|fn(ω)|. The Koebe Principle (see e.g. [19] and in the setting when we do n
assumeSf < 0, [24]) gives the result. ✷

The following lemma contains combinatorial estimates needed in the next section.

LEMMA 3.4. –LetNk,s be the number of integer sequences(p1, . . . , ps) such that

p1 + · · ·+ ps = k and pi � 0 for all i.
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LetN+
k,s be the same number for sequences withpi > 0 for all i. Then

Nk,s � 2smaxN+
k,j < 2k+s−1.(10)

te

e
ential

f
3.5.
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

j�k

Givenζ > 0 small andα ∈ (0,1], there existŝζ = ζ̂(ζ,α) with ζ̂→ 0 asζ→ 0 such that

N+
k,s �

{
eζ̂k

α log k if s� ζkα,

eζ̂k if s� ζk.
(11)

Proof. –Sayj � 1 terms in the sump1+ · · ·+ps are nonzero. There are
(
s
j

)
ways to distribute

them. This gives

Nk,s =
s∑

j=1

(
s
j

)
N+

k,j �max
j

N+
k,j

s∑
j=1

(
s
j

)
=

(
2s − 1

)
max

j
N+

k,j .

Next, supposing thatpi > 0 for all i, there ares − 1 partial sums
∑j

i=1 pi different fromk.
ThereforeN+

k,j = (k−1
j−1 ). In particular,maxjN+

k,j � 2k−1. This proves (10). Let us estima

N+
k,s more precisely ifs� ζkα � k/2. By Stirling’s formula(

k
s

)
� kk

(ss)(k − s)k−s
�

(
k

k− s

)k

·
(
k− s

s

)s

�
(
1 +

2s
k

)k

·
(
k

s

)s

.

Because(1 + 2s
k )k � exp(k log(1 + 2s

k )) � exp(2s), it follows that

N+
k,s < e2s

(
k1−α

ζ

)ζkα

� eζ(2−log ζ+(1−α) log k)kα

if s� ζkα. If s� ζk, this simplifies toN+
k,s < eζ(2−log ζ)k, proving (11). ✷

3.3. Stopping time estimates

The aim of this section is to estimate the tail behaviour of the return time functionp̂, i.e. to
obtain an upper bound for the Lebesgue measure of the set{x ∈ J : p̂(x) > n} which we shall
henceforth (suppressing the dependence onJ ) denote by{p̂ > n}. We shall always assume th
notation of Proposition 3.1, particularly when referring to the polynomial, stretched expon
and exponential cases.

We fix n for the rest of this section. For eachω ∈ P̂ we consider the sequencep1, . . . , ps as
defined above, with some terms possibly equal to0. Recall thats is given by the number o
returns occurring before timen. Let η > 0 be a small constant to be determined in Lemma
The set of partition elementsω ∈ P̂n with p̂|ω > n can be divided into

P̂ ′
n =

{
ω ∈ P̂n; p̂|ω > n,

s∑
i=1

pi � ηn

}

and

P̂ ′′
n =

{
ω ∈ P̂n; p̂|ω > n,

s∑
i=1

pi > ηn

}
.
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Clearly we have ∣∣{p̂ > n}
∣∣ = ∑

|ω|+
∑

|ω|.
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ω∈P̂′
n ω∈P̂′′

n

To treat the exponential and stretched exponential case we shall need to subdivideP̂ ′′
n further

into

P̂ ′′
n− =

{
ω ∈ P̂ ′′

n ; s� ρnα̂
}

and P̂ ′′
n+ =

{
ω ∈ P̂ ′′

n ; s > ρnα̂
}
,

whereα̂ ∈ (0,1] andρ > 0 will be chosen below.
Intuitively elements inP̂ ′

n spend most of their time in the “uniformly expanding” regi
X \∆. Thus intervals are growing in size at a uniform exponential rate and achieve large
exponentially fast. Elements of̂P ′′

n on the other hand spend much time in binding periods. In
case the upper bound will more closely reflect the expanding properties of the critical orb
shall apply various combinations of the estimates obtained in Section 3.2 to obtain bounds
total measure of the elements of the subpartitions defined above under the required assu
on the growth ofDn.

