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Abstract

We investigate most general properties of possible laser equations in the

case where optics is linear. Exploiting the presence of a natural small parame-

ter (the ratio of the photon lifetime in the laser device to the relaxation time of

the population density) we establish the existence of an exponentially attract-

ing invariant manifold which contains all bounded orbits, and show that only

a small number of electromagnetic modes is su�cient to describe accurately

the dynamics of the system. We give a general form of the reduced few-mode

systems. We analyze the behavior of single-mode models and a double-mode

model with a single optical frequency. We show that in the case where only

one electromagnetic mode is excited, the rate equations are close to integrable

ones, so the dynamics in this case can be understood by analytic means (by

averaging method). In particular, it is shown that a non-stationary (periodic)

output is possible only in relatively small (of order of some fractional powers

of the small parameter) regions in the space of parameters of the system near

some specially chosen parameter constellations. Estimates on the size of these

regions and on the frequency of periodic self-pulsations are given for di�erent

situations.

1 Abstract laser equations. Electromagnetic modes

reduction

We consider the following system of equations:

_E = H(N)E;

_Ni = "Fi(N)� E>Gi(N)E�

(1)

where E 2 Cp is a complex vector, N = (N1; : : : ; Nk) 2 Rk is a real vector, " is a

small parameter, the matrices Gi(N) are Hermitian.

System (1) can be viewed as an abstract laser equation in the case when optics is

linear. The vector E describes the electromagnetic �eld within the laser: this is the

vector of complex amplitudes for an appropriate system of modes. We assume that

the evolution of the �eld is governed by linear equations (i.e. the optical power is not

too large). However, the evolution of the �eld depends on the instant state of the

medium within the laser. We describe this state by the vector (or scalar if k = 1)

N . Typically, for semiconductor devices, N is the carrier (electron/hole) density
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averaged over the device, or the vector of carrier densities averaged over parts of

the device or taken from point to point [1]. In the absence of the �eld the density

relaxes to a ground state; this process is governed by the �rst term in the equation

for _N while the second term is taken proportional to the intensity of the �eld. Many

types of lasers (see [2]) are described by equations of this particular structure (with

may be di�erent interpretations of the state of the matter variables N and di�erent

choices of the set of electromagnetic modes). The actual di�erence between di�erent

laser devices can thus be described by di�erent choices of the functions F , G and H

in (1).

The number p of electromagnetic modes in the model may be very large, it does

not matter, but we assume, however, from the very beginning, that this number is

�nite. This assumption means that the modes with large wave numbers must e�ec-

tively average themselves, so that their contribution to dynamics must be modelled

by an addition of a noise. Indeed, the noise is naturally present in any realistic

situation, and the phenomenologically de�ned functions F , G and H are usually

known with not a very good precision, so attempting to take into account very �ne

details of spatial structure (i.e. the modes with large wave numbers) could often

be unreasonable. In fact, this paper arose from the attempt to qualitatively under-

stand various dynamical phenomena in the multi-section distributed-feedback laser

[3, 4, 5, 6, 7] which is modelled by a system of PDEs whose Galerkin or �nite-element

approximations �t exactly to (1).

The main idea of this paper is that many important dynamical properties of (1) can

be understood without actual knowing the exact functions F , G and H, based only

on the assumption of the smallness of parameter ". It is, in essence, the ratio of

photon life time in the device to the relaxation time of the medium, and it is usually

reasonably small indeed. Thus, in the quoted model [4] we have " � :005 (see [8]).

More examples of lasers for which the value of " is of the same or even higher order

of smallness can be found in [9] (see also further references there).

We prove that often used single-mode, or few-mode, approximations to the laser

equations are indeed correct in the limit of small ", and we give the general proce-

dure of reduction of the number of electromagnetic modes. It occurred also possible

to give a comprehensive analyze of the dynamics of single-mode approximations.

We show that if only one electromagnetic mode is excited, then non-stationary sig-

nal (self-pulsation) is, generically, impossible to produce. Roughly speaking, lasers

cannot generate non-stationary signals, unless some special parameter constellations

are achieved. Thus, in order to get, say, a periodic output, parameters of the laser

device must be carefully tuned. How careful it should be, this depends on the ac-

tual value of " (our analysis is valid, of course, in the limit of small "), so we also

give estimates of the size of the parameter regions which correspond to the periodic

self-pulsations in di�erent single-mode models and in some double-mode model.

Let us adopt, �rst, a speci�c terminology. The equilibrium state

E = 0; F (N) = 0
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will be called the o�-state. A relative (with respect to phase shift E 7! Eei')

equilibrium

E(t) =
p
S�ei!t (2)

will be called a stationary state. Obviously, (2) is a solution of (1) if and only if

det(H(N)� i!) = 0; S = "
F1(N)

�>G1(N)��
= : : : = "

Fk(N)

�>Gk(N)��
(3)

where � is the eigenvector (k�k = 1) of the matrix H which corresponds to the

eigenvalue i!.

A relative periodic solution will be called self-pulsation. We will be particularly

interested in the question of existence of the self-pulsations in system (1).

We will restrict our attention to the solutions of the system for which the norm

of E does not exceed signi�cantly that for the stationary states (as numerics and

experiments show, this is quite typical in applications, see e.g. [4, 8]). By (3),

this assumption means simply that the value of E is of order
p
" in dimensionless

variables. Therefore, we may scale E 7!
p
"E and the equations (1) will recast as

_E = H(N)E;

_Ni = "(Fi(N)� E>Gi(N)E�)

(4)

where we will be looking for the solutions with the �nite amplitude of E at " su�-

ciently small.

Let us de�ne the critical set Ncri as the set of values of N for which the matrix

H(N) has at least one eigenvalue on the imaginary axis. According to (3), every

stationary state lies in the critical set.

Lemma. Every nontrivial �nite-amplitude solution of (4) stays in a small neigh-

borhood of Ncri.

This statement becomes obvious when explained. Fix any constant K and de�ne

a �nite-amplitude solution as such for which kE(t)k � K for all t; the solution is

nontrivial when E(t) is not identically zero. Since every nontrivial �nite-amplitude

solution of (4) at " = 0 lies in Ncri, it follows by continuity that at " 6= 0 all non-

trivial �nite-amplitude solutions lie in a Æ(")-neighborhood of Ncri, where Æ ! 0 as

�! 0 for any �xed K.

So, we have to focus on a small neighborhood of the critical set. By obvious stability

reasons we can further restrict our considerations to a small neighborhood of the

so-called threshold set Nthr which is the subset of Ncri for which the matrix H(N)

has no eigenvalues with positive real parts.

