Critical phenomena, the volume of a Wiener and the feeling of confusion

Gunnar Pruessner

Department of Mathematics Imperial College London

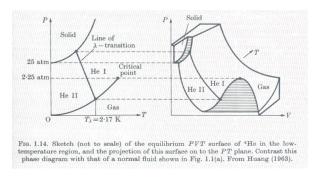
Imperial College London, Lunchtime seminar, 1 Nov 2012

Critical phenomena

Field theory

Phase transitions — Universality Scale invariance Power laws

Phase transitions



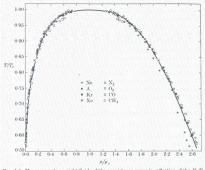
From Stanley, 1971

Phase transition: Sharp change of the properties of a material. Second order (continuous) transition: Weird and wonderful!

Critical phenomena

elf-organised criticality Field theory Phase transitions — Universality Scale invariance Power laws

Universality at the gas/liquid critical point



F10. 1.8. Measurements on eight fluids of the coexistence curve (a reflection of the $P_{\rho}T$ surface in the ρT plane analogous to Fig. 1.3). The solid curve corresponds to a fit to a cubic equation, i.e. to the choice $\beta = \frac{1}{2}$, where $\rho - \rho_{\rho} \sim (-\epsilon)^{\theta}$. From Guggenheim (1945).

From Stanley, 1971

Critical point: T_c , p_c . There and in the approach, very different materials display the same features:

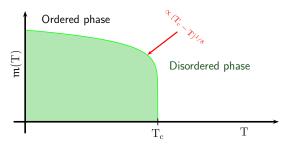
Universality!

Critical phenomena

Field theory

Phase transitions — Universality Scale invariance Power laws

Order parameter



The order parameter indicates the change (positive in the ordered phase, vanishing in the disordered phase).

Universal exponents characterise continuous phase transitions. For example: for T > T

$$m(T) = \begin{cases} 0 & \text{for } T > T_c \\ a(T_c - T)^{1/8} + \dots & \text{for } T \leqslant T_c \end{cases}$$

Phase transitions — Universality Scale invariance Power laws

Correlation function

 $m(\mathbf{r})$ is the local order parameter (a measure of local order, say, the local amount of condensate).

Two-point correlation function $C(\mathbf{r})$ measures how local fluctuations are related:

$$C(\mathbf{r}) = \left\langle \left(m(\mathbf{r} + \mathbf{r}') - \left\langle m(\mathbf{r} + \mathbf{r}') \right\rangle \right) \left(m(\mathbf{r}') - \left\langle m(\mathbf{r}') \right\rangle \right) \right\rangle$$

Translational invariance: $C(\mathbf{r})$ independent from $\mathbf{r'}$. At critical point:

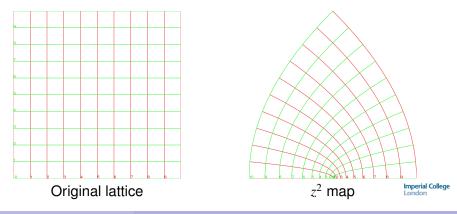
$$C(\mathbf{r}) = |\mathbf{r}|^{-1/4}$$

Phase transitions — Universality Scale invariance Power laws

Scale invariance

Power laws are the signature of scale invariance: "Same" features on every scale.

Conformal invariance: Statistics invariant under conformal maps

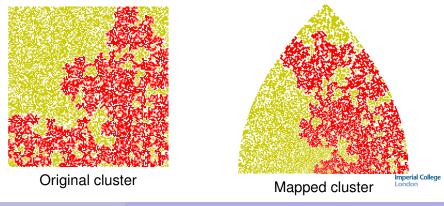


Phase transitions — Universality Scale invariance Power laws

Scale invariance

Power laws are the signature of scale invariance: "Same" features on every scale.

Conformal invariance: Statistics invariant under conformal maps



g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 7 / 31

Phase transitions — Universality Scale invariance Power laws

Power law correlation function

"Why is a power law any different from any other functional dependence? What is the physical significance of scaling?"

