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Bifurcations of two-dimensional dynamical systems close
to a system with two separatrix loops

D.V. Turaev

We consider a two-parameter family of smooth dynamical systems §(u) on a two-dimensional
smooth manifold. We assume that § depends smoothly on u = (u1, p2) and that S(0) has the isolated
equilibrium state 0 of saddle point type with two separatrix loops denoted by I'y and I'p.

We also assume that the saddle point value ¢ = Ay + Ao, where Ay and Ay are the roots of the
characteristic equation of the system at 0 when g = 0, is non-zero and negative.

There exists a neighbourhood of 0 such that for all sufficiently small u the equations of the vector
field in this neighbourhood have the form
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where Aj(u) < 0 and A5(p) > O are the roots of the characteristic equation at 0. The equations of
the stable separatrices in this neighbourhood are i = 0, and those of the unstable ones are § = 0. We
choose a sufficiently smalld > 0 and construct secants to the stable separatrices: m3—¢ =d and
my— ¢ = —d, and to the unstable separatrices: m3—n =d and n4—n = —d. By assumption, the
separatrices form loops for w = 0. This implies that for small 4 and small ¢ the trajectories emanating
from the points (¢, d) of the secant w3 (or from the points (¢, —d} of the secant m4) return to the
neighbourhood and intersect the secant my (or my). Thus, succession maps 77 and T are defined:
Ty:w3 — mq and T3 :mq — w3. We assume that Ty and T have the form Ty :n = pi+Aj s+ .
and Ty iny = up+Ap(uw¢+ ... . The quantities 4, (u) and A,(u) are non-zero and are called the
separatrix values. Various combinations of the signs of A} and A, are possible: 1) Ay > 0, A3 > 0;
2)A; <0,A45 > 0; 3)A4; <0,A4, < 0. The case 1) always holds on an orientable manifoid.

It is known that from one separatrix loop I'; with ¢ < 0 one can generate only one periodic
trajectory homotopic to I'; ({1], [2]). The situation is richer in the case of two loops. A cycle of
type jy. ... jp is defined to be a limit cycle homotopic to the product rl:rfz .. an of loops
(/. = Lor 2

Theorem, There exist a small neighbourhood V of the separatrix contour I'y U I'y U O and a small
neighbouwrhood U of variation of the parameters u such that for u € U the system Su) has ar most
two limir cycles in V.

Only cycles of type 1, 2, or 12 can occur in the case 1).

Only cycles of type 1, 2. 12, or 112 can occur in the case 2).

Only cycles of type 1. 2, 12, (12)"1, or (21)F2 (1 < < =) can occur in the case 3). Bifurcation
diagrams are constructed for each of these three cases:
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1) The plane of the parameters (uq, uy) (Fig. 1) is partitioned into 6 domains: D1-D6. For each
domain there are 1 or 2 cycles, as indicated directly on the diagram. Adjacent domains necessarily
have a common limit cycle(l).

2) The plane is partitioned into 8 domains: D1-D§ (Fig. 2). For each domain there are 1 or 2
cycles, as indicated directly on the diagram (Fig. 3).
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3) The plane is partitioned into countably many domains:
De, 1,1, D8, 1, 2y D6, 2, 1; D6, 2,2; ..., DG, r, 4; D8, r, 2y ...}
D&, 1, 2 .. D4, r, 4; D4, 2 ...

(here r can vary from 1 to o).

The cycles of the domains D1-D3, DS, D7, and D8 are indicated on the diagram. In a domain of
the form D4, r, 1 there is the single cycle (21)Y2. The cycle (24)™12 is added to it in passing to the
domain D4, r, 2. The value of r grows to infinity on approaching the boundary of the domain D3.
Domains of the form D6, r, 1 have the single cycle (12)"1, and the cycle (£2)T+{ is added to it in
passing to the domain D6, r, 2. The value of » grows to infinity on approaching the boundary of the
domain DS5.
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