Let us take a compact connected subset N Æ of the threshold set such that at every

point of N Æ the matrix H has the same number m of eigenvalues on the imaginary
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axis (accounted with multiplicities). Generically, N Æ is a smooth manifold. When

N belongs to a small neighborhood of N Æ, the space Cp of the E-variables is decom-

posed into direct sum of two invariant subspaces, Ec and Es, of the matrix H(N).

The space Ec corresponds to the m eigenvalues close to the imaginary axis and Es
corresponds to the rest of eigenvalues which stay bounded away from the imaginary

axis; both the subspaces depend smoothly on N .

We may choose a basis f�1(N); : : : ; �m(N)g in Ec and a basis f�1(N); : : : ; �p�m(N)g
in Es. This gives us the following decomposition

E = �(N)U + �(N)V (5)

where �(N) is the matrix with columns (�1(N); : : : ; �m(N)) and �(N) is the matrix

with columns (�1(N); : : : ; �p�m(N)); thus, U 2 Cm and V 2 Cp�m are coordinates

in Ec and Es respectively. By construction,

H(N)�(N) = �(N)A(N) (6)

and

H(N)�(N) = �(N)B(N) (7)

where the spectrum of A(N) lies close to the imaginary axis (it lies exactly on the

imaginary axis when N 2 N Æ) and the spectrum of B(N) is bounded away from it

(see Fig.1).

Plugging (5)-(7) in (4) we obtain the following system

_V = B(N)V � (�y(N))>�0(N) _N V � (�y(N))>�0(N) _N U;

_U = A(N)U � (�y(N))>�0(N) _N U � (�y(N))>�0(N) _N V;

_Ni = "(Fi(N)� U>�>(N)Gi(N)��(N)U� � 2Re
�
U>�>(N)Gi(N)��(N)V �

�
+O(kV k2))

(8)

where the matrices �y(N) and �y(N), normed so that (�y(N))>�(N) = 1, (�y(N))>�(N) =

1, are found from the equations

Hy(N)�y(N) = �y(N) ~A(N) (9)

and

Hy(N)�y(N)H�(N) = �y(N) ~B(N); (10)

where Hy denotes the matrix conjugate to H and ~A and ~B denote some matrices

similar to those conjugate to A and B, respectively.

At " = 0 the system takes the form

_V = B(N)V; _U = A(N)U; _N = 0: (11)

The invariant manifold V = 0 of this system is exponentially asymptotically stable

at N close to N Æ (because the spectrum of B(N) lies strictly to the left of the
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Spectr A(N)

Spectr B(N)

Im

Re

Figure 1: The spectrum of A(N) lies close to the imaginary axis for all N close to

the piece N Æ of the threshold surface, and the spectrum of B(N) lies strictly farther

to the left from the imaginary axis.
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spectrum of A(N) for every �xed N under consideration). Although this manifold

is not compact, it is obvious that the system (8) can be modi�ed at kUk � K

(for any arbitrarily large, aforehand given K) and at N far from N Æ in such a way

that this manifold would become out�owing at " = 0. Thus, the standard theory

is applied [10] which guarantees the continuation of this invariant manifold onto

nonzero ". We formulate this as follows.

Theorem. The system (8) has an exponentially attracting invariant smooth mani-

fold

V = "V(N;U; ")U (12)

where the function V is de�ned for all N in a small (independent of ") neighborhood

of N Æ, for all U whose norm is less than some aforehand given K (which can be

taken arbitrarily large) and for all small " (the range of " depends on the choice of

K).

Note that the invariant manifold (12) is symmetric with respect to the phase shift

(U; V ) 7! (U; V )ei' (because system (8) is symmetric), therefore the function V must

be invariant with respect to the rotations U 7! Uei'.

It should be mentioned that since we assume our vectors E and N �nite-dimensional,

the proof of the theorem is obtained simply by reference to a general result of

[10]. However, the result still holds true in the case where E is in�nite-dimensional

(belongs to a complex Hilbert space), as it is shown in [11].

According to this theorem, we may restrict our attention to the manifold (12) only

(for any initial condition a trajectory must exponentially fast come to an arbitrarily

small neighborhood of this manifold and stay there forever.) Plugging (12) into (8)

we arrive to the following system on the invariant manifold:

_U = A(N)U � �(N) _N U +O("2)U;

_Ni = "(Fi(N)� U>(gi(N) + "~gi(N;U))U
� +O("2))

where

�(N) = �y(N)�0(N); gi(N) = �>(N)Gi(N)��(N)

and

~gi(N;U) = 2Re
�
�>(N)Gi(N)��(N)V�(N;U; 0)

�
:

Note that ~gi must be rotationally invariant, i.e.

~gi(N;Ue
i') � ~gi(N;U): (13)

We will drop the O("2)-terms from now on (simply because they are too small) and

proceed to the study of the shortened system

_U = A(N)U � �(N) _N U;

_Ni = "(Fi(N)� U>(gi(N) + "~gi(N;U))U
�):

(14)
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System (14) can be viewed as a general form of �nite-mode approximations of laser

equations. We stress that we arrived to (14) from the original system (1) using only

the assumption of smallness of " (while all the other coe�cients are assumed to be

bounded) and the smallness (�niteness in the rescaled variables) of the amplitude

of E. Making speci�c assumptions on the spectrum of matrix A(N) we can further

transform the equations, and this will even allow for a complete analysis of dynamics

in some basic cases.

Namely, if only a single mode is on the threshold (i.e. U 2 C1 and A(N) is a scalar)

the system, after an appropriate rescaling of time and the N -variables, becomes close

to an integrable one, so the averaging methods are very well applied here (see Secs.

2-4). For multi-mode models, the near-integrability does not always hold. However,

the methods of bifurcation theory (normal forms and blow-up) can still be applied,

as we demonstrate in Sec.5 for the example of a double mode on the threshold.

The overall idea of this paper is that the presence of the explicit small parameter in

equations (14) allows one always to �nd, by expansion in (fractional) powers of ",

an appropriate coordinate transformation which would bring the equations to some

normal form, mostly independent on the particular choice of the functions �, F , g.

