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Abstract

We consider nonwandering dynamics near heteroclinic cycles between two hyperbolic
equilibria. The constituting heteroclinic connections are assumed to be such that one of
them is transverse and isolated. Such heteroclinic cycles are associated with the termina-
tion of a branch of homoclinic solutions, and called T-points in this context. We study
codimension-two T-points and their unfoldings in R

n. In our consideration we distinguish
between cases with real and complex leading eigenvalues of the equilibria. In doing so we
establish Lin’s method as a unified approach to (re)gain and extend results of Bykov’s
seminal studies and related works. To a large extent our approach reduces the study to
the discussion of intersections of lines and spirals in the plane.

1



Contents

1 Introduction 4

2 Statement of the main results 5

3 Lin’s method 13

3.1 Splitting of the stable and unstable Manifolds . . . . . . . . . . . . . . . . . . . 14

3.2 Construction of Lin orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Bifurcation Equations 20

4.1 Real leading eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Complex leading eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Dynamics in the case of real eigenvalues – (RR) 31

5.1 Proof of Theorem 2.1(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 1-periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2 k-periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Proof of Theorem 2.1(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Γ nontwisted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Γ twisted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Proof of Theorem 2.1(iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Γ nontwisted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Γ twisted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 k-(2,1) heteroclinic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.2 k-(1,2) heteroclinic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Dynamics in the presence of complex eigenvalues 42

6.1 Proof of Theorem 2.3 – the eigenvalue case (RC) . . . . . . . . . . . . . . . . . . 43

6.1.1 The set SN
µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.2 Shift dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Proof of Theorem 2.3 – the eigenvalue case (CC) . . . . . . . . . . . . . . . . . . 49

6.2.1 Analysis of spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.2 Nonwandering dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2



6.4 Proof of Lemma 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1 l-(1,2) heteroclinic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.2 Homoclinic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3



1 Introduction

Homoclinic bifurcations lie at the heart of our understanding of complicated (chaotic) recurrent
behaviour in dynamical systems. The history goes back to Poincaré, with major subsequent
contributions by the schools of Andronov, Shilnikov, Smale and Palis. The successes of the
latter schools has been founded on a combination of analytical and geometrical tools; typical
for the field of dynamical systems.

p2

W s(p2)

Γ1

Γ2

W u(p1)

p1

Figure 1: Sketch of an example of a T-point heteroclinic cycle in R
3 between two saddle-foci,

with robust heteroclinic orbit Γ2 and non-robust heteroclinic orbit Γ1.

We consider a parameter family of vector fields f : Rn × R
2 → R

n (n ≥ 3), f smooth:

ẋ = f(x, µ). (1.1)

We study the nonwandering dynamics in the neighbourhood of a T-point [15]: a heteroclinic
cycle between two hyperbolic equilibria of saddle type p1 and p2, where one of the connections is
transverse and isolated. See Figure 1 for a sketch of a T-point heteroclinic cycle in R

3. T-points
have been found to appear in many applications of interest, ranging from the Lorenz [15] and
Kuramoto-Sivashinsky [25] systems, to electronic oscillators [1, 2, 10, 11, 12], semiconductor
lasers [16, 38], magnetoconvection [32] and travelling waves in reaction-diffusion dynamics [24,
36, 31, 18].

We identify three cases according to the nature of the eigenvalue spectrum at each of the two
saddle points p1 and p2. The three cases correspond to certain leading eigenvalues being both
real (RR), one real and one complex (RC), or both complex (CC). For a precise description
of the setting and assumptions see section 2. We summarize our findings as follows:

• Case (RR): Under open conditions on the eigenvalues, there exist open sets in parameter
space for which there exists periodic orbits close to the heteroclinic cycle. In addition,
there exist two one-parameter families of homoclinic orbits to each of the saddle points
p1 and p2.
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See Theorem 2.1 and Lemma 2.2 for precise statements and Figure 2 for bifurcation
diagrams.

• Case (RC) and (CC): At the bifurcation point µ = 0 and for each N ≥ 2, there
exists an invariant set SN

0 close to the heteroclinic cycle on which the first return map is
topologically conjugated to a full shift on N symbols. For any fixed N ≥ 2, the invariant
set SN

µ persists for |µ| sufficiently small.

In addition, there exist infinitely many transversal and non-transversal heteroclinic orbits
connecting the saddle points p1 and p2 in a neighbourhood of µ = 0, as well as well as
infinitely many one-parameter families of homoclinic orbits to each of the saddle points.

For full statements of the results see Theorem 2.3 and Lemmas 2.4, 2.5 and Figure 3 for
bifurcation diagrams.

The dynamics near T-points has been studied previously by Bykov [3, 4, 5], Glendinning and
Sparrow [15] and Kokubu [23, 22]. See also the surveys by Homburg and Sandstede [19], Turaev
et al. [35] and Fiedler [13]. T-points in the context of reversible systems have been discussed
by Lamb et. al. [25]. These studies all consider dynamics in R

3 using a geometric return map
approach, and their results reflect the description of types of nonwandering dynamics described
above.

Further related studies concerning T-points can be found in [27] and [29], where inclination
flips were considered in this context. See also [30], where the asymptotic behaviour of typical
trajectories near a T-point cycle is studied for C1 vector fields.

The main aim of this paper is to present a comprehensive study of dynamics near T-points, in-
cluding detailed proofs of all results, employing a unified functional-analytic approach, without
making any assumption on the dimension of the phase space. In the process, we recover and
generalise to higher dimensional settings all previously reported results for T-points in R

3. In
addition, we reveal the existence of richer dynamics in the (RC) and (CC) cases. A detailed
discussion of our results is contained in section 2.

The functional analytic approach we follow is commonly referred to as Lin’s method, after
the seminal paper by Lin [26], and employs a reduction on an appropriate Banach space of
piecewise continuous functions approximating the initial heteroclinic cycle to yield bifurcation
equations whose solutions represent orbits of the nonwandering set. The development of such
an approach is typical for the school of Hale, and is in contrast to the analysis contained in
previous T-point studies, which relies on the construction of a first return map. Our choice of
analytical framework is motivated by the fact that Lin’s method provides a unified approach
to study global bifurcations in arbitrary dimension, and has been shown to extend to a larger
class of settings, such as delay and advance-delay equations [14, 26].

2 Statement of the main results

Without loss, we assume that the cycle exists at µ = 0 and that the hyperbolic equilibria do
not change position while µ is close to 0. Throughout this paper we denote the stable manifold
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of the equilibrium pi at parameter(s) µ by W s(pi, µ). For brevity, we also denote W s(pi, 0)
by W s(pi). In the same manner we use W u(pi, µ) and W u(pi) to denote the corresponding
unstable manifolds.

Let qj , j ∈ {1, 2}, denote the heteroclinic solution connecting the equilibria pj+1 and pj ;
throughout the term “j + 1” is computed modulo 2,

lim
t→−∞

qj(t) = pj+1, lim
t→∞

qj(t) = pj.

The corresponding orbits we denote by Γj, Γj = {qj(t) | t ∈ R}. The corresponding heteroclinic
cycle is a T-point if Γ2 is an isolated transversal intersection and Γ1 is nondegenerate. We
assume the following:

(H 1) (i) W s(p2) ⋔q2(0) W
u(p1) and dimTq2(0)W

s(p2) + dimTq2(0)W
u(p1) = n+1.

(ii) Tq1(0)W
s(p1) ∩ Tq1(0)W

u(p2) = span {f(q1(0), 0)}.

Figure 1 displays one possible scenario in R
3. Note that due to this assumption the hyperbolic

equilibria p1 and p2 have different saddle point indices (dimensions of the unstable manifolds)
– more precisely

ind p1 = ind p2 + 1.

The above conditions specify the simplest case of a heteroclinic cycle between two fixed points
where one heteroclinic orbit is structurally stable and the other is not.

The nonrobust connection Γ1 has codimension two in general. In order to make this precise we
first discuss the persistence of the heteroclinic orbit Γ1. Let Z be the two-dimensional subspace
which is perpendicular to Tq1(0)W

s(p1) + Tq1(0)W
u(p2). Similar to [19, Lemma 2.1] the distance

between W s(p1, µ) and W u(p2, µ) can be measured in this Z-direction (cf. also Lemma 3.1
below). Let ξ∞(µ) denote this distance. The following Hypothesis (H 2) is a transversality
condition which ensures that these manifolds split with positive speed by varying µ.

(H 2) Dξ∞(0) is non-singular.

This justifies our setting µ ∈ R
2, µ := (µ1, µ2). We make some further hypotheses ensuring

that the T-point has codimension two:

(H 3) Γi 6⊂W ss(pi), Γi 6⊂W uu(pi+1), i = 1, 2.

Here W ss(p) and W uu(p) denotes the strong stable manifold and the strong unstable manifold,
respectively, of the equilibrium p. This is a standard non-orbit flip condition. Further we
assume a slight modification of the standard non-inclination flip condition for Γ1. To this
end we introduce the local extended-unstable manifold W eu(p2) of p2 (this is an invariant
manifold whose tangent space at p2 comprises the unstable and weakest stable directions), and
correspondingly the extended-stable manifold W es(p1) of p1. Note that these manifolds are not
uniquely defined. However their tangent spaces along q1 are well defined. With this notation
the non-inclination flip condition reads

(H 4) W eu(p2) ⋔q1(0) W
es(p1).
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For each fixed point pi, we call the eigenvalue which is the closest one to the imaginary axis the
leading (un)stable eigenvalue. Similarly we define the leading strong (un)stable eigenvalues.

We further assume:

(H 5) Both the leading unstable eigenvalue λu1 of p1 and the leading stable eigenvalue
λs2 of p2 are simple.

We refer again to Figure 1 for a visualisation of the situation in R
3 in case the addressed

eigenvalues λu1 and λs2 are complex.

In our analysis we distinguish three cases:

(RR) Both λu1(µ) and λ
s
2(µ) are real.

(RC) One of λu1(µ), λ
s
2(µ) is real and the other is complex,

(CC) Both λu1(µ) and λ
s
2(µ) are complex,

Before we describe the nearby dynamics of the heteroclinic cycle in each case we define some
terminology. For that we introduce hyperplanes Σj which are transversal to Γj at qj(0) (which
may be located “in the middle” of Γj), j = 1, 2. Let U be a sufficiently small neighbourhood
of the primary heteroclinic cycle. All orbits which we describe in the following are assumed to
be subsets of U .

• A periodic orbit is called k-periodic, and a homoclinic orbit (to p1 or p2) is called k-
homoclinic, if it passes through Σ1 and Σ2 k times in each case.

• A heteroclinic orbit connecting pi to pj (in forward time) is called an (i,j)-heteroclinic or-
bit. An (i,j)-heteroclinic orbit that passes k times through Σj is called a k-(i,j)-heteroclinic
orbit.

First we describe the dynamics in the (RR) case. It turns out that the dynamics depends on the
leading eigenvalues of the single equilibrium. More precisely we have to distinguish whether the
corresponding eigenvectors point in direction of Γ2 or not. The case where these eigenvectors do
so is described in Theorem 2.1(i). The other possibilities are treated in Theorem 2.1(ii) and (iii).
For these cases we need to make the following further assumptions. To this end we denote the
leading strong stable eigenvalue of p2 by λss2 and the leading strong unstable eigenvalue of p1
by λuu1 .

(H 6) Both λs1 and λss2 are real and simple.

(H 7) Both λu2 and λuu1 are real and simple.

The dynamics depends on the global behaviour of W s(p2) and W
u(p1). Following these mani-

folds along the primary cycle Γ we find that both manifolds are either nontwisted or twisted –
in other words, topologically they are either orientable or nonorientable. For a more detailed
definition we refer to [6], where global (un)stable manifolds along a homoclinic orbit are con-
sidered. Based on these considerations we present a definition of twisted or nontwisted T-point
cycles related to the context of Lin’s method at the beginning of Section 5.

Our main result for the (RR) case under consideration is the following.
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Theorem 2.1. Consider system (1.1). Assume the case (RR) and Hypotheses (H1)–(H 7). For
the bifurcations of periodic and 1-homoclinic orbits the following cases have to be distinguished:

(i) Let λu1(µ) < |λs1(µ)|, |λ
s
2(µ)| < λu2(µ), i.e. λu1(µ) and λs2(µ) are the leading eigenvalues

of p1 and p2, respectively. Then the T-point cycle Γ may be twisted or nontwisted. In
either case there exists an open wedge Q1 in parameter space such that for µ ∈ Q1 there
exists one 1-periodic orbit. These bifurcate from 1-homoclinic orbits to either p1 or p2, cf.
bifurcation diagram in Figure 2(a).

(ii) Let |λs1(µ)| < λu1(µ), |λ
s
2(µ)| < λu2(µ), i.e. λ

s
1(µ) and λ

s
2(µ) are the leading eigenvalues of

p1 and p2, respectively.

(a) If Γ is nontwisted, then there exist open wedges Q1 and Q2 in parameter space such that
for µ ∈ Q1 there exists one 1-periodic orbit. For µ ∈ Q2 there exist two 1-periodic orbits.
Ssn is a saddle-node curve for 1-periodic orbits. The relative position of the wedges Q1

and Q2 and the saddle-node curve Ssn is depicted in the left panel of Figure 2(b).

(b) If Γ is twisted, then there exist open wedges Q1 and Q2 in parameter space such that
for µ ∈ Q1 there exists one 1-periodic orbit. In µ ∈ Q2 there also exists one 2-periodic
orbit. Spd is a period-doubling curve; S2-hom-p1 is a curve of 2-homoclinic orbits to p1.
The relative position of the wedges Q1 and Q

2 and the curves Spd and S2-hom-p1 is depicted
in the right panel of Figure 2(b).

(iii) Let |λs1(µ)| < λu1(µ), λ
u
2(µ) < |λs2(µ)|, i.e. λ

s
1(µ) and λ

u
2(µ) are the leading eigenvalues.

(a) If Γ is nontwisted, then there exists an open wedge Q1 and two open wedges Q2 in pa-
rameter space such that for µ ∈ Q1 there exists one 1-periodic orbit. For µ ∈ Q2 there
exist two 1-periodic orbits. Ssn are saddle-node curves for 1-periodic orbits. The relative
position of the wedges Q1 and Q2 and the saddle-node curves Ssn are depicted in the left
panel of Figure 2(c).

(b) If Γ is twisted, then there exists an open wedge Q1 and and two open wedges Q2 in
parameter space such that for µ ∈ Q1 there exists one 1-periodic orbit. For µ ∈ Q2 there
also exists one 2-periodic orbit. Spd are period-doubling curves; S2-hom-p1 is a curve of
2-homoclinic orbits to p1, S2-hom-p2 is a curve of 2-homoclinic orbits to p2. The relative
positions of the wedges Q1 and Q2 and the curves Spd, S2-hom-p1 and S2-hom-p2 are depicted
in the right panel of Figure 2(c).

This theorem generalizes results of [3], cf. also [19, Theorem 5.31], to higher phase space
dimensions. We note that Hypotheses (H 6) and (H7) are automatically satisfied if n = 3, i.e.
x ∈ R

3.

The actual proof of Theorem 2.1 is given in Sections 5.1–5.3. In these sections we discuss the
corresponding bifurcation equations. However, Lemma 4.4 is the core element, where we pro-
vide the necessary estimate for the bifurcation equations. In its proof we assume the Hypothe-
ses (H 1)–(H7). Actually, Theorem 2.1(i) and (ii) require only somewhat weaker estimates. So,
for Theorem 2.1(i) Hypotheses (H 6)–(H7) are not necessary. Omitting these hypotheses the
conditions in Theorem 2.1(i) read λu1(µ) < |Reλs1(µ)|, |λ

s
2(µ)| < Reλu2(µ). Theorem 2.1(ii) can

be proved only assuming Hypotheses (H 1)–(H6). Omitting (H7) the condition of this part of
the theorem reads |λs1(µ)| < λu1(µ), |λ

s
2(µ)| < Reλu2(µ). Theorem 2.1(ii) is true in equal mea-
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(b) Statement of Theorem 2.1(ii). Left panel: Γ nontwisted; right panel: Γ twisted.
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(c) Statement of Theorem 2.1(iii). Left panel: Γ nontwisted; right panel: Γ twisted.

Figure 2: The bifurcation diagrams for Theorem 2.1. For µ ∈ Q1 there exists one 1-periodic
orbit, for µ ∈ Q2 there exist two 1-periodic orbits, and for µ ∈ Q2 there is one additional
2-periodic orbit. Spd is a saddle-node curve for 1-periodic orbits, Spd is a period-doubling curve
and S2-hom-pi is a curve of 2-homoclinic orbits to pi.

sure under the assumption that λu1(µ) and λu2(µ) are the leading eigenvalues, and that (H 7)
holds true. Note that in this case the wedges Q2 and Q2 in Figure 2(b) have to be placed
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correspondingly.

The existence of one 1-periodic in Q1 in each case can be explained simply by considering
intersections of lines in the plane. In Remark 5.1 we give an idea how this can be done and
how these lines correspond to truncated bifurcation equations.

Lemma 2.2. Consider system (1.1). Assume the case (RR) and Hypotheses (H 1)–(H7).

(i) There are no k-(2,1)-heteroclinic orbits for each k ≥ 2, k ∈ N, for all |µ| sufficiently
small.

(ii) Assume the eigenvalue conditions of Theorem 2.1(i), λu1(µ) < |λs1(µ)|, |λ
s
2(µ)| < λu2(µ).

At µ = 0 there are no k-(1,2)-heteroclinic orbits for k ≥ 2. But for each µ ∈ Q1 there
exists a k-(1,2)-heteroclinic orbit for k ≥ 2.

The proof of Lemma 2.2 is given in Section 5.4. We remark that Hypothesis (H 2) which
prescribes that the stable manifold of p1 and the unstable manifold of p2 split with positive
speed, implies that there exists a 1-(2,1)-heteroclinic orbit (the one which belongs to the original
T-point cycle) only at µ = 0 . In R

3 it is clear that there is at most one k-(2,1)-heteroclinic
orbit for each parameter value, because in this case the stable manifold of p1 is one-dimensional.

Next we turn to the complex eigenvalue cases. Here we mainly focus on the existence of shift
dynamics in the neighborhood of Γ. Our main result is the following.

Theorem 2.3. Consider the system (1.1) with the eigenvalue conditions (RC) or (CC) under
Hypotheses (H 1)–(H5). In the case (RC) let λu1(µ) be real, and let λs2(µ) = −ρ2(µ) + iφ2(µ)
be complex, and additionally assume Hypothesis (H 7). Then the following is true (typically in
the case (CC)):

(i) When µ = 0, for each N ≥ 2 there exists a set SN
0 ⊂ Σ1 which is invariant under the first-

return-map Π : Σ1 → Σ1 (defined by the flow), and (SN
0 ,Π) is topologically conjugated to

a full shift on N symbols.

(ii) Moreover, for fixed N ≥ 2 there exists µN > 0, such that if |µ| < µN there is a set SN
µ such

that (SN
µ ,Π(µ)) is topologically conjugated to a full shift on N symbols, and SN

µ → SN
0 in

the Hausdorff-metric as µ→ 0.

The statements in (RC) case remain true if λs2(µ) is real and λu1(µ) is complex and Hypothe-
sis (H 6) instead of (H 7) is assumed. This theorem covers results of Bykov [3] and Glendinning
and Sparrow [15] concerning shift dynamics in the (RC) case, cf. also [19, Theorem 5.32]. In
contrast to these works, our statement is not restricted to n = 3. Further we prove the existence
of shifts on more than two symbols.

The proof of Theorem 2.3, which is also based on Lin’s method, is given in Section 6.1 for the
(RC) case and Section 6.2 for the (CC) case. The proof relies on the existence of infinitely
many transversal intersections (for µ = 0) of a spiral and a line or two spirals, cf. Figure 11.
These geometrical objects correspond again to a truncated bifurcation equation. The addressed
transversal intersections correspond to 1-periodic orbits. Roughly speaking these 1-periodic
orbits serve as the symbols that arise in the formulation of the theorem.
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In our analysis we exploit that the “angular degree” of the transversal intersections is bounded
away from zero. In analytical terms this is described in the proof of Lemma 6.2 for the (RC)
case and in Lemma 6.5 for the (CC) case.

The phrase “typically” in the (CC) case refers to an open and dense set D of vector fields which
is discussed more closely in Section 6.2 as well. Geometrically, the 1-periodic orbits correspond
to transversal intersections of two spirals, cf. right panel in Figure 11. Those intersections serve
as symbols in the addressed shift dynamics.

The dynamics referred to in Theorem 2.3 does not concern l-homoclinic or l-heteroclinic orbits.

Lemma 2.4. Assume the eigenvalue case (RC) or (CC), and let f(·, µ)) be a two parameter
family of vector fields for which Theorem 2.3 holds. Then for each l ≥ 2, l ∈ N there is a
countable set Tl of parameter values accumulating at µ = 0, for which there exists a l-(2,1)-
heteroclinic orbit.

In other words the lemma states that for each µ ∈ Tl there is a T-point cycle built up by the
l-(2,1)-heteroclinic orbit and Γ2 (see Figure 3). For n = 3 this confirms results by Bykov [3]
and Glendinning and Sparrow [15], cf. also [19, Theorem 5.32. Figure 5.16(i)]. The proof of
Lemma 2.4 is given in Section 6.3.

Lemma 2.5. Assume the eigenvalue case (RC) or (CC), and let f(·, µ)) be a two parameter
family of vector fields for which Theorem 2.3 holds. Then we have the following:

(i) At µ = 0 there exist a countable infinity of l-(1,2)-heteroclinic orbits for each l ≥ 2.
Moreover, for fixed l, q1(0) is an accumulation point of the intersections of the l-(1,2)-
heteroclinic orbits with Σ1. Each such l-(1,2)-heteroclinic orbit can be continued for µ 6= 0
sufficiently small, but for fixed µ 6= 0 and fixed l only finitely many l-(1,2)-heteroclinic
orbits might exist.

