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Aims
Roots

Introduction
cDFT: What for?

Aims of classical density functional theory
Determine thermodynamic properties: (surface) free energy,
density profiles, phases, potentials, etc. without simulation or
experiments
Determine (few) relevant degrees of freedom
Minimal input (here: direct n-point correlation function)
Controlled approximation scheme (perturbation theory. . . )
Here: Given two crystalline orientations at x = ±∞, what is the
density profile in between? (notice: structured walls!)
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Introduction
cDFT: Based on what?

Theoretical basis of classical density functional theory
Given a stable (metastable?) thermodynamic system . . .
. . . write down a (mock-) free energy (grand potential)
External potential is a unique functional of the density profile
Solve self-consistency equation (i.e. find root, i.e. minimise mock
potential)
Relation to electronic DFT: Ground state wave-function is a
unique functional of density profile
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The key equation of DFT
DFT
Given the full free energy functional F[ρ] of the system, the unique
potential u(~r) (intrinsic chemical potential) at given density profile ρ(~r),
or one possible solution ρ(~r) at given ũ(~r) is found by minimising

W̃[ρ, ũ] = F[ρ] −

∫
ddr ũ(~r)ρ(~r)

with respect to ρ (i.e. δ
δρW̃ ≡ 0) which is equivalent to solving

u(~r)[ρ] = ũ(~r)

plus technicalities (LHS: equilibrium potential, RHS: imposed
potential). If ρ is the equilibrium profile for ũ then W̃[ρ, ũ] is the grand
potential.
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Flavours of DFT

Impose that the free energy has square gradient form
Density expansion (expansion about bulk; HNC [here] and PY
closure)
LDA: F =

∫
ddr f (ρ)

Expansion about bulk; van der Waals
WDA: F = . . . +

∫
ddrρ(~r)f (~r)[ρ] (Tarazona Mark I, Mark II,

Curtin-Ashcroft, . . . )
Rosenfeld’s fundamental-measure theory
. . .
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General considerations I

Hamiltonian of an N-particle system:

HN = VN(~r1, . . . ,~rN) +

N∑
i

(
p2

i

2m
+ U(ri)

)
Grand canonical partition sum:

Z =
∑

N

1
N!

eβµNΛ̃−Nd
∫

ddp1ddx1 . . .

∫
ddpNddxN e−βHN

= Tr
1

N!
eβµNΛ̃−Nde−βHN

where Λ̃ is the phase space volume element. Integrate out
(Gaussian) pi’s (. . .

√
2mπ/β) and absorb into Λ̃d → Λ.
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General considerations II

Introduce density operator:

ρ̂N(~r;~r1, . . .~rN) =

N∑
i

δ(~r −~ri)

and write
∑

i U(ri) − µN =
∫

ddrρ̂N(U(~r) − µ).
Dimensionless (intrinsic chemical) potential u(~r) = βµ − βU(~r) so
that

eβµNe−β
∑

i U(~ri) = e
∫

ddrρ̂N(~r;...)u(~r)

Grand canonical partition sum now

Z = Tr
1

N!
Λ−Ne−βVN(...)e

∫
ddrρ̂Nu
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General considerations III
Grand potential W = − ln Z

so that
ρ(~r) = 〈ρ̂(~r; . . .)〉 = −

δ

δu(~r)
W

and 〈N〉 = −β−1 d
dµW

Grand potential is a functional of the external potential,
W = W(β, [u(~r)]). Its Legendre transform

F = F(β, [ρ(~r)]) = W +

∫
ddr u(~r)ρ(~r)

is the free energy.
Straight forward to show that

δ

δρ(~r)
F = u(~r)

G. Pruessner and A. Sutton (Imperial) Classical Density Functional Theory INCEMS M12, 08/2006 9 / 16



Introduction
cDFT in general

Application to interfaces

General considerations
Ideal System
Perturbation Theory

Ideal System I

Ideal system: VN ≡ 0, so partition sum becomes

Zid = Tr
1

N!
Λ−N exp

(∫
ddr ρ̂N(~r; . . .) u(~r)