We derive such normal forms (formulas (21), (32) and (34), (47) and (51), (57),

(60), (68) and (69) below) for the cases where the laser generates only one optical

frequency, i.e. when there is only one mode on the threshold, or if there are two

modes on the threshold, then they both have the same frequency (which means that

A(N) has a double eigenvalue on the imaginary axis at this moment). The results of

our analysis are as follows. We show (Sec.2) that if a single eigenvalue ofH intersects

the imaginary axis transversely as N crosses the threshold, then the region of the

parameter values which correspond to the existence of fast self-pulsations is always

small, of order ". The frequency of these self-pulsations is of order "1=2 (note that

our time unit is the time a photon spends in the device, so our small - of order

fractional powers of " - frequencies can correspond to su�ciently large frequencies

in practice). In case we have a vector variable N (Sec.3), the system may have large

parameter regions which correspond to slow (with the frequency of order ") self-

pulsations. In this regime, the N -variables oscillate staying on the threshold surface

and the electromagnetic power changes passively, in such a way that it prevents the

cross-threshold deviations of N . If the critical eigenvalue is tangent to the imaginary

axis as N crosses the threshold (Sec.4), then the region of the existence of fast self-

pulsations (with the frequency of order "2=3) is larger: O("1=3)�O("2=3) (we have two
parameters here which scale di�erently). In the case of the cubic tangency we have

even larger existence region of size O("1=4)�O("1=2)�O("3=4), whereas the frequency
of the self-pulsations is lower, of order "3=4. In the case where a double eigenvalue

intersects the imaginary axis (Sec.5) the region of the existence of self-pulsations

has the same size as in the case of the quadratic tangency to the imaginary axis:

O("1=3)�O("2=3), but the frequency here is relatively higher - O("1=3).
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2 Basic single-mode model

The �rst case we consider is when A(N) is just a scalar (i.e. we have only one

pure imaginary eigenvalue on the threshold). This is, obviously, the most general

case. We denote the only eigenvalue of A(N) as �(N) in this case (i.e. �(N) � A(N)

here). To start with, we assume that we have only one N and letN0 be the threshold

value, i.e. Re�(N0) = 0. We assume that �(N) crosses the imaginary axis with a

non-zero velocity when N is pushed above the threshold, i.e.

Re�0(N0) 6= 0: (15)

Denoting S = jU j2 (recall that U 2 C1 in the case under consideration) we arrive

at the following system of rate equations in R2

_S = 2(Re�(N)� Re �(N) _N)S;

_N = "(F (N)� (g(N) + "~g(N;
p
S))S):

(16)

We assume that g(N0) 6= 0 (for the presence of electromagnetic �eld must have an

e�ect on the evolution of the matter, i.e. on the N -variable). Also, let F (N0) 6= 0

(i.e. the o�-state is not at the threshold). Since N must stay close to N0 we have

that g(N) 6= 0 and F (N) 6= 0 in the interesting region. Moreover, we assume that

g(N) > 0 because it can always be achieved by a proper choice of the sign of N .

Let us now change the variables S 7! SnewjF (N)j=(g(N) + "~g(N;
p
S)) which will

bring the system to the form

_S = (2Re�(N)(1� "ĝ(N; S))� ~�(N) _N +O("2))S;

_N = "jF (N)j(�1� S)

(17)

where ~�(N) = 2Re �(N)+
d

dN
(ln jF (N)j=g(N)) and ĝ(N; S) =

S

g(N)

d

dS
~g(N;

q
SjF (N)j=g(N)).

We may now also scale the time to jF (N)j and write the system as

_S = (2�(N)(1� "ĝ(N; S))� (N) _N +O("2))S;

_N = "(�1� S)

(18)

where� stands for the sign of F (N) and �(N) = Re�(N)=jF (N)j, (N) = ~�(N)=jF (N)j.

Since N has to be close to the threshold, we can write

N = N0 + Æn

for some small Æ whose dependence on " is to be de�ned. We can expand

�(N) = �1Æn + �2Æ
2n2 + �3Æ

3n3 + : : :
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and

(N) = 0 + 1Æn + : : : :

Recall that �1 6= 0. The system takes the form

_S = Æ(2�1n� 0 _n+ 2�2Æn
2 + 2�3Æ

2n3 � 2"�1ĝ(N
0; S)� Æ1n _n+O(Æ3; "Æ; "2=Æ))S;

_n =
"

Æ
(�1� S):

(19)

It is clear now that the wise choice of the scaling factor Æ is

Æ2j�1j = ":

Choosing Æ in this way and rescaling the time we will obtain equations which have

the following limit as "! +0:

_S = 2�nS; _n = (�1� S); (20)

where � = sign �1. It is a conservative system with the �rst integral h = �n2 +

S � lnS. When we have a minus sign in the second equation of (20) there is no

bounded trajectories at S > 0. If we have a plus sign, and � = �1, the only

bounded trajectory is a saddle equilibrium state at S = 1 (see the phase portraits

in Fig.2). The analogous conclusion holds true for the system (19) as well (because

it becomes Æ-close to (20) after the rescaling of time). Therefore, we will focus on

the �plus-plus� case (i.e. F (N0) > 0, �1 > 0).

Here, after rescaling the time to the factor Æ, system (19) takes the form

_S = (2n�
p
"(
0

�1

(1� S) + 2
�2

�1

n2) + "('(n) + n (S)) +O("3=2))S;

_n = 1� S

(21)

where ' and  are some smooth functions. This system can be viewed as a slightly

re�ned form of the simplest laser rate equations (see [12]). It is known (see [13] and

references therein) that after an appropriate rescaling these rate equations become

conservative at " = 0. Indeed, at " = 0 system (21) takes the form:

_S = 2nS; _n = 1� S (S > 0); (22)

with the �rst integral h = n2 + S � lnS.

The orbits of (22) are closed curves surrounding the equilibrium (of center type)

O(n = 0; S = 1). The line L : fn = 0; S > 1g is a cross-section: every orbit starting

on L returns to it after one �nite time round about the equilibrium O. The system

(21) has, of course, an equilibrium O"(S = 1; n = n" = O(")) close to O and the

Poincaré map on the line fn = n"; S > 1g is still de�ned. The form of equations

(21) will not change if we shift the origin in n so that to make n" = 0, therefore we
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Figure 2: Phase portraits for the integrable limit (20).
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will assume that O" = (S = 1; n = 0). It means, in particular, that '(0) = 0 in

(21).

Consider now the function

h"(n; S) = n2 +
p
"
2�2

3�1

n3 + "

Z
'(n)dn+ S � lnS �

"

2

Z
(1� S�1) (S)dS:

On the orbits of system (21) we have

d

dt
h" =

p
"
0

�1

(S � 1)2 +O("3=2)jS � 1j � (jnj+ jS � 1j)):

Thus, if we parametrize points on the cross-section L by the value of h", the Poincaré

map h 7! �h will have the form

�h = h+
p
"
0

�1

�(h) +O("3=2)h (23)

for some positive function �(h) such that �(h) = const � h + o(h) at small h. It is

immediately seen from (23) that the system may have a non-trivial behavior only

at 0=�1 = O("). Outside of this interval the iterations of the Poincaré map (23)

either converge to zero at negative 0 (i.e. all the orbits of system (21) converge to

the stable equilibrium O), or diverge at positive 0 which means that the orbits of

(21) leave the region of �nite S (Fig.3).

