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Abstract. We study bifurcations of a homoclinic tangency to a sad-
dle fixed point without non-leading multipliers. We give criteria for
the birth of an infinite set of stable periodic orbits, an infinite set of
coexisting saddle periodic orbits with different instability indices, non-
hyperbolic periodic orbits with more than one multiplier on the unit
circle, and an infinite set of stable closed invariant curves (invariant
tori). The results are based on the rescaling of the first-return map
near the orbit of homoclinic tangency, which is shown to bring the map
close to one of four standard quadratic maps, and on the analysis of the
bifurcations in these maps.



Poincaré homoclinic orbits, i.e. those which are bi-asymptotic to saddle
periodic ones, are one of the most attracting objects of study in the theory
of dynamical systems. The reason is that their presence leads to complicated
dynamics. Thus, in a neighborhood of a homoclinic orbit corresponding to a
transverse intersection of the invariant manifolds of a saddle periodic orbit there
exist a countable set of periodic orbits and continuum of non-trivial recurrent
orbits [1, 2].

If the system has at least one non-transverse homoclinic orbit, the so-called
homoclinic tangency, this implies the existence of an infinite set of regions of
structural instability in any neighborhood of the given system: systems with
homoclinic tangencies are dense in these regions. This phenomenon was dis-
covered by Newhouse for the case of two-dimensional diffeomorphisms [3]. In
the multidimensional case, the Newhouse regions also exist in any neighbor-
hood of any system with a homoclinic tangency, both in the parameter space in
finite-parameter families [4] and, naturally, in the space of smooth dynamical
systems [4–6].

From the very beginning we should note that dynamical properties of sys-
tems from the Newhouse regions are extremely unusual and complex. Thus,
it was established in [7, 8] that a description of dynamics of the systems from
the Newhouse regions requires, already in the two-dimensional case, infinitely
many invariants (the so-called Ω-moduli [9, 10]). Moreover, systems are dense
in the Newhouse regions (in the Cr-topology with any r ≥ 3) with homoclinic
tangencies of an arbitrarily high order and with arbitrarily degenerate periodic
orbits [8, 11].

In the present paper we continue the study of dynamics of systems from
the Newhouse regions near a diffeomorphism having a saddle fixed point with
a homoclinic tangency. We focus only on the so-called basic cases: the two-
dimensional one, a three-dimensional case where the fixed point is a saddle-focus
with one real multiplier and a pair of complex- conjugate ones, and a four-
dimensional case of the saddle-focus which has two pairs of complex-conjugate
multipliers. In the general multidimensional case, dynamics near a homoclinic
tangency depends mostly on the structure of the set of the so-called leading
multipliers of the fixed point. In general position, it is either a pair of real
multipliers, or one real multiplier and a pair of complex-conjugate ones, or
two pairs of complex-conjugate multipliers. Thus, the diffeomorphisms under
consideration are the simplest among all diffeomorphisms with the given set of
leading multipliers.

Bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies
has been actively studied starting with the paper [12]. Therefore, we pay here
our main attention to three- and four-dimensional diffeomorphisms, i.e. to the
case of saddle-focus. A fixed point with the multipliers λe±iϕ and γ, where
0 < λ < 1, 0 < ϕ < π and |γ| > 1, will be called a saddle-focus (2,1). A point
will be called a saddle-focus (1,2) when it has multipliers λ and γe±iψ where
0 < |λ| < 1, γ > 1, 0 < ψ < π. A point is called a saddle-focus (2,2) when it has
multipliers λe±iϕ and γe±iψ where 0 < λ < 1, γ > 1, 0 < ϕ < π, 0 < ψ < π.

In all cases we will assume that the absolute value J of the product of the
multipliers does not equal to 1. For definiteness, we will assume J < 1 (the case
J > 1 is reduced to this one if we consider the inverse map).

We show that, similar to the two-dimensional case, diffeomorphisms with
infinitely many stable periodic orbits are dense in the Newhouse regions at J < 1.
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Earlier, it was known [5, 13, 14] that stable periodic orbits may be born at the
bifurcations of a homoclinic tangency provided the unstable manifold of the
corresponding fixed point is one-dimensional and the saddle value σ ≡ |λγ| is
less than 1. As our result here shows, neither of these conditions is necessary.
From the other hand, we note that the expansion of volumes near the saddle
fixed point at J > 1 prohibits of stable orbits, both for the system itself and
for all close systems [15,16]. Thus, when J > 1, diffeomorphisms with infinitely
many completely unstable periodic orbits are dense in the Newhouse regions.

Concerning saddle periodic orbits, we have the following essentially non-
twodimensional phenomenon in the case of saddle-foci. We show that under
certain conditions diffeomorphisms which have simultaneously infinitely many
coexisting saddle periodic orbits of two or even three different types (i.e. with
different dimensions of the unstable manifolds) are dense in the Newhouse re-
gions. Note that the dimensions of the unstable manifolds of these periodic
orbits my even be greater than the dimension of the unstable manifold of the
original saddle fixed point. Such phenomenon can be detected in many cases
of homoclinic bifurcations: near a homoclinic loop to a saddle-focus [17], near
non-transverse heteroclinic cycles [16,18,19], near homoclinic tangencies in some
cases of codimension 2 [20–22], and it was explicitly used in the construction
of the wild spiral attractor in [23]. In fact, we consider the coexistence of or-
bits with different numbers of positive Lyapunov exponents as the most general
property of multidimensional systems from the Newhouse regions.

The existence of non-hyperbolic periodic orbits is another characteristic fea-
ture of systems from the Newhouse regions. It is known [12,14] that bifurcations
of a homoclinic tangency are accompanied in the two-dimensional case by the
birth of periodic orbits with one multiplier equal to +1 or −1. In the present
paper we show that in the case of a saddle-focus there may appear periodic
orbits with two or even three multipliers equal to 1 in absolute value, and that
diffeomorphisms with such orbits are dense in the corresponding Newhouse re-
gions.

Bifurcations of a periodic orbit with one multiplier equal to +1 or −1 are
well known: these are the saddle-node bifurcation and the bifurcation of period
doubling. In the case of a periodic orbit with two multipliers on the unit circle,
ν1,2 = e±iω for example, its bifurcations can lead to a birth of closed invariant
curves. Here, in connection with the problem of coexistence of an infinite num-
ber of non-trivial attractors we are specially interested in stable closed curves.
Thus, we show that in the case of a homoclinic tangency to a saddle-focus fixed
point with J < 1 (except for the case of a saddle-focus (2,1) with |λγ| < 1 when
dynamics does not differ much from the case of a saddle) diffeomorphisms with
infinitely many stable invariant curves are dense in the corresponding Newhouse
regions.

In the case of a saddle-focus (2,2) with λγ2 > 1 bifurcations of a homoclinic
tangency can lead to the birth of periodic orbits with three multipliers on the
unit circle. These cases require a separate consideration which we do not conduct
in this paper. Note, however, that the normal form in the case of multipliers
(−1,−1,+1), for example, is a system of three autonomous differential equations
(Morioka-Shimitsu system) which has a Lorenz-like attractor [24]. Therefore,
we can expect that diffeomorphisms with infinitely many coexisting strange
attractors are dense in the Newhouse regions in the case of a saddle-focus (2,2)
with λγ2 > 1, λγ < 1.
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The main results of the paper were announced in [25].

1 Setting the problem and main results

1.1 Main assumptions

Consider a Cr-smooth diffeomorphism f with a saddle fixed point O. As-
sume that the stable and unstable manifolds W s(O) and Wu(O) intersect non-
transversely at the points of some homoclinic orbit Γ0.

We assume that the point O does not have non-leading multipliers. Four
basic cases appear here: the two-dimensional case, when the multipliers of O are
real, two three-dimensional cases, when there are one real multiplier and a pair
of complex-conjugate ones, and one four-dimensional case, when the multipliers
are complex. Namely, we assume that the following condition holds.

A. The point O belongs to one of the following types:
(1,1) when the multipliers λ and γ of O are real, |λ| < 1, |γ| > 1;
(2,1) when O has a pair of complex multipliers λ1,2 = λe±iϕ, where λ ∈ (0, 1),
ϕ ∈ (0, π), and one real multiplier γ, where |γ| > 1;
(1,2) when O has one real multiplier λ, where |λ| < 1, and a pair of complex
multipliers γ1,2 = γe±iψ, where γ > 1, ψ ∈ (0, π);
(2,2) when O has two pairs of complex multipliers: λ1,2 = λe±iϕ and γ1,2 =
γe±iψ, where λ ∈ (0, 1), γ > 1, ϕ,ψ ∈ (0, π).

We will call the point O a saddle in the first case and a saddle-focus in the
other cases. Let J be the absolute value of the product of the multipliers of O.
Assume that f satisfies the following condition.

B. J < 1, and |λγ| 6= 1 in the case (2,1), and λγ2 6= 1 in the case (2,2).
Introduce an integer de (we call it “effective dimension”) which is defined as

follows:

de = 1 — in the case (1,1), and in the case (2,1) with |λγ| < 1;
de = 2 — in the case (2,1) with |λγ| > 1, in the case (1,2), and in the case (2,2)
with λγ2 < 1;
de = 3 — in the case (2,2) with λγ2 > 1.

The meaning of the constants J and de is quite simple. J is the Jacobian of
the map f at the fixed point O. Thus, the diffeomorphism f contracts volumes
near O in the case J < 1, while it expands volumes if J > 1. It is also obvious
that if J < 1, then the iterations of the map f will exponentially contract any
(de+1)-dimensional volume near O, while de-dimensional volumes can expand.

It is obvious that condition B is not restrictive because the case J > 1
reduces to the given one if we consider the inverse map. One should only have
in mind that this transition will make the stable manifold unstable, i.e. the
case (1,2) becomes (2,1), and vice versa. The definition of the quantity de also
changes in an obvious way.

Denote as T0 the restriction of the diffeomorphism f onto a sufficiently small
neighborhood U0 of the fixed point O. We will call T0 the local map. The map
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T0 in a small neighborhood of O(0, 0) may be written as

x̄ = Ax+ . . . , ȳ = By + . . . . (1)

The eigenvalues of the matrices A and B are the stable (i.e. smaller than 1
in absolute value) and, respectively, unstable (larger than 1 in absolute value)
multipliers of O. Thus, if the stable multiplier is real, then A = λ and x is a
scalar; while if we have a pair of complex stable multipliers, then x = (x1, x2)

and A = λ

(
cosϕ − sinϕ
sinϕ cosϕ

)
. Analogously, if the unstable multiplier γ is

real, then B = γ and y is a scalar; and if there is a pair of complex unstable

multipliers, then y = (y1, y2) and B = γ

(
cosψ − sinψ
sinψ cosψ

)
.

The points of intersection of the homoclinic orbit Γ0 with U0 belong to the
set W s ∩ Wu and converge to O. Countable sets of these points lie in W s

loc

and in Wu
loc. Let M+ ∈ W s

loc and M− ∈ Wu
loc be some two points of Γ0, and

let M+ = fk0(M−) for some positive integer k0. Let Π+ and Π− be some
sufficiently small neighborhoods of the points M+ and M−, lying in U0. The
map T1 ≡ fk0 : Π− → Π+ will be called the global map.