LEMMA 3.5. – For anyθ > 0 there existsη0 > 0 such that for all0 < η < η0 and for all n
sufficiently large, ∑

ω∈P̂′
n

|ω|� e−(λ−θ)n.

Proof. –As in Lemma 3.4, letNk,s denote the number of possible sequences(p1, . . . , ps) with
pi � 0 andp1 + · · ·+ ps = k. Then by the definition of̂P ′ and the first statement of Lemma 3
we have

∑
ω∈P̂′

|ω|�
n∑

s=1

ηn∑
k=0

∑
(p1,...,ps)∑

pi=k

|ωp1,...,ps |�
n∑

s=1

ηn∑
k=0

4sNk,sC
−se−λ(1−η)n.(12)

Here the factor4s expresses the maximal number of components ofIp for each return, se
the argument in Section 3.1. We use the boundNk,s < 2k+s from Lemma 3.4. Recall tha
k � ηn. Sinceνi+1 − νi � T whenpi = pi+1 = 0 (see the previous lemma) formula (9) giv
s= #Sd + #Ss � 2#Sd + #Ss,s + 1� 2ηn+ n/T +1. So in (12),s only ranges up to thi
bound. Writingη′ = (3η + 1/T + 1/n)(3 log2 + logC−1), we get4sNk,sC

−s � eη
′n. Taking

θ= 2(η+ η′/λ) and substituting in (12) gives

∑
ω∈P̂′

n

|ω|� n

ηn∑
k=1

eη
′ne−λ(1−η)n � ηn2e−(λ− θ

2 )n � e−(λ−θ)n

providedη andη′ are sufficiently small andn sufficiently large. ✷
LEMMA 3.6. – Recall from (2) that dn(c) = mini<n(γi/Di(c))1/�|f i(c) − C|. Fix L ∈

{1, . . . , n} arbitrary and let

d̂n,s(c) = di(c) for i=max
{⌈

ηn

2s2

⌉
,L

}
.
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Write s(ω) = s if the itinerary(p1, . . . , ps) of ω has lengths. For anyη > 0 there existsC1 > 0
such that ∑ n∑

s

let
er

s
.

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

ω∈P̂′′
n

s(ω)�L

|ω|�C1max
c∈C

s=L

2−sd̂n,s(c).

Proof. –Given a sequence(p1, . . . , ps), let pj′ be the first term such thatpj′ � ηn/(2j′2).
Becausep1 + · · ·+ ps � ηn, suchj′ exists. Takej =max{L, j′}.

Let ω̃p1,...,pj be the union of adjacent intervalsωp1,...,pj−1,p with common return time
ν1, . . . , νj andp � pj . Thenfνj mapsω̃p1,...,pj diffeomorphically into an interval(x, y) such
that p(x), p(y) � pj . Assume without loss of generality that|x − c| � |y − c|. Therefore, for
eachi < pj ,

γi
∣∣f i(c)− C

∣∣ �
∣∣f i(x)− f i(c)

∣∣ � Γ−1Di−1(c)
∣∣f(x)− f(c)

∣∣
�O(1/Γ)Di−1(c)|x− c|� �O(1/Γ) Di(c)|x− c|�

|f i(c)− C|�−1
.

This gives

|x− y|� 2|x− c|�O
(
2Γ1/�

)
dp(c) �O

(
2Γ1/�

)
max

p�ηn/2j2
dp(c) =O

(
2Γ1/�

)
d̂n,j(c).

Let Ss andSd be the indices� j corresponding to shallow respectively deep returns. Also
S′
d = Sd \ {j} and letSs,s be the indices� j of shallow returns that are followed by anoth

shallow return. Now Lemma 3.2 applied tõωp1,...,pj and the iterateνj gives∑
ω∈P̂′′

n

s(ω)�L

|ω|�
n∑

j=L

∑
(p1,...,pj)

|ω̃p1,...,pj |

�
n∑

j=L

O
(
2Γ1/�

)
max
c∈C

d̂n,j(c)
∑

(p1,...,pj−1)

4j
(
K0

κ

)#Sd

ρ#Ss,s

∏
i∈S′

d

1
F ′
pi

.

