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Abstract. Dynamics in dimension-one has been an extremely active research area over the last decades.4

In this note we will describe some of the new developments of the recent years.5
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1. Density of hyperbolicity8

Interval maps f : [0, 1] ! [0, 1] can have a surprisingly rich and complicated dynamics. In9

this paper we will describe results which show that in spite of this one can describe the metric10

orbit structure of ‘most’ maps extremely well.11

The dynamics of hyperbolic maps can be described most easily: for these maps, Lebesgue12

almost every point in the interval is attracted to some hyperbolic periodic orbit (with mul-13

tiplier between �1 and 1). By a result by Mañé [65] (for a simpler proof see [98]) it is14

equivalent to say that a map is hyperbolic if (i) each critical point of f is in the basin of15

a periodic attractor and (ii) each periodic orbit is hyperbolic. Since the period of periodic16

attractors is bounded, see [66], it follows that hyperbolic maps have at most finitely many17

periodic attractors.18

As mentioned, hyperbolic maps are very well-understood. The following theorem (which19

was obtained by the authors, jointly with Kozlovski, see [50]) shows that ‘most’ maps are20

hyperbolic.21

Theorem 1.1 (Density of hyperbolicity for real polynomials). Any real polynomial can be22

approximated by hyperbolic real polynomials of the same degree.23

The above theorem allows us to prove the analogue of the Fatou conjecture in the smooth24

case, see [51], thus solving the 2nd part of Smale’s eleventh problem for the 21st century25

[91]:26

Theorem 1.2 (Density of hyperbolicity for smooth one-dimensional maps). Hyperbolic27

maps are dense in the space of Ck maps of the compact interval or the circle, k = 1, 2, . . . ,28

1,!.29

For quadratic maps fa = ax(1�x), the above theorems assert that the periodic windows30

(corresponding to hyperbolic maps with attracting periodic orbits) are dense in the bifurca-31

tion diagram. The quadratic case turns out to be special, because in this case certain return32

maps become almost linear. This special behaviour does not even hold for maps of the form33

x 7! x4

+ c.34
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Figure 1.1. The Feigenbaum diagram

The problem of density of hyperbolicity in dimension-one has been considered since the35

1920’s. Indeed:36

• Fatou stated the analogue of this problem in the context of rational maps on the Riemann37

sphere as a conjecture in the 1920’s, see [33, page 73] and also [67, Section 4.1].38

• Smale gave this problem ‘naively’ as a thesis problem in the 1960’s, see [90].39

• In 1971, Jakobson proved that the set of hyperbolic maps is dense in the C1 topology, see40

[43].41

• In the mid 1990’s, the conjecture was solved in the quadratic case x 7! ax(1 � x) in42

a major breakthrough by Lyubich [61] and independently also by Graczyk and Świa̧tek,43

[36] and [37].44

• In 2000, Blokh and Misiurewicz [15] considered the problem of density of hyperbolicity45

in the C2 topology, and were able to obtain a partial result.46

• A few years later, Shen [87] proved C2 density of hyperbolic maps.47

Note that every hyperbolic map satisfying a mild transversality condition, namely that48

no critical point is eventually mapped onto another critical point, is structurally stable. So49

density of hyperbolicity implies that structural stable maps are dense.50

1.1. Density of hyperbolicity within a large space of real transcendental map. Density51

of hyperbolicity also holds within classes of much more general maps, for example within52

the famous Arnol’d family and within the space of trigonometric polynomials. Indeed it was53

shown by the second author in a joint paper with Rempe, see [79], that54

Theorem 1.3. Density of hyperbolicity holds within the following spaces:55

1. real transcendental entire functions, bounded on the real line, whose singular set is56

finite and real;57

2. transcendental functions f :C \ {0} ! C \ {0} that preserve the circle and whose58

singular set (apart from 0,1) is contained in the circle.59
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In [79] also a number of other open problems are solved, including a number of con-60

jectures of behaviour de Melo, Salomão and Vargas [29]. In this paper density of (real)61

hyperbolicity is also established replacing in assumption (1) the boundedness condition by a62

sector condition.63

1.2. Hyperbolicity is dense within generic one-parameter families of one-dimensional64

maps.65

Theorem 1.4 (Hyperbolicity is dense within generic families). For any generic family66

{gt}t2[0,1] of smooth intervals maps (generic, in the sense of Baire), the following prop-67

erties hold:68

• the number of critical points of each of the maps gt is bounded;69

• the set of parameters t for which all critical points of gt are in basins of periodic at-70

tractors, is open dense.71

The proof of this result follows easily from the theorems in the previous subsection, see72

