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Probabilities

Basics — Reminders

@ P(—A)=1—P(A)

@ P(AUB) =P(A) +P(B) — P(ANB)
A U B means that A or B occur (not exclusively), A N B means that
A and B occur simultaneously.

@ AN B = () then A and B are mutually exclusive, joint probability
factorises

@ BAYES's theorem: P(A|B) = ZIA0E) _ PIBAIPIA)

P(B) P(B)
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Probability density function

@ Probability density function (PDF) P, (x) is probability that a is
in the interval [x, x + dx].

@ Normalisation: [* _dxP, (x) =1

@ Cumulative distribution function (CDF): F(z) = [* _ dx P, (x)

@ Note: P, (x) = LF(2)

@ Extension to joint probability density functions is straight forward.
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Moments and cumulants

@ nth moment (x" =", (x)

@ Central moment ( — (x)" }

@ First cumulant: (x), = (x)

e Second cumulant: (x*) = (x?) — (x)* = {(x — (x))?) = 0? (x), the
variance.

@ In field theory, cumulants correspond to connected diagrams.
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Generating functions

For many problems, generating functions provide a powerful analysis
tool. Define the moment generating function (MGF)

Mo(2) =Y & ()

n!
i=0

if the sum converges.

@ Note that & oM (2) = (»"), i.e. differentiation produces the
moments.
@ By comparison with the definition of an exponential,

M, (z) = (exp (xz)) f dx exp (xz) P, (x), the LAPLACE transform
of the PDF (characterlstlc function).
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Moment generating function of a sum |

A very useful identity for independent, identically distributed random
variables a and b:

Matp (2) = ... = Mg (2) My (2)
Similarly for random variable y = ox
M, (z) = ... =M, (zx)

Note: Every differentiation of M, (z) will shed a factor « compared to
M, (2).
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Cumulant generating function |

Definition of cumulants

Define the cumulant generating function (CGF)

@ Zeroth cumulant vanishes, In1 = 0, first cumulant is mean
(x). = (x).
@ Second cumulant is second central moment and thus variance,

(@), = (= @)?) = (@) — ()7 = 0 (x). N



Cumulant generating function Il

Definition of cumulants

@ Third cumulant is the third central moment, (x*) = ((x — (x))?).
@ Fourth cumulant and higher: More complicated.
@ See skewness and kurtosis.
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GAuUsSians
GAussians are fundamental to all stochastic processes (stability, CLT,
WIcK’s theorem, relation between correlation and independence).

1 _x)?
G(x;x0, 0°%) = ———e  20?
V2021

It's straight forward to show that
@ (x) = xp.
@ 02 (x) = 0%
° ((x—x0)™)=0c*(2n—1)l=0"1-3-5...(2n—1).
@ The moment generating function of a GAUSSian is again
GAussian.

@ The cumulant generating function of a GAusSian is a seconq e
. mperial College
order polynomial, Cg (z) = zxo + (1/2)z%0>.
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GAuUSSians

The Gaussian solves the diffusion equation
0,p = D’ —vd, P

on x € R, with diffusion constant D, drift velocity v and initial condition
lim; 0 ® = 8(x — x). The solution is

&(x, 1) = G(x — vt; x0, 2D1)
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Central Limit Theorem |

Consider the “mean” N
1
X=—=) x;
R

of N independent, identically distributed variables x; withi =1,2,...,N
and vanishing mean. The variables themselves have finite cumulants.
Note the unusual normalisation \Wfl

If the underlying PDF has moment generating function (MGF) M, (z),

then the MGF of X is My (2) (z/\f) and so the cumulant
generating function (CGF) is

€x () = N€, (z/VN) .

Imperial College
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Central Limit Theorem Il

so that

L Cy (z) = N'/2 e (z) = N'"""2(a") .
dz" z=0 dz" z=0 ¢ ¢
Thus, all cumulants except the second vanish, the resulting CGF is
that of a GAussian.

