Quasisymmetric rigidity of real maps

Sebastian van Strien joint with Trevor Clark

Imperial College London

September 6, 2014

 $f:[0,1] \rightarrow [0,1]$ or $S^1 \rightarrow S^1$ that are C^3 and satisfy some extra conditions.

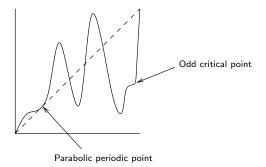


Figure : the type of map we will consider

Aim: Complete Sullivan's quasi-symmetric rigidity programme

A homeomorphism $h: [0,1] \rightarrow [0,1]$ is called **quasi-symmetric** (often abbreviated as *qs*) if there exists $K < \infty$ so that

$$\frac{1}{K} \leq \frac{h(x+t) - h(x)}{h(x) - h(x-t)} \leq K$$

for all $x - t, x, x + t \in [0, 1]$. (\implies Hölder; has h qc extension to \mathbb{C}).

Sullivan's programme: prove that f is quasi-symmetrically rigid, i.e.

 $f, ilde{f}$ is topologically conjugate \implies

 \tilde{f}, f are quasi-symmetrically conjugate.

That is, homeomorphism h with $h \circ f = g \circ h$ is **'necessarily' qs**.

- Quasi-symmetric maps have a quasiconformal extension to $\mathbb{C}.$
- Sullivan's aim: C should be infinite dimensional Teichmuller space with metric d(f, f) = inf K_h where K_h is the dilatation of qc extension H: C → C of qs conjugacy h: N → N between f and f.
- Define $f \sim \tilde{f}$ when f are smooth conjugate. Is d a metric on \mathcal{C}/\sim ?
- Yes (in the unimodal case, and probably also in the multimodal case). Indeed:

$$d(f, \tilde{f}) = 0 \implies$$

- multipliers at corresponding periodic point of f, \tilde{f} are equal \implies if f, \tilde{f} unimodal, they are C^3 conjugate (by result of Li-Shen).
- \bullet Current project: endow \mathcal{C}/\sim with manifold structure.

Theorem (Clark-vS)

Let N = [0, 1] or $N = S^1$. Suppose $f, \tilde{f} : N \to N$ are topologically conjugate and are in C with at least one critical point. Moreover, assume that the topological conjugacy is a bijection between

- the sets of critical points and the orders of corresponding critical points are the same, and
- the set of parabolic periodic points.

Then f and \tilde{f} are quasisymmetrically conjugate.

- This completes a programme initiated in the 80's by
 - Sullivan for interval maps: in his work on renormalisation;
 - Herman for circle homeo's: to use quasiconformal surgery.
- The result is optimal, in the sense that no condition can be dropped.
- When *N* = *S*¹, the assumption ∃ critical point implies ∃ periodic point.

Real versus complex methods

The space $\ensuremath{\mathcal{C}}$ consists of real interval maps, and includes

- all real analytic maps;
- all C^{∞} maps with finitely many critical points of integer order;
- all C³ maps with finitely many critical points of integer order and without parabolic cycles.
- This is a totally real setting, but
 - in the proof we shall use complex methods
 - having qs-conjugacies makes it possible to apply powerful complex tools such as measurable Riemann mapping etc.

Assume C^3 because then f extends to a C^3 map $F: U \to \mathbb{C}$ with U neighbourhood of I in \mathbb{C} , so that F is **asymptotically holomorphic** of order 3 on I; that is,

$$rac{\partial}{\partial ar{z}} f(x,0) = 0, ext{ and } rac{rac{\partial}{\partial ar{z}} f(x,y)}{|y|^2} o 0$$

uniformly as $(x, y) \rightarrow I$ for $(x, y) \in U \setminus I$.

Class of maps, $\ensuremath{\mathcal{C}}$

- \exists finitely many critical points c_1, \ldots, c_b ,
- $x \mapsto f(x)$ is C^3 when $x \neq c_1, \ldots, c_b$
- near each critical point $c_i, 1 \leq i \leq b$, we can express

$$f(x) = \pm |\phi(x)|^{d_i} + f(c_i),$$

where ϕ is C^3 and d_i is an integer ≥ 2 .