The factor4j expresses the different components of the level setsIp that intersect forward iterate
of ω (see the argument in Section 3.1), and the factor(K0/κ)#Sdρ#Ss,s comes from Lemma 3.2
Using (9) and the fact that#S′

d =#Sd − 1 we can write4j = 2−j8j and

8j = 8#Ss+#Sd � 8#Ss,s+2#Sd+1 = 8#Ss,s64#Sd8 = 512 8#Ss,s64#S′
d.

Then

∑
(p1,...,pj−1)

4j
(
K0

κ

)#Sd

ρ#Ss,s

∏
i∈S′

d

1
F ′
pi

� 2−j 512K0

κ

∑
(p1,...,pj−1)

(8ρ)#Ss,s

∏
i∈S′

d

64K0

κF ′
pi

.

Take ε in Lemma 3.2 so small thatρ = 1
8 and recall thatpi � pδ for all i ∈ Sd. Therefore

Lemma 2.5 and formula (5) (withζ = 64K0/κ ) give that

∑
(p1,...,pj−1)

(8ρ)#Ss,s

∏
i∈S′

d

64K0

κF ′
pi

� 1.
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By (6), the lemma follows withC1 =O(2Γ1/�)512K0/κ. ✷
The previous lemma is not so useful in the exponential and stretched exponential cases for

−βp
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

relatively small values ofs. Indeed, consider for example the situation thatdp = e . Then the
term in the sum in Lemma 3.6 corresponding tos =

√
n givesC12−

√
n · e−ηβ/2. Clearly this

decreases merely subexponentially inn. Let us improve on this.

LEMMA 3.7. –Assume that there existsC,β > 0 andα ∈ (0,1] such thatD−1/�
n � Ce−βnα

for all n. Then for eacĥα ∈ (0, α) (or α̂= 1 if α= 1) there existsρ,C′, β′ > 0 such that∑
ω∈P̂′′

n−

|ω|�C′e−β′nα

for all n. Note that the setP ′′
n− depends onρ andα̂.

Proof. –First notice that sinceα ∈ (0,1] one haspα1 + pα2 � (p1 + p2)α. Using Lemmas 2.5
and 3.2 this gives that there existsβ′′ > 0 andC such that

|ωp1,...,ps | � C−s
s∏

i=1

1
F ′
pi

� C−sC−s
0

s∏
i=1

max
c∈C

bpi(c) � C−se−β′′(
∑

pi)
α

.

Reasoning as in the proof of Lemma 3.5, we writek = p1 + · · ·+ ps and we obtain

∑
ω∈P̂′′

n−

|ω|�
ρnα̂∑
s=1

∞∑
k=ηn

4sNk,sC
−se−β′′kα

.(13)

Takingζ = ρ/ηα̂ respectivelyζ = ρ/η in Lemma 3.4, we get that for somêρ= ρ̂(ρ, η, α̂) with
ρ̂→ 0 asρ→ 0,

Nk,s �
{
2seρ̂k

α̂ logk if s� (ρ/ηα̂)kα̂,

2seρ̂k if s� (ρ/η)k.

(The second case applies whenα= 1.) Becausêα� α and takingρ and thereforêρ sufficiently
small, we get in either case

∞∑
k=ηn

4sNk,sC
−se−β′′kα � 8sC−se−β′′(ηn)α/2.

Using again that̂α� α and the fact thatρ is small, inequality (13) gives

∑
ω∈P̂′′

n−

|ω|�
ρnα̂∑
s=1

∞∑
k=ηn

4sNk,sC
−se−β′′kα �C′e−β′′(ηn)α/4,

for some constantC′. This proves the lemma withβ′ = ηαβ′′/4. ✷
Proof of Proposition 3.1. –We show first of all that̂J has full measure inJ , i.e. |{p̂ > n}|→ 0

asn→∞. By (for example) Lemma 2.4, it follows that almost allx ∈ J , fn(x) accumulates
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18 H. BRUIN, S. LUZZATTO AND S. VAN STRIEN

ontoC. Hencex has infinitely many deep return times, and it is contained in sets of the form
ωp1,...,ps for itineraries of arbitrary lengths. Becausêp(ωp1,...,ps) � s→∞ ass→∞, the proofs
of Lemmas 3.5 and 3.6 show that