(ii) There are curves Lhom
1,j , j ∈ {1, 2}, in µ-space for which each point on these curves there

exists a 1-homoclinic orbit to the fixed point pj. The curve Lhom
1,1 is either a logarithmic

spiral centred at (0, 0), if λs2 is complex, or a line terminating at (0, 0), if λs2 is real. An
analogous statement applies for Lhom

1,2 with λs2 replaced by λu1 accordingly.

For each l ≥ 2, l ∈ N, and each j ∈ {1, 2}, there are countably many curves Lhom
l,j in

µ-space for which each point on these curves there exists a l-homoclinic orbit to the fixed
point pj. The curves Lhom

l,1 are either logarithmic spirals centred at (0, 0), if λs2 is complex,

or lines terminating at (0, 0), if λs2 is real. An analogous statement applies for Lhom
1,2 with

λs2 replaced by λu1 accordingly.

Along Lhom
l,j , towards (0, 0), the homoclinic orbits approach heteroclinic cycles built up by

Γ1 and the l-(1,2)-heteroclinic orbits stated in (i).

The proof of Lemma 2.5 is given in Section 6.4. See again Figure 3 for schematic bifurcation
diagrams.
Statement (i) of the lemma can also be read in terms of intersections of the corresponding
unstable and stable manifolds W u(p1) and W

s(p2). In the (CC) case this confirms results by
Bykov [4, 5] cf. also [19, Theorem 5.33].
For l = 1 the statement (ii) of the lemma can be found in Bykov [3, 4, 5] or Glendinning and
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(RC) (CC)

T2

T2
Lhom

1,2Lhom
2,2

Lhom
3,2

Lhom
2,1

Lhom
1,1 Lhom

1,1

Lhom
2,1

Lhom
2,2

Lhom
1,2

µ2

µ1

Figure 3: Schematic bifurcation diagrams showing a small part of the dynamics found in
Lemmas 2.4 and 2.5. The (RC) case is shown for λu1 and λs2 complex. For µ ∈ Lhom

l,j there exists
a l-homoclinic orbit to pj , and for µ ∈ Tl there exists a T-point cycle consisting of an l-(2,1)
heteroclinic orbit and Γ2. One may think of the bifurcation diagram in the (CC) case as being
obtained from the one in the (RC) case by replacing the lines Lhom

l,2 by corresponding spirals
which may have arbitrary orientation, similarly for the points Tl.
A consequence of the proof is that the curves belonging to each family Lhom

l,j , for fixed (l, j),
have shortening length.
Note that as each point in the sets Tl corresponds to a distinct T-point, the bifurcation diagram
in each case will be reproduced at these points and therefore the full bifurcation diagrams show
some self-similarity.
Finally we note that the above diagrams are purely schematic, and the precise arrangement of
the curves Lhom

l,j may depend on details.

Sparrow [15] (only (RC) case) cf. also [19, Theorems 5.32 and 5.33, Figure 5.16]. Unlike these
theorems we do not consider the character of possible intersections of these lines.
Bifurcation diagrams may also be found in [13] and [19]. The drawings presented in [19,
Figure 5.16] can be seen as a first approximation of bifurcation diagrams. In [13], based on
Bykovs work, a more detailed bifurcation diagram for the (RC) case is given. This diagram
is valid under more restrictive eigenvalue conditions – it is assumed that n = 3, p2 is a real
saddle with leading eigenvalue λs2 and that λs1 is the leading eigenvalue of the focus p1. This
bifurcation diagram also shows “our” curves Lhom

2,1 . Moreover it contains T-points which are
related to 2-(1,2)-heteroclinic orbits (cf. Lemma 2.4 and the subsequent comment). The spirals
of corresponding homoclinic orbits are also drawn attached to those T-points. Altogether this
diagram conveys a kind of self-similarity in the bifurcation diagram. However, the statements in
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Lemma 2.4 and Lemma 2.5 reveal that a complete bifurcation diagram is much more involved.
Further, we emphasise that we do not make use of the restrictive eigenvalue condition of [13].

Finally we mention related works by Kokubu [22, 23]. There also the (RC) case has been
considered, allowing also that λu1 is the leading eigenvalune of the focus p1. A bifurcation
diagram indicating the 1-homoclinic orbits is given.

We now outline the organisation of this paper. We recall the essentials of Lin’s method in
Section 3. The problem of finding particular orbits in the local nonwandering set reduces to
that of solving a (infinite) set of bifurcation equations.

In Section 4 we derive an expression for the ith jump of a Lin orbit, depending on µ and the
sequence of transition times ω. In particular we determine their leading order terms.

As previously mentioned, Sections 5 and 6 contain the actual proofs of our statements concern-
ing the dynamics near T-points.

3 Lin’s method

In this section we outline Lin’s method, and explain the properties of Lin orbits corresponding
to the system under consideration. Lin’s method centres around the existence of ‘piecewise
continuous orbits’ X of (1.1) which we call Lin orbits, after [20]. In the present context such
orbits consist of pieces of actual orbits Xi, X := (Xi)i∈Z; the orbit Xi starts in Σ1, follows Γ1

until it reaches a neighbourhood of p1 follows then Γ2, meets Σ2, stays further close to Γ2 until
it reaches a neighbourhood of p2, follows then Γ1 again, and terminates finally in Σ1. Between
two consecutive orbits Xi−1 and Xi there may be a jump Ξi in a distinguished direction Z. We
refer to Figure 4 for a visualisation. Note that in the present context all jumps in Σ2 are equal
to zero. This is due to the transversal intersection of the unstable manifold of p1 and the stable
manifold of p2 in Γ2.

Let 2ω1,i and 2ω2,i be (prescribed) transition times of Xi from Σ1 to Σ2 and Σ2 to Σ1, re-
spectively. It can be proved that for each µ which is sufficiently close to 0, and each sequence
ω := ((ω1,i, ω2,i))i∈Z, where ωj,i are sufficiently large, there exists a unique Lin orbit X(ω, µ),
see Theorem 3.2. By equating the jumps Ξi to zero one finds real orbits staying for all time
close to the heteroclinic cycle Γ. Therefore the bifurcation equation for orbits staying close to
Γ reads

Ξ := (Ξi(ω, µ))i∈Z = 0. (3.1)

To begin the actual analysis, fix an inner product 〈·, ·〉. Let, with respect to 〈·, ·〉,

Yi := {f(qi(0), 0)}
⊥, i = 1, 2.

With that we construct the cross-sections Σ1 and Σ2 as follows

Σi := qi(0) + Yi, i = 1, 2.

Also, consistent with the standard theory, we define a subspace Z ⊂ Y1:

Z := (Tq1(0)W
s(p1) + Tq1(0)W

u(p2))
⊥. (3.2)
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By construction we have dimZ = 2. Assigned to q1(0) and q2(0) we consider the following
orthogonal direct sum decomposition of Rn:

R
n = span {f(q1(0), 0)} ⊕W+

1 ⊕W−
1 ⊕ Z,

R
n = span {f(q2(0), 0)} ⊕W+

2 ⊕W−
2 ,

where W+
i = Tqi(0)W

s(pi) ∩ Yi and W
−
i = Tqi(0)W

u(pj) ∩ Yi, i = 1, 2, j 6= i.

A further assumption, that simplifies the analysis, is that the local stable/unstable manifolds
of the fixed points p1, p2 are flat; that is:

W s
loc(pi, µ) ⊂ TpiW

s(pi), W u
loc(pi, µ) ⊂ TpiW

u(pi).

We can bring the local stable/unstable manifolds into this form by means of local transforma-
tions based around each of the fixed points pi.

3.1 Splitting of the stable and unstable Manifolds

The first step of Lin’s method is to study the splitting of the stable and unstable manifolds in Σi

with respect to the parameter µ. Because of Hypothesis (H 1) the situation in Σ2 is clear. For
each µ which is sufficiently close to 0 there is exactly one point q2,µ ∈ Σ2∩W

u(p1, µ)∩W
s(p2, µ)

such that the orbit Γ2,µ through q2,µ is a 1-(1,2)-heteroclinic orbit. The corresponding solution
with q2(µ)(0) = q2,µ we denote by q2(µ)(·); we denote its restriction on R

± by q±2 (µ)(·).

In R
3 also the situation in Σ1 is rather simple. In this case both the stable manifold of p1 and

the unstable manifold of p2 are one-dimensional, and the intersection with the two-dimensional
hyperplane Σ1 consists of single points in each case. The heteroclinic connection Γ1 generally
splits up under perturbation. Let q+1,µ and q−1,µ be determined by the ‘first hit’ of the stable
manifold of p1 and the unstable manifold of p2, respectively. Of course q+1,µ − q−1,µ ∈ Z, recall
that Z = Y1 in this case. So, in a trivial way, for each µ we find a unique pair of orbits in the
stable manifold of p1 and the unstable manifold of p2, respectively, such that the difference of
their first hits in Σ1 is in Z.

The main goal of this section is to show that this property persists in higher dimensions. More
precisely we prove the following lemma:

Lemma 3.1. For each sufficiently small µ there is a unique pair (q+1 (µ)(·), (q
−
1 (µ)(·)) of solu-

tions of (1.1) such that:

(i) q+1 (µ)(0) ∈ Σ1 ∩W
s(p1, µ), q−1 (µ)(0) ∈ Σ1 ∩W

u(p2, µ),

(ii) |q+1 (µ)(t)− q1(t)| small ∀t ∈ R
+ and |q−1 (µ)(t)− q1(t)| small ∀t ∈ R

−,

(iii) q+1 (µ)(0)− q−1 (µ)(0) ∈ Z.

Proof. To investigate the splitting of Γ1 we set

q±1 (t) = q1(t) + v±(t).

This gives the following equations for v±

v̇± = A(t)v± + g(t, v±, µ), (3.3)
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which we consider on R
+ or R− respectively. Here A(t) = Dxf(q1(t), 0), and

g(t, v, µ) = f(q1(t) + v, µ)− f(q1(t), 0)− A(t)v.

With the above setting, we are looking for bounded solutions v±(·) of (3.3). Hence v±(·) ∈
Cb(R

±), the space of continuous bounded functions on R
± equipped with the norm ‖v±‖∞ :=

supt∈R± ‖v±(t)‖. If ‖v±‖∞ is close to zero, then by the theory of stable and unstable manifolds,
q±(t) := q1(t) + v±(t) is in the desired stable/unstable manifold. Further, if v±(0) ∈ Y1 and
v+(0)− v−(0) ∈ Z, then (i) - (iii) of the lemma holds true.

In what follows we show that (3.3) has unique solutions v± with the outlined boundary condi-
tions. An important role is played by the properties of the linear nonautonomous equations

v̇ = A(t)v, (3.4)

which we consider either on R
+ or on R

−. Denote by Φ(t, s) the transition matrix for (3.4).
We have that limt→∞ q1(t) = p1, so then limt→∞A(t) = Dxf(p1, 0). Similarly limt→−∞A(t) =
Dxf(p2, 0).

By the theory of exponential dichotomies [8], due to the fact that p1, p2 are hyperbolic, equation
(3.4) has an exponential dichotomy on both R

+ and R
−. For t ∈ R

±
0 we define projections P±(t)

and Q±(t) as follows

imP+(0) = Tq1(0)W
s(p1), kerP+(0) = W−

1 ⊕ Z,

and
kerP−(0) = Tq1(0)W

u(p2) imP−(0) = W+
1 ⊕ Z,

and for t, s ≥ 0 or t, s ≤ 0 let

P±(t)Φ(t, s) = Φ(t, s)P±(s).

Finally we define Q+ := I − P+ and Q− := I − P−.

Using the properties of exponential dichotomies we get that for each function g(·) bounded on
R

+:
∫ t

0

Φ(t, s)P+(s)g(s)ds−

∫ ∞

t

Φ(t, s)Q+(s)g(s)ds

is well defined on R
+ and solves v̇ = A(t)v + g(t). Therefore we see that the solutions v+(·) of

(3.3) that are bounded on R
+ solve the following fixed point problem in C0

b (R
+,Rn), and vice

versa:

v+(t) = Φ(t, 0)ν +

∫ t

0

Φ(t, s)P+(s)g(s, v+(s), µ)ds−

∫ ∞

t

Φ(t, s)Q+(s)g(s, v+(s), µ)ds,

where ν = P+(0)v+(0). In a similar way it can be shown that the solutions v−(·) of (3.3) that
are bounded on R

− solve the following fixed point problem in C0
b (R

−,Rn), and vice versa:

v−(t) = Φ(t, 0)η +

∫ t

−∞

Φ(t, s)P−(s)g(s, v−(s), µ)ds−

∫ 0

t

Φ(t, s)Q−(s)g(s, v−(s), µ)ds,
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where η = Q−(0)v−(0). Both of these fixed point equations can be solved for v+ = v+(ν, µ)
and v− = v−(η, µ), near (v+, ν, µ) = (0, 0, 0) and (v−, η, µ) = (0, 0, 0) in each case. We find
that v±(0) can be written in the form

v+(ν, µ)(0) = ν + w−(ν, µ) + z+(ν, µ), v−(η, µ)(0) = η + w+(η, µ) + z−(η, µ),

where w± ∈ W±
1 and z± ∈ Z, and moreover w±(0, 0) = 0, D1w

±(0, 0) = 0. In view of (iii) of
the lemma we consider

ν = w+(η, µ), η = w−(ν, µ).

This system can, near (ν, η, µ) = (0, 0, 0), be solved for ν = ν(µ), η = η(µ).

The functions q+1 (µ)(·) := q1(·) + v+(ν(µ), µ)(·) and q−1 (µ)(·) := q1(·) + v−(η(µ), µ)(·) are the
desired solutions of (1.1).

3.2 Construction of Lin orbits

The next step in the method is to search for orbits Xj,i, j = 1, 2, i ∈ Z, composing the Lin
orbits X = (Xi)i∈Z which we introduced in Section 1; more precisely Xi = X1,i ∪ X2,i. Here
Xj,i is an orbit of the vector field starting in a point in Σj , staying close to Γj until it reaches
a neighbourhood of pj , and continuing close to Γj+1 until it reaches Σj+1. By xj,i(·) we denote
solutions of (1.1) corresponding to the orbits Xj,i with xj,i(0) ∈ Σj and xj,i(2ωj,i) ∈ Σj+1.
Actually x1,i(·) is composed of solutions x+1,i(·) and x−2,i(·) which are defined on [0, ω1,i] and
[−ω1,i, 0], respectively. Similarly x2,i(·) is composed of solutions x+2,i(·) and x−1,i(·) which are
defined on [0, ω2,i] and [−ω2,i, 0], respectively. This demands coupling conditions

x+j,i(ωj,i) = x−j+1,i(−ωj,i), j = 1, 2, (3.5)

and the jump conditions

Ξi := x+1,i+1(0)− x−1,i(0) ∈ Z, x+2,i(0) = x−2,i(0), (3.6)

for i ∈ Z in each case. Figure 4 visualises this situation.

It is a specific feature of T-points that there is no jump in Σ2, x
+
2,i(0)− x−2,i(0) = 0. However,

large parts of the procedure are similar to the exposition in [34], [21], [26] and [37]. In our
presentation we confine to explain only those parts of Lin’s method in more detail which differ
from the standard scheme.

To begin, we look for solutions of the form

x±j,i(t) = q±j (µ)(t) + v±j,i(t). (3.7)

Then
v̇±j,i = A±

j (t, µ)v
±
j,i + g±j (t, v

±
j,i, µ) (3.8)

where A±
j (t, µ) = Dxf(q

±
j (µ)(t), µ), and

g±j (t, v, µ) = f(q±j (µ)(t) + v, µ)− f(q±j (µ)(t), µ)− A±
j (t, µ)v.

16



X2,i X1,i

X1,i+1

p1p2

x+2,i(ω2,i) = x−1,i(−ω2,i)
x+1,i(ω1,i) = x−2,i(−ω1,i)

Σ1

Σ2

x+1,i+1(0)

x−1,i(0)

x+2,i(0) = x−2,i(0)

Figure 4: Ingredients of Lin orbits; Xi = X1,i ∪X2,i.

Let Φ±
j (µ, t, s) be the transition matrix for the equation

v̇ = A±
j (t, µ)v.

As before, these equations have an exponential dichotomy on R
+ or R

−, respectively, with
corresponding projections P+

j (µ, t), Q+
j (µ, t) = I − P+

j (µ, t), and Q−
j (µ, t), P

−
j (µ, t) = I −

Q−
j (µ, t); therefore we have for j = 1, 2

imP+
j (µ, 0) = Tq+j (µ)(0)W

s(pj), imQ−
j (µ, 0) = Tq−j (µ)(0)W

u(pj+1).

Moreover we commit to

kerP+
1 (µ, 0) =W−

1 ⊕ Z, kerP+
2 (µ, 0) = W−

2

and
kerQ−

1 (µ, 0) = W+
1 ⊕ Z, kerQ−

2 (µ, 0) =W+
2 .

For µ = 0 the projections P±
1 coincide with the projections P± introduced in the proof of

Lemma 3.1.

Our main existence result in this respect is the following:

Theorem 3.2. Consider the system (1.1) in the present setting. Then there are constants c,
Ω such that for each µ with |µ| < c and each ω with ωj,i > Ω, j = 1, 2, i ∈ Z, there is a unique
sequence of solutions x±j,i(ω, µ)(·), j = 1, 2, i ∈ Z, of (1.1) satisfying the coupling condition
(3.5) and the jump condition (3.6).

In other words this theorem says that for each µ and for each sequence ω there exists a unique
Lin orbit X(ω, µ).

Next we explain the steps leading to the proof of this theorem. We consider (instead of the
original equation (1.1) with boundary conditions (3.5) and (3.6)) the differential equation (3.8)
with corresponding boundary conditions (according to (3.7))

v+j,i(ωj,i)− v−j+1,i(−ωj,i) = q−j+1(−ωj,i)− q+j (ωj,i), j = 1, 2, (3.9)
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v±j,i(0) ∈ Yj, v+1,i+1(0)− v−1,i(0) ∈ Z, v+2,i(0) = v−2,i(0), (3.10)

for i ∈ Z in each case. We fix a sequence ω with sufficiently large ωj,i. Assigned to this sequence
we denote by Vω the space of all sequences v := (v+1,i, v

−
2,i, v

+
2,i, v

−
1,i)i∈Z, where v

+
j,i ∈ C([0, ωj,i],R

n)
and v−j,i ∈ C([−ωj+1,i, 0],R

n).

In a first step we consider a “linearised” equation

v̇±j,i = A±
j (t, µ)v

±
j,i + h±j,i(t), (3.11)

with continuous h±j,i(·), and with boundary conditions (3.10) and

Q+
j (µ, ωj,i)v

+
j,i(ωj,i) = a+j,i, P−

j (µ,−ωj+1,i)v
−
j,i(−ωj+1,i) = a−j+1,i, (3.12)

for any given a+j,i ∈ Im Q+
j (µ, ωj,i), a

−
j+1,i ∈ Im P−

j (µ,−ωj+1,i).

Lemma 3.3. The boundary value problem ((3.11), (3.10), (3.12)) has a unique solution vω ∈
Vω.

Proof. Solutions of (3.11) can be written in the form

v±j,i(t) = Φ±
j (µ, t, 0)v

±
j,i(0) +

∫ t

0

Φ±
j (µ, t, s)h

±
j,i(s)ds. (3.13)

Incorporating the boundary condition (3.12) gives for i ∈ Z

Q+
j (µ, 0)v

+
j,i(0) = Φ+

j (µ, 0, ωj,i)a
+
j,i −

ωj,i
∫

0

Φ+
j (µ, 0, s)Q

+
j (µ, s)h

+
j,i(s)ds,

P−
j (µ, 0)v−j,i(0) = Φ−

j (µ, 0,−ωj+1,i)a
−
j+1,i +

0
∫

−ωj+1,i

Φ−
j (µ, 0, s)P

−
j (µ, s)h−j,i(s)ds,

(3.14)

Because of (3.10) we have

v+1,i+1(0) = w+
1,i + w−

1,i + z+i , v
−
1,i(0) = w+

1,i + w−
1,i + z−i and v±2,i(0) = w+

2,i + w−
2,i,

where w±
j,i ∈ W±

j and z±i ∈ Z. For fixed j the left-hand sides of these equations are decoupled
over i. Moreover, for each single i ∈ Z the left-hand side of (3.14) can be seen as a linear
mapping

W+
1 ×W−

1 × Z × Z → (W−
1 ⊕ Z)× (W+

1 ⊕ Z) or W+
2 ×W−

2 →W−
2 ×W+

2

depending on j = 1 or j = 2, respectively. These mappings are invertible. So equation (3.14)
can be solved for

(w±
1,i, z

±
i ) = (w±

1,i, z
±
i )(µ, h

+
1,i+1, h

−
2,i, a

+
1,i+1, a

−
2,i), w±

2,i = w±
2,i(µ, h

−
1,i, h

+
2,i, a

−
1,i, a

+
2,i).

With (3.13) we get eventually the lemma.
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In the next step we “replace” the boundary conditions (3.12) by

v+j,i(ωj,i)− v−j+1,i(−ωj,i) = dj,i, dj,i ∈ R
n, j = 1, 2, (3.15)

and consider the boundary value problem ((3.11), (3.10), (3.15)).

Lemma 3.4. The boundary value problem ((3.11), (3.10), (3.15)) has a unique solution v̂ω ∈
Vω.

Proof. First we claim that for sufficiently large ω > 0 and sufficiently small µ it holds that
imQ+

j (µ, ω)⊕ imP−
j+1(µ,−ω) = R

n, j = 1, 2. This is due to asymptotic behaviour (as ω → ∞)
of the involved projections and due to the hyperbolicity of the equilibria p1 and p2; we refer to
[37] for more details.

The rest of the proof proceeds along the lines of the corresponding assertions in [34] or [21]:
For each given sequence (dj,i) one proves the existence of sequences (a+j,i) and (a−j,i) such that
the corresponding solutions of the boundary value problem ((3.11), (3.10), (3.12)) solve the
boundary value problem ((3.11), (3.10), (3.15)).