The transition through  = 0 changes the stability of O, so the Andronov-Hopf

bifurcation must happen. However, as we see, the possible parameter range cor-

responding to the existence of the limit cycle born at this bifurcation must be of

order ". Thus, this AH-bifurcation is very sharp: when parameter 0=�1 changes,

the limit cycle born from O grows in size very fast and leave the region of �nite

S (Fig.4). Note that this sharpness of the Andronov-Hopf bifurcation was indeed

observed in di�erent models of laser dynamics (see [9, 4]; I, personally, have learnt

about this from a talk by T.Erneux, published later as [9]). The analysis given here

explains from a general point of view why this type of behavior is inavoidable.

We can conclude, that

generically, in case N 2 R1, there can be no robust self-pulsations.

It is a disaster, of course, because it means that in order to produce self-pulsations

we must create some special parameter constellations to get more modes on the

threshold or to make the eigenvalues cross the imaginary axis in a non-generic way.

This means that the existence of self-pulsations is sensitive to variations of parame-

ters, so obtaining some large regions of existence of self-pulsations can not be easy,

in principle.

Another bad property of system (21) is an oscillatory stability of the equilibrium

state O: as it follows from (23), even when O is stable the convergence of the orbits

to O is slow (the temp of convergence is of order O(
p
")).

11



S

nn

S

0

L L

γ > 0γ < 0
0

Figure 3: There are no limit cycles in (21) at 0 bounded away from zero.
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3 The case of vector N

Next, let us show that the situation is not essentially better when we consider the

case of multidimensional N . Namely, let N 2 Rk and let N Æ be a smooth (k � 1)-

dimensional piece of the threshold set on which exactly one eigenvalue of H(N) has

zero real part. We denote this eigenvalue as �(N) and assume that Re�(N) changes

with non-zero velocity when N crosses N Æ.

The equation near the threshold will still have the form (16) although N is not a

scalar now. We introduce the coordinates near N Æ such that N = (N0; n) where

N0 2 Rk�1 is the projection to the surface N Æ, and n plays, thus, the role of the

distance to N Æ. So, we have a system of the kind

_S = 2(Re�(N)� Re �(N) _n� Re �0(N) _N0)S;

_n = "(f(N)� (g(N) + "~g(N;
p
S))S);

_N0 = "(f 0(N)� g0(N)S � "~g0(N;
p
S)S):

(24)

The condition that Re� changes with non-zero velocity across the threshold means

that we may assume

Re�(N) = n�(N) (25)

with some function � 6= 0. For more de�niteness we assume that

�(N) > 0 (26)

everywhere near N Æ. As above, we assume g(N) > 0 and f(N) > 0. Like in the

previous case (N 2 R1) it can be shown that this is the only reasonable choice for

the signs of f and g. So this will be our standing assumption.

Recall that we must stay in a small neighborhood of the threshold, so the value of n

must be small. Note that if we change the variable n as follows: n 7! nnew(	0(N
0)+

n	1(N
0)), the system will not change its form, just the functions f; g; ~g in the

equation for _n will change:

fnew(N) = f(N)
(1� n	1(N

0))2

	0(N0)
� n

"
	0

0(N
0)

	0(N0)
(1� n	1(N

0)) + n	0
1(N

0)

#
f 0(N);

gnew(N) = g(N)
(1� n	1(N

0))2

	0(N0)
� n

"
	0

0(N
0)

	0(N0)
(1� n	1(N

0)) + n	0
1(N

0)

#
g0(N);

~gnew(N;
p
S) = ~g(N;

p
S)

(1� n	1(N
0))2

	0(N0)
�n

"
	0

0(N
0)

	0(N0)
(1� n	1(N

0)) + n	0
1(N

0)

#
~g0(N;

p
S);

as well as the functions �, �0 and � in the equation for _S:

�new(N) =
	0(N

0)

(1� n	1(N0))2
�(N);

14



�0
new(N) = �0(N) +

n	0(N
0)

(1� n	1(N0))2
�(N0)

"
	0

0(N
0)

	0(N0)
(1� n	1(N

0)) + n	0
1(N

0)

#
;

�new(N) = �(N)
	0(N

0)

1� n	1(N0)
:

It is seen that we can always choose the scaling factors 	0(N
0) and 	1(N

0) such

that the new functions � and f will satisfy the relation

�(N) = f(N) +O(n2) (27)

for small n, so we will assume that this relation holds indeed.

Like we did it in the case of scalar N , let us change the variables

S 7! Snewf(N)=(g(N) + "~g(N;
p
S)): (28)

The system takes the form

_S = (2n�(N)(1� "ĝ(N; S))� ~�(N) _n� ~�0(N) _N0 +O("2))S;

_n = "f(N)(1� S);

_N0 = "(f 0(N)�
f(N)

g(N)
g0(N)S +O("))

(29)

where ~�(N) = 2Re �(N)+
@

@n
(ln f(N)=g(N)), ~�0(N) = 2Re �0(N)+

@

@N0
(ln f(N)=g(N))

and ĝ(N; S) =
S

g(N)

d

dS
~g(N;

q
Sf(N)=g(N)).

We will also scale the time to f(N) and write the system as

_S = (2n�(N)(1� "ĝ(N; S))� (N) _n� 0(N0) _n0 +O("2))S;

_n = "(1� S);

_N0 = "(F 0(N)�G0(N)S +O("))

(30)

where �(N) = �(N)=f(N), (N) = ~�(N)=f(N), 0(N) = ~�0(N)=f(N), F 0(N) =

f 0(N)=f(N), G0(N) = g0(N)=g(N). Note that �(N) = 1+O(n2) according to (27).

We will now take explicitly into account that n must be small (as it is the distance

to the threshold). Thus, we must scale n 7! Ænnew for some appropriate small Æ. As

in the previous case of the scalar N , we choose Æ =
p
".

Let us expand

�(N) = 1 + �2(N
0)"n2 + : : : ;

(N) = 0(N
0) + 1(N

0)
p
"n+ : : : ;

15



0(N) = 0
0(N

0) + 0
1(N

0)
p
"n + : : : ;

F 0(N) = F 0(N0) + F 1(N0)
p
"n + : : : ;

G0(N) = G0(N0) +G1(N0)
p
"n+ : : : :

We also rescale time to the factor
p
". Thus, the system assumes the form (compare

it with (21)):

_S = (2n�
p
"(~0(N

0)(1� S) + �(N0)) + "('(N0; n) + n (N0; S)) +O("3=2))S;

_n = 1� S;

_N0 =
p
"(F 0(N0)�G0(N0)S) + "(F 1(N0)�G1(N0)S)n+O("3=2)

(31)

where

~0 = 0 + 0
0G

0;

and �, ',  are some smooth functions.