∑
|ωp ,...,p | → 0 ass→∞. Therefore|J \ Ĵ |= 0.

ce that

l

plied to
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

(p1,...,ps) 1 s

To prove the remaining estimates in the four cases mentioned in the proposition, noti
we have exponential bounds for̂P ′

n and therefore we only need to concentrate here onP̂ ′′
n . The

sequence{d̂n,s(c)} is decreasing inn, and for eachk there are at most

#
{
n;k− 1 � ηn/(2s2) � k

}
� 2s2/η

numbersn such thatk = [ηn/(2s2)]. Therefore, using Lemma 3.6 withL= 1:

∑
n�1

n∑
s=1

2−sd̂n,s(c)�
∑
s�1

2s2

η
2−s

∑
k�1

[
γk/Dk(c)

]1/�∣∣fk(c)− C
∣∣

� 12
η

∑
k�1

[
γk/Dk(c)

]1/� � 12
η

∑
k�1

[
γ�−1
k Dk(c)

]−1/�
.

Hence the summable case follows from (∗∗). Lemma 3.6 withL = 1 gives for the polynomia
case ∑

ω∈P′′
n

|ω|�C1max
c∈C

n∑
s=1

2−sd̂n,s(c) �C1

n∑
s=1

2−s

(
2s2

ηn

)α

� 12C1η
−αn−α

as required. In the exponential and stretched exponential cases we use Lemma 3.6 ap
P̂ ′′
n+ with L= ρnα̂ to get∑

ω∈P′′
n+

|ω|�C1max
c∈C

∑
s�ρnα̂

2−sd̂n,s(c) �C2e−(log 2)ρnα̂

for someC2 > 0. Lemma 3.7 takes care of the remaining collectionP ′′
n−. ✷

4. The full return map

In this section we construct the full return mapf̂ :Ω0→Ω0 and carry out its tail estimates.

PROPOSITION 4.1. – Suppose thatf satisfies(∗). Then for anyc ∈ C ∩ X there exists
a neighbourhoodΩ0 of c, a countable partitionQ of Ω0 (mod 0) and a return time
functionR :Q → N with the following properties. For eachω ∈ Q, f̂ := fR mapsω to Ω0

diffeomorphically with bounded distortion: letting

s(x, y) =min
{
n; f̂n(x), f̂n(y) belong to different elements ofQ

}
,(14)

there existsβ ∈ (0,1) andC > 0 such that for allω ∈Q and allx, y ∈ ω,∣∣∣∣ f̂ ′(x)
f̂ ′(y)

− 1
∣∣∣∣ �Cβs(x,y).(15)

Moreover the tail|{R> n}| of the return times satisfy the following estimates:

4e SÉRIE– TOME 0 – 2003 –N◦ 0



ARTICLE IN PRESS
10.1016/S0012-9593(03)00025-9/FLA AID:20 p. 19 (2142-2279)
PARISGML 2003/03/21,v 1.30 Prn:15/04/2003; 12:29 F:ansens20.tex; by:violeta

DECAY OF CORRELATIONS IN ONE-DIMENSIONAL DYNAMICS 19

Summable case:Under no conditions ondn(c) other than which stem from(∗)∑∣∣{R> n}
∣∣<∞.

tion

ize
er

l

er
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
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n

Polynomial case:If dn(c)�Cn−α for all c ∈ C andn� 1, then there exists̃C > 0 such that∣∣{R> n}
∣∣ � C̃n−α.

Stretched exponential case:If bn(c) � Ce−βnα

, α ∈ (0,1), β > 0 for all c ∈ C andn � 1,
then for each̃α ∈ (0, α) there existβ̃, C̃ > 0 such that∣∣{R> n}

∣∣ � C̃e−β̃nα̃

.

Exponential case:If bn(c) � Ce−βn, β > 0 for all c ∈ C andn� 1, then there exist̃β, C̃ > 0
such that ∣∣{R> n}

∣∣ � C̃e−β̃n.

In Section 4.1 we explain how to chooseΩ0 and how to define the partitionQ and the return
time functionR. Notice thatR is not a first return time. In Section 4.2 we prove the distor
bound and in Section 4.3 we prove the estimates on the return times.