Altogether we find v̂ω = v̂ω(µ,h,d), where h := (h+1,i, h
−
2,i, h

+
2,i, h

−
1,i)i∈Z and d := (d1,i, d2,i)i∈Z.

It is worth to mention that actually each entry of v̂ω depends only on a finite part of the
sequences h and d.

A coupling of the obtained solutions can be achieved by setting

dj,i = dωj,i
(µ) := q−j+1(µ)(−ωj,i)− q+j (µ)(ωj,i), j = 1, 2. (3.16)

Now, the nonlinear boundary value problem ((3.8),(3.9),(3.10)) is equivalent to the following
fixed point equation in Vω:

v = v̂ω(µ,G(v, µ),dω(µ)), (3.17)

where
G : Vω × R → Vω

(v, µ) 7→ (h+1,i, h
−
2,i, h

+
2,i, h

−
1,i)i∈Z, h±j,i(·) := g±j (·, v

±
j,i(·), µ).

The following Lemma provides solutions to the fixed point problem (3.17).

Lemma 3.5. For fixed ω, ωj,i sufficiently large, and |µ| sufficiently small, the fixed point
problem (3.17) has a unique solution v̄ω in a sufficiently small neighbourhood of 0 ∈ Vω.
Moreover, the mapping µ 7→ v̄ω(µ) is smooth.

Note that the necessary considerations have been done for fixed ω in spaces Vω. Define

v̄(ω, µ) = (v̄+1,i, v̄
−
2,i, v̄

+
2,i, v̄

−
1,i)i∈Z := v̄ω(µ), v̄±j,i = v̄±j,i(ω, µ). (3.18)

Lemma 3.6. The mappings l∞
R2 × R → l∞

Rn, (ω, µ) 7→ v̄±j,i(ω, µ)(0) are smooth.

For both Lemma 3.5 and Lemma 3.6 the proof of the corresponding statements in [34] or [21]
can easily be adapted for the present situation.
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4 The Bifurcation Equations

For given ω and µ we find a unique Lin orbit X(ω, µ), see Theorem 3.2, and a corresponding
sequence (Ξi(ω, µ))i∈Z of jumps, see (3.6). The Lin orbit becomes a real orbit if all jumps are
equal to zero; this leads to the set of bifurcation equations

Ξi(ω, µ) = 0, i ∈ Z, (4.1)

where Ξ := (Ξi)i∈Z can be read as a mapping

Ξ : (l∞ × l∞)× R
2 → l∞ × l∞,

bearing in mind that ω = (ω1,i, ω2,i)i∈Z and dimZ = 2. As in [34] or [21] we find (as a
consequence of Lemma 3.6):

Lemma 4.1. Ξ depends smoothly on ω and µ. �

By solving the bifurcation equations (4.1) we find all kinds of orbits staying close to the primary
heteroclinic cycle Γ. For instance, a k-periodic orbit can be seen as a k-periodic Lin orbit where
all jumps are zero. A Lin orbit is k-periodic if and only if ω is k-periodic. So there arise only
k different pairs (ω1,i, ω2,i), i ∈ {1, . . . , k}. Therefore the bifurcation equation for detecting
k-periodic orbits consists only of k equations

Ξi(ω, µ) = 0, i ∈ {1, . . . , k}, (4.2)

and the corresponding Ξ can be read as a mapping R
2k × R

2 → R
2k.

Further it is worth to mention that our considerations remain true if some ωj,i are formally put
to infinity. If in addition the sequence ω is periodic then this leads to the bifurcation equation
for k-homoclinic orbits or heteroclinic cycles which are composed of k-heteroclinic connections.
for instance a k-homoclinic orbit to p1 corresponds to a k-periodic sequence ω with ω1,1 = ∞.

From (3.7) we see that the jumps Ξi have the form

Ξi(ω, µ) := ξ∞(µ) + ξi(ω, µ),

where
ξ∞(µ) := q+1 (µ)(0)− q−1 (µ)(0),

and
ξi(ω, µ) = v̄+1,i+1(ω, µ)(0)− v̄−1,i(ω, µ)(0). (4.3)

First we consider ξ∞(µ). By introducing appropriate coordinates, ξ∞(·) can be seen as a
mapping

ξ∞(·) : R2 → R
2.

Of course ξ∞(0) = 0, which represents that the unstable manifold of p2 and the stable manifold
of p1 intersect (in the primary heteroclinic orbit Γ1). Due to Hypothesis (H 2) we may assume

ξ∞(µ) = µ.
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During the further procedure we use the following representation of ξi(ω, µ):

ξi(ω, µ) =
2
∑

j=1

〈ψj , ξi(ω, µ)〉ψj, (4.4)

where {ψ1, ψ2} is a orthonormal basis of Z. We can write, cf. (4.4), (4.3) and (3.2) and the
definitions of Q+

1 and P−
1

ξi(ω, µ) =

2
∑

j=1

(

〈ψj, Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 − 〈ψj , P

−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉

)

ψj . (4.5)

4.1 Real leading eigenvalues

Before we turn to the actual estimates of the bifurcation equation, we consider nonautonomous
perturbations of linear equations. Based on existence of exponential dichotomies we consider
the asymptotics of solutions in the strong stable eigenspace of those equations.

Lemma 4.2. Let both A : R2 → L(Rn,Rn) and, for all t, B(t, ·) : R2 → L(Rn,Rn) be smooth,
and assume further:

(i) x = 0 is a hyperbolic equilibrium of ẋ = A(0)x.

(ii) The spectrum σ(A(µ)) reads: σ(A(µ)) = σsss ∪ {λss(µ)} ∪ {λs(µ)} ∪ σu, where there exist
constants αsss, αss, αs and αu, such that λ < αsss < λss(µ) < αss < λs(µ) < αs < 0 <
αu < λ̄, for all λ ∈ σsss and all λ̄ ∈ σu.

(iii) The leading stable and strong stable eigenvalues λs and λss of A(0) are real and simple.

(iv) There is a β > 0 such that |B(t, µ)| < e−tβ, and αsβ < λs(µ) and αssβ < λss(µ).

Let ess(µ) and es(µ) be the eigenvectors of λss and λs, respectively. Further, let Ess
t and Es

t be
the strong stable and stable eigenspaces, respectively, of ẋ =

(

A(µ)+B(t, µ)
)

x at time t. Under
these assumptions the following is true for solutions x(t) of ẋ =

(

A(µ) +B(t, µ)
)

x:

1. For x(t) ∈ Es
t there exists an ηs(x(0), µ) ∈ span {es(µ)} such that

x(t) = eλ
s(µ)tηs(x(0), µ) +O

(

emax {αss,αs+β}t
)

.

2. For x(t) ∈ Ess
t there exists an ηss(x(0), µ) ∈ span {ess(µ)} such that

x(t) = eλ
ss(µ)tηss(x(0), µ) +O

(

emax {αsss,αss+β}t
)

.

Note that ẋ =
(

A(µ)+B(t, µ)
)

x has exponential dichotomies (on R
+) with respect to splittings

of the spectrum σ(A(µ)) at αs or αss, respectively. By means of these exponential dichotomies
the addressed stable and strong stable eigenspaces of this equation can be defined. We further
remark that variational equations of (1.1) along solutions within the stable manifolds of the
equilibria p1 and p2 can be written in a form satisfying the assumptions of the above lemma.
The same holds true for the corresponding adjoint variational equation. Of course these state-
ments remain true also for variational equations (and their adjoints) along solutions within the
unstable manifolds - all considerations merely have to be made for t→ −∞.
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The statement 1. of the lemma has been proven in [34] and [21]. The statement 2. generalises
the corresponding lemmas in [34] or [21], respectively. However, the proof is similar to that of
the first statement.

Further we specify these considerations to (adjoint) variational equations along a solution in
the (un)stable manifold of the equilibrum p2 of (1.1). Throughout we denote by A

∗ the adjoint
of an operator A.

Lemma 4.3. Let q+ or q− be a solutions within the stable or unstable manifold of p2 of (1.1).
Let Ess

t denote the strong stable subspace of ẋ = D1f(q
+(t), µ) at time t (for t→ ∞). Similarly,

let Ess
⊥,t denote the strong stable subspace of ẋ = −D1f(q

+(t), µ)∗ at time t for t→ −∞.

(i) Ess
t = Tq+(t)W

ss(q+(t)).

(ii) Ess
⊥,t =

(

Tq−(t)W
eu(p2)

)⊥
.

In [28, 33] a corresponding statement for stable subspaces has been proven. The proof of the
above lemma for the strong stable subspaces runs along the same lines.

In the representation (4.4) we used an orthonormal basis {ψ1, ψ2} of Z. For our further consider-
ations we specify a corresponding scalar product 〈·, ·〉 as follows: With the notations introduced
at the beginning of Section 3 we write, cf. also (H 4):

Tq1(0)W
eu(p2) ∩ Y1 = W−

1 ⊕ span {ψ2}, Tq1(0)W
es(p1) ∩ Y1 = W+

1 ⊕ span {ψ1}.

Within this setting we choose the scalar product 〈·, ·〉 such that

ψ1 ⊥ ψ2, W+
1 ⊥W−

1 and ψi ⊥W±
1 , i = 1, 2.

With that we obtain the following representation of ξi(ω, µ);

Lemma 4.4. Assume the case (RR) and Hypotheses (H 1)–(H 7). Then the jump ξi(ω, µ) can
be written in the form

ξi(ω, µ) =
(

c11(µ)e
−2λu

1
ω1,i+1 − c21(µ)e

2λss
2
ω2,ie2λ

s
1
ω1,i +R1,i(ω, µ)

)

ψ1

+
(

c12(µ)e
−2λuu

1
ω1,i+1e−2λu

2
ω2,i+1 − c22(µ)e

2λs
2
ω2,i +R2,i(ω, µ)

)

ψ2,

where

R1,i(ω, µ) = o(e−2λu
1
ω1,i+1) + o(e2λ

ss
2
ω2,ie2λ

s
1
ω1,i)

R2,i(ω, µ) = o(e−2λuu
1

ω1,i+1e−2λu
2
ω2,i+1) + o(e2λ

s
2
ω2,i).

Proof. Before starting the actual proof we introduce some assumptions which can always be
realized by performing appropriate transformations. In this context we recall that, cf. (H 1)
and Section 3.2, that q±2 (µ) = q2(µ). For our analysis we assume that we have carried out
appropriate transformations so that:

(A 1) q2(µ)(ω) ∈ W eu
loc(p2), if ω ≫ 1.
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(A 2) W eu
loc(p2) = Tp2W

eu(p2).

(A 3) Tq2(µ)(ω)W
u(p1) ⊂ W eu(p2).

To justify the Assumptions (A 1)–(A3) we consider the following: Recall that the extended-
unstable manifold of p2 is not unique. Due to the λ-lemma, W eu

loc(p2) can be chosen such that
{φω

(

W u(p1)∩Σ2

)

, ω ≫ 1} ⊂W eu
loc(p2), where {φ

t} is the flow of (1.1). Hence Assumption (A1)
is fulfilled. The remaining assumptions can be achieved by means of a transformation flattening
W eu

loc(p2).

W u(p1) ∩ Σ2

φω
(

W u(p1) ∩ Σ2

)

W eu
loc(p2)

p2

Figure 5: The manifold W eu(p2) “generated” by φω
(

W u(p1) ∩ Σ2

)

.

Further we assume

(A 4) Tq2(µ)(0)W
s(p2) ∩ Σ2 =W+

2 .

The situation required in Assumption (A4) can always be achieved by appropriate transforma-
tions, cf. [34] or [21].

For the actual proof we proceed from the representation ξi given in (4.4). We confine ourselves
to consider the jumps in ψ1-direction. Recall that ψ1 ⊥ W s(p1), ψ1 ⊥ W eu(p2), and ψ1 ⊥ ψ2.
In accordance with (4.5) we find

〈ψ1, ξi(ω, µ)〉 = 〈ψ1, Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 − 〈ψ1, P

−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉.

First we consider the term 〈ψ1, Q
+
1 (µ, 0)v̄

+

1,i+1(ω, µ)(0)〉:

Let Ψ+
1 (µ, ·, ·) be the transition matrix of the adjoint of the variational equation along q+1 .

Making use of (H 3)–(H5) we find, in analogy to the considerations in [21, 34], that there is a
quantity c11 depending on µ such that

〈ψ1, Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 = 〈Ψ+

1 (µ, ω1,i+1, 0)Q
+
1
∗
(µ, 0)ψ1, Q̃1(µ, ω1,i+1)q

−
2 (µ)(−ω1,i+1)〉

+ o(e−2λu
1
ω1,i+1)

= c11(µ)e
−2λu

1
ω1,i+1 + o(e−2λu

1
ω1,i+1). (4.6)

Here Q̃1(µ, t) is the projection which projects on imQ+
1 (µ, t) along imP−

2 (µ,−t). For that we
exploit that ψ1 ⊥W eu(p2) together with Hypothesis (H 4).
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Further, due to Hypothesis (H 4)

sign c11(µ) = sign 〈Ψ+
1 (µ, ω1,i+1, 0)Q

+
1
∗
(µ, 0)ψ1, Q̃1(µ, ω1,i+1)q

−
2 (µ)(−ω1,i+1)〉 6= 0.

Indeed, roughly speaking, Q̃1(µ, ω1,i+1)q
−
2 (µ)(−ω1,i+1) points towards the eigenspace of λu1 ,

and Ψ+
1 (µ, ω1,i+1, 0)Q

+
1
∗
(µ, 0)ψ1 is perpendicular to the sum of the stable and strong unsta-

ble eigenspace. Further, both terms tend to zero exponentially fast with an exponential rate
−λu1 .

According to (4.5) we next consider 〈ψ1, P
−

1 (µ, 0)v̄−1,i(ω, µ)(0)〉:

In principle we can proceed in a similar way as above, resulting in the fact that the corresponding
c21(µ) vanishes. This means that the corresponding “leading order term” in the representation
of the jump vanishes. Hence we require a more sophisticated estimate.

Equations (3.12) and (3.14) yield

P−
1 (µ, 0)v̄−1,i(ω, µ)(0) = P−

1 (µ, 0)Φ−
1 (µ, 0,−ω2,i)a

−
2,i +

0
∫

−ω2,i

Φ−
1 (µ, 0, s)P

−
1 (µ, s)h−1,i(s)ds,

Therefore

〈ψ1, P
−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉 = 〈Ψ−

1 (µ,−ω2,i, 0)P
−
1

∗
(µ, 0)ψ1, a

−
2,i〉

+ 〈ψ1,
0
∫

−ω2,i

Φ−
1 (µ, 0, s)P

−
1 (µ, s)h−1,i(s)ds〉, (4.7)

where Ψ−
1 (µ, ·, ·) denotes the transition matrix of the adjoint of the variational equation along

q−1 . Next we express a
−
2,i in terms of v+2 or v−2 , respectively. Due to (3.12), (3.14) and (3.16) we

find

a−2,i = P−
1 (µ,−ω2,i)v̄

−
1,i(−ω2,i) = P−

1 (µ,−ω2,i)
(

v̄+2,i(ω2,i)− d2,i
)

= P−
1 (µ,−ω2,i)

(

v̄+2,i(ω2,i) + q2(µ)(ω2,i)− q−1 (µ)(−ω2,i)
)

.

Inserting in the first scalar product on the right-hand side in (4.7) and taking into consideration
that P−

1
∗
(µ,−ω2,i) commutes with Ψ−

1 (µ,−ω2,i, 0) yields:

〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1, a

−
2,i〉 = 〈Ψ−

1 (µ,−ω2,i, 0)P
−
1

∗
(µ, 0)ψ1, v̄

+
2,i(ω2,i)〉

+ 〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1, q2(µ)(ω2,i)〉

− 〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1, q

−
1 (µ)(−ω2,i)〉 (4.8)

Let ω2,i be sufficiently large, then q−1 (µ)(−ω2,i) ∈ W eu
loc(p2), and due to Assumption (A1)

we also have q2(µ)(ω2,i) ∈ W eu
loc(p2). Further, by construction Ψ−

1 (µ,−ω2,i, 0)P
−
1

∗
(µ, 0)ψ1 is

perpendicular to Tq−
1
(−ω2,i)

W eu
loc(p2). Hence, by Assumption (A2) the last two scalar products

in (4.8) vanish, and this equation reduces to

〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1, a

−
2,i〉 = 〈Ψ−

1 (µ,−ω2,i, 0)P
−
1

∗
(µ, 0)ψ1, v̄

+
2,i(ω2,i)〉

24



Consider
v̄+2,i(ω2,i) = (id−Q−

2 (µ, ω2,i))v̄
+
2,i(ω2,i) +Q−

2 (µ, ω2,i)v̄
+
2,i(ω2,i).

Note that Q−
2 (µ, ω2,i)v̄

+
2,i(ω2,i) ∈ Tq2(ω2,i)W

u(p1). Hence, due to Assumption (A3)

〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1, Q

−
2 (µ, ω2,i)v̄

+
2,i(ω2,i)〉 = 0,

and (4.8) reduces further to

〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1, a

−
2,i〉 = 〈Ψ−

1 (µ,−ω2,i, 0)P
−
1

∗
(µ, 0)ψ1, (id−Q−

2 (µ, ω2,i))v̄
+
2,i(ω2,i)〉.

Consider

(id−Q−
2 (µ, ω2,i))v̄

+
2,i(ω2,i) = Φ+

2 (µ, ω2,i, 0)(id−Q−
2 (µ, 0))v̄

+
2,i(0)

+
ω2,i
∫

0

Φ+
2 (µ, ω2,i, s)(id−Q−

2 (µ, s))h
+
2,i(s)ds.

By the definition of Q−
2 , cf. Section 3.2, and Assumption (A4) we have (id−Q−

2 (µ, 0))v̄
+
2,i(0) ∈

Tq2(µ)(0)W
s(p2). (More precisely (id −Q−

2 (µ, 0))v̄
+
2,i(0) ∈ W+

2 .) Note that Tq2(µ)(0)W
s(p2) is the

stable eigenspace at t = 0 of the variational equation along q2 on R
+. Let Ess

t=0 denote the
corresponding strong stable eigenspace. Hence, cf. Figure 6

W+
2

f(q2(µ)(0), µ)

Ess
t=0

Tq2(µ)(0)W
s(p2)

Figure 6: The space Ess
t=0.

Tq2(µ)(0)W
s(p2) = span {f(q2(µ)(0), µ)} ⊕ Ess

t=0,

and correspondingly we decompose

(id−Q−
2 (µ, 0))v̄

+
2,i(0) = vs2,i + vss2,i, vs2,i ∈ span {f(q2(µ)(0), µ)}, v

ss
2,i ∈ Ess

t=0.

Using Φ+
2 (µ, ω2,i, 0)v

s
2,i ∈ span {f(q2(µ)(ω2,i), µ) and Assumptions (A 1) and (A2) we find

〈Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1,Φ

+
2 (µ, ω2,i, 0)v

s
2,i〉 = 0.

Summarising our estimates regarding 〈ψ1, P
−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉 so far we find

〈ψ1, P
−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉 = 〈Ψ−

1 (µ,−ω2,i, 0)P
−
1

∗
(µ, 0)ψ1,Φ

+
2 (µ, ω2,i, 0)v

ss
2,i〉+R1,i(ω, µ), (4.9)
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where R1,i comprises all residual terms appearing in the course of our considerations.

By construction Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1 is perpendicular to the extended-unstable manifold

of p2. Hence P−
1

∗
(µ, 0)ψ1 is in the strong stable subspace of Ψ−

1 (µ,−t, 0), cf. Lemma 4.3(ii).

Further, according to Lemma 4.2 there is a ηss⊥ (µ) ∈
(

Tp2W
eu(p2)

)⊥
such that

Ψ−
1 (µ,−ω2,i, 0)P

−
1

∗
(µ, 0)ψ1 = eλ

ss
2 ω2,iηss⊥ (µ) + o(eλ

ss
2 ω2,i).

More precisely, ηss⊥ (µ) belongs to the eigenspace of the eigenvalue λss2 of D1f(p2, 0)
∗. This

eigenspace reads (Rn ⊖ Eλss
2
)⊥, where Eλss

2
denotes the eigenspace of the eigenvalue λss2 of

D1f(p2, 0).

Similarly, vss2,i is in the strong stable subspace of Φ+
2 (µ, t, 0), cf. Lemma 4.3(i). Again according

to Lemma 4.2 there is a ηss(µ) ∈ Eλss
2
such that

Φ+
2 (µ, ω2,i, 0)v

ss
2,i/|v

ss
2,i| = eλ

ss
2 ω2,iηss(µ) + o(eλ

ss
2 ω2,i).

Inserting in (4.9) yields

〈ψj, P
−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉 =

(

e2λ
ss
2
ω2,i〈ηss⊥ (µ), ηss(µ)〉+ o(e2λ

ss
2
ω2,i)

)

|vss2,i|+R1,i(ω, µ). (4.10)

Due to Hypothesis (H 6) the vectors ηss⊥ (µ) and ηss(µ) cannot be perpendicular, and hence

〈ηss⊥ (µ), ηss(µ)〉 6= 0.

Next we deduce estimates for vss2,i. To this end we first note that v̄+2,i(0) = v̄−2,i(0), and that
dimW+ = dimEss

t=0. What is more, the projection (id−Q−
2 (µ, 0)) acts as an invertible mapping

between these spaces. Hence there exist c, C > 0 such that

c |(id−Q−
2 )v̄

−
2,i(0)| ≤ |vss2,i| ≤ C |(id−Q−

2 )v̄
−
2,i(0)|.

The value |(id −Q−
2 )v̄

−
2,i(0)| can be estimated in the same way as the jump in the first part of

this proof. Because λs1 is real and simple (cf. Hypothesis (H 6)) we get similar to the estimate
(4.6)

|(id−Q−
2 )v̄

−
2,i(0)| = c̃21(µ)e

2λs
1ω1,i + o(e2λ

s
1ω1,i), c̃21(µ) 6= 0.

Therefore

|vss2,i| = ĉ21(µ, ω2,i)e
2λs

1ω1,i + o(e2λ
s
1ω1,i), c c̃21(µ) ≤ ĉ21(µ, ω2,i) ≤ C c̃21(µ).

