On bifurcations of a homoclinic "figure eight" of a multi-dimensional saddle

D.V. Turaev

We consider a two-parameter family of C^{3}-smooth dynamical systems X_{μ} on an ($m+k$)-dimensional ($m \geqslant 2, k \geqslant 2$) C^{3}-smooth manifold that depend smoothly on $\mu=\left(\mu_{1}, \mu_{2}\right)$. It will be assumed that X_{μ} has a saddle equilibrium state O, and the roots $\lambda_{i}(\mu)$ and $\gamma_{j}(\mu)$ of the characteristic equation at O satisfy the relations

$$
\text { He } \lambda_{i}(\mu)<\lambda_{1}(\mu)<0<\gamma_{1}(\mu)<\operatorname{Re} \gamma_{j}(\mu) \quad(2 \leqslant i \leqslant m, 2 \leqslant j \leqslant k)
$$

and $\lambda_{1}(\mu)+\gamma_{1}(\mu)>0$. The following assumptions are made for $\left.\mu=0: 1\right) W_{0}^{S}$ and W_{0}^{u} intersect in two trajectories Γ_{1} and Γ_{2} that are homoclinic to $O ; 2$) Γ_{1} and Γ_{2} do not lie in the non-leading submanifolds of the manifolds W_{0}^{s} and W_{0}^{u} and are tangent to each other both as $t \rightarrow+\infty$ and as $t \rightarrow-\infty$; 3) the separatrix quantities A_{1} and A_{2} (see [1], [4]) are non-zero. Assume that the family X_{μ} is transversal to the membrane of codimension two singled out by the conditions 1)-3). We choose the parameters in such a way that, for $\mu_{i}=0(i=1,2), X_{\mu}$ has a trajectory homoclinic to O that is homotopic to Γ_{i} in a small neighbourhood V of the contour $\Gamma_{1} \cup \Gamma_{2} \cup O$, and a cycle [1] is created upon passing into the domain $\mu_{i}<0$.

On the (μ_{1}, μ_{2})-plane there are curves $L_{1}: \mu_{1}=h_{1}\left(\mu_{2}\right)$ and $L_{2}: \mu_{2}=h_{2}\left(\mu_{1}\right)$, $L_{i} \subset\left\{\mu_{i} A_{i}>0, \quad \mu_{3-i}<0\right\}, \lim _{\mu_{3-i} \rightarrow 0} h_{i}=\lim _{\mu_{3-i} \rightarrow 0} \frac{d h_{i}}{d \mu_{3-i}}=0$, that, together with the coordinate axes, separate the plane into six domains: $\mathscr{D}_{0}=\left\{\mu_{1}>0, \mu_{2}>0\right\}$.

$$
\begin{gathered}
\mathscr{D}_{1}=\left\{\mu_{2}<0, A_{1} h_{1}\left(\mu_{2}\right)>A_{1} \mu_{1}>0\right\} \\
\mathscr{D}_{2}=\left\{\mu_{1}<0, A_{2} h_{2}\left(\mu_{1}\right)>A_{2} \mu_{2}>0\right\} \\
\mathscr{D}_{3}=\left\{\mu_{2}>0, \mu_{1}<0\right\} \backslash \mathscr{D}_{2}, \quad \mathscr{Q}_{4}=\left\{\mu_{2}<0, \mu_{1}>0\right\} \backslash \mathscr{D}_{1}, \\
\mathscr{D}_{5}=\left\{\mu_{1}<0, \mu_{2}<0\right\} \backslash\left(\mathscr{D}_{1} \cup \mathscr{D}_{2}\right) .
\end{gathered}
$$

The set Ω_{μ} of trajectories of the system X_{μ}, that lie entirely in V consists of: the single point O in the domain \mathscr{D}_{0}; the point O, a saddle cycle homotopic to Γ_{1}, and a heteroclinic trajectory with O as ω-limit and a cycle as α-limit in the domain \mathscr{L}_{3}; the point O, a saddle cycle homotopic to Γ_{2}, and a heteroclinic trajectory in the domain \mathscr{D}_{4}; the point O, a set B on which X_{μ} is equivalent to a suspension over the Bernoulli scheme of two symbols, and trajectories with trajectories in B as α-limits and O as ω-limit in the domain \mathscr{L}_{5}. In the case when $A_{1}>0$ and $A_{2}>0$ the bifurcation set in the domains \mathscr{L}_{1} and \mathscr{D}_{2} has a Cantor structure. In the cases when $A_{1}<0$ and $A_{2}>0$ and when $A_{1}<0$ and $A_{2}<0$, the bifurcation set contains a Cantor pencil of curves separating the domains \mathscr{D}_{1} and \mathscr{D}_{2} into countably many domains, of which each contains a countable set of isolated bifurcation curves. For a complete description of the passage from the domains \mathscr{D}_{3} and \mathscr{D}_{4} to the domain \mathscr{D}_{5} we need some definitions.

