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1 Introduction

In this paper we will solve one of the central problems in dynamical systems:

Theorem 1 (Density of hyperbolicty for real polynomials). Any real
polynomial can be approximated by hyperbolic real polynomials of the same
degree.

Here we say that a real polynomial is hyperbolic or Axiom A, if the real line
is the union of a repelling hyperbolic set, the basin of hyperbolic attracting
periodic points and the basin of infinity. We call a C1 endomorphism of the
compact interval (or the circle) hyperbolic if it has finitely many periodic
attracting points and the complement of the basin of attraction of these
points is a hyperbolic set. By a theorem of Mañé, for C2 maps, this is
equivalent to the following conditions: all periodic points are hyperbolic
and all critical points converge to periodic attractors. Note that the space
of hyperbolic maps is an open subset in the space of real polynomials of
fixed degree, and that every hyperbolic map satisfying the mild “no-cycle”
condition is structurally stable, [dMvS93].

Theorem 1 solves the 2nd part of Smale’s eleventh problem for the 21st
century [Sma00]:

Theorem 2 (Density of hyperbolicity in the Ck topology). Hyperbolic
(i.e. Axiom A) maps are dense in the space of Ck maps of the compact
interval or the circle, k = 1, 2, . . . ,∞, ω.

This theorem follows from the previous one. Indeed, one can approx-
imate any smooth (or analytic) map on the interval by polynomial maps,
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and therefore by Theorem 1 by hyperbolic polynomials. Similarly, one can
approximate any map of the circle by trigonometric polynomials. If a circle
map does not have periodic points, it is semi conjugate to the rotation and
it can be approximated by an Axiom A map (this is a classical result). If a
circle map does have a periodic point, then using this periodic point we can
construct a piecewise smooth map of an interval conjugate to the circle map.

1.1 History of the hyperbolicity problem

The problem of density of hyperbolicity goes back in some form to Fatou, see
§4.1 of [McM94]. Smale gave this problem ‘naively’ as a thesis problem in the
1960’s, see [Sma98]. Back then some people even believed that hyperbolic
systems are dense in all dimensions, but this was shown to be false in the
late 1960’s for diffeomorphisms on manifolds of dimension ≥ 2. The problem
whether hyperbolicity is dense in dimension one was studied by many people,
and it was solved in the C1 topology by [Jak71], a partial solution was given
in the C2 topology by [BM00] and C2 density was finally proved in [She04].

From the 1980’s spectacular progress was made in the study of quadratic
polynomials. In part, this work was motivated by the survey papers of
May (in Science and Nature) on connections of the quadratic maps fa(x) =
ax(1−x) with population dynamics, and also by popular interest in computer
pictures of Julia sets and the Mandelbrot set. Mathematically, the realiza-
tion that quasi-conformal mappings and the measurable Riemann mapping
theorem were natural ingredients, enabled Douady, Hubbard, Sullivan and
Shishikura to go far beyond the work of the pioneers Julia and Fatou. Using
these quasiconformal rigidity methods, Douady, Hubbard, Milnor, Sullivan
and Thurston proved in the early 1980’s that bifurcations appear monotoni-
cally within the family fa : [0, 1] → [0, 1], a ∈ [0, 4]. In the early 1990’s, as a
byproduct of his proof on the Feigenbaum conjectures, Sullivan proved that
hyperbolicity of the quadratic family can be reduced to proving that any
two conjugate non-hyperbolic quadratic polynomials are quasi-conformally
conjugate. In the early 1990’s McMullen was able to prove a slightly weaker
statement: each real quadratic map can be perturbed to a (possibly com-
plex) hyperbolic quadratic map. A major step was made when, in 1997,
Graczyk and Światek (see [GŚ97] and [GŚ98]), and Lyubich (see [Lyu97])
proved independently that hyperbolic maps are dense in the space of real
quadratic maps. Both proofs require complex bounds and growth of moduli
of certain annuli. The latter part was inspired by Yoccoz’s proof that the
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Mandelbrot set is locally connected at non-renormalizable parameters, but
is heavily based on the fact that z2 + c has only one quadratic critical point
(the statement is otherwise wrong). Using their result, Kozlovski was able to
prove hyperbolic maps are dense within the space of smooth unimodal maps
in [Koz03].

In 2003, the authors were able to prove density of hyperbolicity for real
polynomials with real critical points, see [KSvS03]. The main step in that
proof was to obtain estimates for Yoccoz puzzle pieces both from above and
below. In the present paper, we solve the original density of hyperbolicity
questions completely for real one-dimensional dynamical systems.

1.2 Strategy of the proof and some remarks

The main ingredient for the proof of Theorem 1 is the rigidity result [KSvS03].
The first step in proving Theorem 1 is to prove complex bounds for real

maps in full generality. This was done previous in [LvS98], [LY97] and [GŚ96]
in the real unimodal case, and in the (real) multimodal minimal case in
[She04]. The proof of the remaining case (multimodal non-minimal) will be
given in Section 3. As in [KSvS03] one has quasi-conformal rigidity for the
box mappings we construct, see Theorem 4.

Next we show (roughly speaking) that if a real analytic family of real an-
alytic maps fλ has non-constant kneading type, then either f0 is hyperbolic
or fλ displays already a critical relation for λ arbitrarily close to 0. This will
be done in Section 4, using a strategy which is similar to the unimodal situ-
ation dealt with in [Koz03], but taking care of the additional combinatorial
complexity in the multimodal case and using the existence of box mappings
and their quasi-conformal rigidity.

Using this, it is is fairly easy to construct families of polynomial maps
fλ, so that fλ has more critical relations than f0 for (some) parameters λ
arbitrarily close to 0: approximate an artificial family of C3 maps by a family
of polynomials (of much higher degree). In this way one can approximate the
original polynomial by polynomials (of higher degree) so that each critical
point either is contained in the basin of attracting periodic points or satisfies a
critical relation, i.e., is eventually periodic. From this, and the Straightening
Theorem, the main theorem will immediately follow.

Of course it is natural to ask about the Lebesgue measure of parameters
for which fλ is ‘good’. At this moment, we are not able to prove the gen-
eral version of Lyubich’s results [Lyu02] that for almost every c ∈ R, the
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quadratic map z 7→ z2 + c is either hyperbolic or stochastic. (This result
was strengthened by Avila and Moreira [AA02], who proved that for almost
all real parameters the quadratic map has non-zero Lyapounov exponents.)
This would prove the famous Palis conjecture in the real one-dimensional
case, see [Pal00]. See, however, [BSvS04].

2 Notation and terminology

Let Z be an open subset of R or C and x ∈ Z. The connected component
of Z containing x will be denoted as Compx Z, or, if it is not misleading, as
Z(x).

Let (a, b) be an interval on the real line. For any α ∈ (0, π) we use Dα(I)
to denote the set of points z ∈ C such that the angle ∠azb is greater than
α. Dα(I) is a Poincaré disc: it is equal to the set of points z ∈ C with
dP (z, I) < 2/ sin(α) where dP is the Poincaré metric on C \ (R \ I).

Let f be a real C1 map of a closed interval X = [−1, 1] with a finite
number of critical points which are not of inflection type (so any critical
point of f is either a local maximum or minimum). The set of critical points
of f will be denoted as Crit f .

Denote the critical points of f by c1 < c2 < · · · < cb. These critical
points divide the interval [−1, 1] into a partition P which consists of elements
{[−1, c1), c1, (c1, c2), c2, . . . , (cb, 1]}.

For every point x ∈ [−1, 1] we can define a sequence νf (x) = {ik}, k =
0, 1, . . ., of elements of the partition P in such a way that fk(x) ∈ ik for all
k ≥ 0. This sequence is called the itinerary of x.

We say that f, f̃ are combinatorially equivalent if there exists an order
preserving bijection h from the postcritical set (i.e., the iterates of the critical
points) of f onto the corresponding set for f̃ which conjugates f and f̃ .
Obviously, the itineraries of the corresponding critical points of f and f̃ are
the same.