By assumption, T1(Wu
loc) is tangent to W s

loc at the point M+. We will as-
sume that this tangency is simple, i.e. the following conditions hold:

C. T1(Wu
loc) and W s

loc have a single common tangent vector at the point M+;

D. the tangency of T1W
u
loc and W s

loc at the point M+ is quadratic.

1.2 On bifurcation parameters

Let f be a diffeomorphism with a homoclinic tangency satisfying conditions
A–D. Close to f diffeomorphisms which have an orbit of homoclinic tangency
close to Γ0 form a smooth bifurcational surface H of codimension 1 in the space
of Cr-smooth diffeomorphisms with Cr-topology.

In the present paper we consider bifurcations in parametric families fε trans-
verse to H at ε = 0. The minimal number of governing parameters we take
equals exactly de. As the first parameter we take a parameter µ which estimates
the splitting of W s(O) and Wu(O) near the point M+ (the exact definition of
µ in terms of the coefficients of the Taylor expansion of the global map T1 see in
Section 2, Lemma 5). Formally speaking, µ is a smooth functional defined for
diffeomorphisms close to f , such that the bifurcational surface H is given by the

equation µ(f) = 0. The family fε is transverse to H if and only if
∂

∂ε
(µ(fε)) 6= 0

at ε = 0. It is this condition which allows us to take µ as the first component
of the vector of parameters ε.

If de ≥ 2, then we need one or two (when de = 3) more governing parameters,
in addition to µ. In this case we require that the family fε were transverse at
ε = 0 both to the bifurcational surface H and to the surfaces ϕ = const and/or
ψ = const, where ϕ and ψ are the angular arguments of the complex multipliers
of O. This transversality condition allows for taking µ, ϕ − ϕ0, ψ − ψ0 as the
governing parameters, where ϕ0 and ψ0 are the values of ϕ and ψ at ε = 0.
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Thus, we assume
1) ε = µ – in the case (1,1), and in the case (2,1) with |λγ| < 1;
2) ε = (µ, ϕ− ϕ0) – in the case (2,1) with |λγ| > 1;
3) ε = (µ, ψ − ψ0) – in the case (1,2), and in the case (2,2) with λγ2 < 1;
4) ε = (µ, ϕ− ϕ0, ψ − ψ0) – in the case (2,2) with λγ2 > 1.

Note that ϕ and ψ are the so-called Ω-moduli – continuous invariants of the
topological conjugacy on the set of nonwandering orbits – for the systems with
homoclinic tangencies in the case of a saddle-focus. As it was shown in [26,27],
any change in the value of these Ω-moduli (in the class of diffeomorphisms from
H, i.e. when the original homoclinic tangency is not split) leads to bifurcations
of single-round periodic orbits.1 This, in particular, explains why having only
one governing parameter µmay be insufficient for the analysis of the bifurcations
in the cases (2,1), (1,2) and (2,2).

Note that all our results here will hold true for arbitrary families fε (e.g.
when the number of parameters is larger than de) under the only assumption
that the above transversality conditions are fulfilled.

One of the general results on the families fε is the existence of Newhouse
regions in these families. First, we recall the following result from [4].

Theorem on Newhouse intervals. Let fµ be a one-parameter family of
Cr-smooth (r ≥ 3) diffeomorphisms, transverse to the bifurcational surface H
of diffeomorphisms satisfying conditions A-D.2 Then, in any neighborhood of
the point µ = 0 there exist Newhouse intervals such that 1) the values of µ are
dense which correspond to the existence of a simple homoclinic tangency to O;
2) the family fµ is transverse to the corresponding bifurcational surfaces.

Since the Newhouse regions are open in C2-topology in the space of dynami-
cal systems, the theorem on Newhouse intervals imply immediately the following
result concerning the family fε.

Newhouse regions in parametric families. In the space of parameters
ε there exists a sequence of open regions δj, converging to ε = 0, such that in
δj the values of ε are dense which correspond to the existence of an orbit of
simple homoclinic tangency to O. Moreover, the family fε is transverse to the
corresponding bifurcational surfaces.

1.3 Main results

We will study properties of diffeomorphisms fε from the Newhouse regions δj . In
order to study bifurcations of periodic orbits we will assume sufficient smooth-
ness of fε; namely, we assume r ≥ 5.

First, we discuss the case de = 1 (recall that we consider one-parameter
families with ε = µ in this case).

Theorem 1. In the cases of a saddle (1,1) and a saddle-focus (2,1), when
|λγ| < 1, the following statements hold for the Newhouse intervals δj

1We have an analogous situation in the case of a saddle as well, for double-round periodic
orbits now. Here any change in the value of the Ω-modulus θ = − ln |λ|/ ln |γ| leads to
bifurcations of such orbits [9, 28]. Note that triple-round periodic orbits may, in this case,
undergo cusp-bifurcations [29] which correspond to one of the multipliers equal to +1 and the
first Lyapunov coefficient vanishing at the critical moment.

2In [4], instead of condition B, we required only that λγ 6= 1. Note that our condition B
always includes this requirement.
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1) the values of µ are dense there, such that the diffeomorphism fµ has a peri-
odic orbit with a multiplier equal to +1;
2) the values of µ are dense such that the diffeomorphism fµ has a periodic orbit
with a multiplier equal to −1;
3) the values of µ are dense (and comprise a residual set) such that the diffeo-
morphism fµ has an infinite set of stable periodic orbits.

In essence, items 1 and 2 of this theorem can be found in [12] for the case
of a saddle and in [14, 30] for the case of a saddle-focus. Item 3 is known
since the paper [13] for the two-dimensional case, the three-dimensional case is
considered in [15, 31] (see also [5]). For the sake of completeness, we give the
proof of Theorem 1 along with the proofs of the other results listed below.

Further we consider the case de ≥ 2. The main attention here is paid to
those properties of the diffeomorphisms fε which are new in comparison with
the case of a saddle. These are the existence of non-hyperbolic periodic orbits
with more than one multiplier on the unit circle (Theorem 2); the coexistence
of infinitely many stable closed invariant curves (Theorem 3); the coexistence
of infinitely many of (rough) periodic orbits of more than two different types
(Theorem 4).

Theorem 2. In the case de = 2, i.e. in the cases of a saddle-focus (2,2)
with λγ2 < 1, a saddle-focus (1,2), and a saddle-focus (2,1) with |λγ| > 1,
in the Newhouse regions δj the values of parameters ε are dense such that the
corresponding diffeomorphism fε has a periodic orbit with any aforehand given
pair of multipliers on the unit circle.

In the case of a saddle-focus (2,2) with λγ2 > 1 (i.e. when de = 3), in the
Newhouse regions δj the values of ε are dense such that the corresponding diffeo-
morphism fε has a periodic orbit with any aforehand given triplet of multipliers
on the unit circle.

Note that we deal here with real diffeomorphisms, therefore we speak in
Theorem 2 about such sets of multipliers for which every complex multiplier
is accompanied by its conjugate. In particular, we have that in the case of
a homoclinic tangency to a saddle-focus with de ≥ 2, in the corresponding
Newhouse regions diffeomorphisms with periodic orbits which have a pair of
multipliers e±iω (0 < ω < π) are dense. An analysis of the bifurcations of such
periodic orbits, as well as periodic orbits with a pair of multipliers (−1,−1),
allows us to establish the following result.

Theorem 3. Let a Cr-smooth (r ≥ 5) diffeomorphism f satisfy conditions A–D.
Then, in the case de ≥ 2, in the Newhouse regions δj the values of parameters are
dense and comprise a residual set for which the diffeomorphism fε has infinitely
many asymptotically stable closed invariant curves.

Condition J < 1 is essential in this theorem (when J > 1, all the orbits
are necessarily unstable). In the class of two-dimensional diffeomorphisms with
J 6= 1 there can be no closed invariant curves near a homoclinic tangency,
because we have either contraction (at J < 1), or expansion (at J > 1) of areas.
However, in the case of codimension 2 when J = 1 at the moment of homoclinic
tangency, the birth of closed invariant curves is possible [20,22]. Closed invariant
curves are also born at the bifurcations of a non-transverse heteroclinic cycle
with two saddles when J < 1 in one saddle and J > 1 in the other saddle.
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Moreover, it is shown in [18,19], that near systems with such heteroclinic cycle
there exist Newhouse regions where such diffeomorphisms are dense that have
simultaneously infinitely many of both stable and completely unstable closed
invariant curves.

The next theorem gives us the answer to one of the main problems of the
dynamics of systems from the Newhouse regions – on the coexistence of periodic
orbits with different numbers of positive Lyapunov exponents.

Theorem 4. In the Newhouse regions δj the values of parameters are dense
and comprise a residual set such that the corresponding diffeomorphism fε has,
simultaneously, an infinite set of stable periodic orbits and, for each d from 1 to
de, an infinite set of saddle periodic orbits with the dimension of the unstable
manifold equal to d.

Note that here there can be no periodic orbits with the unstable mani-
folds of the dimension greater than de, by virtue of the contraction of (de + 1)-
dimensional volumes [15, 16]. Thus, for example, in the case of a saddle-focus
(2,2) with λγ2 < 1 we have saddles with one-dimensional and two-dimensional
unstable manifolds, while there are no saddles with three-dimensional unsta-
ble manifolds here. If we, however, have λγ2 > 1, λγ < 1, then there can
simultaneously exist saddles with one-dimensional, two-dimensional and three-
dimensional unstable manifolds.

The proof of theorems 1–3 is based on the study of the first-return maps
near the orbit of homoclinic tangency. We reduce the study of these maps to
the analysis of the following standard quadratic maps:
(i) parabola map — ȳ = M − y2 (for the cases of a saddle and a saddle-focus
(2,1) with |λγ| < 1);
(ii) Hénon map — x̄1 = y, ȳ = M − y2 + Bx1 (for the case of a saddle-focus
(2,1) with |λγ| > 1);
(iii) Mira map — ȳ1 = y2, ȳ2 = M + Cy2 − y2

1 (for the cases of a saddle-focus
(1,2) and a saddle-focus(2,2) with |λγ2| < 1);
(iv) three-dimensional Hénon map — x̄1 = y1, ȳ1 = y2, ȳ2 = M+Cy2+Bx1−y2

1

(for the case of a saddle-focus (2,2) with λγ2 > 1).
The linear analysis of the fixed points of these maps is comparatively simple
(see Section 4), and it gives us the information necessary for the proof of Theo-
rems 1, 2 and 4. Concerning the stable closed invariant curves of Theorem 3, we
derive their existence in the case of saddle-foci (1,2) and (2,2) from a nonlinear
bifurcational analysis of maps (iii) and (iv). In the case of a saddle-focus (2,1)
with |λγ| > 1 the problem is that Hénon map (ii) itself has no (asymptotically
stable) closed invariant curves. Therefore, in order to prove Theorem 3) in this
case we have to deal with the so-called generalized Hénon map (see Lemma 2).