4.1. Large scales and full returns

Let Ω0 ⊂∆ be a small neighbourhood of a pointc ∈ C (the precise requirements on its s
will be given in the proof of Lemma 4.2 below). LetJ ⊂X be an arbitrary interval. Consid
the mapF = f p̂ :J →X and the associated partition̂P onJ with the stopping time function̂p
as defined in Section 3.

LEMMA 4.2. –There existt0 ∈N andξ > 0 independent ofJ such that for everyω ∈ P̂ there
existsω̃ ⊂ ω satisfying the following properties:
• f p̂(ω)+t mapsω̃ diffeomorphically ontoΩ0 for somet� t0;
• |ω̃|� ξ|ω|;
• both components off p̂(x)(ω \ ω̃) have length� δ′/3.

Proof. –By definition ofX , the preimages ofc are dense inX . Therefore there existst0 � 1
such that every interval of length� δ′ contains a pointx ∈

⋃
t�t0

f−t(c) in its middle fifth.
Sayf t(x) = c. Now choose sufficiently small neighbourhoodsωx of each suchx not containing
any points off−j(C) for any j < t. Clearly f t mapsωx diffeomorphically to some critica
neighbourhood. By adjusting the size ofωx we can make sure that they all (i.e. for all pointsx)
map onto exactly the same critical neighbourhoodΩ0 and that|ωx| � δ′/15. Let ω̃ ⊂ ω be the
interval that is mapped ontoωx by f p̂(ω). This proves the first and third statement.

From Lemma 3.3 we know that the distortionf p̂(ω)|ω is bounded byK =K(ε). The second
statement follows immediately.✷

Having fixedΩ0, let δ′′ = min{δ′/3, |Ω0|}. In the remainder we will only need to consid
intervalsJ of size� δ′′.

We now definef̂ :Ω0 → Ω0, the associated partitionQ and the stopping time functionR
constant on elements ofQ such thatf̂ = fR(ω) on ω ∈ Q. For eachω in the partitionP̂ of
Ω0, let ω̃ denote the subinterval given in Lemma 4.2, so|f p̂(ω)(ω̃)| � δ′. We put ω̃ ∈ Q by
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definition andR(ω̃) = p̂(ω) + t. Both components off p̂(ω)(ω) \ ωx have size at leastδ′/3.
Considering them as new starting intervals we carry out the construction of Section 3 and repeat
the procedure described above. This determines all the necessary objects. In this way eachω ∈Q

up

n

, the
l

f

s
t
e

e,
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

also has an associated sequence oflarge scale timesbefore afull return. We writep̂1 = p̂(x) and
p̂i+1(x) = p̂i(x) + p̂(f p̂i(x)(x)) so thatp̂i+1(x) denotes the total number of iterates making
the firsti+1 large scale stopping times associated to the pointx. We haveR(ω) = p̂s(ω)+ t for
somes� 1, t� t0.

We prove two easy but important consequences of the construction.

LEMMA 4.3. –For eachn� 0 and each intervalω on whichf̂n is continuous, the distortio
of f̂n|ω is uniformly bounded(independently ofω).

Proof. –The statement follows directly from the construction and Lemma 4.2. Indeed
third item of Lemma 4.2 shows that the Koebe space aroundf p̂(ω) is at leastδ′/3. The additiona
t iterates do not significantly affect the distortion.✷

LEMMA 4.4. –For everyi,

∣∣{x; p̂i+1(x) exists and̂pi+1 > p̂i + k|p̂i
}∣∣ � 3K

δ′
∣∣{p̂ > k}

∣∣.
Here the expression on the left denotes the conditional probability ofp̂i+1 > p̂i + k on the set o
intervals on whicĥpi is defined.

Proof. –The statement follows immediately from Lemmas 4.2 and 4.3. Indeed, letω be a
maximal interval on whicĥpi is defined and constant, sayf p̂i(ω)(ω) = J ⊃ ωx, whereωx is as in
Lemma 4.2. Letω′ ⊂ ω be such thatJ ′ = f p̂i(ω)(ω′) is a component ofJ \ ωx. By construction
|J ′|� δ′/3. As the transformationf p̂i(ω)|ω has distortion bounded byK =K(ε), we get

∣∣{x ∈ ω′; p̂i+1(x)> p̂i(x) + k
}∣∣ �K

|ω′|
|J ′|

∣∣{y ∈ J ′; p̂J′(y)> k
}∣∣.