)
Because of the missing interaction, the integral factorises and
becomes just (∫

ddr eu(~r)
)N

so that

Zid =
∑

N

1
N!

Λ−N
(∫

ddreu(~r)
)N

= exp
(

Λ−1
∫

ddr eu(~r)
)
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Ideal System II

From Z = exp(Λ−1
∫

ddr exp(u)) we have the grand potential:

Wid[u(~r)] = −Λ−1
∫

ddr exp(u(~r))

and from ρ = − δ
δu W we have the barometric formula:

ρ(~r) = Λ−1 exp(u(~r))

Using this relation between ρ and u one can perform the Legendre
transform (F = W +

∫
dr ρu) to find

Fid[ρ(~r)] =

∫
ddr (ln(ρΛ) − 1) ρ
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Ideal System III
Now define the excess free energy Φ for an interacting system as

Φ[ρ(~r)] = Fid[ρ(~r)] − F[ρ(~r)]

where Fid[ρ(~r)] is the free energy for a given density profile,
assuming that the system is ideal.
Use δ

δρFid = ln(ρΛ) and δ
δρF = u to show that

C(~r) ≡ δ

δρ(~r)
Φ = ln(ρ(~r)Λ) − u(~r)

which is the effective one particle potential: It is the additional
external potential needed in an ideal system, for it to “mimic” a
particular density profile ρ found in an interacting system

ρ(~r) = Λ−1eu(~r)+C(~r)
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Perturbation Theory: cDFT

Standard technique in cDFT: Write down a perturbative expansion of
the effective one particle potential about some reference system:

C(~r) = C(1)
0 (~r) +

∫
ddr1C(2)

0 (~r,~r1) (ρ(~r1) − ρ0(~r1)) + . . .

which, together with

C(~r) = ln(ρ(~r)Λ) − u(~r)

immediately gives rise to a self-consistency equation.
Connection to the real world via the n-point direct correlation functions
C(n)

0 (~r1, . . . ,~rn) of the reference system.

G. Pruessner and A. Sutton (Imperial) Classical Density Functional Theory INCEMS M12, 08/2006 11 / 16



Introduction
cDFT in general

Application to interfaces

cDFT for interfaces: Haymet and Oxtoby
Application to IGFs

Outline

1 Introduction
Aims
Roots

2 cDFT in general
General considerations
Ideal System
Perturbation Theory

3 Application to interfaces
cDFT for interfaces: Haymet and Oxtoby
Application to IGFs

G. Pruessner and A. Sutton (Imperial) Classical Density Functional Theory INCEMS M12, 08/2006 12 / 16



Introduction
cDFT in general

Application to interfaces

cDFT for interfaces: Haymet and Oxtoby
Application to IGFs

cDFT for interfaces
Haymet and Oxtoby I — The uniform system

Consider a continuous family (index~s) of uniform (uniform Fourier
coefficient, i.e. periodic) systems

ρ(~r;~s) = ρ0

(
1 +

∑
n

µn(~s)eı~kn~r

)
Every member has its own external potential

U(~r;~s) =
∑

n

Un(~s)eı~kn~r

Expand uniform systems about the bulk liquid with bulk density ρ0
one particle potential Cl and chemical potential µ, so

Cu(~r;~s) = Cl +

∫
ddr ′ C(2)(~r −~r ′)(ρ(~r ′;~s) − ρ0)

with u(~r;~s) = ln(ρ(~r;~s)Λ) − Cu(~r;~s).
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cDFT for interfaces
Haymet and Oxtoby I — Potential

Now use the infinite bulk liquid

βµ = ln(ρ0Λ) − Cl

to derive

The potential

−βU(~r;~s) = ln(ρ(~r;~s)/ρ0) −

∫
ddr ′ C(2)(~r −~r ′)