- extra regularity near parabolic periodic points.
 - Let $\lambda \in \{-1,1\}$ be multiplier and *s* the period of *p*, then $\exists n$ with

$$f^{s}(x) = p + \lambda(x-p) + a(x-p)^{n+1} + R(|x-p|), R(|x-p|) = o(|x-p|^{n+1})$$

• $f \in C^{n+2}$ near p ,

The extra regularity makes it possible to use the Taylor series of f to study the local dynamics near the parabolic periodic points.

Why is qs-rigidity useful?

QS (QC) rigidity plays a crucial role in the following results:

- Density of hyperbolic maps (maps where each critical point converges to an attracting periodic point) (Lyubich, Graczyck-Świątek, Kozlovski, Shen, Kozlovski-Shen-vS).
- Density of hyperbolicity of transcendental maps: Rempe-vS (e.g. maps from Arnol'd family).
- Topological conjugacy classes of certain maps are connected and analytic (infinite dimensional) manifolds. This is a crucial fact in the proof that in a non-trivial family of analytic unimodal maps almost every map is **regular or Collet-Eckmann** (Lyubich, Avila-Lyubich-de Melo, Avila-Moreira, Avila-Lyubich-Shen, Clark).
- Hyperbolicity of renormalization (Lyubich, Avila-Lyubich). (Multimodal Palis conjecture).
- Monotonicity of entropy for real polynomial multimodal maps (Bruin-vS) and trigonometric families (Rempe-vS).

Previous results

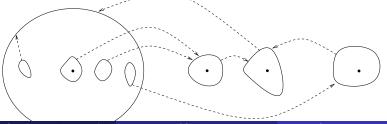
- **Polynomial case:** Real polynomials *with only real critical points all of even order* (Kozlovski-Shen-vS, 2007).
- Semi-local results: conjugacy is qs restricted to the post-critical set (renorm. of bdd type Sullivan 1990s', critical covering maps Levin-vS 2000, persistently recurrent + extra condition Shen 2003).
- Critical covering maps of the circle: Real analytic maps with one critical point and no parabolic points (Levin-vS 2000).
- Critical circle homeomorphisms: One critical point (Herman-Świątek, 1988).
- **Smooth maps:** for maps for particular combinatorics and fast decaying geometry (Jakobson-Świątek, Lyubich, early 1990's).

Some issues to overcome: make qs global; not polynomial, not even real analytic; match critical points with different behaviours; parabolic periodic points; odd critical points.

- For complex (non-real) polynomials there are partial results (qc-rigidity), due to Kozlovski-vS, Lyubich-Kahn, Levin, Cheraghi, Cheraghi-Shishikura. However, in general wide open (related to local connectivity of Mandelbrot set and Fatou conjecture).
- So methods require a mixture of real and complex tools.
- One of the main ingredients, **complex bounds**, fails for general complex maps.

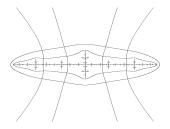
Go to complex plane: complex box mappings

- qs-rigidity, requires control of high iterates ('compactness').
- Turns out to be useful to **construct** an extension to \mathbb{C} : when f, g are real analytic, use holomorphic extension of f, g to small neighbourhoods of [0, 1] in \mathbb{C} .
- Prove that first return maps of f, g to small intervals, extend to a 'complex box mapping' F: U → V, see figure.
- Each component of *U* is mapped as a branched covering onto a component of *V*, and components of *U* are either compactly contained or equal to a component of *V*.
- Components of $F^{-n}(V)$ are called *puzzle pieces*.



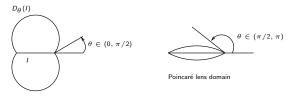
How to construct a complex box mapping?

