On bifurcations of a homoclinic "figure eight" of a multi-dimensional saddle

D.V. Turaev

We consider a two-parameter family of C^3 -smooth dynamical systems X_{μ} on an (m+k)-dimensional $(m \ge 2, k \ge 2)$ C^3 -smooth manifold that depend smoothly on $\mu = (\mu_1, \mu_2)$. It will be assumed that X_{μ} has a saddle equilibrium state O, and the roots $\lambda_i(\mu)$ and $\gamma_j(\mu)$ of the characteristic equation at O satisfy the relations

$$\operatorname{Re} \lambda_i(\mu) < \lambda_1(\mu) < 0 < \gamma_1(\mu) < \operatorname{Re} \gamma_j(\mu) \qquad (2 \leqslant i \leqslant m, \ 2 \leqslant j \leqslant k)$$

and $\lambda_1(\mu) + \gamma_1(\mu) > 0$. The following assumptions are made for $\mu = 0$: 1) W_0^s and W_0^u intersect in two trajectories Γ_1 and Γ_2 that are homoclinic to O; 2) Γ_1 and Γ_2 do not lie in the non-leading submanifolds of the manifolds W_0^s and W_0^u and are tangent to each other both as $t \to +\infty$ and as $t \to -\infty$; 3) the separatrix quantities A_1 and A_2 (see [1], [4]) are non-zero. Assume that the family X_{μ} is transversal to the membrane of codimension two singled out by the conditions 1)-3). We choose the parameters in such a way that, for $\mu_i = 0$ (i = 1, 2), X_{μ} has a trajectory homoclinic to Othat is homotopic to Γ_i in a small neighbourhood V of the contour $\Gamma_1 \cup \Gamma_2 \cup O$, and a cycle [1] is created upon passing into the domain $\mu_i < 0$.

On the (μ_1, μ_2) -plane there are curves $L_1: \mu_1 = h_1(\mu_2)$ and $L_2: \mu_2 = h_2(\mu_1)$,

$$L_i \subset \{\mu_i A_i > 0, \ \mu_{3-i} < 0\}, \ \lim_{\mu_{3-i} \to 0} h_i = \lim_{\mu_{3-i} \to 0} \frac{a h_i}{d \mu_{3-i}} = 0, \text{ that, together with the}$$

coordinate axes, separate the plane into six domains: $\mathcal{D}_0 = \{\mu_1 > 0, \mu_2 > 0\}$.

$$\begin{split} \mathcal{Z}_{1} &= \{\mu_{2} < 0, \ A_{1}h_{1}(\mu_{2}) > A_{1}\mu_{1} > 0\}, \\ \mathcal{Z}_{2} &= \{\mu_{1} < 0, \ A_{2}h_{2}(\mu_{1}) > A_{2}\mu_{2} > 0\}, \\ \mathcal{Z}_{3} &= \{\mu_{2} > 0, \ \mu_{1} < 0\} \backslash \mathcal{Z}_{2}, \qquad \mathcal{Z}_{4} = \{\mu_{2} < 0, \ \mu_{1} > 0\} \backslash \mathcal{Z}_{1}, \\ \mathcal{Z}_{5} &= \{\mu_{1} < 0, \ \mu_{2} < 0\} \backslash (\mathcal{Z}_{1} \ \cup \ \mathcal{Z}_{2}). \end{split}$$

The set Ω_{μ} of trajectories of the system X_{μ} that lie entirely in V consists of: the single point O in the domain \mathcal{D}_0 ; the point O, a saddle cycle homotopic to Γ_1 , and a heteroclinic trajectory with O as ω -limit and a cycle as α -limit in the domain \mathcal{D}_3 ; the point O, a saddle cycle homotopic to Γ_2 , and a heteroclinic trajectory in the domain \mathcal{D}_4 ; the point O, a set B on which X_{μ} is equivalent to a suspension over the Bernoulli scheme of two symbols, and trajectories with trajectories in B as α -limits and O as ω -limit in the domain \mathcal{D}_5 . In the case when $A_1 > 0$ and $A_2 > 0$ the bifurcation set in the domains \mathcal{D}_1 and \mathcal{D}_2 has a Cantor structure. In the cases when $A_1 < 0$ and $A_2 > 0$ and when $A_1 < 0$ and $A_2 < 0$, the bifurcation set contains a Cantor pencil of curves separating the domains \mathcal{D}_1 and \mathcal{D}_2 into countably many domains, of which each contains a countable set of isolated bifurcation curves. For a complete description of the passage from the domains \mathcal{D}_3 and \mathcal{D}_4 to the domain \mathcal{D}_5 we need some definitions.