1.4 Rescaling lemma

In the case of diffeomorphisms close to a diffeomorphism with a homoclinic tan-
gency, the first-return maps in a small fixed neighborhood Π+ of the homoclinic
point M+ are the compositions T (k) = T1T

k
0 , where k = k̄, k̄ + 1, ..., and k̄ is

sufficiently large. Recall that T0 = fε∣∣U0
where U0 is some small neighborhood

of the fixed point, and T1 ≡ fk0ε is defined in a small neighborhood Π− of the
homoclinic point M− and it takes Π− inside Π+. Thus, the domain of defini-
tion of the map T (k) in Π+ is the “strip” σ0

k = Π+ ∩ T−k0 Π−. The strips σ0
k are
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non-empty for all sufficiently large k (the smaller the size of the neighborhoods
Π+ and Π−, the large the minimal k is) and they converge to W s

loc ∩ Π+ as
k → +∞.

The following lemma (the main technical result of the paper) shows that
the first-return maps T (k) can be brought, for all large k, to some standard
form. Namely, they can be written as maps which are asymptotically close,
as k → ∞, to certain one-dimensional, two-dimensional and three-dimensional
quadratic maps.

Lemma 1 (Rescaling lemma). Let f0 be a Cr-smooth (r ≥ 5) diffeomorphism
satisfying conditions A-D, and let fε be a de-parameter family transverse to H
at ε = 0. Then, in the space of parameters there exists a sequence of regions
∆k, converging to ε = 0 as k → +∞, such that the following holds.

At ε ∈ ∆k there exists such transformation of coordinates in σ0
k and param-

eters in ∆k, Cr−1-smooth with respect to the coordinates and Cr−2-smooth with
respect to the parameters, that brings the first-return map T (k) : (x, y) 7→ (x̄, ȳ)
to one of the following forms:

i) in the case (1,1) and in the case (2,1) with λγ < 1 —

ȳ = M − y2 + o(1), x̄ = o(1); (2)

ii) in the case (2,1) with λγ > 1 —

x̄1 = y,
ȳ = M − y2 +Bx1 + o(1), x̄2 = o(1); (3)

iii) in the case (1,2) and in the case (2,2) with λγ2 < 1 —

ȳ1 = y2,
ȳ2 = M + Cy2 − y2

1 + o(1), x̄ = o(1); (4)

iv) in the case (2,2) with λγ2 > 1 —

x̄1 = y1,
ȳ1 = y2,
ȳ2 = M + Cy2 +Bx1 − y2

1 + o(1), x̄2 = o(1).
(5)

In these coordinates, the domain of definition of the map T (k) is asymptotically
large and it covers, in the limit k → +∞, all finite values of (x, y).

The rescaled parameters M,B and C are expressed via the original parame-
ters µ, ϕ and ψ as follows:

M = M0γ
2nk(µ+O(|λ|k + |γ|−k)),

B = B0 (λγn)k cos(kϕ+ αk(ε)), C = C0γ
k cos(kψ + βk(ε)),

(6)

where n = dimWu(O), the constants M0, B0, C0 are non-zero, and the functions
αk and βk are uniformly bounded for all k, along with the derivatives. Here,
when ε runs the region ∆k the values of M , B and C run asymptotically large
regions which cover, in the limit k → +∞, all finite values.

Here we denote as o(1) some functions (of the rescaled coordinates and the
parameters M , B, C) which tend to zero as k →∞ along with all the derivatives
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up to the order (r−2) with respect to the coordinates and (r−3) with respect to
the parameters, uniformly on any bounded subset of the space (x, y,M,B,C).
Note also that in the case of saddle-foci the regions ∆k, corresponding to finite
values of B and C, may consist of many connected components (by virtue of
the periodic dependence of B and C on ϕ and ψ respectively).

In case (ii) of Lemma 1 we need a more accurate account of the asymptoti-
cally small terms in the map (3), which leads us to the following result.

Lemma 2. In the case (2,1) with λγ > 1, when ε = (µ, ϕ − ϕ0) ∈ ∆k and
when the corresponding value of B is bounded away from zero, the map T (k) in
the form (3) has a two-dimensional attracting invariant Cr−2-smooth manifold
Ms

k ⊂ σ0
k, which is the graph of a function x2 vs. (x1, y) such that x2 = o(1) as

k →∞. The map T (k)
∣∣
Ms

k

has the form

x̄1 = y,

ȳ = M − y2 +Bx1 +
2J1

B
(λ2γ)k (x1y + o(1)) ,

(7)

where J1 6= 0 is some constant (namely, J1 is the Jacobian of the global map
T1, taken at the homoclinic point M− at ε = 0).

The maps of the form (7) are called generalized Hénon maps. They were
introduced in [20, 22] where it was shown, in particular, that they undergo a
non-degenerate Andronov-Hopf bifurcation and have a stable closed invariant
curve for the values of parameters (M,B) from some open regions (see Section
4).

The paper is organized as follows. In Section 2, appropriate formulas are
obtained for the local and global maps T0(ε) and T1(ε). In Section 3 the first-
return maps are studied and Lemmas 1 and 2 are proved. In Section 4 the
analysis of the maps (2)–(5) and (7) is conducted and Theorems 1–4 are proved.

2 Properties of the local and global maps

In order to study the first return maps T (k) = T1T
k
0 at all large k and small

ε, we will need appropriate formulas for the maps T0 and T1. Here, naturally,
the main attention is paid to the form of the local map T0(ε). This map, at
all small parameter values, has a fixed point Oε which we assume to be in the
origin of coordinates. By choosing the coordinate axes appropriately we may
write the map T0(ε) in the form (1). Moreover, by a Cr-smooth transformation
of coordinates we may straighten the local stable and unstable manifolds of Oε.
This brings T0 to the following form:

x̄ = A(ε)x+ p(x, y, ε), ȳ = B(ε)y + q(x, y, ε), (8)

where the Cr-smooth functions p and q vanish at the origin along with the
first derivatives; moreover, p(0, y, ε) ≡ 0, q(x, 0, ε) ≡ 0. In this case W s

loc =
{y = 0, v = 0}, Wu

loc = {x = 0, y = 0}. Note that the straightening alone
of the manifolds W s

loc and Wu
loc is not sufficient for our purposes. In essence,

the problem is that the right-hand sides of (8) contain too many non-resonant
terms. However, with the help of some additional coordinate transformation a
significant portion of these terms can be killed. Namely, the following lemma
holds.
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Lemma 3. Let r ≥ 3. For all sufficiently small ε, one can introduce Cr−1-
coordinates (x, u, y, v) in U0, which are Cr−2 with respect to parameters, such
that the map T0(ε) is written in these coordinates as

x̄ = A(ε)x+ P (x, y, ε)x, ȳ = B(ε)y +Q(x, y, ε)y, (9)

where
P (0, y, ε) = P (x, 0, ε) ≡ 0, Q(x, 0, ε) = Q(0, y, ε) ≡ 0. (10)

The main advantage here is that in the coordinates of Lemma 3 the map
T k0 : U0 → U0, when written in the so-called “cross-form” is linear to the
leading order for all sufficiently large k. Namely, let T0(ε) be in the form (9),
and let identities (10) hold. Let (xi, yi), i = 0, ..., k, be points in U0 such that
(xi, yi) = T0(xi−1, yi−1).

Lemma 4. For all sufficiently large k and for all sufficiently small ε, the map
T k0 (ε) : (x0, y0) → (xk, yk) can be written in the following form:

xk − Ak1(ε)x0 = λ̂kξk(x0, yk, ε), y0 − B−k1 (ε)yk = γ̂−kηk(x0, yk, ε),
(11)

where λ̂ and γ̂ are some constants such that 0 < λ̂ < |λ|, γ̂ > |γ|; the functions
ξk and ηk are uniformly bounded for all k, along with all the derivatives with
respect to the coordinates and parameters up to the order (r − 2).

The proof of Lemmas 3 and 4 can be found, for different cases, in [9,10,32].
Concerning the global map T1(ε), we will also find now a convenient form

for it, using conditions C and D of the quadraticity of the homoclinic tangency.
Recall also that the condition of the transversality of the family fε to the bi-
furcational surface H means that among the parameters ε we can select the
parameter µ which measures the splitting of the invariant manifolds of O near
the chosen homoclinic point M+. In this case, the global map T1(ε) can be
written in the form described in the following lemma.

Lemma 5. The coordinates defined in Lemma 3 can be introduced in U0 in such
a way that the global map T1(ε) will have the following form for all small ε:

— in the case (1,1) (here x ∈ R1 , y ∈ R1)

x̄− x+ = ax+ b0(y − y−) + . . . ,
ȳ = µ+ cx+D0(y − y−)2 + . . . ,

(12)

— in the case (2,1) (here x ∈ R2 , y ∈ R1)

x̄− x+ = ax+
(b0
0

)
(y − y−) + . . . ,

ȳ = µ+ c1x1 + c2x2 +D0(y − y−)2 + . . . ,
(13)

— in the case (1,2) (here x ∈ R1 , y ∈ R2)

x̄− x+ = ax+ b0(y1 − y−1 ) + b1ȳ2 + . . . ,
ȳ1 = µ+ cx+D0(y1 − y−1 )2 + . . . ,
y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + ex+ . . . ,

(14)
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— in the case (2,2) (here x ∈ R2 , y ∈ R2)

x̄− x+ = ax+
(b0
0

)
(y1 − y−1 ) + b1ȳ2 + . . . ,

ȳ1 = µ+ c1x1 + c2x2 +D0(y1 − y−1 )2 + . . . ,
y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + e1x1 + e2x2 + . . . ,

(15)

where b0 6= 0, c 6= 0, D0 6= 0, d2 6= 0, x+ 6= 0, y− 6= 0.

Note that formulas (14) and (15) represent the global map T1 in the cross-
form with respect to the coordinate y2, i.e. the right-hand sides are functions
of (x, y1) and ȳ2.

In essence, formulas (12)–(15) are Taylor expansions with an appropriately
chosen y−(ε); the dots stand for nonlinear terms (except for the quadratic term
which is written explicitly). Note also that the coefficients a, . . . , e2, as well
as x+ and y−, and the terms denoted by dots, depend on the parameters ε.
The corresponding class of smoothness with respect to ε is here Cr−3: in the
coordinates of Lemma 3 the map T1, along with its first derivative with respect
to (x, y), is Cr−2-smooth with respect to ε (see [32]), therefore the coefficient
D0(ε) of the quadratic term is Cr−3-smooth.