- In the polynomial case one ucan se the Yoccoz puzzle partition (using rays and equipotentials).
- In the real analytic case or smooth case one has to do this by hand: not obvious at all that pullbacks of V is contained in V.
- In the non-renormalizable case one can repeatedly take first return maps to central domains.
- In the infinitely renormalizable case one has to start from scratch again and again (note: there is no straightening theorem when f is not holomorphic).



Poincaré disks and their diffeomorphic pullbacks

Let *d* be Poincaré metric on $\mathbb{C}_I := (\mathbb{C} - \mathbb{R}) \cup I$. A Poincaré disk is a set of the form $\{z; d(z, I) \leq d_0\}$ and is bounded by the union of two circle segments. These are used to construct a "Yoccoz puzzle" by hand.



- If f is polynomial with only real critical points and $f: J \rightarrow I$ a diffeomorphism: no loss of angle when pulling back $D_{\theta}(I)$ (by the Schwarz inclusion lemma).
- If f is real analytic or only C^3 one looses angle, whose amount depends on the size of $|I|^2$. One therefore needs to control this term along a pullback.

Poincaré disks and their pullbacks through critical points

• If $f: J \rightarrow I$ has a unique critical point then one looses more angle:

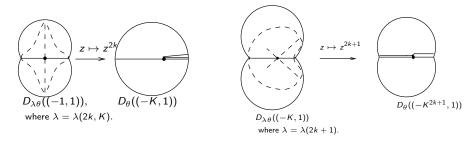


Figure : Inverses of Poincaré disks through a critical point

In addition we need **complex bounds**, i.e. **universal control** on **shape** and **position** of components of U inside components of V.

Clark-Trejo-vS:

Theorem (Complex box mappings with complex bounds)

One can construct complex box mappings with complex bounds on arbitrarily small scales.

- Previous similar partial results by Sullivan, Levin-vS, Lyubich-Yampolsky and Graczyk-Świątek, Smania, Shen.
- Key ingredient in e.g. renormalisation, e.g. Avila-Lyubich.
- Complex bounds give better control than real bounds.
- Clark-Trejo-vS: something similar even for C³ maps, but then F is only asymptotically holomorphic.

Proving complex bounds

- From the enhanced nest construction (see next ●) and a remarkable result due to Kahn-Lyubich, given a non-renormalizable complex box mapping at one level, one can obtain complex box mappings with complex bounds at arbitrary deep levels.
- The **enhanced nest** is a sophisticated choice of a sequence of puzzle pieces $U_{n(i)}$, so that
 - $\exists k(i)$ for which $F^{k(i)}: U_{n(i+1)} \rightarrow U_{n(i)}$ is a branched covering map with degree bounded by some universal number N.
 - ② its inverse transfers geometric information efficiently from scale $U_{n(i)}$ to the smallest possible scale $U_{n(i+1)}$.
- Other choices will not give complex bounds, in general.
- In the **renormalizable case** and also in the C³ case, the construction of complex box mappings and the proof of complex bounds is significantly *more involved*.
- Critical points of odd order require quite a bit of additional work.

Touching box mappings

If $f, \tilde{f} \in C$ are topologically conjugate, the role of the Böttcher coordinate for polynomials is played by the construction of an "external conjugacy" between touching box mappings F_T and \tilde{F}_T .

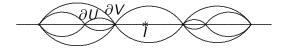


Figure : A touching box mapping $F_T: U \to V$: at first the domain U does not contain critical points of f (marked with the symbol *), but V covers the whole interval.

- No loss of angle at periodic boundary points (these will include all parabolic points).
- Real trace of the range contains a neighbourhood of the set of critical points, immediate basins of attracting cycles, and covers the interval.
- Used to pullback qc-conjugacies through branches that avoid Crit(f).

Idea for proving quasi-symmetric rigidity

Using the complex bounds and a methodology for constructing quasi-conformal homeomorphisms (building on papers of Kozlovski-Shen-vS and Levin-vS), we construct quasi-conformal pseudo conjugacies on small scale.
Here we use our so-called QC-criterion (related to result of

Heinonen-Koskela; something similar obtained by Smania).