Note what happens if the random variable is not rescaled. In that case cumulants of X
are N times the cumulants of a. This is in sharp contrast to plain moments, whigh have,
a much more complicated dependence on N. e
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Central Limit Theorem ll|

The conclusion is the central limit theorem:
Central Limit Theorem (CLT)

The distribution of the random variable

T
I)C:\/N;xi

based on N independent random variables drawn from them same
distribution which has vanishing mean and finite variance tends to a
GAussian in the limit N — oo. Extension exist for correlated random
variables.

There is a remarkable amount of confusion regarding the réle of the
normalisation by \/N Imperial College
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Central Limit Theorem IV

A GAuUSSian is stable as the distribution of the sum of to GAUSSian

distributed random variables is a GAUSSian again. The same applies
to LEVY distributions.
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Stochastic processes

Mathematicians have a solid definition of a stochastic process.
In the following it is assumed only that

@ there is a procedure

@ that is not deterministic

@ producing a signal (observable)
@ as a function of time.
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A POISSON process |

A POISSON process is a point process, visualised by points on an
interval (think of nails dropped with constant rate on the motorway).

@ A configuration are s points on [0, 7], say (T, T2, ..., Ts) € [0, 1]*
with PDF Q(1), 13, .. ., Ts).

@ The number of points s is itself a random variable.

@ Permutations of (11, 1, ..., T,) are the same state.
@ Permutation 7
Q(TIYTZI e 1TS) = Q(TT[l ' TT(ZI e 1T7'(S)

Imperial College
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A POISSON process |l

Normalisation:
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A POISSON process |l
Poisson process

In the POISSON process the PDF factorises and is stationary:
o1y, ..., ) =e Y Wg(t)) ... q(Ty)

The normalisation gives v(z) = ﬂ)d’tq(’t). In the following, the ¢ depen-
dence of v is dropped.

The probability to find s events within time ¢ is

1 t
Pp(s) = sldel...deQ(Tl,...,Ts)
- Jo
— e*‘V 1 s
N S! ' Imperial College
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A POISSON process IV
@ The average follows as

(s) =exp(—v) X220 svs =exp (—v)vY 2, (Sjl)[vs_l = .
@ The moment generating function follows simply as

Mp (z) = exp ((exp (z) — 1) (s)) and the cumulant generating
function is therefore Cp (z) = (exp (z) — 1) (s):

All cumulants (s"). with n > 1 are (s) in the POISSON process.
@ Shot noise (stationary or homogeneous POISSON process): ¢ is
constant and v(¢) = gr.
@ Probability of no eventin [z, ¢ + df] is (1 — ¢d¢) and thus within Az:
exp (—qAt).
@ The probability that an empty interval Az is terminated by an event

Imperial College

is exp (—gAt) timesdt g, the probability for an event to take place.
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A POISSON process V

@ Also: Probability density for termination of an empty interval:

i.e. those that terminate do not count in exp (—gA(z +dt)).

Exercise: ZERNIKE’s “Weglangenparadoxon”.
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Events in time |

@ Consider a “random event” x taking place at time r.

@ Consider a sequence of random events taking place at every point
in time.

@ Py (x1, 1) is the probability of observing x; at the time (given) 7,
(note: 1, is given and not itself random).

@ The joint PDF P; (x;, 12; x1, 1) is the probability to observe x; at 7,
and x; at r,.

@ Simplify notation by replacing x;, t; by i. Also
Puim (1,2, ..., nln+1,...,n+ m) is the PDF for n events
conditional to m.