Proof of Lemma 5. Let the coordinates of Lemma 3 be introduced in U0. Let
x+ 6= 0 and y− 6= 0 be the coordinates of the homoclinic points M+ ∈W s

loc and
M− ∈ Wu

loc, i.e. M+ = M+(x+, 0) and M− = M−(0, y−). Since T1M
− = M+

at ε = 0, the map T1(ε) can be written in the following form for all small ε:

x̄− x+(ε) = âx+ b̂(y − y−(ε)) + ...,

ȳ = y+(ε) + ĉx+ d̂(y − y−(ε)) + ...,
(16)

where the dots stand for the nonlinear terms, all the coefficients depend on ε,
and y+(0) = 0. Moreover,

det
(
â b̂

ĉ d̂

)
6= 0. (17)

Let us find restrictions on the coefficients in (16) imposed by condition C.
It means that the manifold T1W

u
loc has, at ε = 0, exactly one common tangent

vector with W s
loc at the point M+. Since the equation of Wu

loc is x = 0, and the
equation of W s

loc is ȳ = 0, it follows from (16) that the intersection of tangent
spaces of T1W

u
loc and W s

loc at the point M+ is one-dimensional if and only if the
equation d̂(y− y−) = 0 has a one-parameter family of solutions at ε = 0. Thus,
in the case where y ∈ R1 and d̂ is a scalar (i.e. in the cases (1,1) and (2,1)) we
have

d̂ = 0 at ε = 0. (18)

If y ∈ R2 (the cases (1,2) and (2,2)), then d̂ is a (2× 2)-matrix, and we have

det d̂ = 0 and rank d̂ = 1 at ε = 0. (19)

In case y ∈ R1, the second equation of (16) can be written as

ȳ = y+(ε) + ĉx+D0(y − y−)2 + . . . , (20)
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where we wrote explicitly the linear terms and one second order term. Since
x = 0 on Wu

loc, we obtain that the equation of T1W
u
loc is{

x̄− x+(ε) = b̂(y − y−) + . . . ,
ȳ = y+(ε) +D0(y − y−)2 + . . . .

(21)

This is a parabola-like curve, parametrized by the coordinate y on Wu
loc. Obvi-

ously, condition D of the quadraticity of the tangency of this curve to the plane
Wu
loc : {ȳ = 0} at ε = 0 means that D0 6= 0. Note that the right-hand side of

(20) does not contain the term linear in (y − y−): since D0 6= 0, this term can
be killed at all small ε by means of an appropriate choice of y−(ε).

Thus, in the case (1,1) we indeed obtain formula (12) for the map T1, where
b0 = b̂, c = ĉ, and b0c 6= 0 by virtue of (17) and (19). Note also that we may put
µ = y+(ε) in (12) because y+(ε) measures the splitting of the manifolds W s(O)
and Wu(O) near the homoclinic point M+ (see (21)).

In the case (2,1), in order to obtain formula (13), we make a linear rota-
tion in the x-plane (this coordinate transformation, obviously, does not destroy
identities (10)) so that the vector b = (b̂1, b̂2) transforms into (b0, 0) where

b0 =
√
b̂21 + b̂22 6= 0. It is easy to see that this is achieved by means of the

rotation x 7→ Rωx where ω = arctan (−b̂2/b̂1). Note that this gives us

c1 =
b̂1ĉ1 − b̂2ĉ2

b0
, c2 =

b̂2ĉ1 + b̂1ĉ2
b0

,

so c21 + c22 6= 0 by virtue of (17).
Consider now the case where y ∈ R2 (i.e. the cases (1,2) and (2,2)). Equa-

tions for ȳ from (16) will have the following form:

ȳ1 = y+
1 (ε) + ĉ1x+ d̂11(y1 − y−1 ) + d̂12(y2 − y−2 ) + . . . ,

ȳ2 = y+
2 (ε) + ĉ2x+ d̂21(y1 − y−1 ) + d̂22(y2 − y−2 ) + . . . .

(22)

Note that the rotation in the y-plane does not change the form of equations
(22), but the coefficients may change. At ε = 0, since det d̂ = 0, we may rotate
the y-coordinates so that the following equalities will be fulfilled:

d̂11 = 0, d̂12 = 0. (23)

Without loss of generality we will assume that these equalities hold at ε = 0
from the very beginning. Since rank d̂ = 1 at ε = 0, it follows that at least one
of the coefficients d̂21 or d̂22 is non-zero. Assume that

d̂22 6= 0. (24)

If this is not the case (i.e. if d̂22 = 0 and, hence, d̂21 6= 0), we will take another
homoclinic point, namely, the point T−1

0 (M−), and we will consider it as the
new point M−. For the new global map (T1new = T1T0), the new matrix d̂ will
be written as

d̂new = d̂ ·
(

cosϕ − sinϕ
sinϕ cosϕ

)
.

By (23),

d̂new =
(

0 0
d̂21 cosϕ+ d̂22 sinϕ −d̂21 sinϕ+ d̂22 cosϕ

)
.
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Thus, if d̂22 = 0, then by choosing the new homoclinic point we will indeed
obtain (24) (since d̂21 6= 0 and sinϕ > 0).

Let us now take into account quadratic terms as well. Then the equation for
ȳ1 from (22) will take the following form at ε = 0:

ȳ1 = c1x+D1(y1 − y−1 )2 +D2(y1 − y−1 )(y2 − y−2 ) +D3(y2 − y−2 )2 + . . . . (25)

Since d̂22 6= 0, the second equation in (22) can be resolved with respect to
(y2 − y−2 ). Correspondingly, we have at ε = 0:

y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + ex+ . . . , (26)

where d1 = −d̂21/d̂22, d2 = d̂−1
22 . By plugging (26) in (25), we obtain

ȳ1 = c1x+D0(y1 − y−1 )2 + D̃1(y1 − y−1 )ȳ2 + D̃2ȳ
2
2 + . . . , (27)

where
D0 ≡ D1 + d1D2 + d2

1D3, (28)

and D̃1,2 are some coefficients. Thus the map T1 is written in the following
cross-form at ε = 0:

x̄− x+ = ax+ b0(y1 − y−1 ) + b1ȳ2 + . . . ,
ȳ1 = cx+D0(y1 − y−1 )2 + . . . ,
y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + ex+ . . .

(29)

in the case (1,2), and

x̄1 − x+
1 = a11x1 + a12x2 + b0(y1 − y−1 ) + b11ȳ2 + . . . ,

x̄2 − x+
2 = a21x1 + a22x2 + b12ȳ2 + . . . ,

ȳ1 = c1x1 + c2x2 +D0(y1 − y−1 )2 + . . . ,
y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + e1x1 + e2x2 + . . .

(30)

in the case (2,2), with some new coefficients a, b, c, d, e (in the case (2,2) we
make the coefficient of (y1 − y−1 ) in the equation for x̄2 equal to zero by means
of an appropriate rotation in the x-coordinates, in the same way as in the case
(2,1)). Condition (17) recasts now as

det
∂(x̄, ȳ1)
∂(x, y1)

6= 0, (31)

which gives us, in both cases, b0 6= 0, c 6= 0.
Since x = 0 on Wu

loc, it follows from (29), (30) that T1W
u
loc is given by the

following equations near the point M+:

y1 =
D0

b20
(x− x+)2 + . . . (32)

in the case (1,2), and

x2 − x+
2 = b12y2 + . . . ,

y1 =
D0

b20
(x1 − x+

1 )2 + . . .
(33)
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in the case (2,2). In any case it is obvious that condition D of the quadraticity
of the tangency of this surface with W s

loc : y = 0 is equivalent to the condition
D0 6= 0.

At ε 6= 0 the map T1 is still given by the equations (29) and (30): since
D0(ε) 6= 0 at all small ε, we may always choose y−1 (ε) and y−2 (ε) and rotate
additionally the y-coordinates so that the coefficients d11(ε) and d12(ε) will
vanish identically for all small ε. The only difference with the case ε = 0 is that
a non-zero constant term y+

1 (ε) appears in the equation for ȳ1. As before, the
condition of transversality of the family fε to the bifurcational surface H allows
us to assume y+

1 (ε) = µ. This finishes the proof of Lemma 5.

3 Proof of rescaling lemmas

In this Section we study the first-return maps

T (k)(ε) ≡ T1T
k
0 : σ0

k → σ0
k

for all sufficiently large k : k = k̄, k̄ + 1, . . . , and small ε, ‖ε‖ ≤ ε0. We will
use formula (11) from Lemma 4 for the map T k0 : σ0

k → σ1
k, with (x0, y0) ∈

Π+, (xk, yk) ∈ Π−. For the global map T1(ε) we will use the corresponding
formulas from Lemma 5. According to Lemma 4, for all small x0, yk and any
sufficiently large k the corresponding coordinates xk, y0 are defined uniquely.
Therefore, we may use (x0, yk) as the coordinates in σ0

k; the coordinate y0 is
computed by formula y0 = B−k1 (ε)yk + γ̂−kηk(x0, yk, ε) (see Lemma 4). Note
that the size of the strip σ0

k in the new coordinates (x0, yk) is bounded away
from zero in all directions, for all k. Thus, if we define the neighborhoods
Π+ and Π− as {‖x − x+‖ ≤ ρ0, ‖y‖ ≤ ρ0} and {‖x‖ ≤ ρ0, ‖y − y−‖ ≤ ρ0}
respectively, where ρ0 is a small positive constant, then each strip σ0

k is defined
as {‖x0 − x+‖ ≤ ρ0, ‖yk − y−‖ ≤ ρ0}.

3.1 First-return maps in the case (1,1)

Here, the coordinates x and y are one-dimensional, A = λ,B = γ. By (11)
and (12), the first-return map T (k) ≡ T1T

k
0 takes the following form for all

sufficiently large k and small ε:

x̄0 − x+(ε) = aλkx0 + b0(yk − y−) +O
(
(yk − y−)2 + |λ|k|x0||yk − y−|+ λ̂k|x0|

)
,

γ−kȳk + γ̂−kO(|x̄0|+ |ȳk|) = µ+ cx0λ
k +D0(yk − y−)2+

+ O
(
(yk − y−)3 + |λ|k|x0||yk − y−|+ λ̂k|x0|

)
,

(34)
where b0 6= 0, c 6= 0, D0 6= 0. Note that we, hereafter, choose λ̂ sufficiently close
to |λ| (it is always less than |λ|, of course), so that λ̂ > λ2, in particular.

Let us shift the origin of the coordinates:

x = x0 − x+(ε) + ν̃1
k , y = yk − y− + ν̃2

k ,

in such a way that the first equation of (34) would not contain constant terms
(i.e. those which depend only on ε), and the second equation would not contain
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the linear in y term. This can always be achieved by a proper choice of ν̃jk =
O(λk + γ̂−k). As a result, system (34) is rewritten as

x̄ = O(|λ|k|x|+ |y|),

ȳ + (γ̂/γ)−kO(|x̄|+ |ȳ|) = γkM1 + D̃0γ
ky2 + γkO(|y|3 + |λ|k|x|),

(35)

where
M1 ≡ µ− γ−k1 y−(1 + . . . ) + cλk1x

+(1 + . . . ),

and D̃0 = D0(1 + βk), where βk = O(λk + γ̂−k) is a small quantity.
Let us now scale the coordinates as follows:

x = −γ
−k

ρk
xnew, y = − 1

D̃0

γ−kynew, (36)

where ρ is a number from the interval

max
{
|λγ|, |γ|−1

}
< ρ < 1. (37)

Since |λγ| < 1 and |γ| > 1, such ρ exist indeed, and the scaling factors in (36)
are asymptotically small as k → ∞. Hence, since the size of the strip σ0

k in
the coordinates (x0, yk) is bounded away from zero, the range of values of the
rescaled coordinates (x, y) becomes unboundedly large as k grows.