[99]. On the other hand, as is shown in the same paper, it is easy to construct a real analytic73

one-parameter family ft, t 2 [0, 1] of polynomials so that none of the polynomials in this74

family are hyperbolic:75

Theorem 1.5 (A family of cubic maps with robust chaos). There exists a real analytic one-76

parameter family {ft} of interval maps (consisting of cubic polynomials) so that ft has77

no periodic attractor for any t 2 [0, 1], and so that not all maps within this family are78

topologically conjugate.79

1.3. Density of hyperbolicity for more general maps. Density of hyperbolicity is false in80

dimension � 2. For a list of related interesting questions concerning the higher dimensional81

case, see [77].82

The situation for rational maps on the Riemann sphere may well be more hopeful. In that83

context one has the following well-known conjecture, going back to Fatou:84

Conjecture 1.6 (Density of hyperbolicity for rational maps). Hyperbolic maps are dense85

within this space of rational maps of degree d on the Riemann sphere.86

In [64] it was shown that this conjecture follows from87

Conjecture 1.7. If a rational map carries a measurable invariant line field on its Julia set,88

then it is a Lattès map.89

More about this conjecture and related results can be found in [67]. In [50, 86] and finally90

[52] it was shown that real polynomials (acting on C) do not carry such invariant line fields.91

Moreover, real polynomials have Julia sets which are locally connected, see [26, 50, 52, 55].92

In [80] it was shown that, under some mild assumptions, real transcendental maps also do93

not carry invariant line fields.94

Interestingly, any rational map on the Riemann sphere such that the multiplier of each95

periodic orbit is real, either has a Julia set which is contained in a circle (or line) or is a Lattès96

map, see [32].97

1.4. Strategy of the proof: local versus global perturbations. Density of hyperbolicity98

means that given a map f one can find a map g so that g is hyperbolic and so that g �99
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f is ‘small’ in the Ck topology. It is tempting to consider the setting where g is a local100

perturbation of f . The purpose would then be to find a small ‘bump’ function h so that101

g = f + h becomes hyperbolic. The di�culty with this approach is that orbits will pass102

many times through the support of the bump function. Pugh’s approach in his proof of the103

C1 closing lemma, is to find a suitable neighbourhood U of x so that the first return of x to104

U is not too close to the boundary of x. In this way he is able to construct a function h whose105

support is in U , which creates a new fixed point of the first return of g = f +h to U , in such106

a manner that h is C1 close to zero. A related approach was used successfully in [43] to107

prove density of hyperbolicity in the C1 topology, and in [15] for the C2 topology, but with108

added assumptions on the dynamics of f . In [87], this approach was used in the case when109

one has a ‘lot of Koebe space’ while in the ‘essentially bounded geometry’ the proof relied110

on rigidity (in the sense described below). This rigidity approach also is the key ingredient111

in the proof of Theorem 1.1. As there is a great deal of evidence that local perturbations112

cannot be used to prove density of hyperbolicity in general, we discuss rigidity extensively113

in the next section.114

1.5. Strategy of the proof: quasi-symmetric rigidity. Consider the following situation.115

Take a family of real quadratic maps fc(z) = z2 + c. To prove density of hyperbolicity116

we need to prove that there exists no interval of parameters [c0, c00] so that each map fc117

with c 2 [c0, c00] is non-hyperbolic. Sullivan showed that this follows from quasi-symmetric118

rigidity of any non-hyperbolic map fc. Here fc is called quasi-symmetrically rigid if the119

following property holds:120

If fc̃, fĉ are topologically conjugate to fc, then fc̃, fĉ are quasi-symmetrically121

conjugate.122

Here, as usual, a homeomorphism h: [0, 1] ! [0, 1] is called quasi-symmetric (often abbre-
viated as qs) if there exists K < 1 so that

1

K
 h(x+ t)� h(x)

h(x)� h(x� t)
 K

for all x � t, x, x + t 2 [0, 1]. By results about quasi-conformal maps (specifically the123

Measurable Riemann Mapping Theorem) it follows that the set of parameters c̃ so that fc̃ is124

topologically conjugate to fc is either a single point or an open interval I(fc). Since I(fc) is125

also a closed set (this follows from some basic kneading theory), the fact that I(fc) and its126

complement are both non-empty gives a contradiction unless I(fc) is a single point.127

This argument does not go through directly for real polynomial maps with more than128

one critical point, but using related arguments, one still obtains that quasi-symmetric rigidity129

implies density of hyperbolicity, see [50, Section 2]. In the case of real analytic maps the130

argument to prove density of hyperbolicity is more subtle, see [51].131

2. Quasi-symmetric rigidity132

As remarked in the previous section, all current proofs of density of hyperbolicity rely on133

quasi-symmetric rigidity. The most general form can be found in [25], and states:134
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Theorem 2.1 (Quasi-symmetric rigidity). Assume that f, g: [0, 1] ! [0, 1] are real analytic135

and topologically conjugate. Alternatively, assume that f, g:S1 ! S1 are topologically136

conjugate and that f and g each have at least one critical point or at least one periodic137

point. Moreover, assume that the topologically conjugacy is a bijection between138