Full scaling¹ — pure power law: No scale from within. Example:

• Exponential correlations, $C(r) = \exp(-x/\xi)$. Correlation length² = distance over which correlations decay by e^{-1} .

$$C(r+\xi) = C(r)/e$$

• Power law, $C(r) = ar^{-2}$: Correlations decay by the same factor at every multiple:

$$C(r\sqrt{e}) = C(r)/e$$

Imperial College

¹As opposed to finite size scaling with intermediate power law scaling. ²In general, this holds only asymptotically.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 8 / 31

Phase transitions — Universality Scale invariance Power laws

Phase transitions

Key features

- Appear at some critical point (temperature, probability ...)
- Universal
- Observables governed by power laws
- Emergence (more is different!)
- Scale invariance
- 2D: Conformal invariance
- (SLE: Oded Schramm, Stanislav Smirnov, Wendelin Werner, Terence Tao)

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Outline

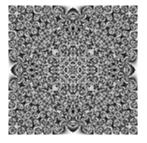
Self-organised criticality

- Prelude: The physics of fractals the BTW Model
- Why SOC?
- Experiments
- More models? Better models!

B Field theory

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Prelude: The physics of fractals



Question: Where does scale invariant behaviour in nature come from?

Answer: Due to a phase transition, self-organised to the critical point.

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Prelude: The physics of fractals

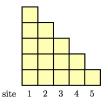


- Anderson, 1972: *More is different* Correlation, cooperation, emergence
- 1/f noise "everywhere" (van der Ziel, 1950; Dutta and Horn, 1981)
- Kadanoff, 1986: Fractals: Where's the Physics?
- Bak, Tang and Wiesenfeld, 1987: Self-Organized Criticality: An Explanation of 1/f Noise

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

London

The BTW Model



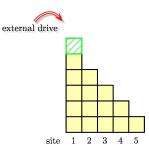
The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12/31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

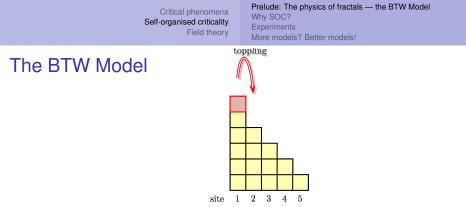


The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12 / 31



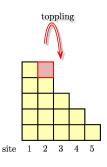
The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

London

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!



The sandpile model:

The BTW Model

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

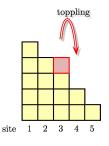
• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12 / 31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

London

The BTW Model



The sandpile model:

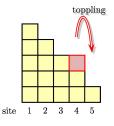
- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12/31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

The BTW Model



The sandpile model:

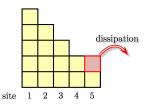
- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12/31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

The BTW Model

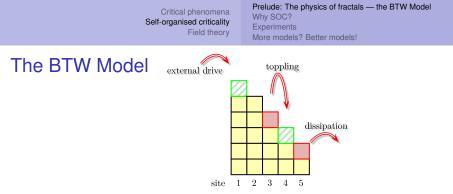


The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12/31



The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

Imperial College

London

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

London

The BTW Model

The sandpile model:

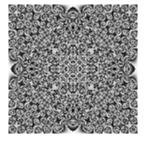
- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 12 / 31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

The BTW Model



Key ingredients for SOC models:

- Separation of time scales.
- Interaction.
- Thresholds (non-linearity).
- Observables: Avalanche sizes and durations.

Imperial College London

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012

12/31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Emergence!

- Explanation of emergent,
- ...cooperative,
- ... long time and length scale
- ...phenomena,
- ... as signalled by power laws.

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Universality!

- Understanding and classifying natural phenomena
- ... using Micky Mouse Models
- ... on a small scale (in the lab or on the computer).
- (Triggering critical points?)
- But: Where is the evidence for scale invariance in nature (dirty power laws)?

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

More models

- Initial intention for more models: Expand BTW universality class.
- Later: Provide more evidence for SOC as a whole.
- More models...

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

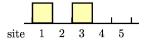
More models

The failure of SOC?

- Zhang Model (1989) [scaling questioned]
- Dhar-Ramaswamy Model (1989) [solved, directed]
- Forest Fire Model (1990, 1992) [no proper scaling]
- Manna Model (1991) [solid!]
- Olami-Feder-Christensen Model (1992) [scaling questioned, $\alpha \approx 0.05$ (localisation), $\alpha = 0.22$ (jump)]
- Bak-Sneppen Model (1993) [scaling questioned]
- Zaitsev Model (1992)
- Sneppen Model (1992)
- Oslo Model (1996) [solid!]
- Directed Models: Exactly solvable (lack of correlations)

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model



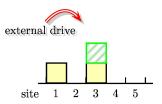
Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model



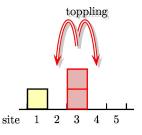
Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model



Manna Model (1991)

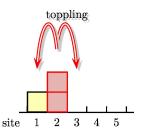
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 16 / 31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model



Manna Model (1991)

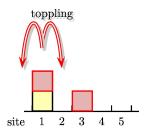
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 16 / 31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model



Manna Model (1991)

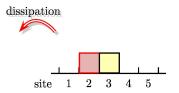
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

g.pruessner@imperial.ac.uk (Imperial) Critical phenomena, the volume of a Wiener a London, 11/2012 16 / 31

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model



Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

Prelude: The physics of fractals — the BTW Model Why SOC? Experiments More models? Better models!