Because|{p̂J′ > k}|� |{p̂ > k}| the result follows by summing over all the intervalsω′. ✷
4.2. Bounded distortion

The functions from (14) is called theseparation time function. Notice thats(x, y) is finite
for all x �= y, because otherwisefn|(x, y) would be homeomorphic for alln. The assumption
onDn imply that |(fn)′(x)| does not converge to0 for anyx ∈X \

⋃
n f

−n(C), so this canno
happen. By the same token one can show that some iterate off̂ is uniformly expanding, i.e. ther
existsN such that|(f̂N )′(x)|� 2 wherever it is defined.

LEMMA 4.5. – There existsβ ∈ (0,1) andC > 0 such that for allω ∈Q and allx, y ∈ ω,∣∣∣∣ f̂ ′(x)

f̂ ′(y)
− 1

∣∣∣∣ �Cβs(x,y).(16)

Proof. –For small values ofs(x, y), (16) follows immediately from Lemma 4.3 Otherwis
uniform expansion of̂fN and Lemma 4.3 imply that|f̂(x)− f̂ (y)|� |Ω0|K2−s(x,y)/N . Because
the Koebe space around̂f |ω is at leastδ′/3, we get
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f̂ ′(y)
− 1

∣∣∣∣ �
∣∣∣∣(δ′/3|f̂(x)− f̂(y)|+ 1

δ′/3|f̂(x)− f̂(y)|

)2

− 1
∣∣∣∣∣( )2 ∣

take

ept that
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�
∣∣∣ δ′ + 3|Ω0|K2−s(x,y)/N

δ′
− 1

∣∣∣ �C2−s(x,y)/N ,

where C = 6K|Ω0|
δ′ + (3|Ω0|K

δ′ )2. Here we usedK(δ′/3) = (1+δ′/3
δ′/3 )2 as Koebe distortion

constant, see [19, Chapter IV] in the negative Schwarzian case. In the general case, we
the constant from Theorem B in [24]. ✷
4.3. Return time estimates

We fix n � 1 and consider the tail{R > n} of the return times forf̂ on Ω0. Let us
agree to use the notation|{p̂ > n}| := sup{|{x ∈ J ; p̂(x) > n}|/|J |; |J | � δ′′}, which was
estimated in Proposition 3.1. In the summable case, no explicit estimates were given, exc∑

n |{p̂ > n}|<∞.
Before starting the proof we introduce some notation. Recall that by construction eachω ∈Q

has an associated sequence

0 = p̂0 < p̂1 < p̂2 < · · ·< p̂s(ω) <R(ω)

with R(ω) = p̂s(ω) + t and clearlys�R. WriteQ(n) = {ω ∈Q;R(ω)> n} and let

Q(n)
i =

{
ω ∈Q(n); p̂i−1 < n� p̂i

}
denote the set of elements ofQ with R(ω)> n and having exactlyi− 1 large scale times befor
timen. Moreover, for eachi and every sequence(k1, . . . , ki) of positive integers with

∑
kj = n

we write

Q(n)
i (k1, . . . , ki) =

{
ω ∈Q(n)

i ;kj = p̂j − p̂j−1 for j � i− 1, ki = n− p̂i−1

}
.

Finally we let ∣∣Q(n)
i

∣∣ = ∑
ω∈Q(n)

i

|ω| and
∣∣Q(n)

∣∣ = ∑
i�n

∣∣Q(n)
i

∣∣.
Obviously|{R> n}|= |Q(n)|. We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. –In the stretched exponential case, takeα̃ < α̂ < α, whereα̂ is
as in Proposition 3.1. Both̃α andα̂ can be arbitrarily close toα. In the exponential case tak
α̃= α= 1. Let η ∈ (0,1) be a small number to be determined below, depending onα andβ but
not onn. We write ∣∣{R> n}

∣∣= ∑
i�n

|Qi|=
∑

i<ηnα̃

|Qi|+
∑

ηnα̃�i�n

|Qi|.(17)