In many cases we want to control only critical points which do not con-
verge to periodic attractors and for this purpose we introduce the following
notion. Two maps f and f̃ are called essentially combinatorially equivalent
if there exists an order preserving bijection h : ∪cω(c) → ∪c̃ω(c̃), where the
union is taken over the set of critical points whose iterates do not converge
to a periodic attractor.
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Let c be a critical point of f and let [c] denote the collection of critical
points c′ ∈ ω(c) with ω(c) = ω(c′).

An open set I ⊂ X is called nice if for any x ∈ ∂I and any n ≥ 1,
fn(x) 6∈ I. Let c be a critical point of f . An admissible neighbourhood of [c]
is a nice open set I with the following property:

• I has exactly #[c] components each of which contains a critical point
in [c];

• for each connected component J of the domain of definition of the
first return map to I, either J is a component of I or J is compactly
contained in I.

Given an admissible neighbourhood I of [c], Dom(I) will denote the domain
of definition of the first entry map to I which intersect the orbit of c. Dom ’(I)
will denote Dom(I) ∪ I, and D(I) = Dom(I) ∩ I. We use RI : D(I) → I to
denote the first entry map EI to I restricted to D(I). For each admissible
neighbourhood I of [c], let

C(I) = {c′ ∈ [c] : I(c′) ⊂ Dom(I)}.

3 Induced holomorphic box mappings

In this section we will prove the existence of complex bounds, i.e., the exis-
tence of box mappings. There are several definitions of box mappings. Here
we will use a definition which is slightly more general than the one given in
[KSvS03].

Definition 1 (Complex box mappings). Let b ≥ 1 be an integer. We say
that a holomorphic map

F : U → V (1)

between open sets in C is a complex box mapping if the following hold:

• V is a union of b pairwise disjoint Jordan disks;

• every connected component V ′ of V is either a connected component
of U or the intersection of V ′ and U is a union of Jordan disks with
pairwise disjoint closures which are compactly contained in V ′,
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• for each component U ′ of U , F (U ′) is a component of V and F |U ′ is a
proper map;

• in each connected component of V there is a point c which is the unique
critical point of the map F : Compc U → CompF (c) V ;

• all iterates of these critical points by F are in U ;

• all other branches of F are univalent.

The filled Julia set of F is defined to be

K(F ) = {z ∈ Dom(F ) : F n(z) ∈ Dom(F ) for any n ∈ N};

and the Julia set is J(F ) = ∂K(F ).
Such a complex box mapping is called real–symmetric if F is real, all its

critical points are real, and the domains U and V are symmetric with respect
to R.

A real box mapping is defined similarly: replace “Jordan disks” by “in-
tervals”, and “holomorphic” by “real analytic”.

We say that a box mapping F is induced by a map f if any branch of F
is some iterate of a complex extension of the map f : X → X.

This type of box mapping naturally arises in the following setting: let
f : ∆ → C be a holomorphic map, f(X) ⊂ X, where ∆ is some complex
neighbourhood of X. Fix some recurrent critical points of f and an appro-
priate neighbourhood V of these critical points, consider the first entry map
R : U → V of f to V . We will see that if the domain V is carefully chosen,
then the map R : U → V is a complex box mapping.

Theorem 3 (The existence of complex box mappings). Let f : ∆ → C
be a real holomorphic map with non-degenerate critical points and let c0 ∈ R
be a recurrent critical point of f . Then there exists a real–symmetric complex
box mapping F : U → V such that U ∩ V contains [c0].

Moreover, if ω(c0) is non–minimal and f has no neutral cycles, then for
any K > 0 one can arrange the box mapping so that it has the following extra
properties:

• Every connected component V ′ of V is contained in Dπ/4(V
′ ∩ R);
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• There exists θ1 > 0 such that any connected component U ′ of U satisfies

U ′ ⊂ Dθ1(U
′ ∩ R);

• Let Q be the closure of ∂(U ∩ R) ∪ ∂(V ∩ R). Then Q is a hyperbolic
set and there exists a constant C > 0 such that

distC\Q(∂U ′, ∂V ′) > C and distC\Q(∂U ′, ∂U ′′) > C

where distC\Q is the hyperbolic distance in C \ Q, V ′ is a connected
component of V and U ′ 6= U ′′ are connected components of U ;

• there exists ξ ∈ (0, 1) such that for each c′ ∈ [c] − C(I) and each
x ∈ Compc′ V , there exists a round disk W with x ∈ W ⊂ Compc′ V
such that mod(Compc′ V −W ) ≥ 1, and

area(W ∩ U) ≤ ξarea(W );

• the domain V can be taken in such a way that

– if U ′ is a connected component of U and compactly contained in V ,
then CompU ′(V ) ∩ R contains K-scaled neighbourhood of U ′ ∩ R;

– Moreover,

|f(Compc0(V ) ∩ R)| > K|f(Compc0(U)) ∩ R|.

In the case of minimal ω(c0) the existence of the box mapping is proven
in [She04], so we only have to prove the non–minimal case. The proof of this
theorem will occupy the next two subsections.

3.1 Complex bounds from real bounds

Our goal is to prove that for an appropriate choice of an admissible neigh-
bourhood I of [c], the real box mapping RI extends to a complex box map-
ping. To this end, it is convenient to introduce geometric parameters Len(I),
Space(I), Gap(I) and Cen(I) as follows.

If J is an entry domain to a nice open set T with entry time s, and if
{Gi}s

i=0 is the chain with Gs equal to the component of T which contains
f s(J) and G0 = J then we define

Len(J ;T ) =
s∑

i=0

|Gi|.
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The parameter Len(I) is defined to be

Len(T ) = sup
J

Len(J, T ),

where J runs over all components of D(T ).
For any intervals j ⊂ t, and denoting the components of t \ j by l, r,

define

Gap(l, r) =
1

Space(t, j)
:=

|t||j|
|l||r|

.

So if Gap(l, r) is large, then the gap interval j is at least larger than one of
the intervals l or r. At the same time, if Space(t, j) is large, than there is
large space around the interval j inside t. The parameter Gap(I) is defined
as

Gap(I) = inf
(J1,J2)

Gap(J1, J2),

where (J1, J2) runs over all distinct pairs of components of Dom ’(I).
To introduce the parameter Space(I), let

I∗ =
⋃

c′∈C(I)

I(c′), I] = I − I∗. (2)

The parameter Space(I) is defined to be

Space(I) = inf
J

Space(CompJ I, J),

where the infimum is taken over all components J of the domain of RI which
are contained in I]. In the following construction we shall be unable to
guarantee that all components of the domain of f are compactly contained
in I.

Furthermore, for any c′ ∈ [c], let Ĵ(c′) be the component of Dom ’(I)
which contains f(c′), and define

Cen1(I) = max
c′∈[c]−C(I)

|Ĵ(c′)|
|f(I(c′))|

,

Cen2(I) = max
c′∈C(I)

(∣∣∣∣∣ |Ĵ(c′)|
|f(I(c′))|

− 2

∣∣∣∣∣
)
,

and Cen(I) = max(Cen1(I),Cen2(I)).
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Proposition 1. There exists ε0 > 0, C0 > 0 and θ0 ∈ (0, π) (depending only
on b) with the following property. Let I be an admissible neighbourhood of
[c] such that Len(I) < ε0, Cen(I) < ε0, Space(I) > C0 and Gap(I) > C0.
Assume also that maxc′∈[c] |I(c′)| is sufficiently small. Then there exists a
real–symmetric complex box mapping F : U → V whose real trace is real
box mapping RI . Moreover, the map F satisfies the properties specified in
Theorem 3.

To prove this proposition we need a few lemmas. Let U ⊂ C be a small
neighbourhood of X so that f : X → X extends to a holomorphic function
f : U → C which has only critical points in X. Here, as before, X = [0, 1].

Lemma 1. For any θ ∈ (0, π) there exists η = η(f, θ) > 0 such that if
J ⊂ X is an open interval which does not contain a critical point and if
|J | < η, then there exists a Jordan disk Ω with J ⊂ Ω ⊂ Dθ−M |f(J)|(J), such
that f : Ω → Dθ(f(J)) is a conformal map, where M is a constant depending
only on f .