(1) the set of critical points and the order of corresponding critical points is the same;139

(2) the set of parabolic periodic points.140

Then the conjugacy between f and g is quasi-symmetric.141

The proof of this theorem builds on the machinery developed in [50]. This paper was142

written jointly by the authors and Kozlovski; it developed many of the key ingredients re-143

quired to prove density of hyperbolicity, see [51]. Theorem 2.1 is an extension of these144

results, and was obtained jointly by Clark and the 2nd author, and uses all of the technology145

from[51], but also extends ideas from [56].146

Indeed, when f, g are real analytic, then we will use the fact that these maps have holo-147

morphic extensions to small neighbourhoods of [0, 1]. Nevertheless, in [25] we prove the148

analogous result when f and g are merely C3 maps, under some weak additional assump-149

tions; in this case we will use that f, g have asymptotically holomorphic extensions near150

[0, 1], but will need to deal with the fact that high iterates of f and g are not necessarily close151

to holomorphic.152

It is not hard to see that if conditions (1) or (2) in the previous theorem are not satisfied,153

then the maps are not even necessarily Hölder conjugate.154

Special cases of this theorem we known before: Lyubich [61] and Graczyk & Świa̧tek155

[37] proved this result for real quadratic maps. As we will see their method of proof in156

the quadratic case does not work if the degree of the map is > 2. For the case of real157

polynomials with only real critical points (of even order), this theorem was proved in [50].158

For maps which are real analytic, it was shown in [87, Theorem 2, page 345] that there159

exists a qs-conjugacy restricted to !(c) under the additional assumptions that the maps have160

no neutral periodic points, only non-degenerate critical points and have ‘essentially bounded161

geometry’. For covering maps of the circle (of degree � 2) with one-critical point a global162

qs-conjugacy was constructed under the additional assumption that !(c) is non-minimal and163

have no neutral periodic points, see [56]. When !(c) is minimal, a qs-conjugacy restricted164

to !(c) was constructed in [56].165

For circle maps without periodic points, it is known that any two analytic critical circle166

homeomorphisms with one critical point, with the same irrational rotation number and the167

same order of the critical points are C1-smoothly conjugate, see [47] (their work builds on168

earlier work of de Faria, de Melo and Yampolsky on renormalisation and in a recent paper169

was generalised to the smooth case, [39]). In ongoing work, Clark and the 2nd author are170

aiming to show that the methods in 2.1 can be extended to the case of circle homeomorphisms171

with several critical points. Note that the presence of critical points is necessary for circle172

homeomorphisms, because for circle di↵eomorphisms the analogous statement is false. In-173

deed, otherwise one can construct maps for which some sequence of iterates has almost a174

saddle-node fixed point, resulting in larger and larger passing times near these points. This175

phenomenon is also referred to as a sequence of saddle-cascades. It was used by Arnol’d176

and Herman to construct examples of di↵eomorphisms of the circle which are conjugate to177

irrational rotations, but where the conjugacy is neither absolutely continuous, nor qs and for178

which the map has no �-finite measures, see [40] and also Section I.5 in [30]. In the di↵eo-179
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morphic case, to get qs or C1 one needs assumptions on the rotation number (to avoid these180

sequences of longer and longer saddle-cascades).181

In general, one cannot expect C1, because having a C1 conjugacy implies that corre-182

sponding periodic orbits have the same multiplier.183

We should also remark that there are also analogues of these theorems for polynomials184

in C, but then one must assume that f is only finitely renormalizable, see for example [52],185

but also see [24].186

2.1. Applications of quasi-symmetric rigidity. Quasi-symmetric rigidity is a crucial step187

towards proving the following types of results:188

(1) hyperbolicity is dense, see subsection 1.5.189

(2) within certain families of maps, conjugacy classes are connected, see Theorems A and190

2.2 in [21].191

(3) monotonicity of entropy; for families such as [0, 1] 3 x 7! a sin(⇡x), see Section 3.192

2.2. Complex box mappings. It turns out to be rather convenient to show quasi-symmetric193

rigidity by using extensions to the complex plane. This approach is rather natural, as a quasi-194

symmetric homeomorphism on the real line is always the restriction of a quasi-conformal195

homeomorphism on the complex plane. More precisely, the idea is to construct an extension196

of the first return map to some interval, to the complex plane as a ‘complex box mapping’, see197

Figure 2.1 in the multimodal case. Roughly speaking, this is a map F :U ! V so that each198

component of U is mapped as a branched covering onto a component of V , and components199

of U are either compactly contained in a component of V or they are equal to such a compo-200

nent. Components of F�n
(V ) are called puzzle pieces. We also require (roughly speaking)201

that F is unbranched near the boundary of U (slightly more precisely, that there exists an202

annulus neighbourhood A of @V so that F :F�1

(A) ! A is an unbranched covering and so203

thatmod (A) is universally bounded from below). If one has such numerical bounds, then F204

is said to have complex bounds. The existence of these complex bounds was first proved by205

