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The maps that we are iterating.

f : [0, 1]→ [0, 1] or S1 → S1 that are C 3 and satisfy some extra
conditions.

Parabolic periodic point

Odd critical point

Figure : the type of map we will consider
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Aim: Complete Sullivan’s quasi-symmetric rigidity
programme

A homeomorphism h : [0, 1]→ [0, 1] is called quasi-symmetric (often
abbreviated as qs) if there exists K <∞ so that

1

K
≤ h(x + t)− h(x)

h(x)− h(x − t)
≤ K

for all x − t, x , x + t ∈ [0, 1]. ( =⇒ Hölder; has h qc extension to C).

Sullivan’s programme: prove that f is quasi-symmetrically rigid, i.e.

f , f̃ is topologically conjugate =⇒

f̃ , f are quasi-symmetrically conjugate.

That is, homeomorphism h with h ◦ f = g ◦ h is ‘necessarily’ qs.
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Remark about Sullivan’s aim:

Quasi-symmetric maps have a quasiconformal extension to C.

Sullivan’s aim: C should be infinite dimensional Teichmuller
space with metric d(f , f̃ ) = inf Kh where Kh is the dilatation of qc
extension H : C→ C of qs conjugacy h : N → N between f and f̃ .

Define f ∼ f̃ when f are smooth conjugate. Is d a metric on C/ ∼?

Yes (in the unimodal case, and probably also in the multimodal case).
Indeed:
d(f , f̃ ) = 0 =⇒
multipliers at corresponding periodic point of f , f̃ are equal =⇒
if f , f̃ unimodal, they are C 3 conjugate (by result of Li-Shen).

Current project: endow C/ ∼ with manifold structure.
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Completing Sullivan’s qs-rigidity programme

Theorem (Clark-vS)

Let N = [0, 1] or N = S1. Suppose f , f̃ : N → N are topologically
conjugate and are in C with at least one critical point. Moreover,
assume that the topological conjugacy is a bijection between

the sets of critical points and the orders of corresponding critical
points are the same, and

the set of parabolic periodic points.

Then f and f̃ are quasisymmetrically conjugate.

This completes a programme initiated in the 80’s by
Sullivan for interval maps: in his work on renormalisation;
Herman for circle homeo’s: to use quasiconformal surgery.

The result is optimal, in the sense that no condition can be dropped.

When N = S1, the assumption ∃ critical point implies ∃ periodic
point.
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Real versus complex methods

The space C consists of real interval maps, and includes

all real analytic maps;

all C∞ maps with finitely many critical points of integer order;

all C 3 maps with finitely many critical points of integer order and
without parabolic cycles.

This is a totally real setting, but

in the proof we shall use complex methods

having qs-conjugacies makes it possible to apply powerful
complex tools such as measurable Riemann mapping etc.

Assume C 3 because then f extends to a C 3 map F : U → C with U
neighbourhood of I in C, so that F is asymptotically holomorphic of
order 3 on I ; that is,

∂

∂z̄
f (x , 0) = 0, and

∂
∂z̄ f (x , y)

|y |2
→ 0

uniformly as (x , y)→ I for (x , y) ∈ U \ I .
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Class of maps, C

∃ finitely many critical points c1, . . . , cb,

x 7→ f (x) is C 3 when x 6= c1, . . . , cb

near each critical point ci , 1 ≤ i ≤ b, we can express

f (x) = ±|φ(x)|di + f (ci ),

where φ is C 3 and di is an integer ≥ 2.

extra regularity near parabolic periodic points.

Let λ ∈ {−1, 1} be multiplier and s the period of p, then ∃n with

f s(x) = p+λ(x−p)+a(x−p)n+1+R(|x−p|),R(|x−p|) = o(|x−p|n+1)

f ∈ C n+2 near p,

The extra regularity makes it possible to use the Taylor series of f to study
the local dynamics near the parabolic periodic points.
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Why is qs-rigidity useful?

QS (QC) rigidity plays a crucial role in the following results:

Density of hyperbolic maps (maps where each critical point converges
to an attracting periodic point) (Lyubich, Graczyck-Świa̧tek,
Kozlovski, Shen, Kozlovski-Shen-vS).

Density of hyperbolicity of transcendental maps: Rempe-vS (e.g.
maps from Arnol’d family).

Topological conjugacy classes of certain maps are connected and
analytic (infinite dimensional) manifolds.
This is a crucial fact in the proof that in a non-trivial family of
analytic unimodal maps almost every map is regular or
Collet-Eckmann (Lyubich, Avila-Lyubich-de Melo, Avila-Moreira,
Avila-Lyubich-Shen, Clark).