Proof. This lemma is well-known. In fact, f(U) is an open set in C which con-
tains a neighbourhood of f(X) and thus contains Dµ|f(J)|(f(J)) for constant
µ > 0. By analytic continuation, f−1|f(J) extends to a univalent function
from Dµ|f(J)|(f(J)) into CJ . By Schwarz lemma the lemma follows.

Lemma 2. For any θ ∈ (0, π) there exists ε0 = ε0(f, θ) > 0 and θ′ = θ′(θ) ∈
(0, θ) such that the following holds. Let I be an admissible neighbourhood of
[c] with Len(I) < ε0 and Cen2(I) < ε0. Let J be a component of Dom ’(I),
let s ≥ 0 be minimal with f s(J) ⊂ I], and let K be the component of I]

containing f s(J). Then there exists a Jordan disk U with J ⊂ U ⊂ Dθ′(J)
such that f s : U → Dθ(K) is a well-defined proper map.

Proof. First consider the case that f s|J is a diffeomorphism. Let η and M
are as in Lemma 1. Then provided that

∑s
j=1 |Gj| < Len(I) is less than

η/(2M), that lemma implies that we have a sequence of Jordan disks Uj

with Uj ⊂ Dθ/2(Gj), 0 ≤ j ≤ s, such that Us = Dθ(K) and f : Uj → Uj+1 is
a conformal map for all 0 ≤ j < s. The lemma follows by taking U = U0.

Now assume that f s|J is not diffeomorphic, and let s1 < s be maximal
such that Gs1 contains a critical point c′. Then as above, we obtain a Jordan
disks Uj for all s1 < j ≤ s such that Us = Dθ(K), such that

• for all s1 < j < s, f : Uj → Uj+1 is a conformal map;
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• Uj ⊂ Dθ/2(Gj).

By minimality of s we have c′ ∈ C(I) and so by the assumption on Cen2(I),
|f(Gs1)|/|Gs1+1| = |f(I(c′))|/|Ĵ(c′)| is bounded away from zero. Therefore,
provided that |Gs1+1| is sufficiently small, we have a Jordan disk Us1 with
Gs1 ⊂ Us1 ⊂ Dθ1(Gs1) such that f : Us1 → Us1+1 is 2-to-1 proper map, where
θ1 ∈ (0, π) is a constant depending only on θ. Repeat the argument for the
shorter chain {Gj}s1

j=0 and so on. Since the order of the chain {Gj}s
j=0 is

bounded from above by b, the procedure stops within b steps, completing the
proof.

Proof of Proposition 1. Assume that Len(I) and Cen2(I) are both very small.
For each c′ ∈ [c] − C(I), define Vc′ = Dπ/2(I(c′)). By Lemma 2, there exists
a constant θ0 ∈ (0, π) and for each component J of Dom ’(I), there exists
a Jordan disk U(J) with J ⊂ U(J) ⊂ Dθ0(J) such that if s = s(J) is the
minimal non–negative integer with f s(J) ⊂ I(c′) for some c′ ∈ [c] − C(I),
then f s : U(J) → Vc′ is a well-defined proper map.

For c′ ∈ C(I), define Vc′ = U(I(c′)). For each component J of RI in I],
let Ĵ be the component of Dom ’(I) which contains f(J), and let U(J) be
the component of f−1(U(Ĵ)) which contains J . Then U(J) is a Jordan disk
with U(J) ∩ R = J , and f : U(J) → U(Ĵ) is a well-defined proper map.

Clearly, for each component J of the domain of RI , if c′ ∈ [c] is such that
RI(J) ⊂ I(c′), and if RI |J = f s|J , then f s : U(J) → Vc′ is a well-defined
proper map.

Assume now that Space(I) is very big and and Cen1(I) is very small.
Then for each c′ ∈ [c]−C(I) and for each component J of the domain of RI

with J ⊂ I(c′), mod(Vc′ − UJ) is bounded from below by a large constant.
In fact, if J 63 c′ then by Lemma 1, U(J) ⊂ Dθ0/2(J), which implies that

mod(Vc′ − U(J)) ≥ mod(Dπ/2(I(c′))−Dθ0/2(J)) is large since Space(I, J) is

large. If J 3 c′, then by assumption, |Ĵ |/|fI(c′)| is small, so that U(J) is
contained in a round disk centred at c′ with radius much smaller than |I(c′)|,
hence mod(Vc′ − U(J)) is again big. Note that provided that Space(I) is
large enough, we also have⋃

J⊂I(c′)

U(J) ⊂ B

(
c′,
|I(c′)|

4

)
∪Dα(I(c′)), (3)

where α ∈ (0, π) is a constant close to π.
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Next let us assume that Gap(I) is large and show that there exists δ > 0
such that for any components J1 and J2 of the domain of RI , we have

distC\Q(∂U(J1), ∂U(J2)) > δ, (4)

To this end, we may assume that J1 and J2 are contained in I(c′) for some
c′ ∈ [c]− C(I), and that |Ĵ1| ≤ |Ĵ2|. Recall that

f(U(Ji)) = U(Ĵi) ⊂ Dθ0(Ĵi), i = 1, 2. (5)

In particular, provided that Gap(Ĵ1, Ĵ2) are larger than some number which
only depends on θ0,

U(J1) ∩ U(J2) = ∅. (6)

Let us consider the following two cases:
Case 1. J1 3 c′. Since there exist only finitely many components of

Dom ’(I) with length not smaller than |J1|, there are only finitely many pairs
(J1, J2) satisfying the property, and thus (4) follows from (6).

Case 2. J1 63 c′. In this case, (5) implies that d(∂U(J1), ∂U(J2))/|J1|
is big, provided that Gap(Ĵ1, Ĵ2) is big enough. Moreover, Lemma 1 im-
plies that U(J1) ⊂ Dθ0/2(J1). All these imply that the distance between
dist∂J1(∂U(J1), ∂U(J2)) is large, where dist∂J1 denotes the hyperbolic dis-
tance in C− ∂J1. As dist∂J1 ≤ distC\Q, (4) follows.

Now we define a complex box mapping F : U → V by setting U =⋃
J U(J), V =

⋃
c′∈[c] V (c′) and by defining F so that its real trace is RI .

The required properties of F easily follow from the construction.

3.2 Choice of an admissible neighbourhood

We shall prove here

Proposition 2. Let c be a recurrent critical point of f which has a non-
minimal ω-limit set. For any ε > 0 and C > 0 there exists an admissi-
ble neighbourhood I of [c] such that such that Len(I) < ε, Gap(I) > C,
Space(I) > C, and Cen(I) < ε.

Given an admissible neighbourhood T of [c], let us define a new admissible
neighbourhood A(T ) as follows. Recall that C(T ) is the subset of [c] consist-
ing of points c′ ∈ [c] so that T (c′) ⊂ Dom(T ), and that T ∗ =

⋃
c′∈C(T ) T (c′),
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T ] = T − T ∗. Let t(T ) = # C(T ). For any c′ ∈ [c], there exists a mini-

mal non–negative integer k(c′) such that R
k(c′)
T (c′) ∈ T ]. (So k(c′) = 0 if

c′ ∈ [c] − C(T ).) The set A(T ) is defined so that A(T )(c′) is the maxi-

mal interval containing c′ such that R
k(c′)
T (A(T )(c′)) ⊂ Dom(T ). Clearly

C(A(T )) ⊂ C(T ).

Lemma 3. Assume that C(A(T )) = C(T ). Then

1. for each c′ ∈ C(T ), ET (A(T )(c′)) ⊂ A(T );

2. for each c′ ∈ [c] and x ∈ T (c′)−A(T )(c′), there exists an interval J(x)

with x ∈ J(x) ⊂ T (c′)−A(T )(c′) such that E
k(c′)+1
T maps J(x) onto a

component of T diffeomorphically;

3. for each landing domain J of A(T ), there exists an interval Ĵ with
J ⊂ Ĵ ⊂ Dom ’(T ) such that if s is the landing time of J into A(T ),
then f s maps Ĵ diffeomorphically onto a component of T .