Sullivan for certain unimodal maps. The general unimodal case was dealt with in [55] and206

somewhat later in [35] and [60]. Later this was extended to the multimodal case for certain207

maps in [92] and more generally in [87]. The most general result appears in a joint paper208

of the 2nd author with Clark and Trejo [26]. In that paper complex bounds are associated to209

any real analytic interval map. In fact, even in the C3 case complex bounds are constructed210

in that paper, but in the smooth case the map F is only asymptotically holomorphic.211

We should note that in the non-renormalisable real-analytic case one obtains complex212

bounds at arbitrary deep levels, as soon as one has a complex box mapping. That this is the213

case follows from the construction of the enhanced nest (discussed in the next subsection)214

and an interesting lemma due to Kahn and Lyubich, see [45]. This tool is about pulling back215

a thin annulus, and shows that the modulus of the pullback of this annulus is much better216

than one might expect. In the real case, one can simplify and strengthen the statement and217

proof of Kahn and Lyubich’s result as follows, see [52, Lemma 9.1]:218

Lemma 2.2 (Small Distortion of Thin Annuli). For every K 2 (0, 1) there exists  > 0

such that if A ⇢ U , B ⇢ V are simply connected domains symmetric with respect to the real
line, F : U ! V is a real holomorphic branched covering map of degree D with all critical
points real which can be decomposed as a composition of maps F = f

1

� · · · � fn with all
maps fi real and either real univalent or real branched covering maps with just one critical
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Figure 2.1. A box mapping.

point, the domain A is a connected component of f�1

(B) symmetric with respect to the real
line and the degree of F |A is d, then

mod (U �A) � KD

2d
min{, mod (V �B)}.

2.3. How to prove quasi-symmetric rigidity? Consider the complex box mappings asso-219

ciated to two conjugate maps. To show that the conjugacy is quasi-symmetric one proceeds220

as follows:221

(1) Define a sequence of puzzle pieces Uni called the enhanced nest, so that there exists222

ki for which F k(i)
:Uni+1

! Un(i) is a branched covering map with degree bounded223

by some universal number N . This enhanced nest is chosen so that it transfers geomet-224

ric information rather e�ciently from small scale to large scale, but so that the degree225

of F k(i)
:Uni+1

! Un(i) remains universally bounded. This enhanced nest was one226

of the main new ingredients in [50]. It turns out that the post-critical sets do not come227

close to the boundary of the puzzle pieces in the enhanced nest, which implies that the228

puzzle pieces have uniformly bounded shape. Another important property of the en-229

hanced nest is that decaying geometry and bounded geometry alternate quite regularly230

in the nest, which was used in [58] to study the Hausdor↵ dimension of Cantor attrac-231

tors. The enhanced nest construction is also used for example in [26, 52, 75, 78, 94].232

(2) In fact, if the interval maps extend to a holomorphic map on a neighbourhood of the233

real line, then one can partially define a quasi-conformal conjugacy near critical points,234

and then spread the definition to the whole complex plane fairly easily. This method235

was called the spreading principle in [50].236

(3) Because of the spreading principle mentioned above, it then su�ces to construct a237

partial-conjugacy on a puzzle piece in the enhanced nest which is ‘natural on the238

boundary’. Given the above, this can easily be done using the QC-criterion from239

the appendix of [50]. and bounded shape of the puzzle pieces (bounded shape is very240

easy to derive from complex bounds, see [52, Section 10]). One can also proceed as in241

[5]. Our QC criterion was a variation of Heinonen-Koskela’s theorem [42]. This theo-242

rem and its variations were used to prove rigidity result previously in [34, 41, 56, 83?243

], where in the last work, the author explicitly stated that a bounded shape property of244

puzzle pieces implies rigidity for non-renormalizable unicritical maps.245
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It is of course conceivable that one can prove quasi-symmetric rigidity using entirely real246

methods. This hinges on questions of the following type:247

Question 2.3. Consider the space A of maps of the form z 7! |z|d+c where d > 1 is not248

necessarily an integer and where c is real. Does one have quasi-symmetric rigidity for maps249

within the space A? Are two topologically conjugate maps in A without periodic attractors250

(or both critically finite) necessarily the same?251

One of the di�culties with such a real approach is that it is not so easy to know how252

to use the information that the exponent d is fixed within the family A: the exponent is not253