Inserting in (4.10) yields

〈ψj, P
−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉 = e2λ

ss
2
ω2,ie2λ

s
1
ω1,i ĉ21(µ, ω2,i)〈η

ss
⊥ (µ), ηss(µ)〉+ R̂1,i(ω, µ),

where R̂1,i(ω, µ) comprises all remaining terms. Indeed estimates along the lines of [21, 34] in
the particular situation which we exploited above, yield

R̂1,i(ω, µ) = o(e2λ
ss
2 ω2,ie2λ

s
1ω1,i).

Finally we write
c21(µ, ω2,i) := ĉ21(µ, ω2,i)〈η

ss
⊥ (µ), ηss(µ)〉,
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and note that

c c̃21(µ)〈η
ss
⊥ (µ), ηss(µ)〉 ≤ c21(µ, ω2,i) ≤ C c̃21(µ)〈η

ss
⊥ (µ), ηss(µ)〉

and hence c21(µ, ω2,i) 6= 0.

Remark 4.5. If n = 3, i.e. x ∈ R the above estimate of vss2,i simplifies as follows. In this case
we have dimW+ = dimEss

t=0 = 1 and hence there exists a c > 0 such that

c |(id−Q−
2 )v̄

−
2,i(0)| = |vss2,i|.

The value |(id −Q−
2 )v̄

−
2,i(0)| can be estimated in the same way as the jump in the first part of

this proof. Similar to the estimate (4.6) we get

|(id−Q−
2 )v̄

−
2,i(0)| = c̃21(µ)e

2λs
1
ω1,i + o(e2λ

s
1
ω1,i), c̃21(µ) 6= 0.

Therefore
|vss2,i| = ĉ21(µ)e

2λs
1
ω1,i + o(e2λ

s
1
ω1,i), ĉ21(µ) = c c̃21(µ).

�

Recall that in accordance with Lemma 4.1 the jumps depend smoothly on both ω and µ. Let
Dkξi(ω, µ), k ∈ {ωj,i, j = 1, 2, i ∈ Z} or k ∈ {µ1, µ2}, denote the derivative with respect to the
corresponding variable. Then, similarly to the corresponding estimates in [21, 34] we find the
following Lemma.

Lemma 4.6. The derivatives of the jumps ξi have the following form

Dkξi(ω, µ) =
(

Dk

(

c11(µ)e
−2λu

1ω1,i+1 − c21(µ)e
2λss

2 ω2,ie2λ
s
1ω1,i

)

+ R̃1,i(ω, µ)
)

ψ1

+
(

Dk

(

c12(µ)e
−2λuu

1 ω1,i+1e−2λu
2ω2,i+1 − c22(µ)e

2λs
2ω2,i

)

+ R̃2,i(ω, µ)
)

ψ2,

where

R̃1,i(ω, µ) = o(e−2λu
1ω1,i+1) + o(e2λ

ss
2 ω2,ie2λ

s
1ω1,i),

R̃2,i(ω, µ) = o(e−2λuu
1 ω1,i+1e−2λu

2ω2,i+1) + o(e2λ
s
2ω2,i).

�

Finally, adapted to our needs, we discuss the twist of Γ in terms of Lin’s method. To this
end we define the twist in the style of corresponding considerations in [6]. First we note
that we can consider W u(p1) as global manifold containing Γ. The part of this manifold
containing Γ1 “coincides” with W eu(p2). Recall that ψ1 ⊥ Tq1(0)W

eu(p2). Similarly consider

ψ̂1 ⊥ Tq2(0)W
u(p1) such that for ω ≫ 1

〈Ψ−
1 (0,−ω, 0)ψ1,Ψ

+
2 (0, ω, 0)ψ̂1〉 > 0.

This conditions implies that both ψ1 and ψ̂1 point to the same side of the addressed global
manifold.

Further, we define

es1 := lim
t→∞

q̇1(t)

|q̇1(t)|
, eu1 := lim

t→−∞

q̇2(t)

|q̇2(t)|
.
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Definition 4.7. We call Γ nontwisted if for ω ≫ 1

sign 〈eu1 ,Ψ
+
1 (0, ω, 0)ψ1〉 6= sign 〈es1,Ψ

−
2 (0,−ω, 0)ψ̂1〉,

whereas we call Γ twisted if for ω ≫ 1

sign 〈eu1 ,Ψ
+
1 (0, ω, 0)ψ1〉 = sign 〈es1,Ψ

−
2 (0,−ω, 0)ψ̂1〉.

This definition means that “along Γ the global manifold W u(p1)” is nontwisted or twisted,
respectively. Note that the corresponding global manifold W s(p2) is nontwisted or twisted,
respectively if and only if the global manifold W u(p1) has this property.

Inspecting the proof of Lemma 4.4 we find similarly to the considerations in [21]

Lemma 4.8.

Γ nontwisted ⇔ sgn c11(0) = sgn c21(0), sgn c12(0) = sgn c22(0),

Γ twisted ⇔ sgn c11(0) 6= sgn c21(0), sgn c12(0) 6= sgn c22(0).

�

4.2 Complex leading eigenvalues

We present equivalent statements to Lemma 4.4 for the cases (RC) and (CC). To establish the
corresponding estimates we proceed again from the representations (4.4) and (4.5).

We assume that λu1(µ) = ρ1(µ) + iφ1(µ) is complex and consider 〈ψ1, Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉:

Lemma 4.9. Assume Hypotheses (H 1)-(H 5). Assume further λu1(µ) = ρ1(µ) + iφ1(µ). Then
there are constants c1j(µ), φ1(µ) and ϕ1j such that

〈ψj, Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 = c1j(µ)e

−2ρ1(µ)ω1,i+1 sin(2φ1(µ)ω1,i+1 + ϕ1j) + o(e−2ρ1ω1,i+1),

j = 1, 2. Moreover c1j(0) 6= 0 and ϕ11 − ϕ12 6= 0 (mod π).

Proof. As in the proof of Lemma 4.4, again analogous to considerations in [21, 34], we find for
both ψj , j = 1, 2,

〈ψj , Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 = 〈Ψ+

1 (µ, ω1,i+1, 0)Q
+
1
∗
(µ, 0)ψj, Q̃1(µ, ω1,i+1)q

−
2 (µ)(−ω1,i+1)〉

+ o(e−2ρu1ω1,i+1).

To estimate the first term on the right-hand side we make use of the complex counterpart of
Lemma 4.2. This provides that q−2 (µ)(t) behaves asymptotically, as t→ −∞, like e(D1f(p1,µ))tηu,
where ηu = ηu(µ) belongs to the generalised (real) eigenspace Xu of λu1(µ). According to corre-
sponding estimates in [34] or [21], the same holds true for Q̃1(µ, ω1,i+1)q

−
2 (µ)(−ω1,i+1). Further,

the term Ψ+
1 (µ, t, 0)Q

+
1
∗
(µ, 0)ψj behaves asymptotically, as t→ ∞, like e−(D1f(p1,µ))

∗tη+(ψj , µ).
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where η+(ψj , µ) belongs to the generalised (real) eigenspace (Xu)⊥ of the leading stable eigen-
value(s) −λu1(µ), (−λ

u

1(µ)), of −(D1f(p1, µ))
∗. Abbreviating, we write η+j := η+(ψj , µ). More

precisely these terms can be estimated by:

Q̃1(µ, ω1,i+1)q
−
2 (µ)(−ω1,i+1) = e−(D1f(p1,µ))ω1,i+1ηu + o(e−ρu

1
ω1,i+1),

Ψ+
1 (µ, ω1,i+1, 0)Q

+
1
∗
(µ, 0)ψj = e−(D1f(p1,µ))

∗ω1,i+1η+j + o(e−ρu1ω1,i+1).

Therefore

〈ψj , Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 = 〈e−2(D1f(p1,µ))ω1,i+1ηu, η+j 〉+ o(e−2ρu

1
ω1,i+1).

Since the generalised real eigenspace Xu has dimension two, the vector ηu has a coordinate
representation (ηu1 , η

u
2 , 0, . . . , 0) where (ηu1 , η

u
2 ) 6= (0, 0), and e−D1f(p1,µ)2tηu acts like

e−2ρ1(µ)t

















(

cos(2φ1(µ)t) sin(2φ1(µ)t)

− sin(2φ1(µ)t) cos(2φ1(µ)t)

)(

ηu1

ηu2

)

0
...
0

















.

Let (η+1j , . . . , η
+
nj) be the coordinate representation of η+j with respect to the chosen basis.

Further, since η+j ∈ (Rn ⊖Xu)⊥ we have (η+1j, η
+
2j) 6= (0, 0). Therefore

〈ψj, Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 =e

−2ρ1(µ)ω1,i+1

(

η1j sin(2φ1(µ)ω1,i+1) + η2j cos(2φ1(µ)ω1,i+1)
)

+ o(e−2ρu
1
ω1,i+1),

where
(η1j , η2j) := (ηu2η

+
1j − ηu1η

+
2j , η

u
1η

+
1j + ηu2η

+
2j) 6= (0, 0).

The latter inequality is due to the fact that both (ηu1 , η
u
2 ) and (η+1j , η

+
2j) are different from (0, 0).

So there is an angle ϕ1j = ϕ1j(ψj , µ) such that

sinϕ1j = η1j
(

η21j + η22j
)−1/2

, cosϕ1j = η2j
(

η21j + η22j
)−1/2

.

Hence

〈ψj , Q
+
1 (µ, 0)v̄

+
1,i+1(ω, µ)(0)〉 = c1j(µ)e

−2ρ1(µ)ω1,i+1 sin(2φ1(µ)ω1,i+1 + ϕ1j) + o(e−2ρu
1
ω1,i+1)

where c1j(µ) = (η21 + η22)
1/2

. By construction c1j(·) is smooth and c1j(0) 6= 0.

It remains to prove that ϕ11 − ϕ12 6= 0 (mod π): We show that sin(ϕ11 − ϕ12) 6= 0. Note that
the ηui does not depend on j. Exploiting sin(ϕ11 − ϕ12) = sinϕ11 cosϕ12 − sinϕ12 cosϕ11 we
find that sin(ϕ11 − ϕ12) = 0 if and only if (η11, η21) and (η12, η22) are linearly dependent. This
however is the case if and only if (η+1 (ψ1), η

+
2 (ψ1)) and (η+1 (ψ2), η

+
2 (ψ2)) are linearly dependent.

But these vectors are linearly independent because ψ1 and ψ2 are linearly independent.
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In the same way we find:

Lemma 4.10. Assume Hypotheses (H 1)-(H5). Assume further λs2(µ) = −ρ2(µ)+ iφ2(µ), with
ρ2 > 0. Then there are constants c2j(µ), φ2(µ) and ϕ2j such that

〈ψj , P
−
1 (µ, 0)v̄−1,i(ω, µ)(0)〉 = c2j(µ)e

−2ρ2(µ)ω2,i sin(2φ2(µ)ω2,i + ϕ2j) + o(e−2ρ2ω2,i),

j = 1, 2. Moreover c2j(0) 6= 0 and ϕ21 − ϕ22 6= 0 (mod π). �

Now we combine the statements of the previous estimates.

Lemma 4.11. Assume Hypotheses (H 1)-(H5). Assume further the (RC) case, more precisely
that λu1(µ) is real and λs2(µ) = −ρ2(µ) + iφ2(µ) is complex, and finally that Hypothesis (H 7)
holds true. Then the jump ξi(ω, µ) can be written in the form

ξi(ω, µ) =
(

c11(µ)e
−2λu

1
ω1,i+1 − c21(µ)e

−2ρ2(µ)ω2,i sin(2φ2(µ)ω2,i + ϕ21) +R1,i(ω, µ)
)

ψ1

+
(

c12(µ)e
−2λuu

1
ω1,i+1e−2λu

2
ω2,i+1 − c22e

−2ρ2(µ)ω2,i sin(2φ2(µ)ω2,i + ϕ22) +R2,i(ω, µ)
)

ψ2,

where

R1,i(ω, µ) = o(e−2λu
1ω1,i+1) + o(e−2ρ2ω2,i)

R2,i(ω, µ) = o(e−2λuu
1 ω1,i+1e−2λu

2ω2,i+1) + o(e−2ρ2ω2,i).

�

This lemma follows immediately from the Lemmas 4.4 and 4.10, while the next lemma follows
from Lemma 4.9 together with Lemma 4.10.

Lemma 4.12. Assume Hypotheses (H 1)-(H5) and further the eigenvalue case (CC). Write
λu1(µ) = ρ1(µ) + iφ1(µ) and λs2(µ) = −ρ2(µ) + iφ2(µ). Then the jump ξi(ω, µ) can be written
in the form

ξi(ω, µ) =
(

c11(µ)(µ)e
−2ρ1(µ)ω1,i+1 sin(2φ1(µ)ω1,i+1 + ϕ11)

− c21(µ)e
−2ρ2(µ)ω2,i sin(2φ2(µ)ω2,i + ϕ21) +R1,i(ω, µ)

)

ψ1

+
(

c12(µ)(µ)e
−2ρ1(µ)ω1,i+1 sin(2φ1(µ)ω1,i+1 + ϕ12)

− c22e
−2ρ2(µ)ω2,i sin(2φ2(µ)ω2,i + ϕ22) +R2,i(ω, µ)

)

ψ2,

where

R1,i(ω, µ) = o(e−2ρ1ω1,i+1) + o(e−2ρ2ω2,i), R2,i(ω, µ) = o(e−2ρ1ω1,i+1) + o(e−2ρ2ω2,i).

Moreover ϕj1 − ϕj2 6= 0 (mod π), j = 1, 2. �

Remark 4.13. As in the real case, cf. Lemma 4.6 we find that the derivatives of the residual
term satisfy the estimates

DkR1,i(ω, µ) = o(e−2ρ1ω1,i+1) + o(e−2ρ2ω2,i), DkR2,i(ω, µ) = o(e−2ρ1ω1,i+1) + o(e−2ρ2ω2,i),

where k ∈ {ωj,i, j = 1, 2, i ∈ Z} or k ∈ {µ1, µ2}.
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5 Dynamics in the case of real eigenvalues – (RR)

In the eigenvalue case (RR) we mainly focus on 1-periodic and 2-periodic orbits and their
limiting 1-homoclinic and 2-homoclinic orbits. In our considerations we distinguish between
twisted and nontwisted T-point cycles.

For the rest of this section we assume

(A 5) c11(0), c22(0) > 0.

First we consider 1-periodic orbits. These are characterised by sequences ω = (ω1,i, ω2,i)i∈Z
with

(ω1,i, ω2,i) =: (ω1, ω2), i ∈ Z.

Therefore, according to Lemma 4.4 the bifurcation equations for 1-periodic orbits are as follows:

Ξ(ω, µ) =

(

µ1 + c11(µ)e
−2λu

1
ω1 − c21(µ)e

2λss
2
ω2e2λ

s
1
ω1 +R1(ω, µ)

µ2 + c12(µ)e
−2λuu

1
ω1e−2λu

2
ω2 − c22(µ)e

2λs
2
ω2 +R2(ω, µ)

)

= 0, (5.1)

where

R1(ω, µ) = o(e−2λu
1
ω1) + o(e2λ

ss
2
ω2e2λ

s
1
ω1), R2(ω, µ) = o(e−2λuu

1
ω1e−2λu

2
ω2) + o(e2λ

s
2
ω2).

Setting formally ω1 = ∞ or ω2 = ∞ in this representation we get the bifurcation equation for
1-homoclinic orbits to p1 or p2, respectively. Taking the structure of the residual term Ri into
consideration we find for the 1-homoclinic orbits to p1:

µ1 = 0

µ2 = c22(µ)e
2λs

2
ω2 + o(e2λ

s
2
ω2),

and similarly for the 1-homoclinic orbits to p2:

µ1 = −c11(µ)e
−2λu

1
ω1 + o(e−2λu

1
ω1)

µ2 = 0.

According to Assumption (A5) we find 1-homoclinic orbits p1 or p2 on the positive part of the
µ2-axis or the negative part of the µ1-axis, respectively.

Next we formulate the bifurcation equations for 2-periodic orbits. Those orbits are characterised
by sequences ω

(ω1,i, ω2,i) =

{

(ω1,1, ω2,1), i odd

(ω1,2, ω2,2), i even.

Hence the bifurcation equation for 2-periodic orbits reads:

Ξ1(ω, µ) =

(

µ1 + c11(µ)e
−2λu

1ω1,2 − c21(µ)e
2λss

2 ω2,1e2λ
s
1ω1,1 +R1,1(ω, µ)

µ2 + c12(µ)e
−2λuu

1 ω1,2e−2λu
2ω2,2 − c22(µ)e

2λs
2ω2,1 +R2,1(ω, µ)

)

= 0

Ξ2(ω, µ) =

(

µ1 + c11(µ)e
−2λu

1ω1,1 − c21(µ)e
2λss

2 ω2,2e2λ
s
1ω1,2 +R1,2(ω, µ)

µ2 + c12(µ)e
−2λuu

1 ω1,1e−2λu
2ω2,1 − c22(µ)e

2λs
2ω2,2 +R2,2(ω, µ)

)

= 0

(5.2)
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Again, setting formally ω1,1 = ∞ or ω1,2 = ∞ in (5.2) we get the bifurcation equation for
2-homoclinic orbits to p1, and similarly setting ω2,1 = ∞ or ω2,2 = ∞ in (5.2) we get the
bifurcation equation for 2-homoclinic orbits to p2,

5.1 Proof of Theorem 2.1(i)

Recall that under the assumptions of Theorem 2.1(i) λu1(µ) and λ
s
2(µ) are the leading eigenvalues

of the equilibria p1 and p2, respectively, i.e.

λu1(µ) < |λs1(µ)|, |λs2(µ)| < λu2(µ) (5.3)

5.1.1 1-periodic Orbits

Adapted to the present eigenvalue condition (5.3) we introduce new variables

̟1 :=
λu1(µ)

λu1(0)
ω1, ̟2 :=

λs2(µ)

λs2(0)
ω2,

and subsequently
r1 := e2λ

u
1 (0)̟1 , r2 := e2λ

s
2(0)̟2 .

Therefore there exist δs1(µ), δ
ss
2 (µ), δuu1 (µ), δu2 (µ) > 1 such that in terms of these new variables

the bifurcation equation for 1-periodic orbits (5.1) reads

µ1 + c11(µ)r1 − c21(µ)r
δss2
2 r

δs1
1 + R̃1(r1, r2, µ) = 0

µ2 + c12(µ)r
δuu
1

1 r
δu
2

2 − c22(µ)r2 + R̃2(r1, r2, µ) = 0,

where
R̃1(r1, r2, µ) = o(r1) + o(r

δss2
2 r

δs1
1 ), R̃2(r1, r2, µ) = o(r

δuu1

1 r
δu2
2 ) + o(r2).

Taking into consideration that c11(0), c22(0) 6= 0, these equations can be solved for (r1, r2)
depending on µ. Using in particular Assumption (A5) we find 1-periodic orbits exactly for
µ ∈ Q1,

Q1 := {(µ1, µ2) : µ1 < 0, µ2 > 0}.

Altogether we get the bifurcation diagram depicted in Figure 2(a).

Remark 5.1. At this point we shortly discuss an idea which we seize on for the discussion of
the complex eigenvalue cases in Section 6 below.

We define

L((ω1, ω2), µ) :=

(

µ1 + c11(µ)e
−2λu

1ω1

µ2 − c22(µ)e
2λs

2ω2

)

.

Assuming the eigenvalue condition (5.3) we find that solutions (ω̂1(µ), ω̂2(µ)) of the truncated
equation L((ω1, ω2), µ) = 0 determine solutions of the full equation (5.1) which determines
1-periodic orbits.
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L1

L2

µ1

µ2

(µ1, µ2)
L2

µ1

µ2

L2

µ1

µ2

L1
L1

(0, µ2)

(µ1, 0)

(a) (b) (c)

Figure 7: The lines L1 and L2 corresponding to the truncated equation L = 0.

The solutions of the truncated equation L((ω1, ω2), µ) = 0 corresponds to transversal intersec-
tions of the two lines L1(µ) = (µ1, µ2) + s1(c11(µ), 0) and L2(µ) = s2(0, c22(µ)), where si > 0 in
each case, see Figure 7(a).

The “border locations” where the lines L1 and L2 just touch each other correspond to homoclinic
orbits to p1 or p2, see Figure 7(b) or (c), respectively – compare also Figure 2(a).

These arguments remain valid under the assumptions of Theorem 2.1(ii) or (iii), respectively.
However, in these cases the discussion of the truncated equation L = 0 and its visualisation
displayed in Figure 7 only explains the existence of one 1-periodic orbit in Q1 and the 1-
homoclinic orbits on the boundary of Q1. In order to describe the behaviour in Q2 and Q

2 and
on their boundaries we need to consider also higher order terms as we explain in Sections 5.2
and 5.3. �

5.1.2 k-periodic Orbits

As stated in Section 4, k-periodic orbits correspond to sequences ω

(ω1,i, ω2,i) = (ω1,imod k, ω2,imod k),

and the bifurcation equation consists of k pairs of equations, cf. (4.2).

Due to the present eigenvalue condition (5.3) this set of equations can be treated in the same
way as the bifurcation equation for 1-periodic orbits above. It turns out that for each µ ∈ Q1

there exist a unique set (ω1,i, ω2,i), i = 1, . . . , k solving this equations. On the other hand it is
obvious that there is a solution

(ω1,i, ω2,i) = (ω1, ω2), i = 1, . . . , k, (5.4)

where (ω1, ω2) solves the bifurcation equation for 1-periodic orbits (5.1). So, the solution given
in (5.4) defines a 1-periodc orbit which is run through k-times. Altogether this shows that there
are no k-periodic orbits for k > 1.
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5.2 Proof of Theorem 2.1(ii)

We assume that λs1(µ) and λ
s
2(µ) are the leading eigenvalues of the equilibria p1 and p2, respec-

tively, i.e.
|λs1(µ)| < λu1(µ), |λs2(µ)| < λu2(µ). (5.5)

In our further discussion we distinguish whether the primary heteroclinic cycle Γ is twisted or
not.