We denote by S_a , S_a^+ , and S_a^- the sets of two-sided infinite, right-side infinite, and left-side infinite sequences of symbols in the alphabet a ($a = \{1, 2\}$ or $a = \{0, 1, 2\}$). Following [3], we define three order relations $>_1$, $>_2$, and $>_3$ on $S_{\{0, 1, 2\}}^+$ according to the rule: if $x = \{x_i\}_{i=0}^{+\infty} \in S_{\{0, 1, 2\}}^+$, $y = \{y_i\}_{i=0}^{+\infty} \in S_{\{0, 1, 2\}}^+$, $x_i = y_i$ for i < j, and $y_j > x_j$ for some j (let 2 > 0 > 1), then 1) $y >_1 x$; 2) if in addition the word $\{x_i\}_{i=0}^{j-1}$ contains an even number of 1's, then $y >_2 x$, otherwise $x >_2 y$; 3) if in addition to the first assumptions j is even, then $y >_3 x$, otherwise $x >_3 y$. A sequence $x = \{x_i\} \in S_a$ (or S_a^+) is said to be (s, l)-admissible (where $s \in S_{\{0, 1, 2\}}^+$ and $l \in \{1, 2, 3\}$) if, for any j, $\{x_i\}_{i=j}^{+\infty} = 0^{\omega}$, (1) or $s \ge_l \{x_i\}_{i=j}^{+\infty}$ when s begins with a 2 and $x_j = 2$, or $\{x_i\}_{i=j}^{+\infty} \ge_l s$ when s

⁽¹⁾By p^{ω} ($p^{-\omega}$) we mean the right- (left-) infinite sequence consisting of the blocks p.

begins with a 1 and $x_j = 1$. A sequence $s \in S_{\{0, 1, 2\}}^+$, $s \neq 0^{\omega}$, is said to be *l*-selfadmissible if it is (s, l)-admissible. Suppose that $s \in S_{\{0, 1, 2\}}^+$ is *l*-selfadmissible. A kneading* system K(s, l) is defined to be a set, equipped with a shift mapping, that consists of sequences x such that x is an (s, l)-admissible sequence in $S_{\{1, 2\}}^-$, or $x = y0^{\omega}$ with $y \in S_{\{1, 2\}}^-$ and ys an (s, l)-admissible sequence, or $x = 0^{-\omega}s$ in the case when $s \in S_{\{1, 2\}}^+$.

Theorem. For each μ in the domains \mathcal{Z}_1 and \mathcal{Z}_2 there is an l-selfadmissible $s_{\mu} \in S_{\{\nu, 1, 2\}}^*$ such that $X_{\mu}|_{\Omega_{\mu}}$ is topologically equivalent to a suspension⁽²⁾ over $K(s_{\mu}, l)$ $(l = 1 \text{ for } A_1 > 0 \text{ and } A_2 > 0$, $l = 2 \text{ for } A_1 < 0 \text{ and } A_2 > 0$, and $l = 3 \text{ for } A_1 < 0 \text{ and } A_2 < 0$).

As $\mu_1(\mu_2)$ varies in the domain $\mathcal{D}_1(\mathcal{D}_2)$ for each fixed $\mu_2(\mu_1)$, s_μ varies monotonically and runs through all *l*-selfadmissible values that begin with 1 (2). For each *l*-selfadmissible sequence $p0^{\omega}$ the set of μ such that $s_{\mu} = p0^{\omega}$ forms a domain \mathcal{D} . As follows from [3], $K(p0^{\omega}, l)$ is topologically conjugate to a topological Markov chain with finitely many states. For each *l*-selfadmissible $q \neq p0^{\omega}$ the set of μ such that $s_{\mu} = q$ forms a curve of the form $\mu_2 = h(\mu_1)$ or $\mu_1 = h(\mu_2)$, where $\lim_{\mu_i \to 0} h = \lim_{\mu_i \to 0} \frac{dh}{d\mu_i} = 0.$

References

- [1] L.P. Shil'nikov, On the creation of a periodic motion from a trajectory that is doubly asymptotic to an equilibrium state of saddle type, Mat. Sb. 77 (1968), 461-472. MR 41 # 582.
 = Math. USSR-Sb. 6 (1968), 427-438.
- [2] V.S. Afraimovich and L.P. Shil'nikov, On singular sets of Morse-Smale systems, Trudy Mat. Moskov. Obshch. 28 (1973), 181-214. MR 53 # 4142.
 = Trans. Moscow Math. Soc. 28 (1973), 179-212.
- [3] A.A. Simonov, Investigation of piecewise monotone transformations of an interval by the methods of symbolic dynamics, Dokl. Akad. Nauk SSSR 238 (1978), 1063-1066. MR 58 # 12968.
 = Soviet Math. Dokl. 19 (1978), 185-188.
- [4] V.S. Afraimovich, V.V. Bykov, and L.P. Shil'nikov, On attracting structurally unstable limit sets of Lorenz attractor type, Trudy Moskov. Mat. Obshch. 44 (1982), 150-212, MR 84a:58058.
 = Trans. Moscow Math. Soc. 1983, no. 2, 153-216.

Scientific Research Institute of Applied Mathematics and Cybernetics Received by the Board of Governors 28 April 1987

^{*}The translator and editor are uncertain about this word.

⁽²⁾The saddle O corresponds to the trajectory $0^{-\omega}0^{\omega}$ in the suspension (see [2] for suspensions that include equilibrium states).