Imperial College
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Events in time |l

@ Conditional probability:

Pa(x2 txr, 1) Pun (e, filxa, 22) P (2, 12)
P1(x1,11) P1(x1,11)

Pt (2, tolxy, 1) =
@ Marginalise over the nuisance variable:

P (311) = sz Py (2,311)
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Events in time Il

Since
par 2,30 = 228 BE2ITEI g a2y, i)
we have

Py (31) = dem (311,2) Py, (201)
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MARKOVian processes |

The term “MARKOVian” refers to the property of a PDF of a time series
of events to be conditional only on the latest event. The MARKOVian
property depends on the observable chosen:

MARKOV process

The PDF of a MARKOVian process with 1, < 6, < 13 < ... < t,4 (for
n > 1) has the property

?Hn (fl+ 1|1,2,3, bao ,l’l) = '.’P]|1 (l’l+ 1|I’l)

Imperial College
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MARKOVian processes |l
By Bayes:

P2(1,2) = Pr(1)Py (211)
P3(1,2,3) = P(1,2) P2 (3]1,2)
Ps(1,2,3,4) = ?3(1,2,3)93”3 (41,2, 3)

and therefore
:])4 (1, 2, 3,4) == :Pz (1, 2) ?”2 (3|1, 2) ‘J)l|3 (4|1, 2, 3)
=P (D) Py 211) Py (3[1,2) Pyj3(411,2,3) .

Simplifying the right hand side via the MARKOV property:

Imperial College

Ps(1,2,3,4) =Py (1) Pypy (201) Pyyy (3[2) Py (413) London
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MARKOVian processes |l

Invertibility of the MARKOV property:

P (12,3, n+ 1) =Py (12)
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CHAPMAN-KOLMOGOROV equations |

The CHAPMAN-KOLMOGOROV equation are the integral form of the
MARKOV property.

The following statement is true in general:

Py (311) = delz (311,2) Py, (201)

But in case of a MARKOVian process Py (3]1,2) = Py (32)
CHAPMAN-KOLMOGOROV equation

Pin (31) = szfpm (312) Pyjy (211)

The CHAPMAN-KOLMOGOROV equation is often mis-interpreted asa
way of a process “propagating in time” (or “there must be an : ’

g.pruessner@imperial.ac.uk (Imperial) Master, Fokker-Planck and Langevin Barcelona, 04/2013 31/76



CHAPMAN-KOLMOGOROV equations |

intermediate step”). However, this progression is always possible,
MARKOVian or not. The CHAPMAN-KOLMOGOROV equation say: In
order to propagate, all that is needed is the propagation “matrix” from ¢,
(initial) to # (final): Py (£17)
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Random walks

@ Consider a sequence of positions ng, n, ny, . .. in discrete time
t=0,1,2,....

@ Continuous version: BROWNian motion.
@ Key process in complex systems.

Impenad ial College

London



Introduction
Stochastic processes
Random walks
LANGEVIN equations
Critical dynamics

Pedestrian random walk in discrete time

Evolution of the PDF using CHAPMAN-KOLMOGOROV
Master equation approach

FOKKER-PLANCK equation

Pedestrian random walk in discrete time |

Walker starts at time ¢ = 0 at position ny. Position n increases to ny + 1
with probability p and decreases to ny — 1 with probability g.
Consider moment generating function of position:

Miw (z;1 = 1) = pe"™ V) 4 &0~ = My (271 = 0) (pe + ge )
In general, exp (zn) indicates the position n and its coefficient is its
probability.
To evolve the MGF further, in every time step each exp (zn) is

increased to exp (z(n + 1)) with probability p and decreased to
exp (z(n — 1)) with probability ¢:

Mrw (Zv t + 1) - MI’W (Zy t) pez + MI’W (Z, t) qeiz Imperial College
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Pedestrian random walk in discrete time |l

and therefore

M (z;1) = Mpw (z; £ =0) (PeZ + qe_z)t

Explicitly:
t
.t L
Mw (Z; t) _ 2_0 plqt t<i> ez(no+t (r—i))

Note parity conservation for even r and inversion for odd r.
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Evolution of the PDF using CHAPMAN-KOLMOGOROV |

Consider the transition matrix

Pyt (3, ot 1) ! i
11 2, Blx1, 1) = —F——=e P01,
| 4ntD(t) — 1)

known as the all-important WIENER process. With an initial 6
distribution, the PDF is simply