‘visible’ in the real line. On the other hand, if d is an even integer, and z 7! zd + c, then of254

course the local degree of the map at 0 is di↵erent for di↵erent values of d. Without fixing255

the degree d the answer to the question above is definitely negative. An a�rmative answer256

to the above question would imply density of hyperbolicity and monotonicity of entropy in257

this family.258

3. Monotonicity of entropy259

In the late 70’s, the following question attracted a lot of interest: does the topological entropy260

of the interval map x 7! ax(1�x) depend monotonically on a 2 [0, 4]? In the mid 80’s this261

question was solved in the a�rmative:262

Theorem 3.1. The topological entropy of the interval map x 7! ax(1 � x) depends mono-263

tonically on a 2 [0, 4].264

In the 80’s several proofs of this appeared. One of these uses Thurston’s rigidity theorem,265

see [70]. Another proof relies on Douady-Hubbard’s univalent parametrisation of hyperbolic266

components, see [31], and a third proof is due to Sullivan; for a description of these proofs267

see [30]. All these proofs consider the map x 7! ax(1 � x) as a polynomial acting on the268

complex plane. A rather di↵erent method was used by Tsujii, [97]. He showed that periodic269

orbits bifurcate in the ‘right’ direction using a calculation on how the multiplier depends270

on the parameter. Unfortunately, Tsujii’s proof also does not work for maps of the form271

z 7! |z|a+c with a not an integer.272

In the early 90’s, Milnor (see [69]) posed the more general273

Conjecture 3.2 (Monotonicity Conjecture). The set of parameters within a family of real274

polynomial interval maps, for which the topological entropy is constant, is connected.275

Milnor and Tresser proved this conjecture for cubic polynomials, see [71] (see also276

[28]). Their ingredients are planar topology (in the cubic case the parameter space is two-277

dimensional) and density of hyperbolicity for real quadratic maps.278

A few years ago, Bruin and the 2nd author were able to give a proof of the general case279

of this conjecture. More precisely, given d � 1 and ✏ 2 {�1, 1}, consider the space P d
✏ of280

real polynomials f : [0, 1] ! [0, 1] of fixed degree d with f({0, 1}) ⇢ {0, 1}, with all critical281

points in (0, 1) and with the first lap orientation preserving if ✏ = 1 and orientation reversing282

if ✏ = �1. We call ✏ the shape of f . In [21] we proved the general case:283

Theorem 3.3 (Monotonicity of Entropy). For each integer d � 1, each ✏ 2 {�1, 1} and
each c � 0,

{f 2 P d
✏ ;htop(f) = c}
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is connected.284

The proof in [21] also shows that the set of maps in P d
✏ with the same kneading sequence285

is connected and gives a precise description of the bifurcations that occur when one of the286

periodic attractors loses hyperbolicity. The main ingredient in the proof is quasi-symmetric287

rigidity. Recently, Kozlovski announced a simplification of the proof in [21] of this theo-288

rem (using semi-conjugacies to maps with constant absolute value of the slopes, rather than289

stunted sawtooth maps).290

3.1. Non-local connectivity of isentropes and non-monotonicity in separate variables.291

It is possible to parametrize the family P d by critical values. The following example shows292

that it is not true that topological entropy depends monotonically on each of these parameters.293

Define fa,b(x) = 2ax3 � 3ax2

+ b for a = b+ 0.515. This cubic map has critical points 0294

and 1 and critical values f(0) = b, and f(1) = b� a = 0.515. It is shown in [21] that there295

are values of b such that the map a 7! htop(fa,b) is not monotone.296

Related to this, it is shown in [22] that isentropes in P d, when d � 5 are not locally297

connected. It is not known whether isentropes in P 3 or in P 4 are locally connected. For298

related results and questions, see [100].299

4. Measure-theoretical dynamics300

We shall now discuss the dynamics of a map f : N ! N , where N = [0, 1] or S1 from301

measure-theoretical point of view. Recall that a Borel probability measure µ is invariant for302

f if for each Borel set A ⇢ [0, 1] we have µ(f�1A) = µ(A). We say that µ is ergodic if a303

Borel set A with f�1

(A) = A satisfies either µ(A) = 0 or µ(A) = 1. The basin B(µ) of µ304

is the set of points x 2 [0, 1] for which305

1

n

n�1X

i=0

�fi
(x) ! µ as n ! 1, (4.1)

where the convergence is with respect to the weak star topology. If B(µ) has positive306

Lebesgue measure, then we say that µ is a physical measure. Clearly, if O is an attracting307

periodic orbit, then the averaged Dirac measure µO =

1

#O

P
p2O �p is a physical measure.308

An ergodic acip, i.e., an invariant probability measure which is absolutely continuous with309

respect to the Lebesgue measure, is also a physical measure, by Birkhor↵’s ergodic theorem.310