One more change of variables, namely N0 7! N0
new +

p
"G0(N0)n and n 7! nnew +

1
2

p
"�(N0) brings, �nally, the system to the form

_S = (2n�
p
"~0(N

0)(1� S) + "('(N0; n) + n (N0; S)) +O("3=2))S;

_n = 1� S + "( ~F (N0)� ~G(N0)S) +O("3=2);

_N0 =
p
"(F 0(N0)�G0(N0)) + "( ~F 0(N0)� ~G0(N0)S)n+O("3=2)

(32)

with some smooth ~F , ~G, ~F 0, ~G0, ' and  .

At " = 0 this system takes the form

_S = 2nS;

_n = 1� S;

_N0 = 0:

(33)

It possesses �rst integrals: N0 and h = S � lnS + n2. Thus, the behavior of system

(32) can be described, in general terms, as a rotation in the (S; n)-plane transverse

to the threshold, governed by a slow evolution of h and N0. To understand this

evolution we will average the system with respect to the fast rotation. Namely, we

consider the following truncated system

_S = (2n�
p
"~0(N

0)(1� S))S;

_n = 1� S;

_N0 =
p
"(F 0(N0)�G0(N0)):

(34)

16



Note that the evolution of h in the full system (32) is governed by an equation

_h =
p
"~0(N

0)(1� S)2 + "('(N0; n)(S � 1) + n ~ (N0; S)) +O("3=2) (35)

for some smooth ~ , while in the truncated system we have

_h =
p
"~0(N

0)(1� S)2: (36)

Let us take any point (S; n;N0). In the conservative system (33) a periodic orbit

(S�(t); n�(t); N0 = const) passes through this point, corresponding to the constant

level line of N0 and h (i.e. S�(t)� lnS�(t) + n�(t)2 = h = const). Let T (h) be the

period of this orbit (if we choose an equilibrium of (33) as an initial point, i.e. if

h = 0 and S�(t) � 1, n�(t) � 0, we take T (0) = limh!0 T (h) = �
p
2). It is obvious

that the �nite time t shift by the full system (33) deviates from that in the truncated

system on the value of order O("). Moreover, the deviation of the slow variables N0

and h for the time t is estimated as follows:

�N0 = "
R t
0(

~F 0(N0)� ~G0(N0)S�(t))n�(t)dt+O("3=2);

�h = "(
R t
0 '(N

0; n�(t))(S�(t)� 1)dt+
R t
0
~ (N0; S�(t))n�(t)dt) +O("3=2):

(37)

Since n�(t)dt = d lnS�(t)=2 and (S�(t) � 1)dt = �dn�(t) (recall that (S�; n�) is a
trajectory of the conservative system (33)), it follows that the integrals in (37) vanish

at the moment of time t = T (h) (i.e. when t equals to the period of (S�(t); n�(t))).

Thus, at t = T (h), the deviation between the values of N0 and h in the full system

and in the truncated system is of order O("3=2) only. Since _N0 and _h are small (of

order O(
p
")), it now immediately follows that

the values of N0 and h in the full system stay O(")-close to those in the truncated

system for the times of order O("�1=2).

If we scale time to "�1=2, then we will have the O(")-closeness to the system

_S = (2"�1=2n� ~0(N
0)(1� S))S;

_n = "�1=2(1� S);

_N0 = F 0(N0)�G0(N0)

(38)

for �nite times. It follows immediately, that if the system

_N0 = F 0(N0)�G0(N0) (39)

has an attractor (e.g. a stable equilibrium state or a stable limit cycle), the value

of N0 for the full system will stay in a small neighborhood of the attractor forever

(in an O(")-neighborhood in the case of an exponentially stable attractor).

In the simplest case when this attractor is a stable equilibrium state N�, the behavior

is the same as in the case of scalar N . Indeed, we have

_h = ~0(N
0)(1� S)2 (40)
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Figure 5: Phase portraits for N0 close to the equilibrium state of the averaged

system (39).

in the system (38), so if ~0(N
�) < 0, then all the orbits of (38) must tend to the

equilibrium (S = 1; n = 0; N0 = N�), and if ~0(N
�) > 0, we have that all the

orbits of (38) tend to in�nity (except for those which lie in the stable manifold

(S = 1; n = 0) of the now saddle equilibrium (S = 1; n = 0; N0 = N�). For the

full system (32) we have that if ~0(N
�) < 0, then any orbit comes into an O(")-

neighborhood of the point (S = 1; n = 0; N0 = N�), and one can indeed show that

the full system has a stable equilibrium state which attracts all the orbits in this

neighborhood � hence it is attractive globally. If ~0(N
�) > 0 we have that all the

orbits leave the region of �nite h, except for those in the stable manifold of a saddle

equilibrium state, O(")-close to (S = 1; n = 0; N0 = N�) (Fig.5). So, like in the

case of scalar N we have that we could possibly observe self-pulsations only in the

region of parameters for which ~0(N
�) = O(").

In the case where the attractor of (39) is a stable limit cycle L = fN0 = N�(t)gt2[0;� ],
the behavior of h in the system (38) averaged with respect to fast oscillations in

(S; n)-variables is governed by the equation

_h = ~0(N
0)

1

T (h)

Z T (h)

0
(1� S�(t))2dt+O(

p
"): (41)
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So, if we introduce

� =

Z �

0
~0(N

�(t))dt

where � is the period of the slow limit cycle L, then at � < 0 all the orbits of (38)

tend to L on the manifold (S = 1; n = 0), and at � > 0 all the orbits of (38) tend

to in�nity (except for those which lie in the stable manifold (S = 1; n = 0) of L).

For the full system (32) we have that if � < 0, then any orbit come into an O(")-

neighborhood of L on the manifold (S = 1; n = 0), and one can show that the full

system has a stable limit cycle which attracts all the orbits in this neighborhood. If

� > 0 we have that all the orbits leave the region of �nite h, except for those in the

stable manifold of a saddle limit cycle O(")-close to L.

Thus, we can have stable self-pulsations in this case, provided the system (39), which

describes the averaged behavior in the projection to the threshold, has a stable limit

cycle and the corresponding value of � is negative. Note that the oscillations in the

S-variable seem to be small here: S = 1 + O("). Recall, however, that we have

scaled the variable S to a factor depending on N0 (see (28)), so �nite-amplitude

oscillations of optical power are indeed present in this regime (see Fig.6): in the

original variables we have

jE(t)j2 = j�(N�(t))j2f(N�(t))=g(N�(t)) +O("):

The main disadvantage here is that the frequency of such self-pulsations is low: it

is O(
p
") times lower than the frequency of oscillations transverse to the threshold.