Lemma 4.2 says that a fixed proportionξ of every element inQ(n)
i−1 has a full return toΩ0 before

its next large scale time. Therefore∣∣Q(n)
i

∣∣/∣∣Q(n)
i−1

∣∣ � 1− ξ.
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This implies|Q(n)
i |� (1− ξ)i and therefore the second term in (17) satisfies∑ ∣∣ (n)∣∣ ∑

i 1 ηnα̃

e that

get

rm. To
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

ηnα̃�i�n

Qi �
ηnα̃�i�n

(1− ξ) �
ξ
(1− ξ) .(18)

For the first term write∑
i<ηnα̃

∣∣Q(n)
i

∣∣ = ∑
i<ηnα̃

∑
(k1,...,ki)∑

kj=n

∣∣Q(n)
i (k1, . . . , ki)

∣∣.
For a given sequence(k1, . . . , ki), Lemma 4.4 and Proposition 3.1 imply∣∣Q(n)

i (k1, . . . , ki)
∣∣ �

∣∣{p̂i > p̂i−1 + ki−1 − 1|p̂i−1}
∣∣ · · · ∣∣{p̂1 > ki−1 − 1}

∣∣
� K̃i

i∏
j=1

∣∣{p̂ > kj − 1}
∣∣ � K̃i

i∏
j=1

e−β̂(kj−1)α̂ �
(
K̃eβ̂

)ie−β̂nα̂

.

HereK̃ = 3K/δ′ is the constant in the statement of Lemma 4.4. From Lemma 3.4 we hav
the number of sequences(k1, . . . , ki) as above equalsN+

n,i and satisfies

N+
n,i �

{
eη̂n

α̃ logn if i� ηnα̃, α̃ < 1,
eη̂n if i� ηn,

for someη̂ = η̂(η, α̃) tending to0 asη→ 0. In the stretched exponential case∑
i<ηnα̃

|Qi|=
∑

i<ηnα̃

∑
(k1,...,ki)∑

kj=n

∣∣Q(n)
i (k1, . . . , ki)

∣∣
�

∑
i<ηnα̃

eη̂n
α̃ logn

(
Keβ̂

)ie−β̂nα̂ � Ĉe−β′nα̂

for some Ĉ, β′ > 0 as long asη̂ is sufficiently small. In precisely the same way we∑
i<ηn |Qi|� Ĉe−β′n in the exponential case.
To treat the summable and polynomial case we write|{R > n}| as in (17), withα̂ = 1 and

η = 1/2. The same argument gives an exponential estimate as in (18) for the second te
estimate the first term, notice that for eachi and each sequencek1, . . . , ki with

∑
kj = n, the

largestkj satisfieskj � n/i. Thus letting

Q(n)
i,j =

{
ω ∈Q(n)

i ;kj′ < n/i for j′ < j andkj � n/i
}

we have ∑
n�1

∑
i<n/2

∣∣Q(n)
i

∣∣= ∑
n�1

∑
i<n/2

i∑
j=1

∣∣Q(n)
i,j

∣∣
�

∑
n�1

∑
i<n/2

i(1− ξ)i−1
∣∣{p̂ > n/i}

∣∣
�

∑
i�1

i(1− ξ)i−1
∑
n�1

∣∣{p̂ > n/i}
∣∣.
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Substitutingk = �n/i�, and using the fact that at mosti different values ofn give the same value
of k, we find that the above is bounded by

∑
i�1 i

2(1 − ξ)i−1
∑

k�1 |{p̂ > k}| which is finite
(use Proposition 3.1).

-

r with

lts.

s
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O
F

In the polynomial case we get∑
i<n/2

∣∣Q(n)
i

∣∣ �O
(
n−α

) ∑
i<n/2

i1+α(1− ξ)i =O
(
n−α

)
.

Together with the exponential estimate for the term
∑

i�n/2 |Q
(n)
i |, this yields the proposi

tion. ✷
4.4. Proof of Theorems 1, 2 and 3

We now state the assumptions and results of Young which we want to apply. Togethe
the estimates obtained in Proposition 4.1, they easily imply Theorems 1, 2 and 3. Letm denote
Lebesgue measure onX . L.-S. Young applies the following tower construction for her resu
Given a countably piecewise monotone and onto map

f̂ :
⋃
ω∈Q

ω→Ω0, f̂ |ω = fR(ω),

define a tower

Ω=
⊔
ω∈Q

0�i<R(ω)

(ω, i),

with an action

g(x, i) =
{ (x, i+ 1) if x ∈ ω, i+ 1<R(ω),

(f̂(x),0) if x ∈ ω, i+ 1=R(ω).