Proof. Let us prove the first statement by contradiction. It is enough to prove
that ET (c′) ∈ A(T ), so assume that this is not the case. For 0 ≤ i ≤ k(c′),
let c′i ∈ [c] be such that Ei

T (c′) ∈ T (c′i). Let m ≤ k(c′) − 1 be maximal
so that ET (c′m) 6∈ A(T )(c′m+1). Let p ∈ N be minimal such that Ep

T (c′m) ∈
A(T ). By the maximality of m, we obtain ET (A(T )(ci)) ⊂ A(T )(ci+1) for
i = m + 1, . . . , k − 1. Hence Ei

T (c′m) 6∈ A(T ) for all 1 ≤ i ≤ k − m, and
so p > k − m. But Ek−m

T (∂A(T )(c′m)) is contained in ∂Dom(T ), which
implies that Ep

T (∂A(T )(c′m)) 6∈ T . Since A(T ) b T the minimality of p gives
that c′m /∈ C(A(T )). However, since c′m ∈ C(T ) = C(A(T )) this gives a
contradiction.

Let us now pass to the proof of the second statement. By the first state-

ment, for each c′ ∈ [c], E
k(c′)
T maps each component of T (c′)−A(T )(c′) onto a

component of T−A(T ) in a diffeomorphic way. For each x ∈ T (c′)−A(T )(c′),

we take J(x) to be the maximal interval so that E
k(c′)
T (J(x)) is contained in

(a component of) Dom(T ). Clearly, E
k(c′)+1
T maps J(x) onto a component of

T in a diffeomorphic way.
The third statement follows from the observation that any branch of

the first landing map to A(T ) can be written as the composition of the

first landing map to T with finitely many maps of the form E
k(c′)+1
T |J(x),

x ∈ T (c′)−A(T )(c′).
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Let us say that a sequence of open intervals {Gi}s
i=0 is a chain if Gi is a

component of f−1(Gi+1) for each i = 0, . . . , s− 1. The order of this chain is
the number of Gi’s which contain a critical point.

The following lemma is usually referred to as the Koebe principle. See
[vSV00] for a proof.

Lemma 4. Assume that {Gi}s
i=0 is a chain such that Gs is contained in a

small neighbourhood of a non-periodic and recurrent critical point.

1. For each N > 0 and C > 0 there exists C ′ > 0 such that if the order
of the chain {Gi}s

i=0 is at most N and {Ji}s
i=0 is a chain with Ji ⊂ Gi,

i = 0, . . . , s then if Space(Gs, Js) ≥ C ′ then Space(Gs, Js) > C.

2. For each C > 0 there exists K > 1 such that if f s|G0 is a diffeo-
morphism, does not contain any non-hyperbolic periodic points and
Space(Gs, Js) ≥ C then |Df s(x)|/|Df s(y)| ≤ K for each x, y ∈ J0.
Moreover, K → 1 as C →∞.

Lemma 5. Let c1, c2 ∈ [c], let x ∈ A(T )(c1) be such that EA(T )(x) ∈
A(T )(c2), and let s be such that EA(T ) = f s near x. Consider the chain
{Gi}s

i=0 with Gs = T (c2) and G0 3 x. Then the order of the chain is not
greater than #[c] + 1. Moreover, if c1 6∈ C(A(T )), then G0 ⊂ A(T )(c1).

Proof. First observe that A(T )(c′) ⊃ Compc′ Dom(T (c′)) for all c′ ∈ [c]. It
follows that for each c′ ∈ [c], there can be at most one i with 0 < i ≤ s such
that Gi 3 c′. Thus the order of the chain {Gi}s

i=0 is at most #[c] + 1.
Now let us assume that c1 6∈ C(A(T )) and show that G0 ⊂ A(T )(c1).

Let k be the minimal positive integer such that Ek
T = f s near x. Since

G0 ⊂ Compc1 Dom(T ), we may assume that c1 ∈ C(T ). If G0 b T (c1), then

k > k(c1), and E
k(c1)
T (G0) is contained in a component of Dom(T ) so that

G0 ⊂ A(T )(c1). Therefore we may assume that G0 = T (c1). Then k ≤ k(c1),
so f i(x) 6∈ T ] for all 1 ≤ i ≤ s− 1. It follows that

Ek
T (A(T )(c1)) ⊂ Compfs(x) Dom ’(T ] ∩Dom(T )) = A(T )(c2),

which implies that c1 ∈ C(A(T )). The contradiction completes the proof.

Lemma 6. For any ε > 0 there exists ε′ > 0 such that if Space(T ) > 1/ε′

then Space(A(T )) > 1/ε and Cen1(A(T )) < ε.
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Proof. By the previous lemma and the above Koebe principle, it suffices to
show that |A(T )(c′)|/|T (c′)| is small for every c′ ∈ [c], provided that Space(T )

is sufficiently large. To this end, let s be such that E
k(c′)
T = f s on T (c′), and

consider the chain {Gi}s
i=0 with Gs = T (f s(c′)) and G0 = T (c′). The order

of this chain is bounded from above by k(c′) ≤ #[c]. Since f s(A(T )(c′)) is
contained in a component of Dom(T ) which is deep inside Gs, again by the
above Koebe principle, we obtain the desired estimate.

Lemma 7. For any ε > 0 and C > 0 there exists C ′ > 0 with the fol-
lowing property. Assume that C(A(T )) = C(T ) and Space(T ) > C ′. Then
Len(A(T )) < ε, and Gap(A(T )) > C. Moreover, if C(A2(T )) = C(T ), then
Cen(A(T )) < ε.

Proof. Assume that Space(T ) is large. Then by Lemma 6, for each c′ ∈ [c],
A(T )(c′) is deep inside T (c′).

Let us first show that Gap(A(T )) is big. To this end, let J1 and J2 be
distinct components of Dom ’(A(T )) and let s1, s2 be their landing times to
A(T ). Without loss of generality, assume s1 ≤ s2. It is enough to show that
the gap between J1 and J2 is much bigger than J2. Let Ĵi, i = 1, 2, be as
in Lemma 3 (3). By the Koebe principle, Ji is deep insider Ĵi, so it suffices
to show that J1 ∩ Ĵ2 = ∅. Let us prove this by contradiction. Assume that
J1 ∩ Ĵ2 6= ∅. Since both J1 and Ĵ2 are pull backs of the nice set T , so either
J1 ⊃ Ĵ2 or J1 ⊂ Ĵ2. Since J1 ∩ J2 = ∅, the first alternative cannot happen.
Therefore, J1 ⊂ Ĵ2. It follows that for all 0 ≤ i ≤ s2, f

i(J1) ⊂ f i(Ĵ2)−f i(J2),
hence f i(J1)∩ [c] = ∅. But f s1(J1) is a component of A(T ), a contradiction.

Now let us prove that Len(A(T )) is small. Let J be a landing domain to
A(T ) with landing time s. Let s1 be the minimal non–negative integer such
that K1 := f s1(J) ⊂ T (c1) for some c1 ∈ [c]. If s1 < s, then K1∩A(T )(c1) =
∅. Moreover, if k(c1) > 0 then c1 ∈ C(T ), then Ei

T (K1) ∩ A(T ) = ∅ for all

i ≤ k(c1). So if we let s2 > s1 be such that E
k(c1)+1
T = f s2−s1 on f s1(J) then

s2 ≤ s. Let c2 ∈ [c] be such that f s2(J) ⊂ T (c2), and let K̂1 ⊃ f s1(J) be
the interval determined as in Lemma 3 (2), i.e., K̂1 is the interval containing

f s1(J) such that E
k(c1)+1
T : K̂1 → T (c2) is a diffeomorphism. If s2 < s then

we define K̂2 and s3, and so on. In this way we obtain a sequence of integers
0 ≤ s1 < s2 < · · · < sn = s such that for each 1 ≤ i < n, there exist ci ∈ [c]
and an interval K̂i with

• f si(J) ⊂ K̂i ⊂ T (ci)−A(T )(ci).