(
ρ(~r ′;~s) − ρ0

)
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cDFT for interfaces
Haymet and Oxtoby II — The interface

Impose that the family collectively represents a system with
varying density profile – the interface:

ρi(~r) = ρ(~r;~r) = ρ0

(
1 +

∑
n

µn(~r)eı~kn~r

)
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cDFT for interfaces
Haymet and Oxtoby II — The interface

Impose that the family collectively represents a system with
varying density profile – the interface:

ρi(~r) = ρ(~r;~r) = ρ0

(
1 +

∑
n

µn(~r)eı~kn~r

)
What is actually imposed? No potential for interface:

βµ = ln(ρi(~r)Λ) − Ci(~r)

with the effective one particle potential to be expanded about the
infinite liquid: Ci(~r) = Cl +

∫
ddr ′ C(2)(~r −~r ′)(ρi(~r ′) − ρ0)

Resulting relation between Ci and Cu:

Ci(~r) − Cu(~r;~s) =

∫
ddr ′C(2)(~r −~r ′)(ρ(~r ′;~r ′) − ρ(~r ′;~s))
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cDFT for interfaces
Haymet and Oxtoby III — Equation of motion

Relation between Ci and Cu must be consistent with

βµ = ln(ρ(~r;~r)Λ) − Ci(~r) (1)
βµ − βU(~r;~s) = ln(ρ(~r;~s)Λ) − Cu(~r) (2)

Evaluate at~s = ~r

−βU(~r;~r) =

∫
ddr ′ C(2)(~r −~r ′)(ρ(~r ′;~r ′) − ρ(~r ′;~r))

This is the external potential to be applied in the uniform system,
so that the resulting family of density profiles gives rise to an
interface profile with vanishing potential.
Note: if ρ(~r;~s) ≡ ρ∗(~r) independent of~s, then all uniform systems
are the same, no potential, identical to the interface.
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cDFT for interfaces
Haymet and Oxtoby III — Equation of motion

Self-consistency above fixes U only at~s = ~r.
Make a convenient choice:

The equation of motion

−βU(~r;~s) =

∫
ddr ′ C(2)(~r −~r ′)

(
ρ(~r ′;~r ′ +~s −~r) − ρ(~r ′;~s)

)
Advantage: Taylor-expand bracket and plug in Fourier-sum for
ρ(~r;~s). . .
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cDFT for interfaces
Haymet and Oxtoby IV — The central result

Equation of motion for an interface across z:

−βUn(z) = −ρ0V
{

µ ′
n(z)ıC

(2)′(~kn) +
1
2
µ ′′

n (z)C(2)′′(~kn) + . . .

}
Potential:

−βUn(z) = V−1
∫

V
ddr e−ı~kn~r ln

(
1 +

∑
n

µn(z)eı~kn~r

)
−ρ0VC(2)(~kn)µn(z)
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Application to IGFs
Apply appropriate boundary conditions for µn(z → ±∞)

Find appropriate parametrisation capable of capturing both sides
of the interface
Find direct correlation function for bulk-liquid phase
Solve self-consistency (i.e. integrate equation of motion) . . . Done!
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Problems with O&H’s original approach
Parametrisation

Fourier sum makes physical sense and makes the convolution
factorise
Parametrisation must be capable to capture different translations
and orientations on both sides (Fourier transform breaks
symmetry)
Parametrisation must make sure that a stable, uniform
configuration is equally stable in any orientation and translation
All possible degrees of freedom should (but cannot) be accessible
– even those that break symmetry (numerical inaccuracies help)
Solid phase not necessarily stable (reference system: liquid)
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What to do next?

Find a parametrisation that keeps the solid stable in any
translation and orientation
Expand about a (stable) solid, i.e. take the direct correlation
function from the stable solid
C(2)′ and C(2)′′ à la Debye Waller
Concentrate on gaps and Σ-boundaries
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