4.1. Typical physical measures. Conjecturally these are the only two types of physical311

measures for typical interval maps, from measure-theoretical point of view. Indeed, in the312

major breakthrough [63], Lyubich proved that within the quadratic family fa(x) = ax(1 �313

x), 1  a  4, for almost every a, either fa is hyperbolic or fa has an ergodic acip. In an314

earlier celebrated work [44], Jakobson showed that the set of a for which fa has an ergodic315

acip has positive Lebesgue measure.316

An analogue of Lyubich’s theorem in the multi-critical case is widely open at the mo-317

ment, due to the multi-dimensional feature of the corresponding parameter space. However,318

a generalization to the case of unimodal polynomials of even degree d � 2 is nearly com-319

pleted. The work [6] extends the result of [62], showing that for any even integer d � 2, and320

almost every a 2 [1, 4], fa(x) = a
4

(1 � (1 � 2x)d) either is hyperbolic, or has an ergodic321
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acip, or is infinitely renormalizable. Moreover, Avila and Lyubich [4] developed a novel way322

to obtain exponential convergence along hybrid classes for infinitely renormalizable maps.323

One can expect a complete proof of the generalization of Lyubich’s theorem for unimodal324

maps of a given degree will be available soon. Nevertheless, let us mention in a joint work325

with Bruin, the authors of this paper proved that for all even integer d, and almost every326

1  a  4, a
4

(1� (1� 2x)d) has a unique physical measure which might be supported on a327

Cantor set.328

4.2. Existence of acip. We shall now discuss some recent advances on existence of acip for329

smooth interval maps. In order to apply some version of the real Koebe distortion to control330

distortion, we often assume f lies in the class A
3

defined below. A map f : [0, 1] ! [0, 1]331

is in the class Ak if the following holds: f is C1 and Ck outside the critical set Crit(f) =332

{c : f 0
(c) = 0}; moreover, for each c 2 Crit(f), there exists `c > 1 and Ck di↵eomor-333

phismsms 'c,  c of R such that 'c(c) =  c(f(c)) = 0 and | c(f(x))|= |'c(x)|`c holds in334

a neighborhood of c.335

The following theorem was obtained by the authors in joint with Bruin and Rivera-336

Letelier.337

Theorem 4.1 (Existence of acip [19]). Let f 2 A
3

be an interval map with all periodic
points hyperbolic repelling. Assume that the following large derivatives condition holds: for
each c 2 Crit(f),

|Dfn
(f(c))|! 1 as n ! 1.

Then f has an acip µ with density dµ
dLeb 2 Lp for each p < `

max

/(`
max

� 1) where `
max

=338

supc2Crit(f) `c.339

The unimodal case was done earlier by the authors in joint with Bruin [20]. The existence340

of acip for interval maps has been proved previously in more restrictive settings, including341

• in [72], for maps satisfying the Misiurewicz condition: !(c) \ Crit(f) = ; for each342

c 2 Crit(f);343

• in [27] for unimodal maps satisfying the Collet-Eckmann condition (together with other344

conditions): for the critical point c, lim infn!1
1

n log|Dfn
(f(c))|> 0;345

• in [74] for unimodal maps satisfying the following summability condition: if c is the346

critical point and ` is the order, then
P1

n=0

|Dfn
(f(c))|�1/`< 1,347

among others. All of the following results assume that f has negative Schwarizian outside348

Crit(f) in order to apply the real Koebe principle to control distortion, but now we know that349

the required distortion control is also valid for maps f 2 A
3

, after [48] and [101, Theorem350

C].351

We should however note that the large derivatives condition is not a necessary condition352

for the existence of an acip, even though an acip necessarily has positive metric entropy:353

there exists a unimodal map in the class A
3

with lim inf|Dfn
(f(c))|= 0 and with an acip354

[16]. It is also known (not surprisingly) that existence of acip is not a topological (or qua-355

sisymmetric) condition [17].356

Question 4.2. Determine topological (or quasisymmetric) conjugacy classes in A
3

such that357

each map in the class has an acip.358



Recent developments in interval dynamics 11

4.2.1. Ingredients of the proof of Theorem 4.1. An intermediate step of the proof is
to show that the large derivatives condition implies backward contraction in the sense of
Rivera-Letelier [84], which means the following: if eBc(�) denotes the component of
f�1

(f(c)� �, f(c) + �) which contains c and

�(�) = inf

⇢
�

|U | :
U is a component of f�n

(

eBc(�)) containing f(c0)
for some c, c0 2 Crit(f) and n � 0

�

then �(�) ! 1 as � ! 0. It turns out that the backward contraction property is equivalent359

to the large derivatives condition [57].360

It is well-known that for any Borel probability measure ⌫, any accumulation point of the
following sequence

1

n

n�1X

i=0

(f i
)⇤(⌫)

in the weak star topology is an invariant probability measure of f , where (f i
)⇤⌫(A) =

⌫(f�i
(A)). Thus it su�ces to prove the following statement: for each 0 <  < 1 there

exists C = C() such that

(fn
)⇤(Leb)(A) = |f�n

(A)| C|f(A)|/`max ,

holds for all Borel A ⇢ [0, 1] and all n � 0. The backward contraction property makes it361

possible to obtain the estimate when A is an interval close to the critical set. For general A,362

the paper uses a sliding argument from [74], and Mãné’s theorem [65].363

4.3. Decay of correlation. A di↵erent way to obtain existence of acip is via inducing. Let364

us say a map F : U ! V , where U ⇢ V are open subsets of [0, 1], is a Markov map, if for365

each component U of U , F |U is a C1 di↵eomorphism onto a component of V . A Markov366

map F is induced by a map f if there is a continuous function s : U ! {1, 2, . . .} such that367