5.2.1 Γ nontwisted

1-periodic orbits. Adapted to the eigenvalue condition (5.5) we introduce new variables

̟1 :=
λs1(µ)

λs1(0)
ω1, ̟2 :=

λs2(µ)

λs2(0)
ω2,

and subsequently
r1 := e2λ

s
1
(0)̟1 , r2 := e2λ

s
2
(0)̟2 . (5.6)

Therefore there exist δu1 (µ), δ
ss
2 (µ), δuu1 (µ), δu2 (µ) > 1 such that in terms of these new variables

the bifurcation equation for 1-periodic orbits (5.1) reads

µ1 + c11(µ)r
δu1
1 − c21(µ)r

δss2
2 r1 + R̃1(r1, r2, µ) = 0

µ2 + c12(µ)r
δuu
1

1 r
δu
2

2 − c22(µ)r2 + R̃2(r1, r2, µ) = 0,
(5.7)

where
R̃1(r1, r2, µ) = o(r

δu1
1 ) + o(r

δss2
2 r1), R̃2(r1, r2, µ) = o(r

δuu1

1 r
δu2
2 ) + o(r2).

By Assumption (A5) and Lemma 4.8 all cij(0), i, j = 1, 2, are positive. Note also that δuu1 > δu1 .

Since c22(0) 6= 0, the second equation in (5.7) can be solved for r2 = r∗2(r1, µ). Note that this
equation can be solved only for nonnegative µ2. We find

r∗2(r1, µ) =
1

c22(0)
µ2 +O(r

δuu
1

1 ).

Inserting in the first equation of (5.7) yields

µ1 + c11(µ)r
δu
1

1 − c̃21(µ)µ
δss
2

2 r1 + o(r
δu
1

1 ) + o(r∗2
δss2 r1) = 0, (5.8)

where both c11(µ) and c̃21(µ) are positive. For fixed µ the graph of the function

h(r1, µ) := −c11(µ)r
δu1
1 + c̃21(µ)µ

δss2
2 r1 + o(r

δu1
1 ) + o(r∗2

δss
2 r1)

looks qualitatively as depicted in Figure 8.

For the only maximum point we find

r1,max(µ) ≈ µ

δss
2

δu
1
−1

2 , hmax(µ) := h(r1,max(µ), µ) ≈ µ
δss
2

δu
1

δu
1
−1

2

Altogether this gives the following results for periodic orbits, cf. Figure 2(b):
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r1
r1,max

Figure 8: The graph of h(·, µ).

• For µ ∈ Q1 there exists exactly one 1-periodic orbit.

• For µ ∈ Q2 := {µ2 > 0, µ1 ∈ (0, hmax(µ))} there are exactly two 1-periodic orbits.

• Ssn := {µ : µ2 > 0, µ1 = hmax(µ)} is a saddle-node line for 1-periodic orbits.

5.2.2 Γ twisted

According to Assumption (A5) and Lemma 4.8 it holds

c11(0), c22(0) > 0, c12(0), c21(0) < 0. (5.9)

1-periodic orbits. In order to detect 1-periodic orbits we proceed as in Section 5.2.1. How-
ever, due to (5.9) the counterpart of Equation (5.8) reads

µ1 + c11(µ)r
δu1
1 + ĉ21(µ)µ

δss2
2 r1 + o(r

δu1
1 ) + o(r∗2

δss2 r1) = 0,

where both c11(µ) and ĉ21(µ) are positive. Obviously this equation can only be solved for
nonpositive µ1. Indeed, this equation can (for all negative µ1) be solved for r1(µ). Together
with our general considerations regarding 1-periodic orbits this shows that exactly for µ ∈ Q1

there exist 1-periodic orbits, in fact exactly one for each such µ.

2-periodic and 2-homoclinic orbits. Similarly to (5.6) we introduce variables rj,i, i, j =
1, 2. In these variables the bifurcation equation for 2-periodic orbits, cf. (5.2), reads

µ1 + c11(µ)r
δu1
1,2 − c21(µ)r

δss2
2,1r1,1 + R̃1,1 = 0

µ2 + c12(µ)r
δuu1

1,2 r
δu2
2,2 − c22(µ)r2,1 + R̃2,1 = 0

µ1 + c11(µ)r
δu1
1,1 − c21(µ)r

δss2
2,2r1,2 + R̃1,2 = 0

µ2 + c12(µ)r
δuu1

1,1 r
δu2
2,1 − c22(µ)r2,2 + R̃2,2 = 0,

(5.10)
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where
R̃1,1 = o(r

δu
1

1,2) + o(r
δss
2

2,1r1,1), R̃2,1 = o(r
δuu
1

1,2 r
δu
2

2,2) + o(r2,1),

R̃1,2 = o(r
δu
1

1,1) + o(r
δss
2

2,2r1,2), R̃2,2 = o(r
δuu
1

1,1 r
δu
2

2,1) + o(r2,2).

We write
r1,2 = a1r1,1 and r2,2 = a2r2,1.

Note that a1 = 0 corresponds to 2-homoclinic orbits to p1, whereas a2 = 0 corresponds to
2-homoclinic orbits to p2. For a1 = a2 = 1 the system (5.10) reduces to the first two equations
which describe 1-periodic orbits.

In our explanations we focus on the curve S2-hom-p1 of 2-homoclinic orbits to p1 and on the
period-doubling curve Spd which are depicted in Figure 2(b).

Subtracting the third equation from the first equation in (5.10) and subtracting the fourth
equation from the second equation in (5.10) yields

c11(µ)
(

a
δu1
1 − 1

)

r
δu1
1,1 − c21(µ)

(

1− a
δss2
2 a1

)

r
δss2
2,1r1,1 + R̃1,1 − R̃1,2 = 0

c12(µ)
(

a
δuu1

1 a
δu2
2 − 1

)

r
δuu1

1,1 r
δu2
2,1 − c22(µ)

(

1− a2
)

r2,1 + R̃2,1 − R̃2,2 = 0.
(5.11)

First we consider 2-homoclinic orbits to p1, i.e. we set a1 = 0. Hence (5.11) reads

−c11(µ)r
δu
1

1,1 − c21(µ)r
δss
2

2,1r1,1 + R̃1,1 − R̃1,2 = 0

−c12(µ)r
δuu
1

1,1 r
δu
2

2,1 − c22(µ)
(

1− a2
)

r2,1 + R̃2,1 − R̃2,2 = 0.
(5.12)

The first equation of (5.12) is equivalent to

−c11(µ)r
δu
1
−1

1,1 − c21(µ)r
δss
2

2,1 + o(r
δu
1
−1

1,1 ) + o(r
δss
2

2,1 ) = 0.

This equation can be solved for r1,1. Up to higher order terms we find that

r1,1 ≈
(

− c21/c11
)

1

δu
1
−1 r

δss
2

δu
1
−1

2,1 . (5.13)

We insert the result in the second equation of (5.12) where we factor out r2,1. The remaining
equation can be solved for r2,1. We find with some appropriate ĉ12 < 0 that

r2,1(a2, µ) ≈

(

−
c22
ĉ12

(

1− a2
)

)1/∆12

, ∆12 = δu2 − 1 +
δss2 δ

uu
1

δu1 − 1
.

Now we insert these terms in the first two equations of (5.10) and solve these equations for
µ = µ(a2). This defines in the µ-plane a curve S2-hom-p1 of 2-homoclinic orbits to p1. Indeed
this curve can be considered as the graph of a function µ1 = g(µ2). In order to detect the
leading order term of g we consider the first two equations in (5.10) for a1 = 0 or equivalently
for r1,2 = 0. These equations can be solved for µ. Up to higher order terms we find

µ1 ≈ c21r
δss
2

2,1r1,1, µ2 ≈ c22r2,1.
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Combining this with (5.13) yields

µ1 ≈ c21
(

− c21/c11
)

1

δu
1
−1
(

1/c22
)

δu
1
δss
2

δu
1
−1 µ

δu
1
δss
2

δu
1
−1

2 .

Next we show that there are no 2-homoclinic orbits to p2. To this end we set a2 = 0 and
consider the second equation in (5.11). For r2,1 6= 0 this equation is equivalent to

−c12(µ)r
δuu
1

1,1 r
δu
2
−1

2,1 − c22(µ) + o(r
δuu
1

1,1 r
δu
2
−1

2,1 ) + o(1) = 0.

Since c22(0) 6= 0 this equation has no solution for sufficiently small r1,1, r2,1.

Finally we consider 2-periodic orbits. In the course of this we proceed in the same way as
computing 2-homoclinic orbits to p1 but just taking a1 ∈ (0, 1). Instead of (5.13) we arrive at

r1,1 ≈

(

−
c21
c11

·
1− a

δss2
2 a1

1− a
δu
1

1

)
1

δu
1
−1

r

δss2
δu
1
−1

2,1 . (5.14)

We insert this in the second equation in (5.11), factor out r2,1, and solve the remaining for r2,1.
We find

r2,1 ≈






−
c22
c12

·
1− a2

1− a
δuu
1

1 a
δu
2

2

(

−
c11
c21

·
1− a

δu
1

1

1− a
δss
1

2 a1

)

δuu
1

δu
1
−1







1/∆12

.

Again we insert these terms in the first two equations of (5.10) and solve these equations for
µ = µ(a1, a2). This defines in the µ-plane a region of 2-periodic orbits. This region is bounded
by the curve S2-hom-p1 and a period-doubling curve Spd. In order to detect the period-doubling
curve we consider the limit a1 → 1 along curves a2 = aα1 , α ∈ R

+. We define

lim
a2=aα1
a1→1

r2,1 =: r2,1(α), lim
a2=aα1
a1→1

r1,1 =: r1,1(α).

According to (5.14) we find

r1,1(α) ≈

(

−
c21
c11δu1

)
1

δu
1
−1

r2,1(α)
δss
2

δu
1
−1 .

Again inspecting the first two equations in (5.10) we find that up to higher order terms

µ1 ≈ c21r
δss
2

2,1 (α)r1,1(α), µ2 ≈ c22r2,1(α).

This finally yields the following representation of the period-doubling curve Spd:

µ1 ≈ c21

(

−
c21
c11δu1

)
1

δu
1
−1
(

1/c22
)

δu
1
δss
2

δu
1
−1 µ

δu
1
δss
2

δu
1
−1

2 .
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5.3 Proof of Theorem 2.1(iii)

We assume that λs1(µ) and λ
u
2(µ) are the leading eigenvalues of the equilibria p1 and p2, respec-

tively, i.e.
|λs1(µ)| < λu1(µ), λu2(µ) < |λs2(µ)|. (5.15)

5.3.1 Γ nontwisted

1-periodic orbits. Corresponding to the eigenvalue condition (5.15) we introduce new vari-
ables

̟1 :=
λs1(µ)

λs1(0)
ω1, ̟2 :=

λu2(µ)

λu2(0)
ω2,

and subsequently
r1 := e2λ

s
1
(0)̟1 , r2 := e2λ

u
2
(0)̟2 .

Therefore there exist δu1 (µ), δ
ss
2 (µ), δuu1 (µ), δs2(µ) > 1 such that in terms of these new variables

the bifurcation equation for 1-periodic orbits (5.1) reads

µ1 + c11(µ)r
δu1
1 − c21(µ)r

δss2
2 r1 + R̃1(r1, r2, µ) = 0

µ2 + c12(µ)r
δuu
1

1 r2 − c22(µ)r
δs
2

2 + R̃2(r1, r2, µ) = 0,
(5.16)

where
R̃1(r1, r2, µ) = o(r

δu1
1 ) + o(r

δss2
2 r1), R̃2(r1, r2, µ) = o(r

δuu1

1 r2) + o(r
δs2
2 ).

By Assumption (A5) and Lemma 4.8 all cij(0), i, j = 1, 2, are positive.

We focus on the wedges Q2 and the saddle-node curves Ssn marking part of the boundary of
Q2 as they are depicted in the left panel of Figure 2(c):

Equation (5.16) can be solved for

µ1 = µ∗
1(r1, r2) = −c11(0)r

δu
1

1 + c21(0)r
δss
2

2 r1 + o(r
δu
1

1 ) + o(r
δss
2

2 r1)

µ2 = µ∗
2(r1, r2) = −c12(0)r

δuu1

1 r2 + c22(0)r
δs2
2 + o(r

δuu1

1 r2) + o(r
δs2
2 ).

We start with considering the part of Q2 lying in the third quadrant. In order to show that for
each point of Q2 there exist two 1-periodic orbits we consider the contour lines of µ∗

1 and µ∗
2.

For fixed r1 > 0 the function µ∗
2(r2, ·) has two zeros

r2,1 = 0 and r2,2 =
c12(0)

c22(0)
r

δuu
1

δs
2
−1

1 + o
(

r

δuu
1

δs
2
−1

1

)

> 0,

and in between µ∗
2(r2, ·) has a unique critical point r∗2(r1),

r∗2(r1) =
c12(0)

δs2c22(0)
r

δuu
1

δs
2
−1

1 + o
(

r

δuu
1

δs
2
−1

1

)

.

Since ∂
∂r2
µ∗
2(r1, 0) < 0 this critical point is a minimum. Hence µ∗

2(r1, r
∗
2(r1)) < 0. We find, since

δuu1 > δu1 , δ
ss
2 > δs2 > 1 and c11 > 0, that

µ∗
1(r1, r

∗
2(r1)) = −c11(0)r

δu
1

1 + o(r
δu
1

1 ) < 0. (5.17)
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Further, µ∗
2(r1, r

∗
2(r1)) considered as a function of r1 is monotonically decreasing. Altogether

we refer to Figure 9 for a visualization.

Therefore, locally around the curve {(r1, r
∗
2(r1)), r1 > 0}, the contour lines of µ∗

2 are parabola-
like curves as depicted in Figure 10.

In Figure 10 also the contours of µ∗
2 near the line of the nontrivial zeros are depicted. The

same considerations apply to the contours of µ∗
1 near its nontrivial zeros. Those yield that the

contour lines µ∗
1 = const < 0 are shaped as depicted in Figure 10. Altogether, the intersections

of the contours of µ∗
1 and µ

∗
2 verify the existence of two 1-periodic orbits for each (µ1, µ2) ∈ Q2.

The lower boundary of the wedge Q2 under consideration is a saddle-node curve Ssn - see again
right panel of Figure 2(c). This curve corresponds to the nontransversal intersections of the
contours of µ∗

1 and µ
∗
2. Analytically the saddle-node curve is determined by the singularities of

the Jacobian
∂(µ∗

1 ,µ
∗
2)

∂(r1,r2)
,

0 = det
∂(µ∗

1, µ
∗
2)

∂(r1, r2)
=
(

− c11(0)δ
u
1 r

δu1−1
1 + c21(0)r

δss2
2

)(

− c12(0)r
δuu1

1 + c22(0)δ
s
2r

δs2−1
2

)

+ c12(0)c21(0)δ
ss
2 δ

uu
1 r

δuu
1

1 r
δss
2

2 + hot , (5.18)

where “hot” represents terms of higher order. Near (r1, r
∗
2(r1)) this equation can be solved for

rsn2 (r1) =
c12(0)

δs2c22(0)
r

δuu
1

δs
2
−1

1 + o
(

r

δuu
1

δs
2
−1

1

)

.

The addressed saddle-node curve reads

Ssn =
{(

µ∗
1(r1, r

sn
2 (r1)), µ

∗
2(r1, r

sn
2 (r1)

)

, r1 > 0
}

.

Similar to (5.17) we find

µ∗
1(r1, r

sn
2 (r1)) = −c11(0)r

δu1
1 + o

(

r
δu1
1

)

and µ∗
2(r1, r

sn
2 (r1)) = O

(

r

δs
2
δuu
1

δs
2
−1

1

)

.

r1

r2

r̂1

r∗
2
(r̂1)

r2,2(r̂1)

µ∗

2
(r̂1, r

∗

2
(r̂1))

µ∗
2 graphµ∗

2
(r̂1, ·)

Figure 9: The graph of µ∗
2.
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µ∗
2 = const < 0

µ∗
2 = const > 0

r1

r2
µ∗
1 = const < 0

rsn2 (r1)

µ∗
2 = 0

Figure 10: The contour lines of µ∗
1 and µ∗

2.

This finally yields that there is an α > 1 such that Ssn is the graph of

µ2 = −(−µ1)
α + o((−µ1)

α).

Similarly, the wedge Q2 and its corresponding saddle-node curve lying in the first quadrant
can be discussed by inspecting the contour lines of µ∗

1 and µ∗
2 near the counterpart of the line

(r1, r
∗
2(r1)), which is defined by the critical points of µ∗

1(·, r2).

5.3.2 Γ twisted

According to Assumption (A5) and Lemma 4.8 it holds that

c11(0), c22(0) > 0, c12(0), c21(0) < 0. (5.19)

1-periodic orbits. We adopt the notations introduced in Section 5.3.1. Consequently, equa-
tion (5.16) again determines 1-periodic orbits. But the sign condition (5.19) implies that those
orbits only exists for (µ1, µ2) within the second quadrant.

In order to exclude saddle-node bifurcations of 1-periodic orbits we show simply that the Ja-

cobian
∂(µ∗

1 ,µ
∗
2)

(r1,r2)
has no singularities. To this end we consider the leading order term at the

right-hand side of (5.18). The sign condition (5.19) implies that c12(0)c21(0)
(

δuu1 − 1
)(

δss2 −

1
)

r
δuu
1

1 r
δss
2

2 is the only positive summand. This one, however, is dominated by the negative

term −c11(0)c22(0)δ
u
1δ

s
2r

δu1−1
1 r

δs2−1
2 . Hence, for sufficiently small r1, r2, the addressed Jacobian is

nonsingular.

2-periodic and 2-homoclinic orbits. We adopt the notations introduced in Section 5.2.2.
The counterpart of (5.11) reads:

c11(µ)
(

a
δu1
1 − 1

)

r
δu1
1,1 − c21(µ)

(

1− a
δss2
2 a1

)

r
δss2
2,1r1,1 + R̃1,1 − R̃1,2 = 0

c12(µ)
(

a
δuu
1

1 a2 − 1
)

r
δuu
1

1,1 r2,1 − c22(µ)
(

1− a
δs
2

2

)

r
δs
2

2,1 + R̃2,1 − R̃2,2 = 0,
(5.20)
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where
R̃1,1 = o(r

δu
1

1,1) + o(r
δss
2

2,1r1,1), R̃2,1 = o(r
δuu
1

1,1 r2,1) + o(r
δs
2

2,1),

R̃1,2 = o(r
δu
1

1,1) + o(r
δss
2

2,1r1,1), R̃2,2 = o(r
δuu
1

1,1 r2,1) + o(r
δs
2

2,1).

Again, as in Section 5.2.2, we first consider 2-homoclinic orbits to p1. The counterpart to
(5.12) reads

−c11(µ)r
δu1
1,1 − c21(µ)r

δss2
2,1r1,1 + R̃1,1 − R̃1,2 = 0

−c12(µ)r
δuu1

1,1 r2,1 − c22(µ)
(

1− a
δs2
2

)

r
δs2
2,1 + R̃2,1 − R̃2,2 = 0.

(5.21)

Now we proceed along the corresponding lines of Section 5.2.2. Note that the first equations
of (5.12) and (5.21) coincide. So we arrive at (5.13), and proceeding correspondingly we insert

this in the second equation of (5.21). Since δuu1 > δu1 − 1 and δss2 > δs2 we can factor out r
δs
2

2,1 in
the remaining equation. Now we can repeat the considerations of Section 5.2.2 leading to the
curve of 2-homoclinic orbits to p1.

In order to analyse the 2-homoclinic orbits to p2 we set a2 = 0 in (5.20). Due to the
“symmetry” in the structure of (5.20) the remaining equation can be treated in the same way
as (5.21). This finally leads to the curve of 2-homoclinic orbits to p2 depicted in the right panel
of Figure 2(c).

With our remarks given in the context of 2-homoclinic orbits, it becomes clear that also 2-
periodic orbits and the corresponding period-doubling curves can be discussed in the same
way as in Section 5.2.2. This is true for both parts Q2 depicted in Figure 2(c).

5.4 Proof of Lemma 2.2

5.4.1 k-(2,1) heteroclinic orbits

A k-(2,1) heteroclinic connection may be considered as part of a heteroclinic cycle, together
with a 1-(1,2) heteroclinic orbit. In terms of the ω-sequence, this corresponds to a k-periodic
sequence with ω1,1 = ω2,1 = ∞. Now, let k > 1. Consider Ξ1 = 0, Ξk = 0, and assume that
there is a solution ω, µ of these equations. Then this is also a solution of Ξ1 − Ξk = 0, i.e.

c11(µ)e
−2λu

1ω1,2 + c21(µ)e
2λss

2 ω2,ke2λ
s
1ω1,k + o(e−2λu

1ω1,2) + o(e2λ
ss
2 ω2,ke2λ

s
1ω1,k) = 0

c12(µ)e
−2λuu

1
ω1,2e−2λu

2
ω2,2 + c22(µ)e

2λs
2
ω2,k + o(e−2λuu

1
ω1,2e−2λu

2
ω2,2) + o(e2λ

s
2
ω2,k) = 0.

From the first equation it follows that ω1,2 > −
λss
2

λu
1

ω2,k whereas from the second equation it

follows that ω1,2 < −
λs
2

λuu
1

ω2,k. But these conditions are mutually exclusive. Therefore the

subsystem Ξ1 = 0, Ξk = 0 has no solution, and hence there are no k-(2,1) heteroclinic orbits
for k > 1.
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5.4.2 k-(1,2) heteroclinic orbits

We now search for k-(1,2) heteroclinic orbits, for k ≥ 2. We consider the concatenation of a
k-(1,2) heteroclinic orbit with Γ1, which corresponds to a k-periodic Lin orbit with a k-periodic
sequence ω with ω1,1 = ω2,k = ∞. Note that Ξk(ω, µ) = ξ∞(µ) = 0 determines the existence
of Γ1. So this equation needs not to be solved, here. Therefore the bifurcation equation for
k-(1,2) heteroclinic orbits reads

Ξ1(ω, µ) = . . . = Ξk−1(ω, µ) = 0, ω is k-periodic, ω1,1 = ω2,k = ∞.