The connection with the original mapf is established by means of the projectionπ(x, i) = f i(x).
Becausef i is smooth and has bounded distortion on eachω ∈ Q, i < R(ω), this projection has
bounded distortion. Alsoπ ◦ g = f ◦ π. Therefore, ifν is a g-invariant absolutely continuou
probability measure onΩ, µ := ν ◦π−1 is an invariant absolutely continuous probability meas
on the interval.

We summarize Young’s results from [32] as far as we need them. For a fixedβ ∈ (0,1) as in
Lemma 4.5, let

Cβ =
{
ϕ :Ω→R; ∃C > 0 ∀x, y

∣∣ϕ(x)− ϕ(y)
∣∣ �Cβs(x,y)

}
and

C+
β = {ϕ ∈ Cβ;ϕ� 0}.

Here we have extended the separation times to Ω in the obvious way. Also letmΩ be Lebesgue
measure onΩ. (A priori, mΩ can be infinite.)

THEOREM (Young [32]). – Suppose that̂f :Ω0→Ω0 is as above, i.e.

m

(
Ω0

∖ ⋃
ω∈Q

ω

)
= 0
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and (16) holds. Let{ρn} be a sequence of positive reals related to the tail behaviour ofR as
follows. Ifm({R> n}) � n−α, thenρn = n1−α, if m({R> n}) � e−βn, thenρn = e−β′n for

some(any) β′ < β and ifm({R > n}) � e−nα

for someα ∈ (0,1), thenρ = e−nα′
for some

ty

y

f

m the

ropean
grant

n. We
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

n

(any) α′ <α. Then
(1) If

∑
nm({R> n})<∞, thenΩ carries ang-invariant absolutely continuous probabili

measureν (Kac’s Theorem) and dν
dmΩ

∈ C+
β .

(2) For any measurẽν with dν̃
dmΩ

∈ C+
β , gn∗ ν̃ → ν and there existsCν̃ > 0 such that

|gn∗ ν̃ − ν|�Cν̃ρn.
(3) For any pair of functionsϕ ∈ L∞(Ω,mΩ) andψ ∈ Cβ , there existsCϕ,ψ > 0 such that∣∣∣∣ ∫ (ϕ ◦ gn)ψ dν −

∫
ϕdν

∫
ψdν

∣∣∣∣ �Cϕ,ψρn.

(4) If m({R> n})�O(n−α) for someα > 2, then for anyϕ ∈ Cβ which is not a coboundar
(ϕ �= ψ ◦ g − ψ for anyψ), the Central Limit Theorem holds, i.e. there existsσ > 0 such
that 1√

n

∑n−1
i=0 ϕ ◦ gi converges to the normal distributionN (

∫
ϕdν,σ).

Remark. – Young states this theorem in terms of a stopping timeR̂ which is the extension o
R to the entire towerΩ. As it happens

mΩ

(
{R̂ > n}

)
=

∑
k�n

m
(
{R> k}

)
,

so that

mΩ

(
{R̂ > n}

)
�O

(
n−α

)
if m

(
{R> k}

)
�O

(
n−α−1

)
.

This explains why the exponent in the polynomial case at first glance looks different fro
ones in Young’s version.

Using the projectionπ, these results immediately carry over to the original mapf with
measureµ = ν ◦ π−1. Using the projectionπ, immediately carry over to the original mapf
with measureµ= ν ◦ π−1. With respect to the support of the measure, note thatf̂ :Ω0→Ω0 is
a mixing map, and its invariant measure1ν(Ω0)ν|Ω0 has the whole intervalΩ0 as support. The

formulaµ= ν ◦ π−1 shows thatΩ0 ⊂ supp(µ).
Finally, recall from Proposition 4.1 how the tailm({R > n}) is related todn(c). Therefore

Theorem 4.4 immediately gives Theorems 1, 2 and 3.
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