In the new coordinates, system (35) recasts as

x̄ = O(ρk|y|+ |λ|k|x|),

ȳ + (γ̂/γ)−kO(ρ−k|x̄|+ |ȳ|) = −D̃0γ
2kM1 − y2 +O

(
|γ|−k|y|3 +

|λγ|k

ρk
|x|

)
.

(38)
Now, by virtue of (37), taking into account that |λγ| < 1, λ̂ < |λ|, system (38)
is immediately brought to the sought form (2), where we put

M = −D̃0γ
2k
1 [µ− γ−k1 y−(1 + . . . ) + cλk1x

+(1 + . . . )]. (39)

Note that the parameter M , as well as the coordinates (x, y), may now take
arbitrary finite values at large k.

3.2 First-return maps in the case (2,1)

Here x = (x1, x2) is two-dimensional, y is one-dimensional, and

A ≡ λ

(
cosϕ − sinϕ
sinϕ cosϕ

)
, B ≡ γ. (40)

By (11) and (13), the first-return map T (k) ≡ T1T
k
0 is written in the following
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form for all large k and small ε:

x̄01 − x+
1 (ε) = λkA11(kϕ)x01 + λkA12(kϕ)x02 + b0(yk − y−)+

+O
(
(yk − y−)2 + λk‖x0‖|yk − y−|+ λ̂k‖x0‖

)
,

x̄02 − x+
2 (ε) = λkA21(kϕ)x01 + λkA22(kϕ)x02+

+O
(
(yk − y−)2 + λk‖x0‖|yk − y−|+ λ̂k‖x0‖

)
,

γ−kȳk + γ̂−kηk(x̄0, ȳk, ε) = µ+D0(yk − y−)2+
+λk [x01(c1 cos kϕ+ c2 sin kϕ)x01 + (c2 cos kϕ− c1 sin kϕ)x02] +

+O
(
(yk − y−)3 + λk‖x0‖|yk − y−|+ λ̂k‖x0‖

)
,

(41)
where

A11(kϕ) = a11 cos kϕ− a12 sin kϕ, A12(kϕ) = a12 cos kϕ+ a11 sin kϕ,
A21(kϕ) = a21 cos kϕ+ a22 sin kϕ, A22(kϕ) = a22 cos kϕ− a21 sin kϕ.

(42)
Let us shift the origin of coordinates:

x1 = x01 − x+
1 (ε) + ν̃1

k , x2 = x02 − x+
2 (ε) + ν̃2

k , y = yk − y−(ε) + ν̃3
k .

We do it in such a way that the first and second equations of (41) will not
contain constant terms and the third equation will not contain the linear in
y term (here ν̃ik = O(λk + γ̂−k)). Let us also do the following: in all terms
in the left-hand side of the third equation of (41) which do not depend on ȳ
we change x̄01 and x̄02 to their expressions from the first and second equation.
Then, system (41) recasts as

x̄1 = λkA11(kϕ)x1 + λkA12(kϕ)x2 + b0y +O(y2 + λk|y|+ λ̂k‖x‖),

x̄2 = λkA21(kϕ)x1 + λkA22(kϕ)x2 +O(y2 + λk|y|+ λ̂k‖x‖),

ȳ + (γ̂/γ)−kO(|ȳ|) = γkM1 + D̃0γ
ky2 + λkγk

[
(c1 cos kϕ+ c2 sin kϕ)x1+

+(c2 cos kϕ− c1 sin kϕ)x2 +
(
(λ̂/λ)k + γ̂−k

)
O(‖x‖)

]
+ γkO

(
|y|3 + λk‖x‖|y|

)
,

(43)
where

M1 ≡ µ− γ−ky−(1 + . . . ) + C0λ
k (cos(kϕ+ ϑ1) + . . . ) ,

and

C0 =
√

(c21 + c22)(x
+
1

2
+ x+

2

2
), sinϑ1 =

c1x
+
2 − c2x

+
1

C0
, cosϑ1 =

c1x
+
1 + c2x

+
2

C0
;

(44)
D̃0 = D0(1 + βk) where βk = O(λk + γ̂−k) is some small coefficient.

Consider the case |λγ| < 1 first. Like in the case (1,1), we scale the coordi-
nates in the following way:

x =
γ−k

ρk
xnew, y = −D̃−1

0 γ−kynew,
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where ρ is a number from the interval (37). In the new coordinates, system (43)
takes the form

x̄1 = ρkO(y) + λkO(x)

x̄2 = ρkγ−kO(y2) + λkO(x),

ȳ + (γ̂/γ)−kO(ȳ) = M − y2 +
λkγk

ρk
O(x) + |γ|−kO(y3),

(45)

where

M ≡ −D̃0γ
2k

[
µ− γ−ky−(1 + . . . ) + λk(C0 cos(kϕ+ ϑ1) + . . . )

]
. (46)

By virtue of (37), it is obvious that after we resolve the last equation with
respect to ȳ the map (45) is immediately brought to the sought form (2).

Consider now the case |λγ| > 1 (and |λ2γ| < 1 here, as before). We scale
the coordinates in (43) in the following way:

x1 = −(b0D̃−1
0 )γ−kx1new, x2 = −ρk(b0D̃−1

0 )γ−kx2new, y = −D̃−1
0 γ−kynew,

where ρ is some constant from the interval

|γ|−1 < λ < ρ < |λγ|−1, (47)

which is non-empty because

1 >
1
|λγ|

=
λ

|λ2γ|
> λ

(recall that |λ2γ| < 1).
In the new coordinates, system (43) takes the form

x̄1 = y + λkO(‖x‖+ |y|),

x̄2 = ρ−kλkA21(kϕ)x1 + λkA22(kϕ)x2 + ρ−kλkO(y) + ρ−kλ̂kO(x),

ȳ + (γ̂/γ)−kO(ȳ) = M − y2+
+λkγkb0

{
(c1 cos kϕ+ c2 sin kϕ+ ν1

k)x1 + ρk(c2 cos kϕ− c1 cos kϕ+ ν2
k)x2

}
+

+ O
(
|γ|−k|y|3 + λk‖x‖|y|+ (λ̂k + λkγ̂−k)‖x‖2

)
,

(48)
where the parameter M again satisfies formula (46), and ν1

k , ν
2
k are some small

coefficients, ν1,2
k = O

(
(λ̂/λ)k + γ̂−k

)
. Let us resolve the third equation of (48)

with respect to ȳ. The right-hand sides will keep their form, but a coefficient
of order 1 + O

(
(γ̂/γ)−k

)
will appear in front of the (−y2) term in the third

equation. We can make this coefficient equal to 1 again by additional rescaling
the coordinate y: ynew = y(1 + β̂k), where β̂k = O

(
(γ̂/γ)−k

)
is some small
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quantity. After that, system (48) will take the form

x̄1 = y + λkO(‖x‖+ |y|),

x̄2 = ρ−kλkA21(kϕ)x1 + λkA22(kϕ)x2 + ρ−kλkO(y) + ρ−kλ̂kO(‖x‖),

ȳ = M − y2+
+λkγkb0

{
(c1 cos kϕ+ c2 sin kϕ+ ν1

k)x1 + ρk(c2 cos kϕ− c1 cos kϕ+ ν2
k)x2

}
+

+O
(
|γ|−k|y|3 + λk‖x‖|y|+ λ̂k‖x‖2

)
,

(49)
where the new coefficientsM and ν1,2

k differ from the old ones by small quantities
of order O

(
(γ̂/γ)−k

)
; the coefficient b0 is kept unchanged.

Since |λγ| > 1, the coefficient

Bk(ϕ) ≡ b0λ
kγk(c1 cos kϕ+ c2 sin kϕ+ ν1

k) (50)

from the third equation of (49) is no longer small. Nevertheless, since c 6= 0
(see Lemma 5), Bk(ϕ) may take arbitrary finite values for sufficiently large k,
when the parameter ϕ varies near those values where c1 cos kϕ+ c2 sin kϕ = 0,
i.e. near

ϕ = −1
k

arctan
(
c1
c2

)
+ π

j

k
, j ∈ Z. (51)

Note that the values (51) of the angle ϕ for all possible k and j fill the interval
(0, π) densely.

We denote B = Bk(ϕ), stressing that B is one more governing parameter,
along with M . Note that M takes arbitrary finite values when µ varies near
µ0
k = γ−k1 y− − C0λ

k cos(kϕ0 + ϑ1) (see formula (46)).
Introduce a new coordinate ynew = y + λkO(‖x‖ + |y|) so that we would

have x̄1 = y. Then, by virtue of (47), the map (49) takes the sought form (3).

3.3 Proof of Lemma 2

Here we continue to study the case (2,1) with |λγ| > 1 and |λ2γ| < 1. Assume
that B 6= 0 in (49). Since λkγkρk → 0 as k → ∞, we may introduce a new
coordinate

x1new = x1 +
1
B
b0λ

kγkρk(c2 cos kϕ− c1 cos kϕ+ ν2
k)x2.

Map (49) then takes the form

x̄1 = y +
b0A21(kϕ)

B
(c2 cos kϕ− c1 sin kϕ+ ν2

k)λ
2kγkx1 +O(λk),

x̄2 = O

(
λk

ρk

)
,

ȳ = M − y2 +Bx1 +O(λk).

(52)

Note that this map is exponentially contracting in the x2-direction (with the
contraction coefficient of order O(λkρ−k)), while in those regions of the phase
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space where there is a contraction in the x1- and y-directions the correspond-
ing contraction coefficient is bounded away from zero at B 6= 0. Thus, theo-
rem 4.4 of [32] implies that for any Q,R > 0, for all sufficiently large k, map
(52) in the region ‖(x, y)‖ ≤ Q has, at ‖(M,B)‖ ≤ R, |B| > 1/R, a Cr−2-
smooth, asymptotically stable, invariant non-local center manifold Mc

k of the
form x2(x1, y,M,B) = O(λkρ−k). The map (52) on Mc

k is written as follows:

x̄1 = y +
b0A21(kϕ)

B
(c2 cos kϕ− c1 sin kϕ+ ν2

k)λ
2kγkx1 +O(λk),

ȳ = M − y2 +Bx1 +O(λk).

(53)

In the region where B is uniformly bounded, |B| < Q, we found from (50) that
c1 cos kϕ+ c2 sin kϕ = O(λ−kγ−k). Since |λγ| > 1, this gives us

c2 cos kϕ− c1 sin kϕ = ±
√
c21 + c22 + . . . ,

where the dots stand for the terms tending to zero as k → ∞. Also, we have
(see (42))

A21(kϕ) = a21 cos kϕ+ a22 sin kϕ = ±a21c2 − a22c1√
c21 + c22

+ . . . .

Thus,

b0A21(kϕ)(c2 cos kϕ− c1 sin kϕ+ ν2
k) = b0(a21c2 − a22c1) + . . . .