F (x) = fs(x)
(x). (So s(·) takes constant value in each U .) We shall often consider Markov368

maps with extra properties:369

(i) V is an interval;370

(i0) V consists of finitely many intervals;371

(ii) (Bounded distortion) There exist C > 0 and ↵ 2 (0, 1) such that

|DFn
(x)|

|DFn
(y)|  C|Fn

(x)� Fn
(y)|↵,

whenever F i
(x) and F i

(y) belong to the same component of U for each i = 0, 1, . . . ,372

n� 1.373

A Markov map F : U ! V with the properties (i’) and (ii) has an absolutelty continuous
invariant propbability measure ⌫ such that d⌫/dLeb is bounded away from 0 and 1. If we
can construct an induced Markov map F for a map f such that (i’), (ii) and the following
hold:

as := |{s(x) � s}|! 0 as s ! 1,
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then the original system f has an acip

µ :=

1P1
s=1

as

X

U

s|U�1X

j=0

(f j
)⇤(⌫|U),

where the sum runs over all components of U . One advantage of inducing is that through374

estimating the speed of convergence of as ! 0, one can obtain finer statistical properties of375

the system.376

The following theorem was proved by the 1st author in joint with Rivera-Letelier, im-377

proving an earlier result [18] considerably.378

Theorem 4.3 (Decay of correlation [85]). Assume that f 2 A
3

is topologically exact and
satisfies the large derivatives condition. Then there is an induced Markov map F : U ! V
such that (i) and (ii) and the following tail estimate hold:

as = O(s�p
) for each p > 0, as s ! 1.

In particular, the unique acip µ of f is super-polynomially mixing: for each essentially
bounded ' : [0, 1] ! R and each Hölder continuous  : [0, 1] ! R,

Cn(', ) :=

Z
1

0

' � fn dµ�
Z

1

0

'dµ

Z
1

0

 dµ

converges to 0 superpolynomially fast as n ! 1.379

Here we say that f is topologically exact if for each non-empty open subset U of [0, 1],380

there exists a positive integer n such that fn
(U) = [0, 1]. This is a necessary condition381

for f to have a mixing acip. The last statement was deduced from the tail estimate via382

Young’s tower [102]. Note that the tail estimate also implies finer statistical properties of383

the sequence { � fn}1n=0

(considered as a sequence of random variables with identical dis-384

tribution), such as the Central Limit Theorem [102], Almost Sure Invariance Principle [68],385

etc, for  Hölder. The paper [85] also dealt with existence and mixing properties of in-386

variant probablity measures with respect to conformal measures (supported on Julia sets) of387

maximal dimension for a large class of complex rational maps. This paper used the induced388

Markov map to study the geomtery of the Julia set.389

Much recent progress on theomodynamical formalism for one-dimensional maps also390

used inducing to construct invariant probablity measures with respect to various conformal391

measures, see for example [23, 76, 82].392

For the proof of Theorem 4.3, an adaptation is used of the inducing scheme, called
canonical inducing, developed in [81, 82]. A crucial new estimate is the following back-
ward shrinking estimate for maps with large derivatives (Theorem B): there exists ⇢ > 0

such that
✓n := {|J |: J is an interval such that |fn

(J)| ⇢}
converges to zero super-polynomially fast. Theorem C relates the quantity ✓n to the tail esti-393

mate of a suitably constructed induced Markov map, provided the map has badness exponent394

0 which was the statement of Theorem A.395

It is known that ✓n ! 0 exponentially fast (the topological Collet-Eckmann condition,396

equivalent to the Collet-Eckmann condition in the unimodal case) is equivalent to having an397

exponentially mixing acip [73, 81]. It would be interesting to know398
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Question 4.4. For a topologically exact interval map f 2 A
3

, is ✓n ! 0 superpolynomially399

fast equivalent to having a unique acip which is superpolynomially mixing?400

An a�rmative solution to Question 2.11 in [85] implies an a�rmative answer to the401

question above.402

4.4. Stochastic stability. An interval map with an acip is not hyperbolic and hence not
structurally stable. The notion of stochastic stability, posed by Kolmogrov and Sinai, asks
for stability of statistical properties under random perturbations. Given a map f : [0, 1] !
[0, 1], an "-random (pseudo) orbit is by definition a sequence {xn}1n=0

such that |f(xn) �
xn+1

| ". Roughly speaking, stochastic stability means when " > 0 is small, for most of
the "-random orbits {xn}1n=0

, the asymptotic distribution, limn!1
1

n

Pn�1

i=0

�xi , is close to
a physical measure of f . Note that if f([0, 1]) ⇢ (0, 1) and " > 0 small enough, then the
space of all "-random orbits can be identified with [0, 1]⇥ [�", "]N by the following formula:

{xn}1n=0

7! (x
0

, x
1

� f(x
0

), x
2

� f(x
1

), . . .).