Due to the eigenvalue condition (5.3) these equations can be solved for ω depending on µ ∈ Q.

6 Dynamics in the presence of complex eigenvalues

This section is devoted to the proofs of the Theorem 2.3 and of the Lemmas 2.4 and 2.5.

We write the bifurcation equation for orbits staying for all time close to the primary cycle in
the following form:

Ξ(ω, µ) := (Ξi(ω, µ))i∈Z = 0, Ξi(ω, µ) = L(ω1,i+1, ω2,i, µ) + ri(ω, µ), (6.1)

where L(ω1,i+1, ω2,i, µ) denotes leading order terms (which we determine below) and ri(ω, µ)
denotes higher order terms.

In order to construct the sets SN
µ we show that the truncated form of the bifurcation equation,

L(ω1, ω2, 0) = 0, has an infinite set of nondegenerate (transversal) solutions (ω̂1(k), ω̂2(k)), (k ∈
N) with (ω̂1(k), ω̂2(k)) → (∞,∞) as k → ∞. It turns out that the solutions of L(ω1, ω2, 0) = 0
can be interpreted as (transversal) intersections of a line L1 and a spiral S2 ((RC) case) or two
spirals S1 and S2 ((CC) case). We refer to Figure 11 for a visualisation.

(RC) (CC)

Figure 11: Graphical representations of the solutions of L(ω1, ω2, 0) = 0.

We show that each such solution corresponds to a periodic orbit near Γ. And what is more
we show that for each sequence ω̂ built of finitely many of these (ω̂1(k), ω̂2(k)) there exists a
sequence ωω̂ which solves the full bifurcation equation.
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6.1 Proof of Theorem 2.3 – the eigenvalue case (RC)

We assume that λu1 is real and write λs2(µ) = −ρ2(µ) + iφ2(µ), ρ2 > 0, and consider the
bifurcation equation in the form (6.1).

6.1.1 The set SN
µ

We stipulate (cf. (6.1))

L(ω1, ω2, µ) =

(

µ1 + c11e
−2λu

1ω1 −c21e
−2ρ2ω2 sin(2φ2ω2 + ϕ21)

µ2 −c22e
−2ρ2ω2 sin(2φ2ω2 + ϕ22)

)

. (6.2)

Hence, according to Lemma 4.11, we have

ri(ωµ) =

(

R1,i(ω, µ)
c12(µ)e

−2λuu
1 ω1,i+1e−2λu

2ω2,i + R2,i(ω, µ)

)

. (6.3)

The line L1(t, 0) and spiral S2(t, 0) which we addressed at the beginning of this section are
defined by

L1(t, µ) :=

(

µ1 + c11e
−2λu

1
t

µ2

)

and S2(t, µ) :=

(

c21e
−2ρ2t sin(2φ2t + ϕ21)

c22e
−2ρ2t sin(2φ2t + ϕ22)

)

.

Due to ϕ21 − ϕ22 6= 0 (mod π), cf. Lemma 4.10, S2(t, µ) is indeed a spiral. Note that the
appearing “constants” may depend on µ.

Solutions (ω̂1, ω̂2) of L(ω1, ω2, 0) = 0 correspond to the infinite set of transversal intersections
of the line L1(t, 0) and the spiral S2(t, 0). These intersections accumulate to the origin, and
therefore have times (ω̂1(k), ω̂2(k)), k ∈ N, that tend to infinity as k → ∞.

More precisely, let ω̂∗
2 be the “first” value at which S2(t, 0) intersects the line L1(t, 0). Then,

inspecting L(ω1, ω2, 0) = 0 we find

ω̂2(k) = ω̂∗
2 +

kπ

φ2
and ω̂1(k) =

ρ2ω̂2(k)

λu1
+ Ĉ1, (6.4)

where Ĉ1 is a constant, i.e. it does not depend on k. We define

Ωk0 := {(ω̂1(k), ω̂2(k)), k ≥ k0}, (6.5)

for a sufficiently large k0, and for those k0 and some N ∈ N we define further

Ωk0,N := {(ω̂1(k), ω̂2(k)), k = k0, . . . , k0 +N − 1}. (6.6)

With that we define finally the following set of sequences ω = ((ω1,i, ω2,i))i∈Z:

ΩZ

k0,N := {ω : (ω1,i+1, ω2,i) ∈ Ωk0,N}.

We show that for any sequence ω̂ ∈ ΩZ

k0,N
we may solve Ξ(ω, µ) = 0 near (ω̂, 0).
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The full bifurcation equation Ξ(ω, µ) = 0 is equivalent to the fixed point equation

ω = ω −
[

D1L(ω̂, 0)
]−1

Ξ(ω, µ) =: A(ω, µ), (6.7)

where
L(ω, µ) := (L(ω1,i+1, ω2,i, µ))i∈Z.

In what follows we consider A as a mapping A : (l∞ × l∞) × R
2 → (l∞ × l∞). We show that

A(·, µ) is a contractive mapping of some closed neighbourhood of ω̂ into itself. The contraction
principle enures a unique solution ωω̂ within this neighbourhood.

To simplify matters we first consider 1-periodic orbits near the primary T-point cycle. To this
end we consider the fixed point equation (6.7) near one-periodic sequences ω̂, i.e.

(ω̂1,i, ω̂2,i) = (ω̂1(k), ω̂2(k)) ∈ Ωk0.

In this case (6.7) reduces to

(ω1, ω2) = (ω1, ω2)−
[

D1L(ω̂1(k), ω̂2(k), 0)
]−1

Ξ((ω1, ω2), µ) =: Ak((ω1, ω2), µ),

and
Ξ((ω1, ω2), µ) = L(ω1, ω2, µ) + r((ω1, ω2), µ).

Lemma 6.1. There exist a k0 ∈ N and constants d, 0 < d < π
3φ2

, and dµ(k) such that

for all k ≥ k0 and all µ with |µ| < dµ(k), the mapping Ak(·, µ) has a unique fixed point in
B[(ω̂1(k), ω̂2(k)), d], the closed ball in R

2 centered at (ω̂1(k), ω̂2(k)) with radius d.

Proof. To prove the lemma we employ the contraction principle, cf. [7, Chapter 2, Theorem 2.2].

Throughout the proof we use the abbreviations ω := (ω1, ω2) and ω̂(k) := (ω̂1(k), ω̂2(k)).

a) Preliminary estimates:

According to (6.2) and (6.4) we find the following estimate for D1L
−1:

0 < |(D1L(ω̂(k), 0))
−1| < CDL−1e2k(ρ2/φ2)π, (6.8)

where the constant CDL−1 > 1 does not depend on k.

Similarly we find for the second derivative of L

0 < |D2
1L(ω̂(k), µ)| < CD2Le

−2k(ρ2/φ2)π,

where the constant CD2L > 1 can be chosen to be independent of k. Accordingly we find

0 < max
ω∈B[ω̂(k),d]

|D2
1L(ω, µ)| < ĈD2L(d)e

−2k(ρ2/φ2)π,

with ĈD2L(d) → CD2L as d→ 0.

For the derivative of L with respect to µ we find (for sufficiently large k)

|D2L(ω̂(k), µ)| < 2. (6.9)
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Further, according to (6.3), Lemma 4.11 and Remark 4.13 we find:

max
ω∈B[ω̂(k),d]

|D1r(ω̂(k), µ)| = o(e−2k(ρ2/φ2)π), as k → ∞. (6.10)

b) Setting of the constants d and dµ(k):

With the above constants we choose the constant d such that

d := min

{

π

3φ2
,

1

2(e2πCD2LCDL−1 − 1)

}

, (6.11)

and the constant dµ(k)

dµ(k) :=
d

8CDL−1

e−2k(ρ2/φ2)π (6.12)

c) Ak(·, µ) is a “mapping into”:

|ω̂(k)− Ak(ω, µ)| ≤ |ω̂(k)−Ak(ω̂(k), µ)|+ |Ak(ω̂(k), µ)−Ak(ω, µ)|.

First we consider the first addend on the right-hand side

|ω̂(k)− Ak(ω̂(k), µ)| = |D1L(ω̂(k), 0)
−1
(

L(ω̂(k), µ) + r(ω̂(k), µ)
)

|

Expanding L(ω̂(k), ·) at µ = 0 up to first order terms and further exploiting (6.9) and that
L(ω̂(k), 0) = 0 we find

|ω̂(k)−Ak(ω̂(k))| ≤ 2|µ| |D1L(ω̂(k), 0)
−1|+ |D1L(ω̂(k), 0)

−1r(ω̂(k), 0)|.

Due to (6.8), (6.12) the first addend is less than d/4. Finally, since |D1L(ω̂(k), 0)
−1r(ω̂(k), 0)| →

0, as k → ∞, there is a k10 such that for all k ≥ k10 the following estimate holds true:

|ω̂(k)− Ak(ω̂(k))| <
d

2
, ∀|µ| < dµ(k).

Next we consider

|Ak(ω̂(k), µ)− Ak(ω, µ)| ≤ max
τ∈B[ω̂(k),d]

|D1A(τ, µ)| |ω − ω̂(k)|, (6.13)

D1A(τ, µ) = D1L(ω̂(k), 0)
−1
(

D1L(ω̂(k), µ)−D1L(τ, µ)
)

−D1L(ω̂(k), 0)
−1D1r(τ, µ). (6.14)

Using the mean value theorem and the estimates of part a) of the proof we get

|D1L(ω̂(k), µ)−D1L(τ, µ)| ≤ max
t∈B[ω̂(k),d]

|D2
1L(t, µ)| |ω̂(k)− τ | < CD2Le

−2(k−1)(ρ2/φ2)πd.

Therefore, again invoking part a) of the proof, the first addend on the right-hand side of (6.14)
can be estimated by

|D1L(ω̂(k), 0)
−1
(

D1L(ω̂(k), µ)−D1L(τ, µ)
)

| < e2(ρ2/φ2)πCDL−1CD2L d.
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Further, in accordance with (6.8) and (6.10) we may choose a k20 sufficiently large so that for
all k > k20

|(D1L(ω̂(k), 0))
−1D1r(τ, µ)| < d.

Plugging these estimates in (6.13) and taking into consideration (6.11) yields for all k ≥ k20

|Ak(ω̂(k), µ)−Ak(ω, µ)| <
(

e2(ρ2/φ2)πCDL−1CD2L − 1
)

d2 <
d

2
.

Set now
k0 := max{k10, k

2
0}.

Then Ak(·, µ) maps for all k ≥ k0 and all |µ| < dµ(k) the closed ball B[ω̂(k), d] into itself.

d) Ak(·, µ) is contractive:

In part c) of the proof, cf. analysis of (6.14), we have shown that for all k ≥ k0 and all
|µ| < dµ(k)

max
τ∈B[ω̂(k),d]

|DAk(τ, µ)| <
(

e2(ρ2/φ2)πCDL−1CD2L − 1
)

d.

With (6.11) we infer that for all those k and µ

max
τ∈B[ω̂(k),d]

|DAk(τ, µ)| <
1

2
.

Next we turn towards solutions of (6.7).

Lemma 6.2. Assume the eigenvalue case (RC). Fix any N ∈ N. There exist a k0 ∈ N

and constants d, 0 < d < π
3φ2

, and dµ(k) such that for all ω̂ ∈ ΩZ

k0,N
and for all µ with

|µ| < dµ(k0, N), equation (6.7) has a unique solution ωω̂(µ) in B[ω̂, d].

Proof. The proof follows along the lines of the proof of Lemma 6.1, with some modifications.
We adopt the notations as introduced above.

According to (6.6) the building blocks of ω̂ are N consecutive intersections of the line L1 and
the spiral S2.

The key observation at the heart of the proof of Lemma 6.1 is that L(ω, µ) decouples. We have

|
(

D1L(ω1,i+1, ω2,i, 0)
)−1

| < CDL−1e2(k0+N−1)(ρ2/φ2)π and hence

|
(

D1L(ω̂, 0)
)−1

| < CDL−1e2(k0+N−1)(ρ2/φ2)π. (6.15)

Further we find
max

ω∈B[ω̂,d]
|D2

1L(ω, µ)| < e2(ρ2/φ2)πCD2Le
−2k0(ρ2/φ2)π, (6.16)

and
max

ω∈B[ω̂,d]
D1r(ω, µ) = o(e2k0(ρ2/φ2)π),
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where r := (ri)i∈Z.

Finally we stipulate

d := min

{

π

3φ2
,

1

2(e2N(ρ2/φ2)πCD2LCDL−1 − 1)

}

.

and

dµ(k0, N) :=
d

8CDL−1

e−2(k0+N−1)(ρ2/φ2)π.

The remainder of the proof is analogous to parts c) and d) of the proof of Lemma 6.1.

Finally we define the sets SN
µ stated in Theorem 2.3. To this end we proceed from a set Ωk0,N

under the terms of Lemma 6.2. According to that lemma, for any sequence ω̂ ∈ ΩZ

k0,N
we may

solve Ξ(ω, µ) = 0 near (ω̂, 0) to find ωω̂(µ). Note that moreover domωω̂(·) does not depend
on ω̂ ∈ ΩZ

k0,N
. By xω̂(µ)(·) we denote the corresponding solution of (1.1), see also (3.7) and

(3.18),
xω̂(µ)(0) = q+1 (µ)(0) + v+1,1(ωω̂(µ), µ)(0),

and define
SN
µ := {xω̂(µ)(0) : ω̂ ∈ ΩZ

k0,N}.

6.1.2 Shift dynamics

The verification of topological conjugacy is mainly based on the continuous dependence of Ξ
(see (3.1)) on sequences ω in spaces of sequences equipped with the product topology. Those
ideas go back to similar considerations in [21, 34].

The actual proof follows lines of argument similar to those developed in [17].

We introduce a shift operator on ΩZ

k0,N
:

ζ : ΩZ

k0,N → ΩZ

k0,N , ω 7→ τ , (τ1,i, τ2,i) := (ω1,i+2, ω2,i+1).

Now the system (ΩZ

k0,N , ζ) is a full shift on N symbols. For the further analysis let ΩZ

k0,N
∼=

{(ωk
1 , ω

k
2), k = 1, . . . , N}Z be equipped with the product topology.

There is a canonical one-to-one mapping

hµ : ΩZ

k0,N
→ SN

µ , ω̂ 7→ xω̂(µ)(0). (6.17)

Let U be a sufficiently small neighbourhood of the primary heteroclinic cycle. We denote the
first-return map on Σ1 by Πµ. Then x ∈ domΠµ if there is a t∗ > 0 such that φt∗

µ (x) ∈ Σ1,
(where {φt

µ(·)} denotes the flow of (1.1)), and φt
µ(x) 6∈ Σ1, φ

t
µ(x) ∈ U , for all t ∈ (0, t∗). We

claim that SN
µ ⊂ domΠµ, that S

N
µ is Πµ invariant, and moreover

Πµ ◦ hµ = hµ ◦ ζ. (6.18)
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The latter equation can be concluded from the uniqueness part of Theorem 3.2 and the con-
struction of ωω̂ as follows. We have

Πµxω̂(µ)(0) = xω̂(µ)(2(ω1,1(µ) + ω2,1(µ))) = q+1 (0) + v̄+1,2(ω(µ), µ)(0),

and hence
Πµxω̂(µ)(0) = xζω̂(µ)(0).

This is just another representation of (6.18).

Equation (6.18) means that (SN
µ ,Πµ) is conjugated to (ΩZ

k0,N
, ζ). So, in order to prove topo-

logical conjugacy, as claimed in Theorem 2.3, it remains to prove that hµ is a homeomorphism.

Lemma 6.3. The mapping hµ, defined in (6.17), is a homeomorphism.

Proof. We consider hµ as a composition of mappings

H : ΩZ

k0,N → O := {ωω̂(µ) : ω̂ ∈ ΩZ

k0,N}, ω̂ 7→ ωω̂(µ),

and
h : O → SN

µ , ω 7→ q+1 (µ)(0) + v+1,1(ωω̂(µ), µ)(0).

First we show that H is a homeomorphism, where both ΩZ

k0,N
and O are considered to be

equipped with the product topology. We start with showing that O is compact. Let ρ be small
enough that for any two (different) elements of Ωk0,N the closed balls with radius ρ centred at
these elements do not intersect:

B[(ωi
1, ω

i
2), ρ] ∩ B[(ωj

1, ω
j
2), ρ] = ∅, (ωi

1, ω
i
2), (ω

j
1, ω

j
2) ∈ Ωk0,N , i 6= j.

By construction O ⊂
(

∪N
i=1B[(ωi

1, ω
i
2), ρ]

)Z
. Since ∪N

i=1B[(ωi
1, ω

i
2), ρ] is compact, the set of

sequences
(

∪N
i=1B[(ωi

1, ω
i
2), ρ]

)Z

is also compact by the Tychonoff theorem, see [9].

So, in order to verify the compactness of O it remains to show that O is closed. The set

O however is the set of zeros of the mapping Ξ(·, µ) :
(

∪N
i=1B[(ωi

1, ω
i
2), ρ]

)Z

→ l∞
R2 . By [26,

Lemma 3.4] this mapping is continuous, where the spaces are equipped with the product topol-
ogy. Altogether this proves that O is compact.

Consider now the one-to-one map

H−1 : O → ΩZ

k0,N .

Obviously H−1 is continuous. Due to the compactness of O also H is continuous – hence H is
a homeomorphism.

Next we consider h. Again by invoking [26, Lemma 3.4] or its proof respectively, we find that h
is continuous. (Again both O and ΩZ

k0,N
should be equipped with the product topology.) Once

more the compactness of O gives that h is a homeomorphism.

All in all hµ = h ◦H is a homeomorphism and therefore (SN
µ ,Πµ) is topologically conjugated to

the full shift on N symbols.

To complete the proof of the (RC) case we remark that the sets SN
µ satisfy the conditions of

the theorem.
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6.2 Proof of Theorem 2.3 – the eigenvalue case (CC)

This section deals with the case of two complex eigenvalues λu1 and λs2. We write

λu1(µ) = ρ1(µ) + iφ1(µ), λs2(µ) = −ρ2(µ) + iφ2(µ),

where both, φ1(µ) and φ2(µ) are greater than zero.

6.2.1 Analysis of spirals

The leading order terms for the case (CC) are as follows, cf. Lemma 4.12 and (6.1):

L(ω1, ω2, µ) =

(

µ1 + c11e
−2ρ1ω1 sin(2φ1ω1 + ϕ11)− c21e

−2ρ2ω2 sin(2φ2ω2 + ϕ21)

µ2 + c12e
−2ρ1ω1 sin(2φ1ω1 + ϕ12)− c22e

−2ρ2ω2 sin(2φ2ω2 + ϕ22)

)

. (6.19)

Further, the residual terms ri, cf. (6.1), take the form

ri(ωµ) =

(

R1,i(ω, µ)
R2,i(ω, µ)

)

,

with Rj,i in accordance with Lemma 4.12.

In this case L(ω1, ω2, µ) = 0 can be interpreted in a geometric way as describing the set of
intersections of the two logarithmic spirals S1(·, µ) and S2(·, µ):

S1(t, µ) :=

(

µ1 + c11e
−2ρ1t sin(2φ1t + ϕ11)

µ2 + c12e
−2ρ1t sin(2φ1t + ϕ12)

)

, S2(t, µ) :=

(

c21e
−2ρ2t sin(2φ2t + ϕ21)

c22e
−2ρ2t sin(2φ2t + ϕ22)

)

.

Note that Si(·, µ), are indeed spirals since ϕj1 − ϕj2 6= 0 (mod π), j = 1, 2, cf. Lemma 4.12.

We continue with analysing the solutions of equations L(ω1, ω2, µ) = 0. For ease of notation in
this section, we drop the µ-dependence of variables inside L = 0. Then the equation reads

(

µ1 + e−2ρ1ω1c11 sin(2φ1ω1 + ϕ11)− e−2ρ2ω2c21 sin(2φ2ω2 + ϕ21)

µ2 + e−2ρ1ω1c12 sin(2φ1ω1 + ϕ12)− e−2ρ2ω2c22 sin(2φ2ω2 + ϕ22)

)

= 0 (6.20)

The following Lemma defines a renormalisation of equations (6.20).

Lemma 6.4. There exists an invertible change of coordinates such that equations (6.20) take
the form

(

µ1 + e−ρ1ω1 sinω1 −e−ρ2ω2c21 sinω2

µ2 + e−ρ1ω1 sin(ω1 + ϕ12) −e−ρ2ω2c22 sin(ω2 + ϕ22)

)

= 0 (6.21)

Proof. We define the variables

ω̂1 = 2φ1ω1 + ϕ11, ĉ11 = eρ1ϕ11/φ1c11, ĉ21 = eρ2ϕ21/φ2c21,

ω̂2 = 2φ2ω2 + ϕ21, ĉ12 = eρ1ϕ11/φ1c12, ĉ22 = eρ2ϕ21/φ2c22,

ϕ̂12 = ϕ12 − ϕ11, ϕ̂22 = ϕ22 − ϕ21, ρ̂1 = ρ1/φ1,

ρ̂2 = ρ2/φ2,
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under which (6.20) becomes

(

µ1 + e−ρ̂1ω̂1 ĉ11 sin ω̂1 −e−ρ̂2ω̂2 ĉ21 sin ω̂2

µ2 + e−ρ̂1ω̂1 ĉ12 sin(ω̂1 + ϕ̂12) −e−ρ̂2ω̂2 ĉ22 sin(ω̂2 + ϕ̂22)

)

= 0

Now divide the first equation by ĉ11 and the second equation by ĉ12. Defining c̄21 = ĉ21/ĉ11,
c̄22 = ĉ22/ĉ12, µ̂1 = µ1/ĉ11, µ̂2 = µ2/ĉ12 and dropping hats/bars provides equation (6.21).

Note that the new variables in equation (6.21) have the properties ϕ12, ϕ22 6= 0 (mod π) and
c21, c22 6= 0.