14



• f si+1−si|K̂i = E
k(ci)+1
T |K̂i is a diffeomorphism from K̂i onto T (ci+1).

Let us now prove that for all 1 ≤ i ≤ n− 1,

Space(T (ci), f
si(J)) ≥ 2n−i Space(T (cn), f sn(J)). (7)

To this end, we first notice that Space(T (ci), K̂i) is large for all 1 ≤ i ≤
n − 1. In fact, k(ci) < b and E

k(ci)
T (K̂i) is contained in a component of

Dom(T ) ∩ T (ci+1) which is deep inside T (ci+1) by assumption, so the state-
ment follows by the Koebe principle. Hence, for any A > 0 one can find
C ′ > 0 such that Space(T (ci), f

si(J)) ≥ A Space(K̂i, f
si(J)) provided that

Space(T ) > C ′. Since f si+1−si : (K̂i, f
si(J)) → (T (ci+1), f

si+1(J)) is a dif-
feomorphism, the Koebe principle mentioned above gives a constant K such
that Space(K̂i, f

si(J)) ≥ K Space(T (ci+1), f
si+1(J)). Combined this gives

Space(T (ci), f
si(J)) ≥ 2 Space(T (ci+1), f

si+1(J)).

The equation (7) follows.
Let us now prove that

∑s
j=0 |f j(J)| is small. Let ∆ := Space(T (cn), f sn(J)).

For each 1 ≤ i ≤ n− 1, and for any 1 ≤ j ≤ si+1 − si, we have

Space(f j(K̂i), f
si+j(J)) ≥ Space(T (ci+1), f

si+1(J))

K
≥ 2n−i

K
∆,

since f si+1−si : K̂i → T (ci+1) is a diffeomorphism. In particular, |f si+j(J)| ≤
K

2n−i∆
|f j(K̂i)|. On the other hand, the intersection multiplicity of the chain

{f j(K̂i)}si+1−si

j=1 is at most k(ci) + 1, so

si+1−si∑
j=1

|f j(K̂i)| ≤ (k(ci) + 1)|X| ≤ 2b

where X is the dynamical interval. Thus

s∑
j=s1+1

|f j(J)| =
n−1∑
i=1

si+1−si∑
j=1

|f si+jJ |

≤
n−1∑
i=1

K

2n−i∆

si+1−si∑
j=1

|f j(K̂i)|

≤ 2Kb

∆
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is small (because ∆ is large). To show that
∑s1

j=0 |f j(J)| is small, we use the
fact that f s1 |J extends to a diffeomorphism onto T (c1) and argue similarly.

Finally, let us assume also that C(A2(T )) = C(A(T )), and show that
Cen(A(T )) is small. In Lemma 6, we have already shown that that Cen1(A(T ))
is small. So it remains to show that Cen2(T ) is small. To this end, take
c′ ∈ C(T ) and let c′′ ∈ [c] be such that ET (c′) ∈ T (c′′). By assumption we
have ET (c′) ∈ A2(T )(c′′). Since |A2(T )(c′′)|/|A(T )(c′′)| is small, the compo-
nents of A(T )(c′′)−{ET (c′)} have almost the same length. If J 3 f(c′) is the
landing domain to A(T ) and if s is the landing time, then f s : J → f s(J)
extends to a diffeomorphism onto T (c′′) which implies by the Koebe principle
that f s|J is almost linear. Thus the components of J − {f(c′)} have almost
the same length.

Proof of Proposition 2. Since ω(c) is non-minimal, we can apply Theorem 1.2
in [She03a]. Hence, for any K > 0 there exists an arbitrarily small K-nice
neighbourhood Q of c. In the present terminology this means that for any
C > 0 there exists an admissible neighbourhood

T0 :=
⋃

c′∈[c]

Compc′ Dom ’(Q)

with Space(T0) > C. For n ≥ 0, define inductively Tn+1 = A(Tn). Then,
since C(Tn) ⊃ C(Tn+1) there exists N ≤ 2b such that

C(TN−1) = C(TN) = C(TN+1).

By Lemmas 6 and 7, defining I = TN completes the proof.

3.3 Rigidity of box mappings

The following theorem is the direct analogue of the Rigidity theorem in
[KSvS03] for the box mappings defined in the previous section. The proof is
the same.

Theorem 4 (Rigidity theorem for box mappings). Let f : U → V and
f̃ : Ũ → Ṽ be two combinatorially equivalent real-symmetric complex box
mappings without neutral cycles. Moreover, suppose that there exists a q.c.
homeomorphism h : C → C such that h conjugates f and f̃ on the boundaries
of their domains of definition.

Then there exists a q.c. homeomorphism φ : C → C which conjugates f
and f̃ on their domains and such that φ = h outside U .
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4 Instantaneous change of combinatorics in

analytic families

In this section we shall use the two theorems from the previous section in
order to prove that under certain conditions the only structurally stable
maps within analytic families of analytic maps are hyperbolic maps. The
main condition we put on such families is that all the maps in the family are
regular (see the definition below). This condition was introduced in [Koz03]
in the context similar to present. It seems conceivable that this condition is
superfluous, however we not know how to prove the theorem below without
it.

Definition 2. A C1 interval map f : I → I is called regular if each of
its neutral periodic points contains a non preperiodic critical point in the
interior of its attraction basin and each of its critical points is contained in
the interior of I. A family of interval maps are called regular if all maps in
this family are regular.

Real polynomial maps with only real critical points are regular.

Definition 3. A critical point c of a map f is called prime if from c′ ∈ ω(c),
where c′ is another critical point of f , follows that c ∈ ω(c′).

Prime critical points always exist provided the map has at least one crit-
ical point. Indeed, we can introduce a partial order on the set of critical
points by setting c1 � c2 if c1 ∈ ω(c2). The set of minimal elements with
respect to this partial order is the set of prime critical points (we could call
these points minimal, but this could introduce a confusion with critical points
whose ω–limit sets are minimal).

Theorem 5. Let fλ, λ ∈ (−1, 1), be a regular analytic family of real–analytic
maps of the interval. Suppose that

• for any λ, each real critical point c(λ) of fλ is non-degenerate (and so
depends real analytically on λ);

• the map f0 has no neutral cycles;

• the map f0 has a prime critical point c0 which is not in the closure of
the immediate basin of periodic attractors of f0 such that the itinerary
νfλ

(c0(λ)) is non-constant as λ varies in [0, 1);
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• attracting cycles of f0 do not bifurcate as λ ∈ (−1, 1) varies;

• if an iterate of some real critical point is mapped onto another (or the
same) critical point under f0, then this critical relation persists for all
λ ∈ (−1, 1);

• if iterates of some real critical point ĉ(0) converge to a periodic attractor
under f0, then the iterates of ĉ(λ) converge to a periodic attractor for
every λ ∈ (−1, 1).

Then in any neighbourhood of λ = 0, there exists a non-periodic critical
point c̃(0) such that the itinerary νfλ

(c̃(λ)) is not constant.

In the unimodal case this theorem was proved previously in [Koz03]. The
proof of the above theorem follows the same strategy, except that we need to
deal with the possibility of more general types of critical relations (compared
to the unimodal case). Moreover, we use a method of [ALdM03] to construct
a holomorphic motion of the boundary of the box mappings (although one
could also proceed as in [Koz03] or [LvS00]).

One can extend the above theorem to multi-parameter families easily (see
[Koz03]).

Before proving the above theorem, we prove a simple proposition.

Proposition 3. Suppose {fn}, n = 1, 2, . . . is a sequence of C3 maps of the
interval satisfying the following properties.

• The sequence fn converges to some map f0 in the C1 topology.

• All fn, n = 0, 1, . . ., have the same critical points and these are not of
the inflection type.

• All fn, n = 1, 2, . . ., have the same number of attractors and the periods
of attractors do not change with n; if c is a critical point such that the
iterates of c converge to some periodic attractor under fk for some
k ≥ 1, then the iterates of c converge to a periodic attractor under all
fn, n ≥ 0; the set of these critical points will be denoted by C.