As above, we can possible have nontrivial fast regimes in this case only in a thin

parameter region where � = O(").

4 Non-transverse threshold crossing

Better results are obtained when we drop the condition, that the critical eigenvalue

of H(N) in (4) crosses the imaginary axis with a non-zero velocity. To see the

e�ect, we assume again that N 2 R1. We assume that the matrix H(N) depends

smoothly on some parameter c varying near zero, and H(N) has, at c = 0, exactly

one eigenvalue �(N) on the threshold at some N = N0 such that

Re�0(N0) = 0 (42)

(i.e. the non-degeneracy condition (15) is now broken). So, we have our system in

the form (16) where we can assume, according to (42), that

Re�(N) = ac+ b(N �N0)2 + o((N �N0)2) (43)

with some a and b which are generically non-zero (note that all terms in this for-

mula, including a, b and N0, are now functions of the parameter c, though it is not
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important for the sequel). As above, the system (16) can be brought to the form

(see (18))
_S = (2�(N)(1� "ĝ(N; S))� (N) _N +O("2))S;

_N = "(1� S)

(44)

where, at c = 0, the function �(N) vanishes at n = N0 along with the �rst derivative.

By scaling the parameter c if necessary, we may write �(N) as follows

�(N) =
1

2
�2(�c + (N �N0)2) +O((N �N0)3); (45)

with some non-zero coe�cient �2. By scaling N and time both to j�2j�1=3 we can

always achieve

j�2j = 1; (46)

so this will be our standing assumption.

Let us choose the scaling parameter Æ = "1=3, so we will write

N = N0 + "1=3n

and expand

�(N) = �2(�c + "2=3)n2 + "~�(n; ")

and

(N) = 0 + 1"
1=3n+O("2=3):

The system takes the form

_S = "2=3(�2(�C + n2) + "1=3~�(n; ") + "1=3(0 + "1=31n)(1� S) +O("))S;

_n = "2=3(1� S)

where C = c"�2=3 can take now arbitrary �nite values (recall that c and " are small

parameters).

After rescaling the time to the factor "2=3, the system takes the form

_S = (�2(�C + n2) + "1=3~�(n; ") + "1=3(0 + "1=31n)(1� S) +O("))S;

_n = 1� S:

(47)

This system is O("1=3)-close to the conservative system

_S = (�2(�C + n2) + "1=3~�(n; "))S;

_n = 1� S:

(48)

The latter has a �rst integral

h = �2(�Cn +
1

3
n3) + "1=3

Z
~�(n; "))dn+ S � lnS (49)

21



O

1

2

1

O

2

S

n n

S

2

O

O

µ = +1 µ = −1
2

Figure 7: Phase portraits for the integrable limit (48).

which has two critical points: O1(n = �2

p
C+O("1=3); S = 1) and O2(n = ��2

p
C+

O("1=3); S = 1) at C > 0 (recall that �2 = �1). These points are the equilibria of

system (48), O1 is a center (h has minimum at O1) and O2 is a saddle (Fig.7). The

values of h between h(O1) = 1� 2
3

p
C3 +O("1=3) and h(O2) = 1 + 2

3

p
C3 +O("1=3)

correspond to periodic orbits of system (48) surrounding O1. We will denote such

an orbit as (S�(t; h); n�(t; h)) (assuming that t = 0 corresponds to the intersection

of the orbit with a segment of the straight line S = 1 between O1 and O2) and its

period will be denoted as T �(h).

In the full system (47) we have two equilibria as well, close to the equilibria of the

conservative system (48). We denote them as O1 and O2, respectively. The latter

is, of course, a saddle at small " (because it is a saddle at " = 0). To determine the

stability of O1, let us compute _h along the trajectories of the full system:

_h = �"1=3(0 + "1=31n)(1� S)2 +O(")): (50)

It is seen that h decays at 0 > 0 and grows at 0 < 0 (if " is su�ciently small).

Thus, O1 is stable at 0 > 0 and unstable at 0 < 0. Moreover, we see that if 0 is

bounded away from zero there cannot be periodic orbits in system (47) at small ".

The stability loss of O1 when 0 decreases across zero must be accompanied by
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the Andronov-Hopf bifurcation, so limit cycles must exist at small 0. To estimate

the parameter region corresponding to the existence of the limit cycles, we do the

following. First, we assume that 1 6= 0 in (47). Since we are interested in the region

of small 0, we can introduce a rescaled parameter

� =
0

1
"�1=3:

The system is rewritten as

_S = (�2(�C + n2) + "1=3~�(n; ") + "2=31(� + n)(1� S) +O("))S;

_n = 1� S:

(51)

Take a segment of the straight line S = 1 between the points O1 and O2 as a cross-

section. The points on the cross-section are parametrized by the values of h ranging

from h(O1) to h(O2). It is obvious that the orbit (S(t; h); n(t; h)) of the full system,

starting at t = 0 on the cross-section, is estimated as

S(t) = S�(t) +O("1=3); n(t) = n�(t) +O("1=3)

for �nite times t. It follows, that the return time of the orbit to the cross-section

(the segment of the line S = 1) is estimated as

T (h) = T �(h) +O("1=3):

Thus, the new value of h at the moment when the orbit returns to the cross-section

(see (50)) is given by

�h = h+

Z T (h)

0

_hdt = h� "2=31

Z T �(h)

0
(� + n�(t; h))(1� S�(t; h))2dt+O("): (52)

Formula (52) de�nes the Poincaré map h 7! �h on the cross-section. The �xed points

of this map correspond to limit cycles. According to (52), we have a limit cycle L(h)

corresponding to the �xed point at a given value of h when

� = �

H
L�
h

nSdnH
L�
h

Sdn
+O("1=3) (53)

where L�h is the closed curve (S = S�(t; h); n = n�(t; h)), i.e. it is the closed integral

curve of the conservative system (48), corresponding to the given value of h (when

proceeding from (52) to (53) we used that (1 � S�)dt = dn). Thus, for every

h 2 (h(O1); h(O2)) we have a unique value of the parameter � for which the full

system (47) has a limit cycle L(h). The limit cycle shrinks to the equilibrium state

O1 as h! h(O1) and it merges into a homoclinic loop to O2 as h! h(O2)). Thus,

on the (�; C)-plane we have bifurcational curves, corresponding to the Andronov-

Hopf bifurcation and to the bifurcation of a homoclinic loop; both curves are given

by the equation (53) where one should put h = h(O1) and h = h(O2), respectively.
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Thus, the Andronov-Hopf bifurcation curve is given by the equation

� = ��2

p
C +O("1=3):

Routine computations show that the �rst Lyapunov value does not vanish on this

curve for every �nite C and small ". Therefore, only one limit cycle is born when

crossing this curve. It is also not hard to check that we have j�j <
p
C (at " small)

on the bifurcational curve which corresponds to the separatrix loop. This means

that this curve does not intersect the Andronov-Hopf bifurcation curve and that the

saddle value (the sum of characteristic exponents at the saddle) does not vanish. The

latter means, again, that only one limit cycle is born at the homoclinic bifurcation.

