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Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with Zq-symmetry 
are listed. 

1. Introduction 

The purpose of this paper is to present a list of asymptotic normal forms describing the trajectory 
behaviour near a stability boundary of a triply degenerate equilibrium state in systems with discrete 
symmetry. We say a triple instability when a dynamical system has an equilibrium state such that 
the associated linearized problem has a triplet of zero eigenvalues. In such a case, as it is well known, 
the study is reduced to a three-dimensional system on the center manifold. Moreover, if the original 
system possesses a symmetry, as many systems in hydrodynamics do, then the reduced system may 
also inherit the symmetry. 

In order to study bifurcations near a stability boundary one has to introduce some small governing 
parameters the number of which is at least equal to the order of degeneracy of the linear problem, or 
this number may even be greater provided that there is an additional degeneracy in the non-linear 
part. Since the unfolding parameters are small, the orbits on the center manifold may stay in a 
small neighborhood of the equilibrium state for a rather long time (due to the fact that there is no 
fast instability in the center manifold because all characteristic exponents of the truncated linearized 
system are nearly zero). Thus, it is reasonable to rescale the parameters and phase variables so 
that they become of finite values instead of asymptotically vanishing ones; the time variable must be 
rescaled as well. 

The proposed approach is a rather general one. Its advantage is that upon the rescaling procedure 
has been carried out, many resonant monomials disappear. The most trivial example is a saddle-node 
bifurcation with a single zero eigenvalue. In this case the center manifold is one-dimensional. The 
Taylor expansion of the system near the equilibrium state can be written as 

. 2 l 3 
X = P, + x + 3X + ... , 
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where jL is a small governing parameter. The rescaling x ---+ Mx, t ---+ tf M brings the system to 
the form 

x = ±1 + x 2 + 0 ( ~) , 
so the second degree monomial only survives in the limit jL ---+ 0. 

An analogous algorithm can be applied to the multi-dimensional case. The limit of the rescaled 
system as its governing parameters tend to zero, gives a description "in the main order" of the behavior 
of the system near a bifurcation point. We call such a limit system an asymptotic normal form. 

The asymptotic normal forms that arise in the study of equilibria with single or double zero 
eigenvalues are one- or two-dimensional, respectively. The analysis of such forms is often very com
prehensive so the most of efforts is applied for establishing the rigorous correspondence between the 
dynamics in the asymptotic normal form and that in the original system [1, 2]. The situation is 
different in higher dimensions. 

Three- (and higher) dimensional asymptotic normal forms may exhibit a non-trivial dynamics. 
For example, the Shilnikov chaos was found in the asymptotic normal form corresponding to the 
bifurcation of triple zeros with a complete Jordan box [3]; the existence of the Lorenz attractor was 
shown in normal forms for the bifurcations corresponding to triply zero eigenvalues in the case of 
an additional symmetry [4]. Notably, the normal forms mentioned above turn out to coincide with 
some well-known models coming from different applications: the third-order Duffing equation, the 
Shimizu-Marioka system, the Lorenz model. 

In this paper we will derive an infinite series of the asymptotic normal forms (ordered according 
to the increasing degree of degeneracy in non-linear terms) corresponding to a triple zero eigen
value (taking also into account some non-degeneracy conditions: (2.3), (3.4) and (3.5)) in a system 
with Zq-symmetry. Namely, assuming that (x, y, z) are the coordinates in the three-dimensional cen
ter manifold and a bifurcating equilibrium state resides at the origin, we suppose that our system is 
equivariant with respect to a rotation over the angle 21f f q around the z-axis. We should emphasize 
that the cases q = 2 and q ? 3 are principally different and will therefore be considered separately. 
The resulting asymptotic normal forms are given by systems (2.13) for q = 2 and (3.15) for q ? 3. 
The degrees of polynomials in the right-hand side are listed in (2.13) and (3.12)-(3.14), respectively. 
It is worthwhile to remark that all listed systems have a natural "physical" meaning, namely, they 
describe the behaviour near a triple instability in the presence of a certain symmetry. Thus, this list 
below may be regarded as a recipe for exclusion of irrelevant terms in the non-linearity as well as for 
selection of those non-linear terms which are responsible for specific details of such behaviour. 

2. Symmetry of order 2 

Consider a system in ]]{3 near an equilibrium state 0(0, 0, 0) with three zero characteristic ex
ponents. We suppose that the systems possess a symmetry (x, y, z) +------+ (-x, -y, z). We will also 
suppose that the linear part of the system near 0 restricted onto the invariant plane z = ° has a 
complete Jordan block. Then the system may locally be written as 

{

X =y, 

y = x(az + F(x2, xy, y2, z)) + yG(y2, z), 

i = H(x2, xy, y2, z), 

where neither H(O, 0, 0, z) nor F(O, 0, 0, z) contains linear terms. 