• If c 6∈ C, then the itinerary νfn(c) does not change with n, i.e. νf1(c) =
νfn(c) for any n ≥ 1.

Then if c 6∈ C, then νf0(c) = νf1(c).
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� Suppose that the conclusion of the lemma does not hold for some
critical point c 6∈ C. Let νf0(c) = {jk} and νf1(c) = {ik}, k = 0, 1, . . .. By
continuity it is easy to see that if ik 6= jk for some k, then ik is some interval
and jk is a critical point on the boundary of ik. This implies that there exists
m > 0 such that il = jl for all l > m. Indeed, if it does not hold, the sequence
{jl} would have infinitely many critical points in it, and since there are just
finitely many critical points the map f0 would have a super attractive critical
periodic point and some iterate of c would be mapped onto this point by f0.
This means that c would be in the basin of some periodic attractor for large
values of n. This contradicts the third assumption of the lemma.

The same argument as above shows that for any c 6∈ C there exists m
such that jk is not a critical point for all k > m, where {jk} = νf0(c) and
that for any c1, c2 6∈ C if c2 is an element in νf0(c1), then c1 is not an element
in νf0(c2). The last property allows us to introduce a partial ordering on the
set of critical points outside of C: c1 � c2 if c2 is an element of νf0(c1).

Take a minimal element in this ordering for which the conclusion of the
lemma does not hold. Denote it as c and let νf0(c) = {jk}. Let m be maximal
such that jm is a critical point. From the discussion above we know that such
m is finite and greater than 0. From the minimality of c we know that jm ∈ C,
hence its iterates converge to some periodic attractor. Thus the iterates of c
converge to an attractor under f0 and, therefore, under fn for large values of
n as well. This is a contradiction. �

Proof of Theorem 5. Maps from the family fλ do not have degenerate
critical points, therefore the critical points in this family do not bifurcate
and for any critical point c of f0 there is an analytic function λ 7→ c(λ) such
that c(0) = c and c(λ) is a critical point of fλ. Often we will suppress the
dependence of c on λ if it does not lead to a confusion.

Suppose that the assertion of the theorem does not hold. Then there
exists λ0 > 0 such that for all maps corresponding to a parameter in [0, λ0),
the critical points which do not converge to periodic attractors do not change
their itineraries for λ ∈ [0, λ0). Due to Proposition 3 we know that in this
case the itineraries of critical points of fλ0 whose iterates do not converge
to periodic attractors are the same as for any map fλ, λ ∈ [0, λ0]. We can
choose λ0 be maximal with this property. Then for the critical point c0,
νfλ

(c0) = νf0(c0) for all λ ∈ [0, λ0], and there are parameters λ ∈ (λ0, 1)
arbitrarily close to λ0 such that νfλ

(c0) 6= νf0(c0).
We claim that the map fλ0 cannot have neutral cycles. Arguing by con-
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tradiction, assume that that fλ0 has a neutral periodic point p of period n.
Since fλ0 is regular, there exists a (real) non pre-periodic critical point c of
fλ0 in the interior of the attracting basin of the orbit of p. The itinerary
of this critical point is preperiodic with eventual period n under iterations
of fλ0 , and hence under iterations of fλ for λ ∈ [0, λ0] as well. By an easy
continuity argument, the assumption that f0 has no neutral cycle implies
that there exists λ1 ∈ (0, λ0) such that fλ has no neutral cycle of period ≤ n
for all λ ∈ [0, λ1). We have the following two cases.

Case 1. For some λ2 ∈ [0, λ1), c converges to a hyperbolic attracting
cycle Oλ of period n.

In this case, using the fact that fλ has no neutral cycle for all λ ∈ [0, λ1),
we conclude easily that c converges to the corresponding hyperbolic attract-
ing cycle O0 under iterations of f0. But then the assumption of the theorem
implies that c is contained in the attracting basin of a hyperbolic attracting
cycle of fλ0 , which is a contradiction.

Case 2. For each λ ∈ [0, λ1), there exists k(λ) such that f
k(λ)
λ (c) is a

repelling periodic point of fλ of period n.
For each k ≥ 0, let Jk = {λ ∈ (−1, 1) : fk+n

λ (c) = fk
λ (c)}. Then J0 ⊂ J1 ⊂

· · · and
⋃

k Jk ⊃ [0, λ1). By Baire’s category theorem, for some k, Jk has
an accumulation point in (−1, 1). By analytic continuation it follows that
Jk = (−1, 1). In particular, c is preperiodic under iteration of fλ0 , which is
a contradiction again.

The map fλ0 satisfies the same assumptions of the theorem as the map
f0. We rename fλ0 by f0. So for small negative values of λ the itineraries of
the critical points which are not in the basin of attractors are the same as
for λ = 0 and there are small positive values of λ such that the itinerary of
c0 for fλ is different from its itinerary for f0.

Let us first assume that the critical point c0 is recurrent. According to
the theorem in the previous section we can then construct a box mapping for
f0. More precisely, there is a complex box mapping F0 : U → V such that
the orbit of c0 is contained in U . Moreover, we can choose F0 in such a way
that the forward iterates of ∂(U ∩ R) under f0 do not contain any critical
point of f0.

Before continuing the proof of the theorem we need a few lemmas.

Lemma 8. There exists a neighbourhood Λ ⊂ C of 0 and a normalised
holomorphic motion hλ : C → C, λ ∈ Λ, such that hλ is R–symmetric for
real values of λ and Fλ : hλ(U) → hλ(V ) is a box mapping induced by fλ.
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Moreover,
hλ ◦ F0(x) = Fλ ◦ hλ(x)

for all x ∈ ∂U and λ ∈ Λ.

� Here we use method given in [ALdM03]. The point c0 is prime, hence
for any c ∈ Crit(f0) \ [c0] we have c 6∈ ω(c0). Let N be a neighbourhood of
Crit(f0) \ [c0] disconnected from ω(c0). Decrease N if necessary in such a
way that the forward iterates of points from the set ∂(U ∩ R) do not enter
N . Denote the set of real points which are outside of the basins of periodic
attractors and whose iterates avoid ∪c∈Crit(f0) Compc U ∪N by Q. Obviously,
Q is a hyperbolic set and ∂(U ∩ R) ⊂ Q. This set persists under small
(complex) perturbations and due to λ–lemma there exists a neighbourhood
Λ ⊂ C of zero, a neighbourhood W ⊂ C of Q and a holomorphic motion
hλ : C → C, λ ∈ C, such that hλ ◦ f0 = fλ ◦ hλ on W . Shrinking W if
necessary we can assume that W does not contain critical points of F0.

Every connected component U ′ of U is mapped onto some connected

component V ′ of V after several, say n(U ′) iterations, so f
n(U ′)
0 (U ′) = V ′.

Then the map hλ,U ′ : Q∪∂U ′ → C defined by hλ,U ′(x) = f
−n(U ′)
λ ◦hλ◦fn(U ′)

0 (x)
for x ∈ ∂U ′, and hλ,U ′(x) = hλ(x) for x ∈ Q, λ ∈ Λ, is a holomorphic motion
(We might shrink Λ first in such a way that for all λ ∈ Λ the map fλ has

no critical points in hλ(W )
⋃
hλ(V ), and in f−m

λ ◦ hλ ◦ fn(U ′)
0 (∂U ′), where

m = 1, . . . , n(U ′) and U ′ is not contained in W ; there are finitely many such
domains, so we can always shrink Λ in such a way).

Fact 1 (Lemma 2.3 in [ALdM03]). For any M > m > 0 there exists
δ > 0 with the following property. Let S, S̃ ⊂ C be two hyperbolic Riemann
surfaces and h1, h2 : S → S̃ be (1 + δ)–q.c. maps homotopic rel boundary.
Let X and Y be subsets of S. If distS(X, Y ) > M , then distS̃(X, Y ) > m.