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

• Working field theory exists!

Critical phenomena -organised criticality Field theory Field theory Field theory for SOC Example: Volume of a Wiener

Outline

2) Self-organised criticality

Field theory

- The Programme (field theory for stochastic processes)
- Basic features
- Field Theory for SOC
- Example: Volume of a Wiener

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Programme

Take the stochastic process of interest and rewrite it in terms of creation and annihilation operators:

$$\begin{array}{rcl} a^{\dagger}(\mathbf{x}) \left| n_{\mathbf{x}} \right\rangle & = & \left| n_{\mathbf{x}} + 1 \right\rangle \\ a(\mathbf{x}) \left| n_{\mathbf{x}} \right\rangle & = & n_{\mathbf{x}} \left| n_{\mathbf{x}} - 1 \right\rangle \end{array}$$

 $|n_x\rangle$ is a configuration with n_x particles at site x. These "coherent states" are eigenstates of the particle number operator

$$a^{\dagger}(\mathbf{x})a(\mathbf{x})\left|n_{\mathbf{x}}\right\rangle = n_{\mathbf{x}}\left|n_{\mathbf{x}}\right\rangle$$

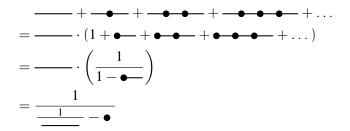
 $|0\rangle$ is the empty system.

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Perturbative Field Theory

Integrals are written in diagrams.

Loops and multiple interactions can be (re)summed into effective couplings:



The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

on confusion

Youtube clip

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Field Theory for SOC

- Rewrite Manna Model in terms of creation and annihilation operators
- Calculate diagrams
- Sum over diagrams (renormalisation)
- Find critical properties
- Identify mechanism of SOC

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Which Wiener?

Technology Portrait Studio

Copyright bgf.com

Imperial College London

Copyright National Academic Press

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Wiener process

(named after Norbert Wiener)

Consider a random walker on a 2D lattice:

What is the (blue) area of the trace (volume of a "Wiener sausage")?

Volume of a Wiener

Originally calculated by Kolmogorov and Leontovich (1933). Field theory:

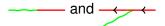
- Walker walks: $\longrightarrow = \frac{1}{-\iota \omega + D\mathbf{k}^2}$
- ... and leaves behind a trace in the form of branched-off particles

- ... which are stuck on the lattice $----= \frac{1}{-1\omega+\epsilon}$
- No deposition if there is a particle already -

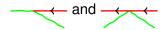
The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Details of the diagrams

Deposition is suppressed in the presence of deposits. *Without* that, deposits could be found all along the walker's trajectory (multiple deposits at revisited sites):



These two diagrams probe the lattice for deposits:



Renormalisation

Calculate features (such as the volume of the Wiener) using **renormalisation**. Example: Deposit along the trajectory

... is reduced by suppressed deposition

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Renormalisation

Calculate features (such as the volume of the Wiener) using **renormalisation**. Example: Deposit along the trajectory

... is reduced by suppressed deposition

Renormalisation

At the heart of the theory is only one diagram that needs renormalisation:



The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Renormalisation

What are the loops?

What physical process do the loops

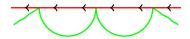
correspond to? Trajectory intersecting itself:

The Programme (field theory for stochastic processes) Basic features Field Theory for SOC Example: Volume of a Wiener

Renormalisation

What are the loops?

What physical process do the loops



correspond to? Trajectory intersecting itself:

Critical phenomena ielf-organised criticality Field theory Field theory Field theory Field theory for SOC Example: Volume of a Wiener

Results

- Field theory reproduces earlier results.
- Different boundary conditions easily accessible.
- Perfect playground to understand renormalisation, the nature of "fermionicity" and boundary conditions.
- Huge interest in the Wiener sausage phenomenon from chemistry and medical science.

Critical phenomena Self-organised criticality Field theory Field theory Field theory for SOC Example: Volume of a Wiener

Summary

- Phase transitions: Singularities, universality, emergence.
- Self-organised Criticality: All of the above by self-tuning to critical point.
- Field theory: Diagrammatic representation of complicated physics (Manna Model, Wiener sausage)

Thanks!