1 _ rx)?

e 4Dt
4Dt

Prw (x, 1) =

Exercise: Show that the Wiener process obeys the
CHAPMAN-KOLMOGOROV equation.
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Master equation approach |

Consider the MARKOV property for the homogeneous process
T(xalx1; 12 —t1) = Py (x2, oy, 11):

T(xslx;;t+ 1) = dez T(x3lx2; T) T (x2]x1; )

wheret=16 —fandt' =1 —1,.
Differentiate with respect to t’ and take t/ — 0:

0T (xslxr; ) = dez (— aolx)lxs — x2) + Wlxshea)) Tt 1)

= dez W (xalx2) T (xalx1; ) — a0 (x3)T (3 xy; T)

imperial College
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Master equation approach Il

assuming lim_,o 07 (x3|x2; T) = —ao(x2)d(x3 — x2) + W(x3|x2).
Why does that make sense? Expand T for small t:

T(x3000; 1) = (1 — ap(x2)T)8 (x5 — x2) + TW(x3]x2) + O(7?)

and by integrating over x;:

ap(xz) = dezz W (x3]x2)

Imperial College
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Master equation approach Il

One thus arrives at
Master equation

0T (x3lxy;T) = dez (W (x3loe2) T (2le1; T) — Woealx3 ) T (x3lx1; 1))

describing the change of transitions from x; to x3 in time.
If the PDF is known at some time 7,

Pilxs i +1) = del T (x3lxi; ©) Py (1, 11)
mriﬂcdlega



Master equation approach IV
one has

0Py (x3, 11 +T)
— [ (Wxlia)1 Lo 4 0) = Wl (2,104 7))
Note: This suggests “Later PDF from earlier ones.” But a master

equation is about transition probabilities, applying to every initial state.
Discrete states n:

0,Pu (1) = Y W(nln")Py (1) = W(n'n)

Imperial College
London
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Master equation approach V

Introduce matrix W:

W = W(n|nl) — O Z W(nllln)

n

(note the negative loss and positive gain) so that
atp(t) = Wnn’p(t)

with formal solution p(7) = exp (tW,,,/) p(0) (which may or may not
exist).

Imperial College
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FOKKER-PLANCK equation |

One particularly important (type of) master equation is the
FOKKER-PLANCK equation.

Write the transition rate function W(x’|x) as w(x, —r).

0P (x3,7) = jdxz (w2, x3 — 32) Py (52, 70) — wlas, 12 — )P (3, 7))

_ Jdr (s — 1 )Py (x5 — 1, 7) — wlxs, — PPy (x3,7)

where r = x3 — x.

Imperial College
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FOKKER-PLANCK equation |

Expand for small r.

w(xzs —r, )Py (x3 —r,t) = w(x3, )Py (x3,T) — 10, (w(xz, r) Py (x3, 7))

+ %ﬂaﬁ (w(xz, 1)P1 (x3,7)) + O(F)

...and use in the master equation:

0:P1 (x3,7) = jdr (wlxs, PPy (63,7) — 13y (wlxs, NPy (13, 7))

-I—%rzai (wlxs, )P (x3, 7)) —w(xs, =) Py (x3,T)

Imperial College
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FOKKER-PLANCK equation I

First and last term cancel on the right hand side. P, (x3, T) can be
taken outside the integrals.
Define

drrw(x, r)

|
B(x) = JdrrZW(x,r)

so that

X

071 (5,7) = 0, (AP (1) + 502 (B (x,7))



FOKKER-PLANCK equation IV

Time evolution of mean:
3, (x) = 0s J dex P (x, 1)
= —dexax (A(X)Pq (x, 7)) + %dexaﬁ (B(x)Pq (x, 7))

Dropping surface terms in an integration by parts:

Note: Expansion to second order is all that is needed!

Imperial College
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LANGEVIN equations |

LANGEVIN equations are a type of stochastic (partial) differential
equation.