It is easy to see from (13) that the constant J1 = b0(a21c2 − a22c1) is the
Jacobian of the global map T1, taken at the point (x = 0, y1 = y−) at ε = 0.
Note also that λ2kγk constitutes the main part of the Jacobian of the local map
T k0 . Denote

Jk = J1λ
2kγk.

Map (53) may be recast as

x̄1 = y +
Jk
B
x1 + o(Jk), ȳ = M − y2 +Bx1 +O(λk). (54)

Let us make one more coordinate transformation

x1new = x1, ynew = y +
Jk
B
x1 + o(Jk) ≡ x̄1.

Map (54) will take the form

x̄1 = y, ȳ = M − y2 +Bx1 +
Jk
B
y +

2Jk
B
x1y + o(Jk). (55)

The following additional shifts of the coordinate y and the parameter M :

ynew = y − Jk
2B

, Mnew = M − J2
k

4B2
,

brings map (55) to the form (7). Lemma 2 is proven.
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3.4 First-return maps in the case (1,2)

Here x is one-dimensional and y = (y1, y2) is two-dimensional;

A ≡ λ, B ≡ γ

(
cosψ − sinψ
sinψ cosψ

)
. (56)

By (11) and (14), the first-return map T (k) ≡ T1T
k
0 is written in the following

form for all sufficiently large k and all small ε:

x̄0 − x+ = aλkx0 + b0(yk1 − y−1 ) + b1γ
−k(cos kψ · ȳk2 + sin kψ · ȳk1)+

+O
(
(yk1 − y−1 )2 + |yk1 − y−1 |(|λ|k|x0|+ γ−k‖ȳk‖) + λ̂k|x0|+ γ̂−k(|x̄0|+ ‖ȳk‖)

)
,

γ−k(cos kψ · ȳk1 − sin kψ · ȳk2) = µ+ cλkx0 +D0(yk1 − y−1 )2+
+O

(
(yk1 − y−1 )3 + |yk1 − y−1 |(|λ|k|x0|+ γ−k‖ȳk‖) + λ̂k|x0|+ γ̂−k(|x̄0|+ ‖ȳk‖)

)
,

yk2 − y−2 = eλkx0 + d1(yk1 − y−1 ) + d2γ
−k(cos kψ · ȳk2 + sin kψ · ȳk1)+

+O
(
(yk1 − y−1 )2 + |yk1 − y−1 |(|λ|k|x0|+ γ−k‖ȳk‖) + λ̂k|x0|+ γ̂−k(|x̄0|+ ‖ȳk‖)

)
,

(57)
where, we recall, 0 < λ̂ < |λ|, γ̂ > γ; moreover, we assume that λ̂ and γ̂ are
sufficiently close to |λ| and γ respectively.

Let us shift the origin of coordinates:

xnew = x0 − x+(ε) + ν̃1
k , y1new = yk1 − y−1 (ε) + ν̃2

k , y2new = yk2 − y−2 (ε) + ν̃3
k ,

so that the first and third equations of (57) would not contain the constant (i.e.
depending only on ε) terms, and the second equation would not contain the
linear in y1 term. Here we have ν̃ik(ε) = O(γ−k). If, in addition, we resolve the
first equation with respect to x̄ and plug the corresponding expression in the
right-hand side of the other equations, the system (57) will recast as

x̄ = O
(
|y1|+ |λ|k|x|+ γ−k‖ȳ‖

)
,

γ−k
{
cos kψ · ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖)

}
= M1 + cλk x+ D̃0 y

2
1+

+O
(
|y1|3 + |λ|k|x||y1|+ λ̂k|x|+ γ−k‖ȳ‖|y1|

)
,

y2 − eλk x− d̃1y1 = d2γ
−k {

(cos kψ + ν1
k)ȳ2 + (sin kψ + ν2

k)ȳ1
}

+
+O

(
y2
1 + |λ|k|x||y1|+ γ−k‖ȳ‖|y1|+ λ̂k|x|+ γ̂−k‖ȳ‖2

)
,

(58)
where ν1,2

k = O(γ̂−kγk), and the coefficients D̃0 and d̃1 differ from, respectively,
D0 and d1 by some small quantities of order O(γ−k). We also denote here

M1 ≡ µ− γ−kE0 cos(kψ − ϑ2 + ...) + cλk(x+ + ...), (59)

where
E0 =

√
(y−1 )2 + (y−2 )2, cosϑ2 = y−1 /E0, sinϑ2 = y−2 /E0. (60)

Make one more coordinate transformation:

xnew = x, y1new = y1, y2new = y2 − d̃1y1.
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Map (58) will take the form

x̄ = O
(
|y1|+ |λ|k|x|+ γ−k‖ȳ‖

)
,

(cos kψ − d1 sin kψ)ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖) =
= M1γ

k + cλkγkx+ D̃0γ
ky2

1 +O
(
γk|y1|3 + |λ|kγk|x||y1|+ λ̂kγk|x|+ ‖ȳ‖|y1|

)
,

y2 − eλkx = d2γ
−k {

(cos kψ + ν1
k)ȳ2 + (sin kψ + d1 cos kψ + ν2

k)ȳ1
}

+
+O

(
y2
1 + |λ|k|x||y1|+ λ̂k|x|+ γ−k‖ȳ‖|y1|+ γ̂−k‖ȳ‖2

)
,

(61)
with some new coefficients ν1,2

k = O(γ̂−kγk).
Introduce new coordinates y1 and y2:

y1new = (cos kψ + ν1
k)y2 + (sin kψ + d1 cos kψ + ν2

k)y1,

y2new =
1
d2
γk

(
y2 − eλkx)

)
.

(62)

The old coordinates are expressed via the new ones by the formulas

y2 = d2γ
−ky2new + eλkx,

y1 =
1
s0
y1new −

1
s0

(cos kψ + ν1
k)(d2γ

−ky2new + eλkx), (63)

where
s0 ≡ s0(kψ) = sin kψ + d1 cos kψ + ν2

k . (64)

We will consider only those ψ for which s0 6= 0. Then the coordinate transfor-
mation (62) is non-degenerate, and (61) is rewritten in the following form in the
new coordinates:

x̄ = O(|y1|+ |λ|k|x|+ γ−k(|y2|+ |ȳ|)),

γkȳ1(cos kψ − d1 sin kψ + ν3
k)− d2ȳ2 + (γ̂/γ)−kO(ȳ2) + |λγ|kO(x̄) =

= γ2ks0M1 + cs0λ
kγ2kx+ D̃0(s0)−1γ2ky2

1+
+γ2kO

(
y3
1 + |λ|k|x||y1|+ γ−k‖ȳ‖‖y‖+ λ̂k|x|+ γ−k‖y‖2 + γ̂−k‖ȳ‖2)

)
,

y2 = ȳ1 + γkO
(
y2
1 + |λ|k|x||y1|+ γ−k‖ȳ‖‖y‖+ γ−k‖ȳ‖2 + λ̂k|x|

)
,

(65)
where ν3

k = O(γ̂−kγk) is some small coefficient.
We now scale the coordinates:

x = ρkγ−2k xnew, y1 =
d2s0

D̃0

γ−2ky1new, y2 =
d2s0

D̃0

γ−2ky2new, (66)

where
1 < ρ <

1
|λ|γ2

(recall that |λγ2| < 1 by assumption, and that we also assume that s0 is bounded
away from zero).
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After the scaling (66), the map (65) takes the form

x̄1 = φ1
k(x, y, ȳ),

1
d2
γkȳ1(cos kψ − d1 sin kψ + ν3

k)− ȳ2 = M̃ + y2
1 + φ2

k(x, y, ȳ),

y2 = ȳ1 + φ3
k(x, y, ȳ),

(67)

where

M̃ = γ4kD0

d2
2

[
µ− γ−k(y−1 cos kψ − y−2 sin kψ + ...) + cλk(x+ + ...)

]
, (68)

and φlk = o(1) as k →∞.
Note that the trigonometric coefficient

C(kψ) ≡ 1
d2
γk(cos kψ − d1 sin kψ + ν3

k)

from (67) may be bounded for large k if only cos kψ− d1 sin kψ is close to zero,
i.e. for those values of ψ which are close to

ψ =
1
k

arctan
(

1
d1

)
+ π

j

k
, j ∈ Z. (69)

The coefficient s0 from (64) is indeed bounded away from zero for such ψ:
s20 = 1 + d2

1 + . . . .
Note that the values (69) of the angle ψ are dense in (0, π). This means

that given any Q > 0, in any neighborhood of any point ψ0 ∈ (0, π) there exist
intervals (of size ∼ Qγ−k) such that when ψ runs any of them the coefficient
C(kψ) runs all the values from the interval [−Q,Q].

In the region of the values of ψ where C is finite, we may resolve system (67)
with respect to ȳ. The map T (k) will take the form

x̄1 = φ̃1
k(x, y,M,C),

ȳ2 = M − y2
1 + Cy2 + φ̃2

k(x, y,M,C),
ȳ1 = y2 + φ̃3

k(x, y,M,C),
(70)

where M = −M̃, C = C(kψ), and φ̃k = o(1). By putting y2new = y2 + φ̃3
k, we

obtain exactly the map (4) from Lemma 1.

3.5 First-return maps in the case (2,2)

Here x = (x1, x2) and y = (y1, y2) are two-dimensional,

A ≡ λ

(
cosϕ − sinϕ
sinϕ cosϕ

)
and B ≡ γ

(
cosψ − sinψ
sinψ cosψ

)
. (71)

By (11) and (15), the first-return map T (k) ≡ T1T
k
0 is written in the following
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form for all sufficiently large k and all small ε:

x̄01 − x+
1 = b0(yk1 − y−1 ) + b11γ

−k(cos kψ ȳk2 + sin kψ ȳk1)+
+O

(
(yk1 − y−1 )2 + γ−k|yk1 − y−1 |‖ȳk‖+ λk‖x0‖+ γ̂−k(‖x̄0‖+ ‖ȳk‖)

)
,

x̄02 − x+
2 = b12γ

−k(cos kψ ȳk2 + sin kψ ȳk1)+
+O

(
(yk1 − y−1 )2 + γ−k|yk1 − y−1 |‖ȳk‖+ λk‖x0‖+ γ̂−k(‖x̄0‖+ ‖ȳk‖)

)
,

γ−k(cos kψ · ȳk1 − sin kψ · ȳk2) =
= µ+ λkC1(kϕ)x01 + λkC2(kϕ)x02 +D0(yk1 − y−1 )2+

+O
(
(yk1 − y−1 )3 + |yk1 − y−1 |(λk‖x0‖+ γ−k‖ȳk‖) + λ̂k‖x0‖+ γ̂−k(‖x̄0‖+ ‖ȳk‖)

)
,

yk2 − y−2 = λkE1(kϕ)x01 + λkE2(kϕ)x02 + d1(yk1 − y−1 )+
+d2γ

−k(cos kψ · ȳk2 + sin kψ · ȳk1)+
+O

(
(yk1 − y−1 )2 + |yk1 − y−1 |(λk‖x0‖+ γ−k‖ȳk‖) + λ̂k‖x0‖+ γ̂−k(‖x̄0‖+ ‖ȳk‖)

)
,

(72)
where

C1 = c1 cos kϕ+ c2 sin kϕ, C2 = c2 cos kϕ− c1 sin kϕ,
E1 = e1 cos kϕ+ e2 sin kϕ, E2 = e2 cos kϕ− e1 sin kϕ, (73)

and, as before, 0 < λ̂ < λ, γ̂ > γ.
Introduce new coordinates (a shift of the origin):

x1new = x1 − x+
1 (ε) + ν̃1

k , x2new = x2 − x+
2 (ε) + ν̃2

k ,
y1new = yk1 − y−1 + ν̃3

k , y2new = yk2 − y−2 + ν̃4
k .