Due to Theorem 3 we have distC\Q(∂U ′, ∂U ′′) > C for U ′ 6= U ′′ and
distC\Q(∂U ′, ∂V ) > C if U ′ is not a connected component of V . Shrinking
Λ further we can insure that qc dilatation of hλ and of all hλ,U ′ , λ ∈ Λ, is
smaller then 1 + δ for any beforehand given δ > 0. Using the fact above
we conclude that the sets hλ,U ′(∂U ′) and hλ,U ′′(∂U ′′) and the sets hλ,U ′(∂U ′)
and hλ(∂V ) never intersect if λ is small enough. Applying the λ–lemma we
can construct a homotopic motion of the complex plane with the required
properties, completing the proof of Lemma 8. �
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So, we have constructed a box mapping for every sufficiently small (com-
plex) λ together with a holomorphic motion hλ. Denote the Beltrami coeffi-
cient of hλ by µλ. Define now ν̂λ to be zero outside of V and on the filled Julia
set of the map F0 : U → V , and everywhere else define it as the pullback
of µλ by F0. Obviously, the map λ 7→ ν̂λ(x) is holomorphic for fixed values
of x ∈ C and there exists a normalised holomorphic motion Hλ : C → C
whose Beltrami coefficient is ν̂λ. Since the map F0 preserves the Beltrami
coefficient ν̂λ, the map

Gλ = Hλ ◦ F0 ◦H−1
λ : Hλ(U) → Hλ(V )

is a complex box mapping. It also depends holomorphically on λ.

Lemma 9. Take λ ∈ Λ∩R. Then maps F0 : U → V and Fλ : hλ(U) → hλ(U)
are combinatorially equivalent if and only if Fλ = Gλ where defined.

� It is obvious that Fλ = Gλ implies combinatorial equivalence.
From the Rigidity Theorem for box mappings we know that there exists

a q.c. homeomorphism φ : C → C which conjugates F0 and Fλ on their
postcritical set and equals to hλ on ∂U .

Construct a new qc homeomorphism ψ0 which is equal to Hλ outside U
and equal to φ on U ∩R. Define inductively a sequence ψk(x) = F−1

λ ◦ψk−1 ◦
F0(x), x ∈ U . The Beltrami coefficient of {ψk} is uniformly bounded with
respect to k, so we can take a convergent subsequence. Denote the limit
by Ψ. The Beltrami coefficient of Ψ is equal to ν̂λ. Indeed, outside of the
Julia set of F0 : U → V it follows from the construction and on the Julia set
the Beltrami coefficient is zero because of the absence of the invariant line
field on the Julia set. For the case of the minimal ω–limit set of the critical
point it is proved in [She03b]. If the ω–limit set is not minimal, then even a
stronger statement holds: the Julia set of Fλ has zero Lebesgue measure set
of the. This directly follows from the forth property of the box mapping F
in Theorem 3. Thus, Ψ is equal to Hλ and Fλ = Gλ. �

This lemma implies that Fλ = Gλ for λ ∈ [−ε, 0] for some small ε > 0.
By analyticity of these families, therefore Fλ = Gλ for all λ ∈ Λ. This
contradicts the choice of λ0, and completes the proof of Theorem 5 in the
recurrent case.

Now we have to consider the Misiurewicz case in which the critical point
c0 is non-recurrent. Since c0 is prime there are no critical points in ω(c0).
Take a neighbourhood U of ω(c0) containing no critical points and neutral or
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attracting periodic points. The set of points in U which never leaves U under
iterates of f0 is hyperbolic. Moreover, for some n we have fn

0 (c0) ∈ U . This
hyperbolic set persists for small values of |λ|, and we have a holomorphic
motion hλ of this set. The maps f0 and fλ are combinatorially equivalent if
and only if we have

hλ(f0(c0)) = fλ(c0(λ)).

This equation is analytic in λ, and we can argue as before, completing the
proof of Theorem 5.

There exist two important versions of the theorem above where the reg-
ularity condition is not needed:

Theorem 6. Let fλ, λ ∈ (−1, 1), be an analytic family of real–symmetric
complex box mappings. Suppose that

• for any λ all real critical points of fλ are non-degenerate;

• the map f0 has no neutral or attracting cycles;

• there is a recurrent real critical point c0 of f0 and its itinerary is not
constant for all λ ∈ (−1, 1);

• if an iterate of some critical point is mapped onto another critical point,
then it is so for all λ.

Then there exist a critical point c and arbitrarily small λ such that the
itineraries νf0(c) and νfλ

(c) are different.

Theorem 7. Let fλ, λ ∈ (−1, 1), be an analytic family of real–analytic maps
of interval without degenerate critical points. Suppose that

• the map f0 has no neutral cycles;

• there is a critical point c0 of f0 such that the itinerary νfλ
(c0(λ)) changes

with λ and ω–limit set of c0 under f0 is a minimal set;

• attracting cycles of f0 do not bifurcate as λ ∈ (−1, 1) varies;

• if an iterate of some real critical point ĉ is mapped onto another (or
the same) critical point under f0, then this iterate is mapped onto the
critical point for all λ;
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• if iterates of some real critical point ĉ converge to a periodic attractor
under f0, then the iterates of ĉ converge to a periodic attractor for all
λ.

Then there exists a non-periodic critical point c which changes its itinerary
νfλ

(c) in any arbitrarily small neighbourhood of λ = 0.

The proof of these versions of the Theorem 5 is essentially identical to
the proof given above. The rigidity condition is automatically satisfied in the
case of Theorem 6 and it is not needed in Theorem 7 because in that case
the complex box mapping for f0 has just finitely many branches.

5 Perturbations with more critical relations

Let f be a real polynomial. We want to find hyperbolic polynomials of the
same degree arbitrarily close to f .

We may assume (see Lemma 10 below) that all critical points of f (in-
cluding complex ones) are non-degenerate and that f has no neutral periodic
points (again including complex). Such polynomials we will call admissible.

Now we will describe an inductive procedure which will allow us to obtain
a hyperbolic polynomial from the given polynomial in finitely many steps.
First we introduce a few definitions.

By a critical relation for f we mean a triple (n, ci, cj) such that ci, cj are
critical points of f , fn(ci) = cj and n > 0. If the iterates of a real critical
point c of f converge to some periodic attractor or some iterate of c lands on
a critical point of f , then the critical point c is called controlled.

Proposition 4. Suppose f is an admissible real polynomial with K controlled
critical points and suppose that K is less than the number of real critical
points of f . Then arbitrarily close to f , one can find an admissible real
polynomial of the same degree with K + 1 controlled critical points.

This proposition clearly implies the main theorem (density of hyperbolic-
ity). Indeed, in a few steps we obtain an admissible polynomial with all real
critical points controlled, which means it is Axiom A.

In the rest of this section we will prove this proposition.
The proof of the proposition will be carried out in three steps. In Step

I we construct a C3 perturbation of the map, however this perturbation can
still be included in an analytic family of complex box mapping. This step

24



can be skipped if there is a prime critical point with minimal ω–limit set.
In Step II we show that one can construct a non-trivial polynomial family
passing through f to which one of the Theorems 5, 6, or 7 applies. In the
last step we will show that there are polynomials of the same degree as f ,
close to f and conjugate to certain maps from the family constructed in the
previous step.

Consider prime critical points of f . Obviously, if all these points are
controlled, then all critical points are controlled. So, there is a prime non
controlled critical point c0. If this critical point is non recurrent, the situation
is rather simple and can be done by simplifications of arguments below. So,
we will assume that c0 is recurrent.

Step I. Here we construct a C3 perturbation of f (in the same way as in
[Koz03]). Suppose ω(c0) is non–minimal (minimal case will be considered in
the next step). Due to Theorem 3, there exists a box mappings F : U → V
for the map f such that c0 ∈ U . and there are universal constants θ1 ∈ (0, π),
C1 > 0 such that for any connected component U ′ of U , we have that f(U ′)
is contained in Dθ1(f(U ′) ∩ R) and moreover, if U ′ ⊂ Compc0(V ) then the
C1–scaled neighbourhood of U ′ ∩ R is contained in V .