They describe the (stochastic) time evolution of an observable (like the
Heisenberg picture) as opposed to its PDF (as in the Schrddinger
picture).

Note: LANGEVIN equations not universally liked by mathematicians
(noise not being a function + Itd/Stratonovich dilemma)

Imperial College
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Random walk — BROWNian motion |

Equation of motion:

where n(z) is white noise:

(n(em(e))y =2r%8(t—1') .

This noise is GAUSSian, has vanishing mean and a 6 correlator, so
constant spectrum. The variance is infinite.
Any integral over n is like a sum of infinitely many random variables,
GAussian because of the CLT (central limit theorem).
Good choice: ]

P ((1)]) o e a2 Jam®?

Imperial College
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Random walk — BROWNian motion I

(probability dependent on square displacement).
Integrate equation of motion:

x(t) = xo + Jt dt'n(t') .

Io
Take averages:

t

(o) = o)+ (| arme ) =0

Io

Imperial College
London



Random walk — BROWNian motion il

and

(x(1)x()) = 3 + <J i rdtén(t{)n(té)>

Iy Io

n 15} t t
= x5 +J dt] J dry (n(t)n(#)) = x5 +J dr{ J dey 21%8(1] — 1})
fo 0 fo

/7 Iy

What is that integral? Specify #, > 7, without loss of generality.
Integral over t; contributes for all ¢{:

(x(t1)x(t2)) = x5 + 27> min(t1, 1)

Imperial College
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Random walk — BROWNian motion IV

General two time correlator:

(x(t1)x(22)) — (x(11)) (x(r2))
= ((x(r1) = (x(11))) (x(r2) — (x(r2))))

= (x()x(r2)),
Equal time correlator, 1, = 1, linear in ¢:
<x(t)2>c =20 .
All higher cumulants of n vanish and so do those of x(z).
imperil Clege
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ORNSTEIN-UHLENBECK process |
ORNSTEIN-UHLENBECK process

The ORNSTEIN-UHLENBECK (O-U) process is the only MARKOVian, sta-
tionary and GAussian process (by DOBB’s theorem). It's equation of
motion is

x(t) =n(e) —vx(1)

Note the spring-like term —yx(¢) with spring constant -y.
Mean position (x) (1) = —y (x) (), SO

(x(1)) (x0) = xoe™ "

with x( the starting point. At stationarity (strictly part of O-U):

2
_ %Y .
iPOU (xO ) — # e or2 Imperial College
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ORNSTEIN-UHLENBECK process |l

Formal solution of O-U:
x(t;x0) = xoe ' + J;dt’ﬂ(t/)e_y(t_t/)
Two point correlation function:
(x(11)x(12)) (x0) = xZe Y (H) 4

t 15
2r? J 1dt{ sztﬁ (1] — t5)e Y (n+n)= (1))
o Jo

where the first term is x3 exp (—y(t1 + 12)) = (x(t1)) (x0) (x(22)) (x0).

Imperial College
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ORNSTEIN-UHLENBECK process |
Choose 1, > 1;:

2
((t)x(12)) (x0) = e Y () 4 % (e—v(zz—n) _ —v(t2+z1))
so that

(x(t1)x(12)).. (x0) = (x(t1)x(22)) (x0) — (x(1)) (x0) (x(£2)) (x0)

]"2
_ (e—v(tz—tl) e—v(t2+t1))
Y

Evaluate for equal times:

(X(l‘)x(t))c (x0) = — (1 — e—2yt) imperial Colege



ORNSTEIN-UHLENBECK process IV

Recover BROWNian motion in the limit y — 0.
To find the full ORNSTEIN-UHLENBECK process (including the
averaging over xo):

(x(n)x(12)), = (x(t1)x(2)) — (x) (11) (x) (11)
= ‘[dxo fPOU (xo) {x(Z)e—'Y(tl—H‘z) + %2 (e—'Y(tz—tl) o e—'y(t2+t1))}

r2

— g Y(l—n)
Y

Imperial College
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Critical dynamics |