Given the above change of variables, we define the spirals S1(t, µ), S2(t, µ) in the plane as
before:

S1(t, µ) :=

(

µ1 + e−ρ1t sin t
µ2 + e−ρ1t sin(t + ϕ12)

)

, S2(t, µ) :=

(

e−ρ2tc21 sin t
e−ρ2tc22 sin(t + ϕ22)

)

. (6.22)

We consider the bifurcation equations in these new coordinates. We have

L(ω1, ω2, µ) = S1(ω1, µ)−S2(ω2, µ) (6.23)

with Si, i = 1, 2, as given in (6.22).

We first consider solutions to the equation (6.21) where µ1 = µ2 = 0, or in other words
L(ω1, ω2, 0) = 0.

We distinguish between the cases where the ratio of ρ1/ρ2 is irrational and where this ratio is
rational.

Irrational ratio ρ1/ρ2. Consider the two spirals, where we suppose without loss of generality
that ρ1 < ρ2

S1(ω1, 0) = e−ρ1ω1

(

sinω1

sin(ω1 + ϕ12)

)

, S2(ω2, 0) = e−ρ2ω2

(

c21 sinω2

c22 sin(ω2 + ϕ22)

)

. (6.24)

The following lemma is at the core of our analysis of intersections of the spirals S1 and S2

with irrational ratio ρ1/ρ2.

Lemma 6.5. For fixed N ∈ N, there exists a sequence (ω̂i
1(k), ω̂

i
2(k))k∈N, i = 1, . . . , N , with

ω̂1
j (k) < ω̂2

j (k) < . . . < ω̂N
j (k), j = 1, 2, k ∈ N, that has the following properties:

(i) ω̂i
1(k), ω̂

i
2(k) → ∞ as k → ∞, i = 1, . . . , N ,

(ii) S1(ω̂
i
1(k), 0) = S2(ω̂

i
2(k), 0), i = 1, . . . , N , k ∈ N,

(iii) There are positive constants WN
1 and WN

2 , such that ω̂N
1 (k)− ω̂1

1(k) < WN
1 and ω̂N

2 (k)−
ω̂1
2(k) < WN

2 for all k ∈ N,
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(iv) The points (ω̂i
1(k), ω̂

i
2(k)), k ∈ N, i = 1, . . . , N correspond to transversal intersections

of the two spirals S1(ω1, 0) and S2(ω2, 0), and there exists a constant θ∗N > 0 that is
independent of k and i, such that the angle between the spiral tangents at each intersection
point is greater than θ∗N .

To begin with, we need to prove some basic properties regarding the two spirals S1 and S2 and
their tangencies. The following Lemma says that tangential intersections of the two spirals are
rare; in particular, there are at most two straight lines through the origin on which a tangential
intersection is possible.

Lemma 6.6. Let (ω1, ω2) be such that S1(ω1, 0) and S2(ω2, 0) lie on a straight line that passes
through the origin in the (ψ1, ψ2)-plane. There are at most two such straight lines through the
origin for which the tangent vectors dS1

dω1
and dS2

dω2
are parallel.

Proof. Our approach is to consider the two spirals S1(ω1, 0) and S2(ω2, 0) as solutions of the
linear differential equations

d

dω1

(

ψ1(ω1)
ψ2(ω1)

)

=

(

−ρ1 − cotϕ12 cscϕ12

− sinϕ12 − cosϕ12 cotϕ12 −ρ1 + cotϕ12

)(

ψ1(ω1)
ψ2(ω1)

)

(6.25)

and

d

dω2

(

ψ1(ω2)
ψ2(ω2)

)

=

(

−ρ2 − cotϕ22
c21
c22

cscϕ22

− c22
c21

(sinϕ22 + cosϕ22 cotϕ22 −ρ2 + cotϕ22

)(

ψ1(ω2)
ψ2(ω2)

)

. (6.26)

We use the same coordinate variables (ψ1, ψ2) for both ODEs as we wish to consider overlaying
the two ‘solutions’ S1(ω1, 0) and S2(ω2, 0).

To study tangencies of the two spirals S1(ω1, 0) and S2(ω2, 0) we can consider studying points
at which the two linear vectors fields (6.25) and (6.26) are collinear. In fact it is straightforward
to consider this problem for two general linear planar vector fields:

d

dω1

(

ψ1(ω1)
ψ2(ω1)

)

=

(

a1 b1
c1 d1

)(

ψ1(ω1)
ψ2(ω1)

)

,

d

dω2

(

ψ1(ω2)
ψ2(ω2)

)

=

(

a2 b2
c2 d2

)(

ψ1(ω2)
ψ2(ω2)

)

.

Assume that these two vector fields are not simply scalar multiples of each other. The above
two linear vector fields are collinear at the same points where the following two vector fields
are perpendicular:

d

dω1

(

ψ1(ω1)
ψ2(ω1)

)

=

(

c1 d1
−a1 −b1

)(

ψ1(ω1)
ψ2(ω1)

)

,

d

dω2

(

ψ1(ω2)
ψ2(ω2)

)

=

(

a2 b2
c2 d2

)(

ψ1(ω2)
ψ2(ω2)

)

.

Taking the standard inner product, these vector fields are perpendicular whenever the following
equality holds:

(c1a2 − c2a1)ψ
2
1 + (c1b2 + d1a2 − c2b1 − d2a1)ψ1ψ2 + (b2d1 − d2b1)ψ

2
2 = 0.
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The above equation is simply describing a degenerate conic section, and has three possible
solution sets: either the single solution ψ1 = ψ2 = 0, a set of solutions corresponding to a
straight line through the origin, or a set of solutions corresponding to a distinct pair of straight
lines intersecting at the origin. These cases correspond to whether the discriminant

(c1b2 + d1a2 − c2b1 − d2a1)
2 − 4(c1a2 − c2a1)(b2d1 − d2b1)

is negative, zero, or positive respectively. Therefore these are also the three possible cases for
where the vector fields (6.25) and (6.26) are tangent. Hence any tangencies between the two
spirals S1(ω1, 0) and S2(ω2, 0) can only occur on at most two straight lines intersecting at the
origin.

Lemma 6.7. Let L be any straight line through the origin in the (ψ1, ψ2)-plane. There is at
most one intersection between the two spirals S1(ω1, 0) and S2(ω2, 0) along L .

Proof. The proof follows from the fact that the ratio ρ1/ρ2 is irrational. Suppose we have two
intersection points of the spiralsS1(ω1, 0) andS2(ω2, 0) related to the pairs (ω′

1, ω
′
2) and (ω′′

1 , ω
′′
2)

that lie on L , that is, S1(ω
′
1, 0) = S2(ω

′
2, 0), S1(ω

′′
1 , 0) = S2(ω

′′
2 , 0) and S1(ω

′
1, 0),S1(ω

′′
1 , 0) ∈

L .

Given that, it follows from (6.24) that there are integers n1 and n2 such that ω′
1 = ω′′

1 + n1π
and ω′

2 = ω′′
2 + n2π. Note that n1 and n2 are either both even or are both odd.

Then, again using (6.24), we have

S1(ω
′
1, 0) = (−1)(n1 mod 2)e−ρ1n1πS1(ω

′′
1 , 0)

= (−1)(n1 mod 2)e−ρ1n1πS2(ω
′′
2 , 0)

= (−1)(n1 mod 2)(−1)(n2 mod 2)e−ρ1n1πeρ2n2πS2(ω
′
2, 0)

= e(ρ2n2−ρ1n1)πS1(ω
′
1, 0),

and so ρ2n2 − ρ1n1 = 0, which is a contradiction as ρ1/ρ2 is irrational.

Remark 6.8. Lemmas 6.6 and 6.7 together show that the two spirals S1(ω1, 0) and S2(ω2, 0)
can have at most two tangential intersections in total, in the case that ρ1/ρ2 is irrational.

The following Lemma is useful in providing a lower bound for the angle between the spirals
S1(ω1, 0) and S2(ω2, 0) at intersection points.

Lemma 6.9. Let (ω̂1, ω̂2) be such that S1(ω̂1, 0) and S2(ω̂2, 0) lie on a straight line that
passes through the origin in the (ψ1, ψ2) plane. Let the constant M be defined by S1(ω̂1, 0) =
MS2(ω̂2, 0) and suppose M 6= 1, M > 0. Denote the angle in polar coordinates of S1(ω1, 0) by
θ1(ω1) and S2(ω2, 0) by θ2(ω2). Define θ̂ by θ1(ω̂1) = θ2(ω̂2) = θ̂. Then there exists ǫ > 0 such
that S1(ω1, 0) and S2(ω2, 0) do not have any intersections for |ω1 − ω̂1|, |ω2 − ω̂2| < ǫ.

Moreover, within the ranges |ω1 − ω̂1|, |ω2 − ω̂2| < ǫ we may conclude that there exists a θǫ > 0
such that the angles θ(ω1) and θ(ω2) cover the interval [θ̂ − θǫ, θ̂ + θǫ]. That is,

min
{

|θ(ω̂i + ǫ)− θ̂|, |θ(ω̂i − ǫ)− θ̂|
}

≥ θǫ i = 1, 2. (6.27)
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Informally, the last statement says that there are no intersections with a polar coordinates
angle in the range [θ̂ − θǫ, θ̂ + θǫ] that are close to (ω̂1, ω̂2).

Proof. This follows from the fact that the expression |S1(ω1, 0) − S2(ω2, 0)| is a continuous
function of ω1 and ω2, and as it is nonzero at (ω̂1, ω̂2), there exists an ǫ > 0 such that |S1(ω1, 0)−
S2(ω2, 0)| 6= 0 for |(ω1, ω2) − (ω̂1, ω̂2)| < ǫ. Note also that since S1(ω1, 0) and S2(ω2, 0) are
2π-invariant up to a multiplicative constant, that ǫ may be chosen independent of (ω̂1, ω̂2).

Since dθ1/dω1 and dθ2/dω2 are nonzero for all ω1, ω2 (see (6.24), or alternatively consider (6.25)
and (6.26)), we may choose θǫ > 0 small enough so that (6.27) is satisfied.

Remark 6.10. Note in Lemma 6.9 that the angle θǫ depends only on the multiplicative constant
M . Also θǫ(M) can be chosen so that θǫ(M) → 0 monotonically as (M−1) → 0+ or (M−1) →
0−.

The following Lemma is a particular consequence of the ratio ρ1/ρ2 being irrational.

Lemma 6.11. The set of values of M for which there exists a reparameterization of the spirals
given in (6.24) so that the equation S1(ω1, 0) = S2(ω2, 0) becomes S1(ω1, 0) =MS2(ω2, 0) are
dense in R

+.

Proof. Central to the proof is the fact that numbers of the formm2ρ2−m1ρ1 (wherem1, m2 ∈ N)
are dense in the real line. This may easily be seen from the fact that numbers of the form

m1
ρ1
ρ2

(mod 1), m1 ∈ N

are dense in the unit interval (since ρ1/ρ2 is irrational). Therefore numbers of the formm2−m1
ρ1
ρ2

(where both m1, m2 ∈ N) are dense in the real line, and hence so are numbers of the form
m2ρ2 − m1ρ1. We may make m2ρ2 − m1ρ1 arbitrarily close to any real number, by choosing
appropriate m1 and m2 (which, if necessary, have to be chosen sufficiently large).

Now consider the spirals S1(ω1, 0) and S2(ω2, 0). These spirals are centred on the origin in the
plane. They also have the property that they are invariant under transformations ω 7→ ω−2njπ
(nj ∈ N). Such a transformation has the effect of enlarging the spiral Si(ω, 0) by a factor of
e2ρinjπ, which recovers the original spiral. Therefore the change of variables ω1 7→ ω1 − 2m1π
and ω2 7→ ω2 − 2m2π transforms the equation S1(ω1, 0) = S2(ω2, 0) into e2m1ρ1πS1(ω1, 0) =
e2m2ρ2πS2(ω2, 0). As the numbers m2ρ2 −m1ρ1 are dense in the real line, e(2m2ρ2π−2m1ρ1π) are
dense in R

+.

The following Corollary is immediate from the proof of Lemma 6.11.

Corollary 6.12. For any open interval I ⊂ R
+, there exists a sequence (m1(k), m2(k))k∈N with

m1(k), m2(k) → ∞ as k → ∞ such that e(2m1(k)ρ1π−2m2(k)ρ2π) ∈ I.

The following Lemma provides suitable (ω1, ω2)-intervals in which to look for intersections of
the spirals S1(ω1, 0) and S2(ω2, 0). Recall that we have assumed without loss of generality
that ρ1 < ρ2.
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Lemma 6.13. Suppose ρ1 < ρ2. For fixed N ∈ N, there exist integers nN > . . . > n2 > n1 ≥ 1
such that

e−2π(ni−i)ρ2 > e−2πniρ1 > e−2π(ni+1)ρ1 > e−2π(ni−i+1)ρ2 , i = 1, . . . , N (6.28)

Proof. Let n1 be the smallest integer such that

(n1 + 1)ρ1 < n1ρ2.

Clearly n1 ≥ 1. Then we have n1ρ1 > (n1 − 1)ρ2. In this case (n1 + 1)ρ1 > (n1 − 1)ρ2 and so
there exists n2 > n1 such that n2 is the smallest integer such that

(n2 + 1)ρ1 < (n2 − 1)ρ2.

Then we also have n2ρ1 > (n2 − 2)ρ2. Continuing in this way we obtain integers nN > . . . >
n2 > n1 ≥ 1 such that (ni + 1)ρ1 < (ni − i+ 1)ρ2 and niρ1 > (ni − i)ρ2. Altogether this gives
the inequalities (6.28).

Remark 6.14. Note that it is possible that ni+1 = ni +1 for one or more i = 1, . . . , N − 1. In
that case e−2π(ni−i)ρ2 = e−2π(ni+1−(i+1))ρ2 and e−2π(ni−i+1)ρ2 = e−2π(ni+1−(i+1)+1)ρ2 in (6.28). In
the case that (N + 1)ρ1 < ρ2, we have ni = i for i = 1, . . . , N .

We now return to the proof of Lemma 6.5.

Proof of Lemma 6.5. From Lemma 6.6 we know that there are at most two straight lines
through the origin for which the tangent vectors of the spirals S1(ω1, 0) and S2(ω2, 0) are
parallel. Let us denote these lines l0 and l1. (In the case of there being just one (resp. no) such
straight lines, l1 (resp. l1 and l0) may be chosen arbitrarily.)

Now let ω∗
1, ω

∗
2 be such that there is M0 > 0 with

S1(ω
∗
1, 0) =M0S2(ω

∗
2, 0). (6.29)

Using Lemma 6.13 and (6.29), we obtain for M sufficiently close to M0 the inequalities:

|MS2(ω
∗
2 + 2(ni − i)π)| > |S1(ω

∗
1 + 2niπ)|

> |S1(ω
∗
1 + 2(ni + 1)π)| > |MS2(ω

∗
2 + 2(ni − i+ 1)π)| (6.30)

i = 1, . . . , N

Now consider the spirals S1(ω1, 0) and M0S2(ω2, 0) parameterised in the intervals

ω1 ∈ [ω∗
1 + 2niπ, ω

∗
1 + 2(ni + 1)π] := I i1

ω2 ∈ [ω∗
2 + 2(ni − i)π, ω∗

2 + 2(ni − i+ 1)π] := I i2

for i = 1, . . . , N . As mentioned in Lemma 6.13 it is possible that some or all of the intervals I i2
are the same, in the case that ni+1 = ni + 1 (for some or all of i = 1, . . . , N − 1). However the
intervals I i1 are all different.
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We may consider these i pairs of segments of S1(ω1, 0) and M0S2(ω2, 0) (parameterised by
I i2 and I i1) represented in polar coordinates. Note that all of the points in the inequalities
(6.30) have the same angle (modulo 2π), and that all the intervals I i2, I

i
1 cover an angle of 2π.

As the spirals are continuous functions of ω1 and ω2 respectively, we may conclude from the
Intermediate Value Theorem and (6.30) that there exist intersection points (ω̃i

1, ω̃
i
2) ∈ I i1 × I i2

for each i. Note that these are necessarily distinct intersection points.

Now it is clear that there exists a constant Mǫ > 1, with |Mǫ − 1| sufficiently close to zero,
such that for M ∈ [M0/Mǫ,M0Mǫ] the inequalities (6.30) still hold and hence S1(ω1, 0) and
MS2(ω2, 0) have intersection points (ω̃i

1(M), ω̃i
2(M)) ∈ I i1 × I i2 for M ∈ [M0/Mǫ,M0Mǫ], i =

1, . . . , N . It is possible however that there may be finitely many isolated values of M in
the interval [M0/Mǫ,M0Mǫ] for which the intersection points lie on l0 or l1—in this case we
may choose a subinterval IM0

ǫ ⊂ [M0/Mǫ,M0Mǫ] such that the spirals have intersection points
(ω̃i

1(M), ω̃i
2(M)), where no intersection point lies on l0 or l1 for M ∈ IM0

ǫ .

Now, further shrinking IM0

ǫ if necessary we may apply Lemma 6.9 to show that there exists
an open interval IM0

ǫ , such that for M ∈ IM0

ǫ , the spirals S1(ω1, 0) and MS2(ω2, 0) have
intersection points (ω̃i

1(M), ω̃i
2(M)) , i = 1, . . . , N , with

ω̂N
1 (M)− ω̂1

1(M) ≤ 2(nN − n1 + 1)π

ω̂N
2 (M)− ω̂1

2(M) ≤ 2(nN − n1 −N + 2)π

and whose angle in polar coordinates is bounded away from l0 and l1 by some fixed angle θ̂.
From (6.25) and (6.26) it is clear that this is equivalent to the statement that there exists a fixed
angle θ∗ such that the angle between the spiral tangents is greater than θ∗ at the intersection
points.

Thus we have found a set of N intersection points of the two spirals S1(ω1, 0) and MS2(ω2, 0)
with the desired properties as given in Lemma 6.5, for each M in an open interval IM0

ǫ ⊂ R
+.

By Corollary 6.12, we can find a sequence (m1(k), m2(k))k∈N withm1(k), m2(k) → ∞ as k → ∞
with the property that e(2m1(k)ρ1π−2m2(k)ρ2π) ∈ IM0

ǫ .

Therefore the sequence (ω̃i
1(e

(2m1(k)ρ1π−2m2(k)ρ2π)), ω̃i
2(e

(2m1(k)ρ1π−2m2(k)ρ2π)))k∈N (i = 1, . . . , N)
are solutions to the equation

S1(ω1, 0) = e(2m1(k)ρ1π−2m2(k)ρ2π)S2(ω2, 0).

and so the sequence (ω̂i
1(k), ω̂

i
2(k))k∈N defined by

ω̂i
j(k) := ω̃i

j(e
(2m1(k)ρ1π−2m2(k)ρ2π)) + 2mj(k)π, j = 1, 2, k ∈ N, i = 1, . . . , N (6.31)

are solutions to the equation
S1(ω1, 0) = S2(ω2, 0)

that satisfy the requirements of the Lemma.

Using the notations introduced in the foregoing proof we define

Mk := e(2m1(k)ρ1π−2m2(k)ρ2π).
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With that we find

m1(k) =
ρ2
ρ1
m2(k) +

1

2πρ1
lnMk. (6.32)

Note that Mk ∈ IM0

ǫ , where |IM0

ǫ | is small.

In those terms the issue of Lemma 6.5 is:

Corollary 6.15. There exist sequences (Mk) and (mj(k)), j = 1, 2 withMk ∈ IM0

ǫ andmj(k) →
∞ as k → ∞ in each case such that

L(ω̂i
1(k), ω̂

i
2(k), 0) = L(ω̃i

1(Mk) + 2m1(k)π, ω̃
i
2(Mk) + 2m2(k)π, 0) = 0, i = 1, . . . , N.

Moreover, there exist constants CDL−1 and CD2L such that

(i) |(D1L(ω̂
i
1(k), ω̂

i
2(k), 0))

−1| < CDL−1e(2ρ2m2(k)π+
1

2
(ρ1W1(N)+ρ2W2(N))),

(ii) |D2
1L(ω̂

i
1(k), ω̂

i
2(k), 0)| < CD2Le

−2ρ2m2(k)π.

Proof. The first part of the statement follows immediately by the above considerations. So we
confine ourselves to prove the estimates (i) and (ii).

To verify (i) we consider D1L(ω̂
i
1(k), ω̂

i
2(k), 0) as a matrix. By means of the determinant detA

and the adjugate matrix adj (A) the inverse of a matrix A can be written as

A−1 =
1

detA
adj (A).

According to the stipulation of L, cf. (6.23), we find

| detD1L(ω̂
i
1(k), ω̂

i
2(k), 0)| = |Ṡ1(ω̂

i
1(k), 0)| · |Ṡ2(ω̂

i
2(k), 0)| · | sin∢(Ṡ1(ω̂

i
1(k), 0), Ṡ2(ω̂

i
2(k), 0))|,

where Ṡj denotes the derivative with respect to ωj. In order to determine |Ṡj(ω̂
i
j(k), 0)| we

exploit (6.25) or (6.26), respectively. Taking also (6.24), (6.31) and Lemma 6.5(iii) into consid-
eration we find constants Cj such that

|Ṡj(ω̂
i
j(k), 0)| > Cje

−ρj(2mj(k)π+Wj(N)).

By Lemma 6.5(iv) we find

| sin∢(Ṡ1(ω̂
i
1(k), 0), Ṡ2(ω̂

i
2(k), 0))| ≥ sin θ∗N .

Further, we write
adj (D1L(ω̂

i
1(k), ω̂

i
2(k), 0)) = e−2ρ2m2(k)π LR.

Because of (6.32) the norm of LR can be estimated (to above) independently of k.

Combining the estimates regarding the determinant and the adjugate of D1L(ω̂
i
1(k), ω̂

i
2(k), 0),

and exploiting in the course of this again (6.32) we infer the estimate (i).

Next we verify estimate (ii). To this end we exploit that D2
1L can be reduced to a 2× 2-matrix

L consisting of the columns S̈j(ω̂
i
j(k), 0). Again exploiting (6.25) and (6.26) the matrix L can

be written as L = e−2ρ2m2(k)πL̂. Finally, the norm of L̂ can be estimated by a constant which
does not depend on k and N .