Here the small shifts ν̃ik(ε) (of order O(|γ|−k)) are chosen in such a way that the
first, second and fourth equations of (72) will not contain the constant terms,
and the third equation will not contain the linear in y1 term. We will also
resolve the first and second equation with respect to x̄ and plug the obtained
expressions into the right-hand side of the third and fourth equations. As a
result, system (72) takes the following form:

x̄1 = b0y1 +O
(
y2
1 + λk‖x‖+ γ−k(‖y‖+ |ȳ|)

)
,

x̄2 = O
(
y2
1 + λk‖x‖+ γ−k(‖y‖+ |ȳ|)

)
,

γ−k
{
cos kψ · ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖)

}
=

= M1 + C1λ
kx1 + C2λ

kx2 + D̃0 y
2
1+

+O
(
|y1|3 + λk‖x‖|y1|+ λ̂k‖x‖+ γ−k‖ȳ‖|y1|

)
,

y2 − d̃1y1 − E1λ
kx1 − E2λ

kx2 = d2γ
−k {

(cos kψ + ν1
k)ȳ2 + (sin kψ + ν2

k)ȳ1
}

+
+O

(
y2
1 + λk‖x‖|y1|+ γ−k‖ȳ‖|y1|+ λ̂k‖x‖+ γ̂−k‖ȳ‖2

)
,

(74)
where ν1,2

k = O(γ̂−kγk), and the coefficients D̃0 and d̃1 differ from, respectively,
D0 and d1 by some small quantities of order O(γ−k). We also denote

M1 ≡ µ− γ−kE0 cos(kψ + ϑ2 + ...) + λkC0 cos(kϕ− ϑ1 + ...), (75)

see formulas (60) and (44).
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Introduce a new coordinate y2 by formula y2new = y2 − d̃1y1. Map (74) will
take the following form:

x̄1 = b0y1 +O
(
y2
1 + λk‖x‖+ γ−k(‖y‖+ ‖ȳ‖)

)
,

x̄2 = O
(
y2
1 + λk‖x‖+ γ−k(‖y‖+ ‖ȳ‖)

)
,

(cos kψ − d̃1 sin kψ)ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖) =
= M1γ

k + C1λ
kγkx1 + C2λ

kγkx2 + D̃0γ
ky2

1+
+O

(
γk|y1|3 + λkγk‖x‖|y1|+ λ̂kγk‖x‖+ ‖ȳ‖|y1|

)
,

y2 − λkE1x1 − λkE2x2 = d2γ
−k {

(cos kψ + ν3
k)ȳ2 + (sin kψ + d1 cos kψ + ν4

k)ȳ1
}

+
+O

(
y2
1 + λk‖x‖|y1|+ λ̂k|x|+ γ−k‖ȳ‖|y1|+ γ̂−k‖ȳ‖2

)
,

(76)
where ν3,4

k = O(γ̂−kγk). Introduce new coordinates y:

y1new = (cos kψ + ν3
k)y2 + (sin kψ + d1 cos kψ + ν4

k)y1,

y2new = γk
1
d2

(
y2 − E1λ

kx1 − E2λ
kx2

)
.

(77)

For the old coordinates (y1, y2) we have

y2 = γ−kd2y2new + E1λ
kx1 + E2λ

kx2,

y1 =
1
s0
y1new −

d1

s0
(d2 cos kψ + ν3

k)(γ
−ky2new + E1λ

kx1 + E2λ
kx2),

(78)

where
s0 ≡ s0(kψ) = sin kψ + d1 cos kψ + ν4

k . (79)

We will consider only such ψ for which s0 is uniformly bounded away from zero.
In this case we may rewrite (76) as follows:

x̄1 =
b0
s0
y1 +O

(
y2
1 + λk‖x‖+ γ−k(‖y‖+ ‖ȳ‖)

)
,

x̄2 = O
(
y2
1 + λk‖x‖+ γ−k(‖y‖+ ‖ȳ‖)

)
,

1
d2
γkȳ1(cos kψ − d1 sin kψ + ν5

k +O(ȳ1))− ȳ2(1 + ν6
k +O(ȳ2)) + (λγ)kO(x̄) =

= γ2ks0M1 + D̃0(s0)−1γ2ky2
1 + C̃1s0λ

kγ2kx1 + C̃2s0λ
kγ2kx2+

+γ2kO
(
|y1|3 + λk‖x‖|y1|+ γ−k(‖ȳ‖‖y‖+ ‖y‖2) + λ̂k‖x‖2 + γ̂−k‖ȳ‖2

)
,

y2 = ȳ1 +O
(
γk‖y‖2 + λkγk‖x‖‖y‖+ ‖ȳ‖‖y‖+ ‖ȳ‖2 + λ̂kγk‖x‖

)
,

(80)
where ν5,6

k = O(γ̂−kγk), and the coefficients C̃1 and C̃2 differ from, respectively,
C1 and C2 by quantities of order O(λ̂kλ−k).

Consider, first, the case λγ2 < 1. Scale the coordinates in (80) as follows:

x1 = ρ−k
d2s0

D̃0

γ−2kx1new, x2 =
d2s0

D̃0

γ−2kx2new,

y1 =
d2s0

D̃0

γ−2ky1new, y2 =
d2s0

D̃0

γ−2ky2new,

(81)
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where ρ is a number such that λγ2 < ρ < 1.
Since the scaling coefficients in (81) are asymptotically small, the range of

values of the new coordinates (x, y) will grow with the increase of k, and it
will cover all finite values in the limit k → ∞. This allows us to assume that
our map is defined in the region ‖(xnew, ynew)‖ ≤ Q for some Q > 0, and this
constant Q can be taken as large as we want. After the scaling, map (80) may
be written in the form

x̄1 = ρkO(y1) + γ−kO(‖(x, y, ȳ)‖), x̄2 = γ−kO(‖(x, y, ȳ)‖),

1
d2
γkC(kψ)ȳ1 − ȳ2 = M̃ + y2

1 +
(
λkγ2k

ρk
+ γ−k

)
O(‖(x, y, ȳ)‖),

y2 = ȳ1 + γ−kO(‖(x, y, ȳ)‖).

(82)

where
M̃ = γ4k D̃0

d2
2

M1, (83)

M1 satisfies formula (75), and

C(kψ) = cos kψ − d1 sin kψ + ν5
k . (84)

Note that the coefficients M̃ and C = d−1
2 C(kψ)γk may take arbitrary finite

values as k → +∞, for appropriately chosen values of the original parameters
µ and ψ.

Note also that C may stay uniformly bounded only when cos kψ−d1 sin kψ is
asymptotically close to zero, i.e. when ψ is close to the values given by formula
(69). As we mentioned there, the value s0 from (79) is uniformly bounded
away from zero for such ψ: |s0| =

√
1 + d2

1(1 + ...). Further, only such ψ are
considered.

As a result, for any bounded region of the values of (x, y,M,C), map (80)
may be written in the form

x̄1 = o(1),
x̄2 = o(1),
ȳ1 = y2 + o(1),
ȳ2 = −M̃ + Cy2 − y2

1 + o(1),

(85)

where we denote as o(1) functions of all coordinates and parameters which tend
to zero as k → ∞, uniformly in any bounded region of values of (x, y,M,C),
along with all the derivatives up to the order (r − 2) with respect to the coor-
dinates and (r − 3) with respect to the parameters. If we put M = −M̃ and
y2new = y2 + o(1) in (85), then we immediately arrive at the sought map (4).

Consider now the case λγ2 > 1 (and λγ < 1, as before). Let us make the
following scaling in (80):

x1 =
d2b0

D̃0

γ−2kx1new, x2 = qkγ−2kx2new, y1 =
d2s0

D̃0

γ−2ky1new, y2 =
d2s0

D̃0

γ−2ky2new,

(86)
where q is a number from the interval q ∈

(
γ−1 , (λγ2)−1

)
. This interval is

non-empty and lies in (0, 1), since

1 >
1
λγ2

=
γ−1

λγ
> γ−1.
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The map (80) takes the following form in coordinates (86):

x̄1 = y1 + γ−kO(‖(x, y, ȳ)‖), x̄2 =
γ−k

qk
O(‖(x, y, ȳ)‖),

1
d2
γkC(kψ)ȳ1 − ȳ2 = M + y2

1 +
b0
d2
λkγ2k (c11 cos kϕ+ c12 sinϕ+ lk)x1+

+λkγ2kqkO(x2) + γ−kO(‖(x, y, ȳ)‖),

y2 = ȳ1 + γ−kO(‖(x, y, ȳ)‖),
(87)

where lk = O((λ̂/λ)k) is some small coefficient, and M and C(kψ) satisfy
formulas(83) and (84) above.

In comparison with (82), in map (87) there is one more independent param-
eter, along with M and C = γkC(kψ). It is the parameter

B = B(kϕ) ≡ b0
d2
λkγ2k(c11 cos kϕ+ c12 sinϕ+ lk).

Since λγ2 > 1, the coefficient B(kϕ) is no longer small (as it was in the case
λγ2 < 1), and it may take arbitrary finite values when ϕ varies, provided k is
large enough. Bounded values of B correspond to the values of ϕ close to

ϕ = −1
k

arctan
(
c1
c2

)
+ π

j

k
, j ∈ Z. (88)

In the region of bounded values of (x, y,M,B,C) the map (87) may be
written in the form

x̄1 = y1 + o(1),
x̄2 = o(1),
ȳ2 = −M −Bx1 + Cy1 − y2

1 + o(1), ,
ȳ1 = y2 + o(1).

After changing the signs of M and B, this map is easily brought to the form
(5).

Thus, rescaling lemma is proven.

4 Proof of main theorems

The proof of theorems 1–4 is based on the rescaling lemmas. They allow us
to make comparatively simple analysis of the first-return maps T (k)(ε), using
their closeness, at ε ∈ ∆k, to the standard quadratic maps in the rescaled
coordinates. It is convenient for us to prove Theorem 2 first, then Theorem 4
(here we need only a linear analysis of the fixed points of the first-return maps);
after that we prove Theorem 3. We derive Theorem 1 in the process of the proof
of Theorems 2 and 4.

4.1 Proof of Theorem 2 and items 1, 2 of Theorem 1

First we analyze fixed points of the first-return maps (2)–(5) and (7), in order
to find the values of the parameters M,B,C for which these maps have fixed
points with the multipliers on the unit circle.
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Map (2).
Consider the one-dimensional parabola map

ȳ = M − y2.