In critical systems, time can be regarded as “just another relevant
field”. The free energy follows

(T h,t) = AU (TN, BN, AT
so that, for example,
m(0,0,1) = A 9m(0,0, ;A7)

and therefore .
m(0,0,¢) = vm(0,0,1)

In the following: Relation between HAMILTONian and LANGEVIN,
followed by brief overview. imperial Collge



From HAMILTONian to LANGEVIN equation and back |

Consider the HAMILTONian of
¢* theory

1 1
1] = [l (VO + 5762 + 6% + hx)6(x)
a functional of the order parameter field ¢ (x).

Naive relaxational dynamics minimises HAMILTONian:

: dH
=_-D—
soin ¢*:
& =DV —ro + b’ +) I
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From HAMILTONian to LANGEVIN equation and back |l
Add noise for fluctuations — in total:

$x,1) =D (V2o(x1) = rp(x,1) + 2b(x,1)° + hix.1) ) +n(x,1)
known as model A or GLAUBER dynamics. The noise correlator is
(n(x,Nm(x’, 1)) = 225t —1)8(x — x') .

General form:

: SH([])

¢(x,1) =—D +n(x, 1)

SW(X) | (x)=gpx1)

Note that the HAMILTONian is not differentiated with respect to a time.,.,.
dependent function.
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The PDF of n |

The following tries to develop an understanding of the noise, for the

time being a function only of time ¢ (not of space x).
Consider discrete random variables n; with variance

(nimj) = 2r*8;Ac!
and vanishing mean. Their distribution is a GAUSSian:

At n2ar
4r2
42 ¢

Pim) =

The joint distribution of the independent random variables is

Ar \"? _agin
Pu,.oma) = (W) e 4

g.pruessner@imperial.ac.uk (Imperial) Master, Fokker-Planck and Langevin Barcelona, 04/2013

Imperial College

61/76



The PDF of n Il

and in the continuum limit (without normalisation):

P ([(1)]) o ¢ w2 4@

An average is written
(«) = 02 (i)

where Dn stands for | [ dn; if time is discretised again.
The moment generating function of the noise is (exp ([drnh(z))) with
h(t) a function of time. Completing the squares

—%n(t)z +n(t)h(r) = —% ((£) — 27%A(1))* + T2h(r)?  fgecoeos



The PDF of n Il

allows us to perform the GAussian integrals, so that

<ejdmh(z)> — JarTh(n)?

Differentiating functionally twice with respect to i(z) gives the correlator

62 2

0 qaman\ 9T 2 oael
Sh(t)dh(t!) In <e h > = 5h(1)dh(t!) Jdtr h(t)” =2I=5(t —1t")

reproducing the correlator for n introduced above.
Generalise for space dependence:

P ([T] (X, l‘)]) X e_ﬁ _fdtddxn(x,t)z Imperial College

London
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The PDF of n IV

Consider a LANGEVIN equation of the form
0,¢(x,1) = =FPp] +n(x, 1)
An observable e which is a function of a solution ¢(x, 7) has

expectation value

(o) = [Dwesp (41 [aratx ot — 50

where n = 0, + F[Pp] was used and the integration measure Dn was
replaced by D¢ with a JACOBIian that turns out to be unity. With

dH([W])
—5wu¢n:D’
SW(X) | (x)=p(x)
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The PDF of n V

one arrives at the ONSAGER-MACHLUP functional

(o) = JDq; exp <_$ Jdt’ddx’ [0:b(x", 1) + DI ([ (x', t’)])]2> .