- Eventually we will need take **infinitely** many lens-shaped domains in some components of V.
- Then develop a technology to glue the local information together. Requires additional care when there are several critical points.
- Need to consider regions whose boundaries are no longer quasi-circles.

Remarks:

In the C³ case f, g have asymptotically holomorphic extensions near [0, 1]. Issue to deal with: arbitrary high iterates of f and g are not necessarily close to holomorphic.

A remark about qs-rigidity of critical circle homeomorphisms

The following result follows from work of de Faria-de Melo.

Theorem (follows from: de Faria-de Melo who use a result of Yoccoz)

Suppose that $f, \tilde{f} : S^1 \to S^1$ are critical circle homeomorphisms with irrational rotation number and one critical point. If $h : S^1 \to S^1$ is a homeomorphism such that $h \circ f = \tilde{f} \circ h$, then h is quasisymmetric.

Observation: No need to assume *h* maps the critical point of *f* to the critical point of \tilde{f} : it turns out the dynamical partition generated by any point (not just the critical point) the lengths of adjacent intervals are comparable.

We have more:

Theorem (Clark-vS)

Suppose that $f, \tilde{f} \in C$ are topologically conjugate critical circle homeomorphisms, then f and \tilde{f} are quasisymmetrically conjugate.

Sebastian van Strien joint with Trevor Clark

So far I discussed what is **qs-rigidity**, and **why it holds**. Next: Why is **qs-rigidity useful**?

Roughly, because it provides a comprehensive understanding of the dynamics, which opens up a pretty full understanding.

I will discuss **two applications**. Both are based on **tools from complex analysis** that become available because of **quasi-symmetric rigidity**.

A third application will *hopefully* be a resolution of the *1-dimensional Palis conjecture* in full generality.

Application 1: Hyperbolic maps

A smooth map $f : \mathbb{R} \to \mathbb{R}$ is hyperbolic if

- Lebesgue a.e. point is attracted to some periodic orbit with multiplier λ so that $|\lambda| < 1$, or *equivalently*
- each critical point of *f* is attracted to a periodic orbit and each periodic orbit is hyperbolic (i.e. with multiplier λ ≠ ±1).

Martens-de Melo-vS: the **period** of periodic **attractors** is **bounded** \implies hyperbolic maps have at most finitely many periodic attractors.

The notion of hyperbolicity was introduced by Smale and others because these maps are well-understood and:

• Every hyperbolic map satisfying an additional transversality condition, that no critical point is eventually mapped onto another critical point, is structurally stable. (A nearby map is *topologically conjugate*, i.e. same up to topological coordinate change.)

Hyperbolic one-dimensional maps are dense

- Fatou (20's) conjectured most rational maps on the Riemann sphere are hyperbolic.
- Smale (60's) conjectured that in higher dimensions, hyperbolic maps are dense. This turned out to be **false**.

Kozlovski-Shen-vS:

Theorem (Density of hyperbolicity for real polynomials)

Any real polynomial can be approximated by a hyperbolic real polynomials of the same degree.

and

Theorem (Density of hyperbolicity for smooth one-dimensional maps)

Hyperbolic 1-d maps are C^k dense, $k = 1, 2, ..., \infty$.

This solves one of Smale's problems for the 21st century.

Rempe-vS:

Theorem (Density of hyperbolicity for transcendental maps)

Density of hyperbolicity holds within the following spaces:

- real transcendental entire functions, bounded on the real line, whose singular set is finite and real;
- ② transcendental functions $f : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ that preserve the circle and whose singular set (apart from 0,∞) is contained in the circle.

Remarks:

- Hence, density of hyperbolicity within the famous **Arnol'd family** and within space of trigonometric polynomials.
- Result implies conjectures posed by de Melo-Salomão-Vargas.