Hyperbolicity of renormalization (Lyubich, Avila-Lyubich).
(Multimodal Palis conjecture).

Monotonicity of entropy for real polynomial multimodal maps
(Bruin-vS) and trigonometric families (Rempe-vS).
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Previous results

Polynomial case: Real polynomials with only real critical points all
of even order (Kozlovski-Shen-vS, 2007).

Semi-local results: conjugacy is qs restricted to the post-critical set
(renorm. of bdd type Sullivan 1990s’, critical covering maps Levin-vS
2000, persistently recurrent + extra condition Shen 2003).

Critical covering maps of the circle: Real analytic maps with one
critical point and no parabolic points (Levin-vS 2000).

Critical circle homeomorphisms: One critical point
(Herman-Świa̧tek, 1988).

Smooth maps: for maps for particular combinatorics and fast
decaying geometry (Jakobson-Świa̧tek, Lyubich, early 1990’s).

Some issues to overcome: make qs global; not polynomial, not even real
analytic; match critical points with different behaviours; parabolic periodic
points; odd critical points.
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Real versus non-real maps

For complex (non-real) polynomials there are partial results
(qc-rigidity), due to Kozlovski-vS, Lyubich-Kahn, Levin, Cheraghi,
Cheraghi-Shishikura. However, in general wide open (related to
local connectivity of Mandelbrot set and Fatou conjecture).

So methods require a mixture of real and complex tools.

One of the main ingredients, complex bounds, fails for general
complex maps.
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Go to complex plane: complex box mappings

qs-rigidity, requires control of high iterates (‘compactness’).
Turns out to be useful to construct an extension to C: when f , g are
real analytic, use holomorphic extension of f , g to small
neighbourhoods of [0, 1] in C.
Prove that first return maps of f , g to small intervals, extend to a
‘complex box mapping’ F : U → V , see figure.
Each component of U is mapped as a branched covering onto a
component of V , and components of U are either compactly
contained or equal to a component of V .
Components of F−n(V ) are called puzzle pieces.

Figure : A box mapping.
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How to construct a complex box mapping?

In the polynomial case one ucan se the Yoccoz puzzle partition (using
rays and equipotentials).
In the real analytic case or smooth case one has to do this by hand:
not obvious at all that pullbacks of V is contained in V .
In the non-renormalizable case one can repeatedly take first return
maps to central domains.
In the infinitely renormalizable case one has to start from scratch
again and again (note: there is no straightening theorem when f is
not holomorphic).
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Poincaré disks and their diffeomorphic pullbacks

Let d be Poincaré metric on CI := (C−R) ∪ I . A Poincaré disk is a set of
the form {z ; d(z , I ) ≤ d0} and is bounded by the union of two circle
segments. These are used to construct a “Yoccoz puzzle” by hand.

Dθ (I )

θ ∈ (π/2, π)

I

θ ∈ (0, π/2)

Poincaré lens domain

If f is polynomial with only real critical points and f : J → I a
diffeomorphism: no loss of angle when pulling back Dθ(I ) (by the
Schwarz inclusion lemma).

If f is real analytic or only C 3 one looses angle, whose amount
depends on the size of |I |2. One therefore needs to control this term
along a pullback.
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Poincaré disks and their pullbacks through critical points

If f : J → I has a unique critical point then one looses more angle:

where λ = λ(2k + 1).

z 7→ z2k

Dλθ((−1, 1)), Dθ((−K , 1))

where λ = λ(2k,K).

z 7→ z2k+1

Dθ((−K2k+1, 1))

Dλθ((−K , 1))

Figure : Inverses of Poincaré disks through a critical point
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Control of high iterates: complex bounds

In addition we need complex bounds, i.e. universal control on shape
and position of components of U inside components of V .

Clark-Trejo-vS:

Theorem (Complex box mappings with complex bounds)

One can construct complex box mappings with complex bounds on
arbitrarily small scales.

Previous similar partial results by Sullivan, Levin-vS,
Lyubich-Yampolsky and Graczyk-Świa̧tek, Smania, Shen.

Key ingredient in e.g. renormalisation, e.g. Avila-Lyubich.

Complex bounds give better control than real bounds.

Clark-Trejo-vS: something similar even for C 3 maps, but then F is
only asymptotically holomorphic.
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Proving complex bounds

From the enhanced nest construction (see next •) and a remarkable
result due to Kahn-Lyubich, given a non-renormalizable complex
box mapping at one level, one can obtain complex box mappings
with complex bounds at arbitrary deep levels.

