# Bifurcations of two-dimensional dynamical systems close to a system with two separatrix loops 

D.V. Turaev

We consider a two-parameter family of smooth dynamical systems $S(\mu)$ on a two-dimensional smooth manifold. We assume that $S$ depends smoothly on $\mu=\left(\mu_{1}, \mu_{2}\right)$ and that $S(0)$ has the isolated equilibrium state 0 of saddle point type with two separatrix loops denoted by $\Gamma_{1}$ and $\Gamma_{2}$.

We also assume that the saddle point value $\sigma=\lambda_{1}+\lambda_{2}$, where $\lambda_{1}$ and $\lambda_{2}$ are the roots of the characteristic equation of the system at 0 when $\mu=0$, is non-zero and negative.

There exists a neighbour hood of 0 such that for all sufficiently small $\mu$ the equations of the vector field in this neighbourhood have the form

$$
\left\{\begin{array}{l}
\dot{\zeta}=\lambda_{1}(\mu) \zeta+f(\zeta, \eta ; \mu) \cdot \zeta \\
\dot{\eta}=\lambda_{2}(\mu) \eta+g(\zeta, \eta ; \mu) \eta
\end{array}\right.
$$

where $\lambda_{1}(\mu)<0$ and $\lambda_{2}(\mu)>0$ are the roots of the characteristic equation at 0 . The equations of the stable separatrices in this neighbourhood are $\eta=0$, and those of the unstable ones are $\zeta=0$. We choose a sufficiently small $d>0$ and construct secants to the stable separatrices: $\pi_{1}-\zeta=d$ and $\pi_{2}-\zeta=-d$, and to the unstable separatrices: $\pi_{3}-\eta=d$ and $\pi_{4}-\eta=-d$. By assumption, the separatrices form loops for $\mu=0$. This implies that for small $\mu$ and small $\zeta$ the trajectories emanating from the points ( $\zeta, d$ ) of the secant $\pi_{3}$ (or from the points ( $\zeta,-d$ ) of the secant $\pi_{4}$ ) return to the neighbourhood and intersect the secant $\pi_{1}$ (or $\pi_{2}$ ). Thus, succession maps $T_{1}$ and $T_{2}$ are defined: $T_{1}: \pi_{3} \rightarrow \pi_{1}$ and $T_{2}: \pi_{4} \rightarrow \pi_{2}$. We assume that $T_{1}$ and $T_{2}$ have the form $T_{1}: \eta=\mu_{1}+A_{1}(\mu) \zeta+\ldots$ and $T_{2}: \eta_{2}=\mu_{2}+A_{2}(\mu) \zeta+\ldots$. The quantities $A_{1}(\mu)$ and $A_{2}(\mu)$ are non-zero and are called the separatrix values. Various combinations of the signs of $A_{1}$ and $A_{2}$ are possible: 1) $A_{1}>0, A_{2}>0$; 2) $A_{1}<0, A_{2}>0$; 3) $A_{1}<0, A_{2}<0$. The case 1) always holds on an orientable manifold.

It is known that from one separatrix loop $\Gamma_{i}$ with $\sigma<0$ one can generate only one periodic trajectory homotopic to $\Gamma_{i}([1],[2])$. The situation is richer in the case of two loops. A cycle of type $j_{1}, \ldots, j_{n}$ is defined to be a limit cycle homotopic to the product $\Gamma_{j_{1}} \Gamma_{j_{2}} \ldots \Gamma_{j_{n}}$ of loops ( $j_{k}=1$ or 2 ).
Theorem. There exist a small neighbourhood $V$ of the separatrix contour $\Gamma_{1} \cup \Gamma_{2} \cup O$ and a small neighbourhood $U$ of variation of the parameters $\mu$ such that for $\mu \in U$ the system $S(\mu)$ has at most two limit cycles in $V$.

Only cycles of type 1,2 , or 12 can occur in the case 1 ).
Only cycles of type $1,2,12$, or 112 can occur in the case 2 ).
Only cycles of type $1,2,12,(12)^{r} 1$, or $(21)^{r} 2(1 \leqslant r<\infty)$ can occur in the case 3$)$. Bifurcation diagrams are constructed for each of these three cases:


1 ig. 1


Fig. 2

1) The plane of the parameters $\left(\mu_{1}, \mu_{2}\right)$ (Fig. 1) is partitioned into 6 domains: $D 1-D 6$. For each domain there are 1 or 2 cycles, as indicated directly on the diagram. Adjacent domains necessarily have a common limit cycle ${ }^{(1)}$.
2) The plane is partitioned into 8 domains: $D 1-D 8$ (Fig. 2). For each domain there are 1 or 2 cycles, as indicated directly on the diagram (Fig. 3).


Fig. 3
3) The plane is partitioned into countably many domains: $D 1, D 2, D 3, D 5, D 7, D 3$;
$D 6,1,1 ; D 6,1,2 ; D 6,2,1 ; D 6,2,2 ; \ldots, D 6, r, 1 ; D 6, r, 2 ; \ldots ; D 4,1,1 ;$ $D 4,1,2 ; \ldots ; D 4, r, 1 ; D 4, r, 2 ; \ldots$
(here $r$ can vary from 1 to $\infty$ ).
The cycles of the domains $D 1-D 3, D 5, D 7$, and $D 8$ are indicated on the diagram. In a domain of the form $D 4, r, 1$ there is the single cycle (21) 2 . The cycle (21) ${ }^{r+1} 2$ is added to it in passing to the domain $D 4, r$, 2. The value of $r$ grows to infinity on approaching the boundary of the domain $D 5$. Domains of the form $D 6, r, 1$ have the single cycle (12) ${ }^{r} 1$, and the cycle (12) ${ }^{r+1} 1$ is added to it in passing to the domain $D 6, r, 2$. The value of $r$ grows to infinity on approaching the boundary of the domain D5.

## References

[1] A.A. Andronov, E.A. Leontovich-Andronova, I.I. Gordon, and A.G. Maier, Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, Moscow 1967. MR 38 \# 3539.
Translation: Theory of bifurcations of dynamical systems on the plane, Israel Program Sci. Transl. Jerusalem; Wiley, New York-London 1973. MR 49 \# 9345.
[2] L.P. Shil'nikov, On certain cases of generation of periodic motions from singular trajectories, Mat. Sb. 61 (1963), 443-466. MR 27 \# 3877.
[3] A.N. Bautin, A qualitative investigation of a certain non-linear system, Prikl. Mat. Mekh. 39 (1975), 633-641. MR 54 \# 10744. = Appl. Math. Mech. 39 (1975), 606-615.
[4] A.D. Morozov and E.L. Fëdorov, On auto-oscillations in two-dimensional near-Hamilton dynamical systems, Prikl. Mat. Mekh. 43 (1979), 602-611. MR 82k:58075.
$=$ Appl. Math. Mech. 43 (1979), 644-654.
Research Inst. Appl. Math.
Received by the Board of Governors 28 September 1983
and Cybernetics, Gorkii
(1) For tunnel diode problems this case was considered in [3], and for near-Hamiltonian systems in [4].