We denote by S_{a}, S_{a}^{+}, and S_{a}^{-}the sets of two-sided infinite, right-side infinite, and left-side infinite sequences of symbols in the alphabet $a(a=\{1,2\}$ or $a=\{0,1,2\})$. Following [3], we define three order relations $>_{1},>_{2}$, and $>_{3}$ on $S_{\{0,1,2\}}^{+}$according to the rule: if $x=\left\{x_{i}\right\}_{i=0}^{+\infty} \in S_{\{0,1,2\}}^{+}$, $y=\left\{y_{i}\right\}_{i=0}^{+\infty} \in S_{\{0,1,2\}}^{+}, x_{i}=y_{i}$ for $i<j$, and $y_{j}>x_{j}$ for some j (let $2>0>1$), then 1) $y_{1}>_{1} x$; 2) if in addition the word $\left\{x_{i}\right\}_{i=0}^{j-1}$ contains an even number of 1 's, then $y>_{2} x$, otherwise $x>_{2} y$;
3) if in addition to the first assumptions j is even, then $y>_{3} x$, otherwise $x>_{3} y$. A sequence $x=\left\{x_{i}\right\} \in S_{a}\left(\right.$ or S_{a}^{+}) is said to be (s, l-admissible (where $s \in S_{\{0,1,2\}}^{+}$and $l \in\{1,2,3\}$) if, for any $j,\left\{x_{i}\right\}_{i=j}^{+\infty}=0^{\omega},{ }^{(1)}$ or $s \geqslant_{l}\left\{x_{i}\right\}_{i=j}^{+\infty}$ when s begins with a 2 and $x_{j}=2$, or $\left\{x_{i}\right\}_{i=j}^{+\infty} \geqslant_{l} s$ when s

[^0]begins with a 1 and $x_{j}=1$. A sequence $s \in S_{\{0,1,2\}}^{+}, s \neq 0^{\omega}$, is said to be l-selfadmissible if it is (s, l)-admissible. Suppose that $s \in S_{\{0,1,2\}}^{+}$is l-selfadmissible. A kneading* system $K(s, l)$ is defined to be a set, equipped with a shift mapping, that consists of sequences x such that x is an (s, l)-admissible sequence in $S_{\{1,2\}}$, or $x=y 0^{\omega}$ with $!\in S_{\{1,2\}}^{-}$and $y s$ an (s, l)-admissible sequence, or $x=0^{-\omega} s$ in the case when $s \in S_{\{1,2\}}^{+}$.
Theorem. For each μ in the domains \mathscr{S}_{1} and \mathscr{S}_{2} there is an 1 -selfadmissible $s_{\mu} \in S_{\{1,1,2\}}^{+}$such that $\left.X_{\mu}\right|_{\Omega_{\mu}}$ is topologically equivalent to a suspension ${ }^{(2)}$ over $K\left(s_{\mu}, l\right)\left(l=1\right.$ for $A_{1}>0$ and $A_{2}>0$, $l=2$ for $A_{1}<0$ and $A_{2}>0$, and $l=3$ for $A_{1}<0$ and $A_{2}<0$).

As $\mu_{1}\left(\mu_{2}\right)$ varies in the domain $\mathscr{D}_{1}\left(\mathscr{D}_{2}\right)$ for each fixed $\mu_{2}\left(\mu_{1}\right), s_{\mu}$ varies monotonically and runs through all l-selfadmissible values that begin with 1 (2). For each l-selfadmissible sequence $p 0^{\omega}$ the set of μ such that $s_{\mu}=p 0^{\omega}$ forms a domain \mathscr{D}. As follows from [3], $K\left(p 0^{\omega}, l\right)$ is topologically conjugate to a topological Markov chain with finitely many states. For each l-selfadmissible $q \neq p 0^{\omega}$ the set of μ such that $s_{\mu}=q$ forms a curve of the form $\mu_{2}=h\left(\mu_{1}\right)$ or $\mu_{1}=h\left(\mu_{2}\right)$, where
$\lim _{\mu_{i} \rightarrow 0} h=\lim _{\mu_{i} \rightarrow 0} \frac{d h}{d \mu_{i}}=0$.

References

[1] L.P. Shil'nikov, On the creation of a periodic motion from a trajectory that is doubly asymptotic to an equilibrium state of saddle type, Mat. Sb. 77 (1968), 461-472. MR 41 \# 582. $=$ Math. USSR-Sb. 6 (1968), 427-438.
[2] V.S. Afraimovich and L.P. Shil'nikov, On singular sets of Morse-Smale systems, Trudy Mat. Moskov. Obshch. 28 (1973), 181-214. MR 53 \# 4142.
$=$ Trans. Moscow Math. Soc. 28 (1973), 179-212.
[2] A.A. Simonov, Investigation of piecewise monotone transformations of an interval by the methods of symbolic dynamics, Dokl. Akad. Nauk SSSR 238 (1978), 1063-1066. MR 58 \# 12968. $=$ Soviet Math. Dokl. 19 (1978), 185-188.
[4] V.S. Afraimovich, V.V. Bykov, and L.P. Shil'nikov, On attracting structurally unstable limit sets of Lorenz attractor type, Trudy Moskov. Mat. Obshch. 44 (1982), 150-212, MR 84a:58058. $=$ Trans. Moscow Math. Soc. 1983, no. 2, 153-216.

Scientific Research Institute of Applied Mathematics and Cybernetics

Received by the Board of Governors 28 April 1987

[^1]
[^0]: ${ }^{(1)} \operatorname{By} p^{\omega}\left(p^{-\omega}\right)$ we mean the right- (left-) infinite sequence consisting of the blocks p.

[^1]: *The translator and editor are uncertain about this word.
 ${ }^{(2)}$ The saddle O corresponds to the trajectory $0^{-} \omega_{0} \omega$ in the suspension (see [2] for suspensions that include equilibrium states).