The enhanced nest is a sophisticated choice of a sequence of puzzle
pieces Un(i), so that

1 ∃k(i) for which F k(i) : Un(i+1) → Un(i) is a branched covering map with
degree bounded by some universal number N.

2 its inverse transfers geometric information efficiently from scale Un(i) to
the smallest possible scale Un(i+1).

Other choices will not give complex bounds, in general.

In the renormalizable case and also in the C 3 case, the construction
of complex box mappings and the proof of complex bounds is
significantly more involved.

Critical points of odd order require quite a bit of additional work.
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Touching box mappings

If f , f̃ ∈ C are topologically conjugate, the role of the Böttcher coordinate
for polynomials is played by the construction of an “external conjugacy”
between touching box mappings FT and F̃T .
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Figure : A touching box mapping FT : U → V : at first the domain U does not
contain critical points of f (marked with the symbol ∗), but V covers the whole
interval.

No loss of angle at periodic boundary points (these will include all
parabolic points).
Real trace of the range contains a neighbourhood of the set of critical
points, immediate basins of attracting cycles, and covers the interval.
Used to pullback qc-conjugacies through branches that avoid Crit(f ).
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Idea for proving quasi-symmetric rigidity

Using the complex bounds and a methodology for constructing
quasi-conformal homeomorphisms (building on papers of
Kozlovski-Shen-vS and Levin-vS), we construct quasi-conformal
pseudo conjugacies on small scale.
Here we use our so-called QC-criterion (related to result of
Heinonen-Koskela; something similar obtained by Smania).

Eventually we will need take infinitely many lens-shaped domains in
some components of V .

Then develop a technology to glue the local information together.
Requires additional care when there are several critical points.

Need to consider regions whose boundaries are no longer quasi-circles.

Remarks:

In the C 3 case f , g have asymptotically holomorphic extensions near
[0, 1]. Issue to deal with: arbitrary high iterates of f and g are not
necessarily close to holomorphic.
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A remark about qs-rigidity of critical circle
homeomorphisms

The following result follows from work of de Faria-de Melo.

Theorem (follows from: de Faria-de Melo who use a result of Yoccoz)

Suppose that f , f̃ : S1 → S1 are critical circle homeomorphisms with
irrational rotation number and one critical point. If h : S1 → S1 is a
homeomorphism such that h ◦ f = f̃ ◦ h, then h is quasisymmetric.

Observation: No need to assume h maps the critical point of f to the
critical point of f̃ : it turns out the dynamical partition generated by any
point (not just the critical point) the lengths of adjacent intervals are
comparable.
We have more:

Theorem (Clark-vS)

Suppose that f , f̃ ∈ C are topologically conjugate critical circle
homeomorphisms, then f and f̃ are quasisymmetrically conjugate.
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So far I discussed what is qs-rigidity, and why it holds. Next: Why is

qs-rigidity useful?

Roughly, because it provides a comprehensive understanding of the
dynamics, which opens up a pretty full understanding.

I will discuss two applications. Both are based on tools from complex
analysis that become available because of quasi-symmetric rigidity.

A third application will hopefully be a resolution of the 1-dimensional Palis
conjecture in full generality.
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Application 1: Hyperbolic maps

A smooth map f : R→ R is hyperbolic if

Lebesgue a.e. point is attracted to some periodic orbit with multiplier
λ so that |λ| < 1, or equivalently

each critical point of f is attracted to a periodic orbit and each
periodic orbit is hyperbolic (i.e. with multiplier λ 6= ±1).

Martens-de Melo-vS: the period of periodic attractors is bounded =⇒
hyperbolic maps have at most finitely many periodic attractors.

The notion of hyperbolicity was introduced by Smale and others because
these maps are well-understood and:

Every hyperbolic map satisfying an additional transversality
condition, that no critical point is eventually mapped onto another
critical point, is structurally stable. (A nearby map is topologically
conjugate, i.e. same up to topological coordinate change.)
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Hyperbolic one-dimensional maps are dense

Fatou (20’s) conjectured most rational maps on the Riemann sphere
are hyperbolic.

Smale (60’s) conjectured that in higher dimensions, hyperbolic maps
are dense. This turned out to be false.

Kozlovski-Shen-vS:

Theorem (Density of hyperbolicity for real polynomials)

Any real polynomial can be approximated by a hyperbolic real polynomials
of the same degree.

and

Theorem (Density of hyperbolicity for smooth one-dimensional maps)

Hyperbolic 1-d maps are C k dense, k = 1, 2, . . . ,∞.