It is clear that under perturbation of µ, (6.21) retains only finitely many transversal inter-
sections, but this number of transversal intersections may be arbitrarily large by taking µ
sufficiently close to zero.
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Rational ratio ρ1/ρ2. Next we consider the case where ρ1/ρ2 is rational. The following
lemma states that in this case , the spirals S1(ω1, 0) and S2(ω2, 0) are together self-similar.

Lemma 6.16. Assume that that µ1 = µ2 = 0 and ρ1/ρ2 is rational, ρ1/ρ2 = p/q, with p, q ∈ N

(recall ρ1, ρ2 > 0). Then equation (6.21) is periodic in (ω1, ω2).

Proof. Under the transformations

ω1 → ω1 + 2qπ

ω2 → ω2 + 2pπ

equation (6.21) becomes

(

e−2ρ1qπe−ρ1ω1 sinω1 −e−2ρ2pπe−ρ2ω2c21 sinω2

e−2ρ1qπe−ρ1ω1 sin(ω1 + ϕ12) −e−2ρ2pπe−ρ2ω2c22 sin(ω2 + ϕ22)

)

= 0 (6.33)

Multiplying through both equations by e2ρ1qπ and using ρ1q − ρ2p = 0 recovers the original
equations (6.21).

Corollary 6.17. Assume that that µ1 = µ2 = 0 and ρ1/ρ2 is rational, ρ1/ρ2 = p/q, with
p, q ∈ N. If L(ω∗

1, ω
∗
2, 0) = 0 then, for all k ∈ N also L(ω∗

1 + 2kpπ, ω∗
2 + 2kqπ, 0) = 0. Further

e−2kρ1qπD1L(ω
∗
1, ω

∗
2, 0) = D1L(ω

∗
1 + 2kpπ, ω∗

2 + 2kqπ, 0).

Proof. Recall that the two spirals S1 and S1 intersect if (6.21) is satisfied. Plugging in the
values ω∗

1 + 2kpπ and ω∗
2 + 2kqπ in (6.21) yields (6.33). Now, following the arguments in the

proof of Lemma 6.16 gives the statement.

Let H be the (topological) space of two parameter vector fields containing a heteroclinic cycle
under the assumptions stated above for f(·, 0), and let this space be endowed with the C1

topology.

Lemma 6.18. Consider the system (1.1) under the assumptions (H 1)–(H5). Assume the
eigenvalue case (CC). There exists an open and dense set D ⊂ H, such that for each f(·, 0) ∈ D,
equation (6.20) has an infinite number of non-degenerate solutions, or equivalently the spirals
S1(ω1, 0) and S2(ω2, 0) have an infinite number of transversal intersections.

Proof. First we note that since H is endowed with the C1 topology, the constants in equation
(6.20) varies continuously in this topology, meaning that they depend continuously on the
vector field. Therefore Lemma 6.5 implies that there is a dense set D̃ ⊂ H such that equation
(6.20) has an infinite number of transversal intersections.

We now consider a vector field f in D̃, and take a small neighbourhood B(f ; ǫ) around it.
It is clear that if ǫ is sufficiently small, the constants in (6.20) undergo an arbitrarily small
perturbation, and at least one transversal intersection of S1(ω1, 0) and S2(ω2, 0) persists. By
Lemma 6.5, for every point in B(f ; ǫ) where ρ1/ρ2 is irrational, there exist infinitely many
transversal intersections. Also, since there is as least one transversal intersection at every point
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in B(f ; ǫ), we may use Lemma 6.16 to show that where ρ1/ρ2 is rational, there must also be
infinitely many transversal intersections.

This provides an open and dense set in H where equation (6.20) has infinitely many non-
degenerate solutions, and completes the Lemma.

Remark 6.19. For each f(·, µ) ∈ D, µ 6= 0, equation (6.20) has only a finite number of
non-degenerate solutions, or equivalently the spirals S1(ω1, µ) and S2(ω2, µ) have only a finite
number of transversal intersections.

6.2.2 Nonwandering dynamics

Again we distinguish the two cases where the ratio ρ1/ρ2 is irrational or rational, respectively.

Irrational ratio ρ1/ρ2. As the counterparts of (6.5) and (6.6) we define

Ωk0 := {(ω̂i
1(k), ω̂

i
2(k)), k ≥ k0, i = 1, . . . , N}

and
Ωk0,N := {(ω̂i

1(k0), ω̂
i
2(k0)), i = 1, . . . , N}.

The estimates given in Corollary 6.15 enable corresponding counterparts to (6.15) and (6.16).
This finally makes it possible to apply an equivalent to Lemma 6.2 to detect solutions which
correspond to sequences of ΩZ

k0,N . The verification of shift dynamics is analogous to the con-
siderations in Section 6.1.2.

Rational ratio ρ1/ρ2. Next we deal with the case where the ratio ρ1/ρ2 is rational. Let
L(ω∗

1, ω
∗
2, 0) = 0 with nonsingular Jacobian, cf. Lemma 6.18. Then we employ Corollary 6.17

to find as the counterpart of (6.4)

ω̂1(k) = ω∗
1 + 2kpπ, ω̂2(k) = ω∗

2 + 2kqπ, (6.34)

Starting from that we define formally in the same way as we did in (6.5) and (6.6)

Ωk0 := {(ω̂1(k), ω̂2(k)), k ≥ k0}

and
Ωk0,N := {(ω̂1(k), ω̂

i
2(k)), k = k0, . . . , k0 +N − 1}.

From that point on we proceed as above – along the lines of the proof of Lemma 6.1, Lemma 6.2
and Section 6.1.2. Note that the counterparts to (6.15) and (6.16) follow easily from (6.34).
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6.3 Proof of Lemma 2.4

Similarly as in the proof of shift dynamics we distinguish the cases (RC) and (CC). Here we
perform the proof for the eigenvalue case (RC). Afterwards we comment briefly on the necessary
adjustments one has to make in the eigenvalue case (CC).

A l-(2,1) heteroclinic connection may be considered as part of a heteroclinic cycle, together
with a 1-(1,2) heteroclinic orbit. In terms of the ω-sequence, this corresponds to a l-periodic
sequence with ω1,1 = ω2,1 = ∞. In order to set up the bifurcation equation (6.1) for those
orbits explicitly we define (adapted to the formal setting ω1,1 = ω2,1 = ∞)

L1(ω1, µ) =

(

µ1 + c11e
−2λu

1ω1

µ2

)

, Ll(ω2, µ) =

(

µ1 −c21e
−2ρ2ω2 sin(2φ2ω2 + ϕ21)

µ2 −c22e
−2ρ2ω2 sin(2φ2ω2 + ϕ22)

)

. (6.35)

Further we recall the notations which we introduced in Section 6.1.1. With (6.2) and (6.3) the
bifurcation equation for l-(2,1) heteroclinic orbits is as follows.

Ξ1(ω, µ) = L1(ω1, µ) + r1(ω, µ) = 0,

Ξi(ω, µ) = L(ω1,i+1, ω2,i, µ) + ri(ω, µ) = 0, i = 2, . . . , l − 1,

Ξl(ω, µ) = Ll(ω2, µ) + rl(ω, µ) = 0.

We begin by considering the truncated form of equations Ξ1(ω, µ) = 0 and Ξl(ω, µ) = 0:

L1(ω1,2, µ) = 0, Ll(ω2,k, µ) = 0. (6.36)

Solutions of (6.36) are related to intersections of the line L1(t, 0) and the spiral −S2(t, 0) which
we discussed in Section 6.1.1 as follows: Similar to (6.4) we get

ω̂2(k) = ω̂∗
2 +

kπ

φ2
and ω̂1(k) =

ρ2ω̂2(k)

λu1
+ Ĉ1.

as solutions of L1(ω1, 0) = Ll(ω2, 0). Further we assign µ-values

µ̂(k) := −L1(ω̂1(k), 0).

Now we solve (6.36) near (ω̂1(k), ω̂2(k), µ̂(k)) by means of the Banach fixed point theorem
(note that the “constants” appearing in this equation may depend on µ) and get a solution
(ω̃1(k), ω̃2(k), µ̃(k)) with

µ̃(k) =

(

O
(

e−2k(ρ2/φ2)π
)

0

)

.

Next we choose m(k) such that

|µ̃(k)| < dµ(m(k)) = Ce−2m(k)(ρ2/φ2)π,

where the constant dµ was defined in (6.12); C is an appropriate constant in accordance with
(6.12). Therefore we might choose

m(k) = k + m̃
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with an appropriate m̃ ∈ N.

With that we consider
L(ω1, ω2, µ̃(k)) = 0, (6.37)

near ω̂1(k + m̃), ω̂2(k + m̃). Similar considerations as made in Section 6.1.1 yield solutions
(ω̃1(k + m̃), ω̃2(k + m̃), µ̃(k)) of (6.37). Hence, the quantities

ω̃1,2(k) := ω̃1(k), ω̃2,l(k) := ω̃2(k), ω̃1,i+1(k) := ω̃1(k + m̃), ω̃2,i(k) := ω̃2(k + m̃),

i = 2, . . . , l − 1, and µ = µ̃(k)

solve the truncated bifurcation equation

L1(ω1,2, µ) = 0,

L(ω1,i+1, ω2,i, µ) = 0, i = 2, . . . , l − 1,

Ll(ω2,l, µ) = 0.

With
ω̃(k) :=

(

ω̃1,i(k), ω̃2,i(k)
)

i∈{2,...,l}

and
L(ω, µ) = (L1(ω1,2, µ), L(ω1,3, ω2,2, µ), . . . , L(ω1,k, ω2,k−1, µ), Lk(ω2,k, µ)),

we rewrite the (full) bifurcation equation as the fixed point equation

(ω, µ) = (ω, µ)− [DL(ω̃(k), µ̃(k)))]−1Ξ(ω, µ). (6.38)

The further procedure runs parallel to the one in the proof of Lemma 6.2. In doing so we rely
on the following estimates

| [DL(ω̃(k), µ̃(k)))]−1 | < C−1e
2(k+m̃)(ρ2/φ2)π

max
(ω,µ)∈B[ω̃(k),d]×B[µ̃(k),dmu(k)]

|D2L(ω, µ)| < C2e
−2k(ρ2/φ2)π.

where C−1 and C2 are appropriate constants.

Hence there is a k(l) such that for each k > k(l) the full bifurcation equation has a solution
(ω(k), µ(k)) near (ω̃(k), µ̃(k)). Note that in particular the quantities µ(k)) depends also on l
(which is dropped in our notation). With that we find

Tl := {µ(k), k > k(l)}.

In the eigenvalue case (CC) essentially we proceed as in the (RC) case. However, now L1 has
the same structure as Ll, cf. (6.19) and (6.35). The quantities ω̂j(k), j = 1, 2 have to be
replaced by ω̂i

j(k), j = 1, 2, i = 1, . . . , N , cf. Lemma 6.5 and Section 6.2.2. For the residual the
comments given in Section 6.2.2 apply.
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6.4 Proof of Lemma 2.5

6.4.1 l-(1,2) heteroclinic orbits

We now search for l-(1,2) heteroclinic orbits, for l ≥ 2. For that we consider the concatenation
of a l-(1,2) heteroclinic orbit with Γ1, which corresponds to a l-periodic Lin orbit with a l-
periodic sequence ω with ω1,1 = ω2,l = ∞. Since we are only interested in solving for l-(1,2)
heteroclinic orbits, we do not need to solve the equation Ξl(ω, µ) = ξ∞(µ) = 0, which is only
related to Γ1.

The bifurcation equations to be solved are then as follows:

Ξi(ω, µ) = L(ω1,i+1, ω2,i, µ) + ri(ω, µ) = 0, i = 1, . . . , l − 1.

Here, the leading order term L is defined by (6.2) in the eigenvalue case (RC), while in the
eigenvalue case (CC) L is defined by (6.19) or (6.23), respectively. The residual terms ri have
to be chosen correspondingly.

Again we begin by considering the equation

L((ω1, ω2), 0) = 0.

As in Sections 6.1.1 or 6.2.2 respectively, we find solutions (ω̂1(k), ω̂2(k)) (or (ω̂1
1(k), ω̂

1
2(k)),

respectively), k ∈ N. Now we define ω̂(k) by

(ω̂1,i+1, ω̂2,i) = (ω̂1(k), ω̂2(k)), i = 1, . . . , l − 1.

The main observation is that the corresponding L(ω̂, 0) consists of copies of L(ω̂1(k), ω̂2(k), 0).
This allows us to solve the full bifurcation equation Ξ(ω, µ) = 0 in the same manner as in
Section 6.1.1 - which works in this context also for the eigenvalue case (CC).

6.4.2 Homoclinic orbits

Here we consider only l-homoclinic orbits to p1, since the proof is similar for homoclinic orbits
to p2. Such a homoclinic orbit corresponds to a l-periodic ω sequence with ω1,1 = ∞. The
bifurcation equations then read as follows:

Ξi(ω, µ) = L(ω1,i+1, ω2,i, µ) + ri(ω, µ) = 0, i = 1, . . . , l − 1,

Ξl(ω, µ) = Ll(ω2,l, µ) + rl(ω, µ) = 0.
(6.39)

Here, the leading order term L is defined by (6.2) in the eigenvalue case (RC), while in the
eigenvalue case (CC) L is defined by (6.19) or (6.23), respectively, and Ll is defined as in (6.35)
if λs2 is complex or it takes a corresponding form as L1 in (6.35) if λs2 is real (of course the c11,
λu1 and ω1 have to be replaced accordingly).

The first equation in (6.39) does not apply if l = 1, i.e. if we search for 1-homoclinic orbits to
p1. In this case the remaining second equation in (6.39) only depends on ω2 and µ, and can
easily be solved for µ = µ(ω2). This represents the stated spiral (if λs2 is complex) or line (if λs2
is real).
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From now on we assume that l > 1. First we solve Ll(ω2,l, µ) = 0 for µ = µ̂(ω2,l). Note that µ̂
tends to zero as ω2,l → ∞.

Next we consider L(ω1, ω2, 0) = 0. In accordance with our considerations in Section 6.1.1
(eigenvalue case (RC)) or Section 6.2.2 (eigenvalue case (CC)), respectively, we find infinitely
many solutions (ω̂1(k), ω̂2(k)), k ∈ N. With arguments given in the addressed sections it is
clear that these solutions can be continued for sufficiently small µ.

Now fix k ∈ N, and take ω2,l large enough such that L(ω1, ω2, µ(ω2,l)) = 0 has near (ω̂1(k), ω̂2(k))
a solution (ω̂1(ω2,l; k), ω̂2(ω2,l; k)):

L(ω̂1(ω2,l; k), ω̂2(ω2,l; k), µ̂(ω2,l)) = 0.

Set (ω̂1,i+1(k), ω̂2,i(k)) := (ω̂1(ω2,l; k), ω̂2(ω2,l; k)), i = 1, . . . , l−1, and ω̂2,l := ω2,l. As in Section
6.3 we rewrite (6.39) as a fixed point equation as in (6.38):

(ω, µ) = (ω, µ)− [DL(ω̂(k), µ̂(ω2,l)))]
−1Ξ(ω, µ).

This equation can be solved for (ω1,i+1, ω2,i)(ω2,l) and µ = µ̂(ω2,l; k), where ω2,l can be taken
from an interval (a(k),∞), for some appropriate a(k).

The curves Lhom
l,1 as stated in Lemma 2.5 are given by µ = µ̂(ω2,l; k).

Acknowledgements. This research was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC), the UK Royal Society and the London Mathematical
Society (LMS). JK and KW gratefully acknowledge support from the mathematics departments
of Imperial College London and the Technical University of Ilmenau, during mutual visits.

References

[1] Algaba, A., Fernández-Sánchez, F., Freire, E., Merino, M., and Rodrguez-Luis, A.J., Nontransver-
sal curves of T-points: a source of closed curves of global bifurcations. Phys. Lett. A 303 (2002),
204–211.

[2] Algaba, A., Merino, M., Fernández-Sánchez, F., and Rodrguez-Luis, A.J., Closed curves of global
bifurcations in Chua’s equation: a mechanism for their formation. Internat. J. Bifur. Chaos Appl.
Sci. Engrg. 13 (2003), 609–616.

[3] Bykov, V.V., The bifurcations of separatrix contours and chaos. Physica D 62, No.1-4 (1993),
290-299.

[4] Bykov, V.V., On systems with separatrix contour containing two saddle-foci, Journal of Mathe-

matical Sciences 95 (1999), 2513–2522.

[5] Bykov, V.V., Orbit structure in a neighbourhood of a separatrix cycle containing two saddle-foci,
Amer. Math. Soc. Transl. 200 (2000), 87–97.

[6] Chow, S.-N., Deng, B. and Fiedler, B., Homoclinic bifurcation at resonant eigenvalues. J. Dyn.

Differ. Equations 2, No.2 (1990), 177-244.

62



[7] Chow, S.-N. and Hale, J.K. Methods of bifurcation theory, Grundlehren der Mathematischen
Wissenschaften 251, Springer-Verlag, 1982.

[8] Coppel, W. A., Dichotomies in Stability Theory, Lect. Not. in Math. 629, Springer-Verlag, 1978.

[9] Dugundji, J., Topology, Allyn and Bacon, 1987.

[10] Fernández-Sánchez, F., Freire, E., and Rodrguez-Luis, A. J., Isolas, cusps and global bifurcations
in an electronic oscillator, Dynam. Stability Systems 12 (1997), 319–336.

[11] Fernández-Sánchez, F., Freire, E., and Rodrguez-Luis, A.J.,, T-points in a Z2-symmetric elec-
tronic oscillator. I. Analysis. Nonlinear Dynam. 28 (2002), 53–69.

[12] Fernández-Sánchez, F., Freire, E., and Rodrguez-Luis, A.J., Bi-spiraling homoclinic curves around
a T-point in Chua’s equation. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004), 1789–1793.

[13] Fiedler, B., Global pathfollowing of homoclinic orbits in twoparameter flows. In: Dangelmayr,
Gerhard et al., Dynamics of nonlinear waves in dissipative systems: reduction, bifurcation and

stability. Harlow: Longman. Pitman Res. Notes Math. Ser. 352, 79-145, 263-277 (1996).

[14] Georgi, M., Bifurcations from homoclinic orbits to non-hyperbolic equilibria in reversible lattice
differential equations. Nonlinearity 21 (2008), No.4, 735–763.

[15] Glendinning, P. and Sparrow, C., T-points: a codimension two heteroclinic bifurcation, J. Statist.
Phys. 43 (1986), 479–488

[16] Green, K., Krauskopf, B., and Samaey, G., A two-parameter study of the locking region of a
semiconductor laser subject to phase-conjugate feedback, SIAM J. Appl. Dyn. Syst. 2 (2003),
254–276.

[17] Homburg, A.J.; Jukes, A.C.; Knobloch, J. and Lamb, J.S.W., Bifurcation from codimension one
relative homoclinic cycles. Trans. Am. Math. Soc. 363, No. 11 (2011), 5663-5701.

[18] Homburg, A.J., and Natiello, M.A., Accumulations of T-points in a model for solitary pulses in
an excitable reaction-diffusion medium, Physica D 201 (2005), 212–229.

[19] Homburg, A.J. and Sandstede, B., Homoclinic and heteroclinic bifurcations in vector fields. In:
Handbook of Dynamical Systems, vol. 3 , 379-524. North-Holland, Amsterdam, 2010

[20] Klaus, J. Bifurcations from homoclinic orbits to a saddle center in reversible systems, PhD thesis,
TU Ilmenau, 2006.

[21] Knobloch, J., Lin’s method for discrete and continuous dynamical systems and applications, Ha-
bilitation thesis TU Ilmenau 2004

[22] Kokubu, H., Heteroclinic bifurcations associated with different saddle indices. Adv. Ser. Dyn.

Systems 9 1991, 236–260

[23] Kokubu, H., A construction of three-dimensional vector fields which have a codimension two
heteroclinic loop at Glendinning-Sparrow T-point. Z. Angew. Math. Phys. 44, No.3 (1993), 510-
536.

63



[24] Krishnan, J., Kevrekidis, I.G., Or-Guil, M., Zimmerman, M.G., and Bär, M., Numerical bifurca-
tion and stability analysis of solitary pulses in an excitable reaction-diffusion medium. Computa-
tional methods and bifurcation theory with applications. Comput. Methods Appl. Mech. Engrg.

170 (1999), 253–275.

[25] Lamb, J. S. W., Teixeira, M. A., and Webster, K. N., Heteroclinic Cycles near Hopf-Zero Bifur-
cation in Reversible Vector Fields in R

3, J. Differential Eq. 219 (2005), 78–115.

[26] Lin, X.-B., Using Melnikov’s Method to Solve Silnikov’s Problems, Proc. Roy. Soc. Edinburgh A

116 (1990), 295–325.

[27] Liu, D., Ruan, S. and Zhu, D., Nongeneric bifurcations near heterodimensional cycles with incli-
nation flip in R

4. Discrete Contin. Dyn. Syst., Ser. S 4, No. 6 (2011), 1511-1532.

[28] Palmer, K.J., Exponential dichotomies, the shadowing lemma and transversal homoclinic points,
Dyn. Rep. 1 (1988), 265-306.

[29] Qiao, Z., Zhu, D. and Lu, Q., Bifurcation of a heterodimensional cycle with weak inclination flip.
Discrete Contin. Dyn. Syst., Ser. B 17, No. 3 (2012), 1009-1025.

[30] Rodrigues, A.A.P. J. Dyn. Differ. Equations 25, No. 3 (2013), 605-625.

[31] Romeo, M.M., and Jones, C.K.R.T., The stability of traveling calcium pulses in a pancreatic
acinar cell. Physica D 177 (2003), 242–258.

[32] Rucklidge, A. M. Chaos in a low-order model of magnetoconvection, Physica D 62 (1993), 323–
337.

[33] Schalk, U., Homokline Punkte in periodisch gestörten Systemen gewöhnlicher Differentialgleichun-
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