Hyperbolicity is dense within generic families

Theorem (vS: Hyperbolicity is dense within generic families)

For any (Baire) C^{∞} generic family $\{g_t\}_{t\in[0,1]}$ of smooth maps:

- the number of critical points of each of the maps gt is bounded;
- the set of t's for which g_t is hyperbolic, is open and dense.

and

Theorem (vS: \exists family of cubic maps with robust chaos)

There exists a real analytic one-parameter family $\{f_t\}$ of interval maps (consisting of cubic polynomials) so that

- there exists no $t \in [0, 1]$ with f_t is hyperbolic;
- f₀ and f₁ are not topologically conjugate.

Question: What if f_0 and f_1 are 'totally different'?

Density of hyperbolicity on \mathbb{C} ?

Density of hyperbolicity for rational maps (Fatou's conjecture) is wide open. By Mañé-Sad-Sullivan it follows from:

Conjecture

If a rational map carries a measurable invariant line field on its Julia set, then it is a Lattès map.

Eremenko-vS:

Theorem

Any rational map on the Riemann sphere such that the multiplier of each periodic orbit is real, either is

- an interval or circle map (Julia set is 1d), or
- a Lattès map.

In the first case, the Julia set of course does not carry measurable invariant line field.

Sebastian van Strien joint with Trevor Clark

One approach: take g to be a **local perturbation** of f, i.e. find a 'bump' function h which is small in the C^k sense so that g = f + h becomes hyperbolic.

- Difficulty with this approach: orbits pass many times through the support of the bump function.
- Jakobson (1971, in dimension one) and Pugh (1967, in higher dimensions but for diffeo's) used this approach to prove a C¹ closing lemma.
- In the C^2 category this approach has proved to be unsuccessful (but Blokh-Misiurewicz have partial results). Shen (2004) showed C^2 density using qs-rigidity results.

Proving density of hyperbolicity for $z^2 + c$

Density of hyperbolicity with family $z^2 + c$, $c \in \mathbb{R}$ holds if there exists no interval of parameters c of non-hyperbolic maps.

Sullivan showed that this follows from quasi-symmetric rigidity of any non-hyperbolic map f_c (by an open-closed argument):

• Measurable Riemann Mapping Theorem \implies

 $I(f_c) = \{ \tilde{c} \in \mathbb{R} \text{ s.t. } f_{\tilde{c}} \text{ topologically conjugate to } f_c \}$ is either open or a single point.

• Basic kneading theory $\implies I(f_c)$ is closed set.

 $\emptyset \subsetneq I(f_c) \subsetneq \mathbb{R}$ gives a contradiction unless $I(f_c)$ is a single point.

Using a slightly more sophisticated argument, Kozlovski-Shen-vS also obtain that quasi-symmetric rigidity implies density of hyperbolicity when there are more critical points.

In the early 90's, Milnor posed the

Monotonicity Conjecture. The set of parameters within a family of real polynomial interval maps, for which the topological entropy is constant, is connected.

- A version of this conjecture was proved in the 1980's for the quadratic case.
- Milnor-Tresser (2000) proved conjecture for cubics using
 - planar topology (in the cubic case the parameter space is two-dimensional) and
 - density of hyperbolicity for real quadratic maps.
- Bruin-vS: the set of parameters corresponding to polynomials of degree d ≥ 5 with constant entropy is in general NOT locally connected.

Monotonicity of entropy: the multimodal case

Given $d \geq 1$ and $\epsilon \in \{-1,1\}$, let P^d_ϵ space of

- real polynomials $f: [0,1] \rightarrow [0,1]$ of degree = d;
- 2 all critical points in (0, 1);
- \Im sign $(f'(0)) = \epsilon$.

Bruin-vS show:

Theorem (Monotonicity of Entropy)

For each integer
$$d \ge 1$$
, each $\epsilon \in \{-1, 1\}$ and each $c \ge 0$,

$$\{f \in P^d_\epsilon; h_{top}(f) = c\}$$

is connected.

- Main ingredient: is quasi-symmetric rigidity.
- Hope to remove assumption (2): (currently d = 4 with Cheraghi).
- Rempe-vS \implies top. entropy of $x \mapsto a \sin(x)$ monontone in a.