This solves one of Smale’s problems for the 21st century.
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Density of hyperbolicity for real transcendental maps

Rempe-vS:

Theorem (Density of hyperbolicity for transcendental maps)

Density of hyperbolicity holds within the following spaces:

1 real transcendental entire functions, bounded on the real line, whose
singular set is finite and real;

2 transcendental functions f : C \ {0} → C \ {0} that preserve the circle
and whose singular set (apart from 0,∞) is contained in the circle.

Remarks:

Hence, density of hyperbolicity within the famous Arnol’d family and
within space of trigonometric polynomials.

Result implies conjectures posed by de Melo-Salomão-Vargas.
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Hyperbolicity is dense within generic families

Theorem (vS: Hyperbolicity is dense within generic families)

For any (Baire) C∞ generic family {gt}t∈[0,1] of smooth maps:

the number of critical points of each of the maps gt is bounded;

the set of t’s for which gt is hyperbolic, is open and dense.

and

Theorem (vS: ∃ family of cubic maps with robust chaos)

There exists a real analytic one-parameter family {ft} of interval maps
(consisting of cubic polynomials) so that

there exists no t ∈ [0, 1] with ft is hyperbolic;

f0 and f1 are not topologically conjugate.

Question: What if f0 and f1 are ‘totally different’?
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Density of hyperbolicity on C?

Density of hyperbolicity for rational maps (Fatou’s conjecture) is wide
open. By Mañé-Sad-Sullivan it follows from:

Conjecture

If a rational map carries a measurable invariant line field on its Julia set,
then it is a Lattès map.

Eremenko-vS:

Theorem

Any rational map on the Riemann sphere such that the multiplier of each
periodic orbit is real, either is

an interval or circle map (Julia set is 1d), or

a Lattès map.

In the first case, the Julia set of course does not carry measurable
invariant line field.
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Strategy of the proof: local versus global perturbations

One approach: take g to be a local perturbation of f , i.e. find a ‘bump’
function h which is small in the C k sense so that g = f + h becomes
hyperbolic.

Difficulty with this approach: orbits pass many times through the
support of the bump function.

Jakobson (1971, in dimension one) and Pugh (1967, in higher
dimensions but for diffeo’s) used this approach to prove a C 1 closing
lemma.

In the C 2 category this approach has proved to be unsuccessful
(but Blokh-Misiurewicz have partial results). Shen (2004) showed C 2

density using qs-rigidity results.
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Proving density of hyperbolicity for z2 + c

Density of hyperbolicity with family z2 + c , c ∈ R holds if there exists no
interval of parameters c of non-hyperbolic maps.

Sullivan showed that this follows from quasi-symmetric rigidity of any
non-hyperbolic map fc (by an open-closed argument):

Measurable Riemann Mapping Theorem =⇒
I (fc) = {c̃ ∈ R s.t. fc̃ topologically conjugate to fc}

is either open or a single point.

Basic kneading theory =⇒ I (fc) is closed set.

∅ ( I (fc) ( R gives a contradiction unless I (fc) is a single point.

Using a slightly more sophisticated argument, Kozlovski-Shen-vS also
obtain that quasi-symmetric rigidity implies density of hyperbolicity when
there are more critical points.
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Application 2: monotonicity of entropy

In the early 90’s, Milnor posed the

Monotonicity Conjecture. The set of parameters within a family of real
polynomial interval maps, for which the topological entropy is constant, is
connected.

A version of this conjecture was proved in the 1980’s for the
quadratic case.

Milnor-Tresser (2000) proved conjecture for cubics using

planar topology (in the cubic case the parameter space is
two-dimensional) and
density of hyperbolicity for real quadratic maps.

Bruin-vS: the set of parameters corresponding to polynomials of
degree d ≥ 5 with constant entropy is in general NOT locally
connected.
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Monotonicity of entropy: the multimodal case

Given d ≥ 1 and ε ∈ {−1, 1}, let Pd
ε space of

1 real polynomials f : [0, 1]→ [0, 1] of degree = d ;
2 all critical points in (0, 1);
3 sign(f ′(0)) = ε.

Bruin-vS show:

Theorem (Monotonicity of Entropy)

For each integer d ≥ 1, each ε ∈ {−1, 1} and each c ≥ 0,

{f ∈ Pd
ε ; htop(f ) = c}

is connected.

Main ingredient: is quasi-symmetric rigidity.

Hope to remove assumption (2): (currently d = 4 with Cheraghi).

Rempe-vS =⇒ top. entropy of x 7→ a sin(x) monontone in a.
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