Imperial College
London



A FOKKER-PLANCK equation approach |

From the LANGEVIN equation derived above, a FOKKER-PLANCK
equation can be derived (following Zinn-Justin, 1997). For the time
being, the field ¢ is only time-dependent.
Consider

b(1) = =D 3y | () H(W) +n(0)
Simplify notation: a¢|¢m Hp) = H'(P)
The probability of ¢ to have value ¢ at time ¢ is

Py (bo;t) = (d(d(t) — do))

Imperial College
London
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A FOKKER-PLANCK equation approach Il

The time evolution follows:

0:P¢ (bo;t) = 0:(8(d(t) — do))
0

= <ci>(t)a¢6(d>(t) —¢o)>

In the following, when taking averages (e), the field ¢ is to be
interpreted a functional of n (the convolution of n with the propagator),
or n is to be interpreted a new dummy variable depending on ¢.

Next: 04,0(d — do) = —04,0(d — o), so that

0P (boit) = =g, ((—DH'(G(1)) +n(2)) (b (1) — dbo))

Imperial College
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A FOKKER-PLANCK equation approach Il
The first term is found

(=D (H(1)8(b (1) — o))
= —DJH' (o) (5( () — o))
= —DH'($o)Py (bo; 1) .

the second term is more difficult, (n(#)d(d(z) — do))-
Note:



A FOKKER-PLANCK equation approach IV

and by functional integration by parts (see Zinn-dustin, 1997)
M(1)8(d(1) — do))
— _9r2 o 5 _L / "2
=212 [ D@10~ ) exp (g [ar' o)

1
_ 12 o / 2
=2r JDnexp( ] Jdt n(t") = 5
2

\S)



A FOKKER-PLANCK equation approach V

¢ (1) is a functional of n, as a matter of choice (Ité/Stratonovich
dilemma)

— (1) =5

) 1
on (1) 2

so that

d 1

— Loy, (5(0() — o))



A FOKKER-PLANCK equation approach VI

Collecting terms, the FOKKER-PLANCK equation is found:
3Py (do; 1) = Dy (DH' (b0) Py (Bo; 1)) + T205, Py (doi 1)
At stationarity 9,P¢, (¢o; 1) = 0 and therefore
Ay (DI (d0)Pg (do; 1) + 204, Py (o 1)) =0
one solution is the MAXWELL-BOLTZMANN distribution:
Poistat (P) o e el

easily extended to space dependent HAMILTONians.

Imperial College
London
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The HOHENBERG-HALPERIN models

@ Time-evolution of statistical systems, in particular response to
perturbation, is the subject of non-equilibrium statistical
mechanics.

@ LANGEVIN equations derived from a HAMILTONian and producing
MAXWELL-BOLTZMANN are known as non-equilibrium models
relaxing to equilibrium.

@ LANGEVIN equations which are not based on a HAMILTONian are
generally said to be far-from-equilibrium models.

@ Sometimes the former is referred to equilibrium dynamics, the
latter as non-equilibrium dynamics.

Imperial College
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The HOHENBERG-HALPERIN models

Standard models relaxing to equilibrium

Model A, GLAUBER dynamics

b(x,1) =D (V2d)(x, 1) — rd(x, 1) + g(b(x, 1 + h(x, t)) Fnx,1),

The most basic dynamics of ¢* theory.

Imperial College
London



The HOHENBERG-HALPERIN models

Standard models relaxing to equilibrium

Model B, KAWASAKI dynamics

$(x,1) = —V*D (V2¢(x. 1) —ro(x,1) + %cb(x, 13 + h(x, t)) +(x,1)

with noise ¢ = Vn, so that the right hand side is a gradient.
This model has conserved order parameter.

Imperial College
London



Introduction
Stochastic processes
Random walks
LANGEVIN equations
Critical dynamics

From HAMILTONian to LANGEVIN equation and back
The PDF of n

A FOKKER-PLANCK equation approach

The HOHENBERG-HALPERIN models

The HOHENBERG-HALPERIN models

Standard models relaxing to equilibrium

Models C, D, J, E, G

@ Model C: Conserved energy density p with non-conserved order

parameter

@ Model D: Conserved energy density p with conserved order

parameter

@ Model J: Non-scalar order parameter

@ Model E: Anisotropy

@ Model G: Anisotropy and anti-ferromagnetic coupling constant

Imperial College
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