Note that both bifurcational curves start at the point (C;�) = 0 + O("1=3) which

corresponds to Bogdanov-Takens bifurcation of an equilibrium with double zero

characteristic exponent (see Fig.8).

The limit cycle L(h) is stable when d�h
dh
< 1, i.e. at

1

(
�
d

dh

I
Lh

Sdn+
d

dh

I
Lh

nSdn

)
< 0

(when " is small enough). By (53), the condition of stability of L(h) can be written

as

1

(I
L�
h

nSdn
d

dh

I
L�
h

Sdn�
I
L�
h

Sdn
d

dh

I
L�
h

nSdn

)
< 0

(recall that
H
Lh
Sdn =

H
Lh
(S � 1)dn = �

R T �(h)
0 (1 � S�(t; h))2dt < 0). Further, we

can rewrite it as

1

(
2

Z T �

h

0
(1� S�)2n�dt

Z T �

h

0
(1� S�)

@S�

@h
dt

�
Z T �

h

0
(1� S�)2dt

Z T �

h

0
(2(1� S�)n�

@S�

@h
� (1� S�)2

@n�

@h
)dt

)
> 0:

Now note that

@n�(t; h)

@h
= (1� S�(t; h))

Z t

t0

S�(s; h)

(1� S�(s; h))2
ds

for some irrelevant t0(h) and

@S�(t; h)

@h
= �

d

dt

@n�(t; h)

@h

(check that these solve the variational equations for the conservative system (48)).

From these formulas it is easy to compute (by integration by parts) that

2

Z T �

h

0
(1� S�)

@S�

@h
dt = �T �(h)
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limit cycle may exist here.
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and Z T �

h

0
(2(1� S�)n�

@S�

@h
� (1� S�)2

@n�

@h
)dt = �

Z T �(h)

0
n�(t; h)dt:

Thus, if we denote

�n(h) =
1

T �(h)

Z T �(h)

0
n�(t; h)dt;

the condition of stability of the limit cycle L(h) may �nally be written as

1

(I
L�
h

Sndn� �n(h)

Z
L�
h

Sdn

)
> 0: (54)

As numerical evidence shows, the expression in the �gure brackets is always negative

at �2 = +1 and positive at �2 = �1. Therefore, everywhere in the region between

the Andronov-Hopf curve and the homoclinic loop bifurcation curve on the (C;�)-

plane there exists a unique limit cycle, which is stable at 1�2 < 0 and it is unstable

at 1�2 > 0.

So, if 1�2 < 0, we can always have a non-empty interval of values of h corresponding

to the stable limit cycle. Hence, for any �nite value of C (i.e. for values of the

original non-rescaled parameter c of order O("2=3)) we have a �nite interval of values

of �, corresponding to a stable limit cycle. Thus, in the case under consideration,

the parameter values corresponding to self-pulsations occupy a region of size �
(const � "2=3)� (const � "1=3) on the plane (c; 0=1), which is, of course, better than

the O(")-size region in the previous case.

Note that when proceeding from the original system (44) to its rescaled form (47) we

scaled time to the factor "2=3. Therefore, the frequency of the obtained limit cycle

becomes of order O("2=3) as we return to the original variables (note also that this

frequency tends to zero as the limit cycle approaches the homoclinic loop). So, the

frequency in this case is lower than that in the case of transverse threshold crossing,

considered in section 2. Indeed, the time-scaling factor (when we proceeded from

the original model (16) to the rescaled model (21)) was there proportional to "1=2,

and this is the factor which gives the asymptotics for the frequency of the limit cycle

which could appear there at the sharp Andronov-Hopf bifurcation.

Let us brie�y discuss the case of cubic degeneracy in Re�(N) at the threshold

crossing, i.e. we assume now

Re�0(N0) = 0; Re�00(N0) = 0: (55)

In this case we will consider, as a model, the following system:

_S = (�0 + �1(N �N0) + �3(N �N0)3 � (0 + 1(N �N0)) _N)S;

_N = "(1� S)

(56)

where �3 = �1, and �0; �1 are small parameters which unfold the cubic degeneracy.

As above, to ensure the existence of a limit cycle, the parameter 0 has also to be
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taken small, while 1 will be taken nonzero. We scale N � N0 to "1=4 and time to

"�3=4. Equations take the form

_S = (C0 + C1n+ �3n
3 � 1"

1=2(� + n) _n)S;

_n = 1� S

(57)

where C0 = �0="
3=4, C1 = �1="

1=2 and � = "�1=40=1 are rescaled parameters,

n = (N �N0)="1=4 is the scaled distance to the threshold.

At " = 0 this system has a �rst integral

h =
�3

4
n4 + C0n + C1

n2

2
+ S � lnS: (58)

In the case �3 > 0, constant levels of h are composed of closed curves. If L�h is

such a curve corresponding to a given value h, then a limit cycle is born from L�h if

lim
"!0

1

"1=2

I
L�
h

_hdt = 0, where _h is the derivative of h with respect to the system (57).

This gives (compare it with (53) that the limit cycle is born from L�h at small " if

� = �

H
L�
h

nSdnH
L�
h

Sdn
: (59)

Variation of h in a �nite interval corresponds to a �nite range of values of � in this

formula, so we have a �nite range of values of parameter � corresponding to the

existence of the limit cycle in system (57), and this is true for arbitrary �nite values

of C0 and C1. The same formula (59) is valid in the case �3 < 0, as well; one should

note, however, that the closed curves L�h exist here only for a bounded range of values

of h and for jC0j < 2j�3j(C1=3j�3j)3=2; C1 > 0. In any case, we have the existence of

limit cycles for �nite regions in the space of parameters (C0; C1;�). Returning to the

original, non-rescaled parameters (�0; �1; 0) we obtain that the region of existence

of self-pulsations in the model (57) has the size O("3=4) � O("1=2) � O("1=4). The

frequency of the oscillations is of order O("3=4).

Looking once again over Secs.2,4 (see (21),(51),(57)) one can propose some general

form for a rescaled single-mode laser model with scalar N :

_S = (�(n)� Æ(� + n) _n)S;

_n = 1� S;

(60)

where � is some polynomial with arbitrary coe�cients, � is a �nite parameter and

Æ is a small parameter (some fractional power of the original small parameter ").