Let ν1 6= 0 be the multiplier of some its fixed point. The coordinate y of this
fixed point satisfy equations M = y+ y2 and 2y = −ν1. Thus, we have that the
parabola map has a fixed point with the multiplier ν1 at

M =
ν2
1

4
− ν1

2
. (89)

Since map (2) is close to the parabola map along with a sufficient number of
derivatives, it must also have a fixed point with a multiplier equal to ν1 at the
value of M = Mk(ν1) which is asymptotically close, as k → ∞, to the value
(89). The other multipliers of the fixed point (one multiplier in the case (1,1)
and two multipliers in the case (2,1)) are always less than 1 in the absolute value
– they tend to zero as k →∞.

Map (3).
Consider Hénon map (the limit map for (3)):

x̄ = y, ȳ = M +Bx− y2.

Let ν1 and ν2 be the multipliers of some its fixed point (they are either both
real, or they comprise a complex-conjugate pair; we also assume ν1ν2 6= 0). The
coordinates x = y of the fixed point satisfy the equation M = y(1 − B) + y2.
The characteristic equation is ν2 + 2yν −B = 0. It is easy to find that

B(ν1, ν2) = −ν1ν2, M(ν1, ν2) =
ν1 + ν2

4
(ν1 + ν2 − 2ν1ν2 − 2). (90)

It is clear that the map (3) will also have a fixed point with the given multipliers
ν1 and ν2, at the values of M and B which are asymptotically close to those
given by formula (90). The third multiplier is always less than 1 in the absolute
value (it tends to zero as k →∞).

Map (4).
Consider the map (limit for (4)):

ȳ1 = y2, ȳ2 = M + Cy2 − y2
1 .

Let ν1 be ν2 the multipliers of some its fixed point (again, they are either both
real, or they comprise a complex-conjugate pair; and we assume again that
ν1ν2 6= 0). The coordinates y1 = y2 = y of the fixed point satisfy the equation
M = y(1 − C) + y2; the characteristic equation is ν2 − Cν + 2y = 0. One can
easily find

C = ν1 + ν2, M =
ν1ν2

2
(1− C) +

(ν1ν2)2

4
. (91)

Map (4) will also have a fixed point with the given multipliers ν1 and ν2, at M
and C which are asymptotically close to those given by formula (91). The other
multipliers (the third one in the case (1,2), and the third and fourth multipliers
in the case (2,2)) are always less than 1 in the absolute value.
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Map (5).
Consider the three-dimensional map (limit for (5)):

x̄ = y1, ȳ1 = y2, ȳ2 = M +Bx+ Cy2 − y2
1 . (92)

Let ν1, ν2, ν3 be the multipliers (all non-zero) of some its fixed point (either
all three of them are real, or one multiplier is real and the other two comprise
a complex-conjugate pair). The coordinates x = y1 = y2 of the fixed point
satisfy the equation M = x(1−B −C) + x2, and the characteristic equation is
−ν3 + Cν2 − 2xν +B = 0. This gives

B = ν1ν2ν3, C = ν1 + ν2 + ν3,

M = (ν1ν2 + ν1ν3 + ν2ν3)(1−B − C) +
(ν1ν2 + ν1ν3 + ν2ν3)2

4
.

(93)

The original map (5) will also have a fixed point with the given multipliers
ν1, ν2, ν3, at the values of M , B and C which are asymptotically close to those
given by formula (93). The fourth multiplier of this point is, at large k, always
less than 1 in the absolute value.

Thus, given any set {ν1, . . . , νde} of de multipliers (where de = 1 in the case
of map (2), de = 2 for the maps (3) and (4), and de = 3 for the map (5)), each
of the maps (2)-(5) has the values of parameters M = Mk, B = Bk, C = Ck
for which there exists a fixed point, de multipliers of which are equal exactly
to ν1, . . . , νde

. Note that the corresponding values Mk, Bk, Ck are uniformly
bounded for all large k. According to (6), we have for the corresponding values of
the original parameters (µ, ϕ, ψ) = (µk, ϕk, ψk) that, first, µk → 0 as k → +∞,
and that if de ≥ 2, then there is always a subsequence (ϕk, ψk) which converges
to (ϕ0, ψ0) where ϕ0 and ψ0 are the values of the angular arguments of the
complex multipliers of the fixed point O for the diffeomorphism f0. Thus, we
obtain the following

Corollary 1. Given any set of multipliers {ν1, . . . , νde
} there exists a sequence

εk → 0 of the values of parameters ε such that the diffeomorphism fε has, at
ε = εk, a single-round periodic orbit whose de multipliers are equal exactly to
ν1, . . . , νde , and the rest of multipliers lies strictly inside the unit circle.

Theorem 2 follows from this statement immediately. Indeed, in the New-
house region δj , near any ε ∈ δj there exist the values of parameters corre-
sponding to homoclinic tangencies to O, for which conditions A-D hold. As
we just established it, arbitrarily small perturbations within the same family
fε give periodic orbits (single-round with respect to these secondary homoclinic
tangencies) with any given set of de multipliers on the unit circle, in a complete
agreement with Theorem 2.

In the case of Theorem 1 we have de = 1, i.e. we may speak here about
periodic orbits with one multiplier equal to ν1 = +1 or ν1 = −1. Thus, in this
case, Corollary 1 gives us items 1 and 2 of Theorem 1 for the Newhouse intervals
δj .

4.2 Proof of Theorem 4 and item 3 of Theorem 1

Here we again use Corollary 1, now for hyperbolic periodic orbits, whose multi-
pliers ν1, ..., νde does not equal to 1 in the absolute value. We have here de + 1
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different types of orbits, according to the number of multipliers outside the unit
circle: 0, 1, ... , or, maximum, de. The first case corresponds to a stable periodic
orbit.

Recall that arbitrarily close to any parameter value from the Newhouse re-
gions δj there exists a value of ε for which the point O has an orbit of a simple
homoclinic tangency. According to Corollary 1, arbitrarily close to this value of
ε there is a parameter value for which fε has a hyperbolic periodic orbit with
exactly d multipliers outside the unit circle, for any given d = 0, ..., de. This or-
bit exists in some region in the space of parameters. Repeating the arguments,
inside this region we find a smaller region which corresponds to the existence
of one more hyperbolic periodic orbit with d multipliers outside the unit circle,
with the same d, or with any other d from 0 to de, etc.. By repeating this
procedure infinitely many times for every d = 0, ..., de, we obtain a sequence of
nested domains such that the values of ε from the intersection of these domains
correspond to the existence of infinitely many periodic orbits with all possible
numbers from 0 to de of multipliers outside the unit circle. By construction, the
obtained set of values of ε is an intersection of a countable number of open and
dense in δj sets, i.e. it is a residual set. The theorem is proven.

4.3 Proof of Theorem 3

Like in the proof of Theorem 4, it is enough to prove that the first-return maps
T (k) have, for some region of parameters (M,B), (M,C) or (M,C,B), a stable
closed invariant curve. An infinite set of coexisting closed invariant curves is
obtained by means of the construction with nested domains, as in Theorem 4.

Consider, first, the cases of a saddle-focus (1,2) and a saddle-focus (2,2) with
λγ2 < 1. By Lemma 1, the map T (k) is brought to the following form in this
case:

x̄ = o(1),
ȳ1 = y2, ȳ2 = M + Cy2 − y2

1 + o(1). (94)

The limit map
ȳ1 = y2, ȳ2 = M + Cy2 − y2

1 (95)

has a fixed point with multipliers ν1,2 = e±iω for the values of (M,C) on the
following curve (see formula (91)): L : {M = 3

4 −
1
2C, C = 2 cosω} (i.e.

|C| < 2). At ω 6= π/2, 2π/3 the stability of the closed invariant curve which is
born at the bifurcations of such fixed point is determined by the sign of the first
Lyapunov coefficient (see e.g. [32,33]). Recall that the Lyapunov coefficient G1

is the coefficient of a cubic term in the normal form of the map near the fixed
point, written in polar coordinates (ρ, θ): ρ̄ = ρ+G1ρ

3+o(ρ3), θ̄ = θ+ω+O(r2).

It is not hard to compute for the map (95) that here G1 = −1 − 1
2(1− cosω)

,

i.e. the Lyapunov coefficient is always negative for this map. Since G1 is a
coefficient of the cubic term, the Lyapunov coefficient would remain negative
for all maps which are C3-close to (95).

Consider now the map (94). For all sufficiently large k, it also has a curve
in the parameter plane close to the curve L, which corresponds to the existence
of a fixed point with two multipliers equal to e±iω (the rest of multipliers lies
inside the unit circle). We denote this curve as Lk. On the center manifold, the
map (94) is Cr−2-close to (95). Since r ≥ 5, we have that the corresponding
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Lyapunov coefficient is negative for the map (94), hence a stable closed invariant
curve is born when the parameters cross the curve Lk, and it exists for the values
of parameters from a certain open region, as required.

In the case of a saddle-focus (2,2) with λγ2 > 1, the first-return map T (k) is
brought to the form

x̄2 = o(1),
x̄1 = y1, ȳ1 = y2, ȳ2 = M + Cy2 +Bx1 − y2

1 + o(1). (96)

Here, for small B, the fixed point with the multipliers ν1,2 = e±iω, ν3 = B+o(1),
ν4 = o(1) has a negative Lyapunov coefficient too. It follows immediately from
the fact that the map (96) at B = 0 degenerates, as k → +∞, to the map (95)
in the coordinates y1 and y2, and the negativity of the Lyapunov coefficient for
the latter map has been already established. Thus, in this case we also have that
the first-return map has a stable closed invariant curve for some open region of
parameter values, for all sufficiently large k.

In the case of a saddle-focus (2,1) with de = 2, i.e. at λγ > 1, in order to
find stable closed invariant curves, we will use the form of the first-return maps
obtained in Lemma 2. It is the so-called generalized Hénon map

x̄1 = y,
ȳ = M − y2 +Bx1 +Qkx1y + o(Qk),

(97)

where Qk 6= 0 and Qk → 0 as k → +∞. Such maps were studied in [20, 22]
where it was shown, in particular, that the maps of type (97) have, for all
k large enough, a stable closed invariant curve for the values of parameters
(M,B) from some open region. Namely, such region emanates from the point
(M = M∗

k , B = B∗k) where M∗
k = 3−Qk + o(Qk), B∗k = −1 +Qk/2 + o(Qk), for

which map (97) has a fixed point with the multipliers (−1,−1) (in [22] it was
shown that this point is non-degenerate and corresponds to the “soft” case, i.e.
“the case s = −1”, of the 1:2 resonance in terminology of [33], so the known
results about the birth of closed invariant curves from this point are applied to
map (97)).

Thus, in all cases with de ≥ 2, for the family fε there exists an infinite
sequence of regions ∆̃k ⊂ ∆k, which converge to ε = 0 as k → ∞, such that
at ε ∈ ∆̃k the diffeomorphism fε has a stable closed invariant curve. In order
to obtain an infinite set of closed invariant curves for a dense set of parameter
values from the Newhouse regions δj , it remains to use the construction with
the nested domains from the proof of Theorem 4.
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