Let a be a real boundary point of the domain Compc0 V . Consider the
following perturbation of the map f :

fλ(x) =

{
f(x) , x 6∈ Compc0 V

f(x) + λ (f(x)−f(a))4

(f(c0)−f(a))3
, x ∈ Compc0 V

Notice that for all λ the map fλ is C3.
For constants θ1 and C1 there exists λ1 > 0 such that for any λ ∈ [−λ1, λ1]

and given complex box mapping induced by f0 the map fλ induces a box
mapping Fλ with the same domain V as for the map f0 and a deformed
domain Uλ.

By choosing the complex box mapping F appropriately, we can assume
that |f(Compc0 U)∩R|/|f(Compc0 V )∩R| is very small, so that the critical
value fλ1(c0) is not in f(Compc0 U). This implies that the map fλ1 is not
essentially combinatorially equivalent to f , so we obtain a family satisfying
the conditions of Theorem 6. Note also that provided that V is small enough,
all controlled critical points of f are still controlled for all maps fλ with
λ ∈ [−λ1, λ1].

The map f is admissible and, hence, regular, therefore it has a C3 neigh-
bourhood W consisting of regular maps (the proof of this statement for
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multimodal maps is the same as in [Koz03], Lemma 4.6, where instead of the
results for the negative Schwarzian condition of [Koz00], one uses its gen-
eralisation [vSV00]). By shrinking this neighbourhood if necessary, we may
assume that the following hold:

• all (hyperbolic) periodic attractors of f persist in this neighbourhood

• if a real critical point of f is contained in the attracting basin of some
periodic attractor, then for all g ∈ W , the corresponding critical point
is contained in the attracting basin of the corresponding periodic at-
tractor.

Combining this observation and Theorem 6 we get that there exists λ2 ∈
(−λ1, λ1) such that fλ2 is not essentially combinatorially equivalent to f and
such that fλ2 is in W .

Step II. Construction of a family satisfying conditions of Theorem 5 or 7.
Case 1: the set ω(c0) is non–minimal.

We can approximate fλ2 by a real polynomial g which is still contained
in W , is not essentially combinatorially equivalent to f , and has the same
real critical points as f (the degree of g can be greater then the degree of
f). Moreover, we can join f and g by a polynomial family of maps gλ all of
which are in W and, thus, this family satisfies all conditions of Theorem 5.

Case 2: the set ω(c0) is minimal.
In this case we do not have to care about the regularity of the family.

We can construct a real–analytic family of polynomials gλ satisfying the
following:

• g0 = f ;

• All real critical points of gλ are the same;

• The controlled critical points of f are also controlled critical points of
gλ;

• The degree of gλ is bounded by a constant independent of λ.

The construction of such a family can be easily done in the following way.
Suppose that all real critical points of f are in the interval (−1, 1) and that
iterates of all real points outside of this interval are attracted to infinity. Let
U be a neighbourhood of c0 containing no other critical points and such that
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the iterates of the controlled critical points never visit U \ c0. Let ĝ be a
C∞ function equal to f outside of U , having the same real critical points as
f , and ĝ(c0) 6∈ (−1, 1), so the itinerary of c0 of maps f and ĝ are different.
Fix some neighbourhood V of all periodic attractors of f outside of U which
is properly contained in their immediate basins of attraction. There is a
neighbourhood W of ĝ in the space of C2 maps such that for all maps in W
iterates of all points in V are attracted to some periodic attractors in V . For
any controlled critical point c of f some of its iterate must be either in V
or coincide with another critical point. Fix a piece of trajectory of c until it
gets to V or is mapped on another critical point.

Now we can approximate ĝ on (−1, 1) by a polynomial g1 in C2 topology
in such a way that

• g1 is in W ;

• All real critical points of ĝ are also critical points of g1;

• The values of g1 on the fixed pieces of trajectories of the controlled
critical points coincide with the corresponding values for ĝ ( and, hence,
f);

• The second derivative of g1 is so close to the second derivative of ĝ,
that the map g1 does not have new critical points (recall that all critical
points of f are non degenerate).

There exists a small ε > 0 such that the function f − λg1 for λ ∈ [0, ε]
has only non-degenerate critical points. The family gλ = (1 − λ)f + λg1,
λ ∈ [−ε, 1], is the required family satisfying all conditions of Theorem 7.

Step III.
So far, we have obtained a polynomial family gλ going through f = g0

and satisfying conditions of either Theorem 5 or Theorem 7. In either case
we conclude that there is neighbourhood L of zero in the parameter space
such that the combinatorial types of maps in L \ 0 and f are different.

Lemma 10. Any real polynomial g can be approximated by an admissible real
polynomial ĝ of the same degree in such a way that the number of controlled
critical points of ĝ is larger or equal than the number of controlled critical
points of g.
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� We will prove the existence of g̃ ∈ W without neutral cycles. The
perturbation to a polynomial without degenerate critical points is rather
trivial.

Let us fix some neighbourhood of all periodic attractors of g such that
iterates of any point in this neighbourhood converge to some attractor cycle.
Let W be a so small neighbourhood of g that for maps in W all points in the
fixed neighbourhood of attractors still converge to periodic cycles. For each
controlled critical point of g we can fix some finite piece of its orbit which we
have to control: if some iterate of a controlled critical point lands on a critical
point, we shall control this piece of orbit (all iterates between the controlled
critical point and the point it is eventually mapped on); otherwise we we
shall control the orbit of the controlled critical until its iterate is mapped in
the fixed neighbourhood of the attractors. We can construct a perturbation
family of g in such a way that the values at the points of the controlled pieces
of orbits of the controlled points are fixed and all neutral cycles of g become
attracting cycles as it is done, for example, in the proof of Theorem VI.1.2 in
[CG93]. If a polynomial has a neutral cycle of some period n, its coefficients
satisfy some polynomial equation. This implies that either in this family all
maps have a neutral cycle of the same period or the set of parameters whose
corresponding maps have a neutral cycle is countable. In the latter case we
can get a map arbitrarily close to g without neutral cycles and the required
number of controlled critical points.

So, suppose we are in the former case. Take a map g1 in the family close
to g. All neutral cycles of g are attracting cycles of g1 and g1 has some
extra neutral cycles. Apply to g1 the same perturbation procedure as in the
beginning of the proof of this lemma. The maps in the new family close to
g1 have attracting cycles inherited from g1 plus attracting cycles converted
from the neutral cycles of g1. Again, if all maps in this new family have
neutral cycles, we take a map g2 close to g1 and continue the procedure.
Since all maps g, g1, g2, . . . are polynomials of the same degree, and gk+1 has
strictly more attracting cycles than gk, this procedure will stop in finitely
many steps. �

Theorems 5, 7 imply that the combinatorial type of the map f changes
with arbitrarily small change of the parameter λ in the family g0. Any change
of the combinatorial type corresponds to the creation of a new controlled crit-
ical point. So, we get a sequence of maps {gλi

} converging to f and having
strictly more controlled critical points than f . Due to the lemma above, if
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some map gλi
is not admissible, we can approximate it by admissible poly-

nomial g̃i of the same degree as gλi
and such that g̃i has the same controlled

critical points as gλi
.

Now we can complete the proof of Proposition 4.

Lemma 11. For any polynomial f and the neighbourhood W of this polyno-
mial (in the space of polynomials of the same degree) there exist R > 0 and
δ > 0 such that the following holds.

Let D be a disk of radius R centred at 0 and let g : D → C be a holomor-
phic map such that ‖g|D − f |D‖ < δ. Then there exists a polynomial f̃ ∈ W
conjugate to g in D.

� The proof of this lemma is the same as the proof of the Straightening
Theorem (one should notice that in the case of the lemma above it is possible
to construct a q.c. conjugating homeomorphism with an arbitrarily small
dilatation). �

From the previous section, for any fixed bounded domain Ω ⊂ C we have
a uniformly convergent sequence of hyperbolic polynomials g̃i → f . Using the
lemma above we can construct a sequence of polynomials of the same degree
as f which converge to f and are conjugate to g̃i. These polynomials are
admissible and have more controlled critical points than f . This completes
the proof of Proposition 4 and of the Main Theorem.
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