This system is Æ-close to a conservative one with the �rst integral

h =

Z
�(n)dn+ S � lnS:

As above, a closed curve L�h of the conservative system which corresponds to a given

value of h produces a limit cycle at non-zero Æ if (59) is satis�ed. Note that the case
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of a transverse threshold crossing can also be modeled by a system of the same form

(see (21)). However, �(n) must be linear here, and in this case we have

I
L�
h

nSdn �
I
L�
h

_Sdn =

I
L�
h

_ndS � 0

which, according to (59) gives zero interval of values of � for which limit cycles

can appear. This unfortunate identity is basically the main reason why we have an

anomalously small region of the existence of self-pulsations in the case of transverse

threshold crossing, so it is that fundamental obstacle to self-pulsations which is

mentioned in the title of this paper.

5 Degenerate mode on the threshold

As we saw in the previous Sections, if only a single electromagnetic mode is excited,

then system (14) which governs laser dynamics becomes close to conservative after

an appropriate rescaling of time and N -variables. Essentially non-conservative dy-

namics appears if a double mode comes to the threshold, i.e. if the matrix H(N) in

(1) (hence matrix A(N) in (14)) has a double eigenvalue with zero real part.

In this case U 2 C2 in (14) and the matrix A is a Jordan block

 
i!0 1

0 i!0

!
(61)

with some real nonzero !0. Note that matrices reducible to this form compose a

codimension-3 surface in the 8-dimensional space of complex (2�2)-matrices (indeed,

they must satisfy three real equalities: the real part of one of the eigenvalues equals

to the real part of the other one and equals to zero, and the imaginary parts of the

eigenvalues are equal). Therefore, such con�guration of eigenvalues can generically

appear only in three-parameter families of matrices. We assume here that N is

scalar, so we have a one-parameter family of matrices A(N). Thus, to study the

bifurcation of a double mode on the threshold we must assume that our system

(14) depends on two independent real parameters (the choice of parameters will be

speci�ed later).

Recall that arbitrary linear transformations (with N -dependent coe�cients) of the

variables U do not change the form of equations (14). Therefore, we will apply

such transformations in order to make the matrix A as simple as possible. It is

easy to see (see also [14]) that any matrix close to (61) can be brought, by a linear

transformation depending smoothly on the coe�cients of the matrix, to the following

form

A(N) =

 
i!(N) 1

�(N) + iÆ(N) i!(N)� �(N)

!
(62)

where �(N), Æ(N), �(N) are real and close to zero, and the real quantity !(N) is

close to !0. At the critical moment, when A(N) is given by (61), we have �, Æ, and
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� vanished. We assume that

�0(N) 6= 0 (63)

at the critical moment. Therefore, by implicit function theorem, for any system

which is close to the given one, there exists a value N0 such that �(N0) = 0. We

take the corresponding values of Æ(N0) � Æ0 and �(N
0) � �0 as independent small

parameters which govern the bifurcations. By changing N 7! N�N0 we can always

assume N0 = 0. By (63) we can also assume

�(N) � N (64)

(this would require a smooth change of the coordinate N , which do not change the

form of equations (14), obviously). We can also expand

Æ(N) = Æ0 + Æ1N + Æ2N
2 + : : : ; �(N) = �0 + �1N + : : : : (65)

Equations (14) can be written now as

_U1 = i!(N)U1 + U2 +O(");

_U2 = (N + iÆ(N))U1 + (i!(N)� �(N))U2 +O(");

_N = "(F (N)� jU1j2G(N) +O(jU2j � kUk +O(")):

(66)

Recall that this system must be invariant with respect to the phase rotation: (U1; U2) 7!
(U1; U2)e

i'. Therefore, by choosing a rotation coordinate frame, we can always make

!(N) identically zero, without changing other coe�cients of the equations.

The further analysis shows that stable stationary states may exist here only if F (0) >

0 and G(0) > 0, so we will make this sign assumption.

Assume now that Æ1 6= 0. Let us make rescaling:

U1 7! u
q
F (0)=G(0); N 7! � 2n

where � 3 = "F (0). Then, scaling the time to ��1 we arrive to the following system

�u = (n+ i(D0 +D1n))u� L _u+O("1=3);

_n = 1� juj2 +O("1=3)

where

D0 =
Æ0

("F (0))2=3
; L =

�0

("F (0))1=3
; (67)

D0 and L are rescaled parameters which can take arbitrary �nite values, and we

denote D1 = Æ1 for uniformity.

These equations are "1=3-close to

�u = (n + i(D0 +D1n))u� L _u;

_n = 1� juj2:
(68)
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This system is not conservative (we take L > 0 to assure dissipation), so it may

have attractors. Indeed, let u = rei'. Then the system recasts as

�r + L _r = (
2 + n)r;

_
 + 
(L + 2 _r=r) = D0 +D1n;

_n = 1� r2

(69)

where we denote 
 = _'. Equilibria of this system give stationary states of (68),

limit cycles in (69) correspond to periodic self-pulsations.

At L2 + 4D0D1 > 0 system (69) has two equilibria:

O1 : (r = 1;
 = 
1 =
�L +

p
L2 + 4D0D1

2D1

; n = �
2
1);

and

O2 : (r = 1;
 = 
2 =
�L�

p
L2 + 4D0D1

2D1

; n = �
2
1):

O2 is always saddle, O1 is stable when

L2 + 4
2 > 2L
q
L2 + 4D0D1 +

1

L
:

On the boundary of this region O1 undergoes a non-degenerate Andronov-Hopf

bifurcation, which means that we have in the plane of parameters (L;D0) a �nite

region of existence of a stable limit cycle.

By (67), for su�ciently small ", in the plane of the original non-rescaled parameters

(�0; Æ0) we have the O("
1=3)�O("2=3)-size region of existence of stable self-pulsations

in system (66). The time rescaling factor � , when proceeding from (66) to (68), was

of order "1=3, so this is the order of the frequency of the self-pulsations we have

found.

Note that the dynamics of (69) is, of course, richer then just a simple periodic

behavior. As numerics shows, the limit cycle born at the Andronov-Hopf bifurcation

may lose its stability and a chaotic regime may appear after a chain of, say, period-

doubling bifurcations. The attractor dies via bifurcations of homoclinic loops when

it collides with the saddle equilibrium state O2, and the orbits seemingly escape to

in�nity.

There is a similarity between this case and the case of quadratic tangency to the

imaginary axis considered in the previous Section. In both cases we have two sta-

tionary states, one of which changes stability and this gives rise to self-pulsations,

whereas the other stationary state is a saddle which bounds the attraction domain.

Also, in both cases we have the same estimate for the size of the region of existence

of self-pulsations. However, the frequency of self-pulsations in the present case is

relatively higher than in the case of the non-transverse threshold crossing: O("1=3)

vs. O("2=3).
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