So the space of sequences {xn}1n=0

can be endowed with a probability measure P" which403

corresponds to m ⇥mN
" , where m denotes the Lebesgue measure on [0, 1] and m" denotes404

the normalised Lebesgue measure on [�", "]. In the literature, reference measures other than405

P" have also been considered on the space of "-random orbits, corresponding to di↵erent406

types of random perturbations. The measure P" corresponds to the so-called additive noise407

model.408

Recently the 1st author proved the following theorem.409

Theorem 4.5 (Stochastic Stability [88]). Suppose f 2 A
3

is ergodic with respect to the410

Lebsgue measure and that the following summability condition holds: for each c 2 Crit(f),411

1X

n=0

|Dfn
(f(c))|�1< 1. (4.2)

Then the unique acip of f is stochastic stable in the strong sense: For each " > 0 there
exists a unique probability measure µ" absolutely continuous with respect to the Lebesgue
measure, such that for P"-a.e. "-random orbits {xn}1n=0

,

1

n

n�1X

i=0

�xi ! µ"

as n ! 1 in the weak star topology. Moreover, the density dµ"

dLeb converges in L1 to the412

density of the unique acip of f as "! 0.413

See the Main Theorem of [88] for a more general statement, which covers a very general414

type of random perturbation. Previously, stochastic stability was studied for interval maps415

with a Benedicks-Carleson type condition [12, 13] (or even stronger) which thus has expo-416

nential decay of correlation, see [11, 14, 46, 95]. It is surprising that the stochastic stability417

of the Manneville-Pomeau map x 7! x+x1+↵
mod 1, which is probably the simplest non-418

uniformly expanding dynamical system, was only established very recently by the authors419

in [89].420
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Li and Wang [59] proved stochastic stability for unimodal maps f with a wild attractor421

where the physical measure is supported on the Cantor attractor. It raises a curious question422

whether there exists an interval map with a stochastically unstable physical measure.423

The crucial step in the proof of Theorem 4.5 was to establish the first estimate on the
first return maps to critical neighborhoods: Let " > 0 be small and let eBc(") be defined as
in § 4.2.1. Then for all "-random orbits {xi}ni=0

with x
0

2 eBc
1

("), xn 2 eBc
2

(") for some
c
1

, c
2

2 Crit(f) and x
1

, x
2

, . . . , xn�1

62
S

c2Crit(f)
eBc, we have

n�1Y

i=1

|Df(xi)|�
⇤(")

"1�`�1

c
2

exp("↵(")n),

where ⇤(") ! 1 and ↵(") ! 0 as "! 0. The measure µ" was constructed using a random424

inducing scheme initiated in [8]. See also [1, 2].425

4.5. Jakobson’s theorem. The lower bound for derivative plays a crucial role in a general-426

ization of Jakobson’s theorem by B. Gao and the 1st author [38]. Among a huge number of427

works in generalizing Jakobson’s theorem, our approach is close to that of [96]. While the428

paper worked with general one-parameter families, the following is the main result obtained429

for polynomial maps.430

Theorem 4.6 (Summability implies Collet-Eckmann alomost surely [38]). Fix an integer431

n � 2. For each a = (a
0

, a
1

, . . . , an) 2 Rn+1 write Pa(x) =

Pn
i=0

aix
i. Let ⇤n denote432

the collection of a 2 Rn+1 \ {0} for which the following hold: (i) Pa([0, 1]) ⇢ [0, 1] and433

(ii) Pa : [0, 1] ! [0, 1] satisfies the summability condition (4.2). Then ⇤n has positive434

measures and almost every a 2 ⇤n satisfies the Collet-Eckmann condition, and the following435

polynomial recurrence conditions: for each � > 1, and any critical points c, c0 of Pa|[0, 1],436

we have |P k
a (c)� c0|� k�� for all k su�ciently large.437

The proof is done by purely real analytic method, except we had to use a recent tranver-438

sality result due to Levin [54] which was based on complex methods. For the case n = 2,439

the transversality result was known before in [3, 53]. For the quadratic family, the Collet-440

Eckmann and polynomial recurrence conditions are satisfied by almost every non-hyperbolic441

map [7]. It would be interesting to push the real analytic method further, for instance, to see442

whether the summability condition can be replaced by the large derivatives condition in The-443

orems 4.5 and 4.6.444

Finally we would like to draw the reader’s attention to the works [9, 10] where the “mod-445

ulus of continuity” of t 7! µt over “good” non-uniformly expanding maps is studied for446

families ft of unimodal maps, where µt is the acip for ft.447
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