20 

Let us consider a three-parameter perturbation of the system in the form 

{ ~: ~'(jLl + az + F(x2, xy, y2, z)) + y( -jL2 + G(y2, z)), 

i = -jL3Z + H(x2, xy, y2, z), 
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where /1 = (/11, /12, /13) is a small parameter; the functions F, G and H may also depend on /1. 
Let us suppose that 

(2.3) 

It is then obvious that a change of the z-coordinate reduces (2.2) to the following form (with some 
new G and H) 

(2.4 

Let us next rescale the variables and the time: 

where 5x , 5y , 5z and T are some small quantities. Let /11 i- 0 and 

Then, (2.4) can be recast in the form 

(2.5 

where a and A are new rescaled parameters, no longer small: 

a = /13 /~, A = /12 / ~. 

The asymptotic normal form is a final limit of system (2.5) as /1 ---+ O. Note that different choices 
of proportion between the scaling factors 5x and T yield different normal forms. 

In the last equation in (2.5) those terms which contain z2, y3 and yz tend to zero as T ---+ O. Thus, 
by cancelling out small terms we transform (2.5) to the form 

x =y, 

y = x(±l - z) - AY, 

Z = -az + 5;x2 Hl(5;x2) / T3 + 5;xyH2(5;x2) / T2 + 
+ 5;y2 H3(5;x2) / T + 5;zx2 H4(5;x2) / T. 

(2.6 

The right-hand side in (2.6) is to be finite, i. e., if the Taylor expansions of the functions Hi begin 
with X 2mi for zero values of the perturbation parameters /11, /12, /13, then the following inequalities 
must hold 

Therefore, we can choose T such that 

(2.7) 

where 

f3 = min {~(ml + 1), m2 + 1, 2(m3 + 1), 2(m4 + I)}. 
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For example, in the most generic case where Hi(O) #- 0 (i = 1, ... ,4), the exponent {3 is equal 
to 2/3 in (2.7), (2.8). Then, system (2.6) is reduced to the form 

{

X = y, 

y = x(±l - z) - AY, 

i = -CtZ + x2 HI(O) + O(T). 

(2.9 

In the limit T -+ 0 this system becomes the Shimizu-Marioka model, where the parameters Ct and A 
may take arbitrarily finite values. 

Let us now consider an extra degeneration: HI (0) = 0 and H~ (0) #- O. In order to study 
bifurcations in this case one should introduce a new independent governing parameter which is the 
constant term of the Taylor expansion of HI. 

Let us next suppose {3 = 1 in relation (2.8). System (2.6) is then reduced to the following 
asymptotic form: 

{

X =y, 

y = x(±l - z) - AY, 
2~ 

i = -CtZ + x hlO + H 2 (0)xy, 

(2.10 

i. e., to the Lorenz equations. Here, hlO = HI (0) / T is the third rescaled governing parameter which 
may take arbitrarily finite values. 

The next degeneration H2(0) = 0, H~(O) #- 0 modifies the third equation in (2.10):1 

. 2~ ~ I 4 
Z = -CtZ + x hlO + h20xy + HI(O)X , (2.11) 

where hlO = HI (0) / T 3/2 and h20 = H2 (0) / TI/2. Here, {3 = 4/3. 
By repeating this procedure we get a hierarchy of the asymptotic normal forms. Let us denote 

00 

We assume that at the moment of bifurcation the values of Hij vanish for j = 0, ... , mi - 1. As 
before, we will consider these Hij's as additional independent small parameters. 

It is obviously that in the rescaled system (2.6) there are non-zero factors in front of those 
terms which correspond to such mi for which the minimum in (2.8) is achieved; all terms of higher 
orders vanish in the limit T -+ O. The terms of degree less then 2mi, which appear in Hi for non-zero 
parameter values, also survive after the rescaling; their normalized coefficients become the independent 
parameters which assume arbitrary finite coefficients. 

Thus, if we get rid of asymptotically vanishing terms, system (2.6) takes the forml 

where Hi's are polynomials of degrees ni such that 

22 

max {i(n I + 1), n2 + 1, 2(n3 + 1), 2(n4 + I)} = ~ < 

< min {i(n I + 2), n2 + 2, 2(n3 + 2), 2(n4 + 2)} 
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(if some iii vanish identically, then we let ni = -1). The coefficients of Hij are defined as follows: 

~h" - H·· / T Si - 2(j+1)/(3 LJ - LJ , 

where 31 = 3, 32 = 2, 33 = 34 = l. 
It follows immediately from (2.13) that n3 = n4, i. e., the degrees of ii3 and ii4 are always equal. 

Hence, the list of the asymptotic normal forms which are given by (2.12), (2.13) can be ordered as the 
common degree n (= n3 = n4) increases. 

The first in the list are the systems given by (2.9), (2.10) and (2.11) - they correspond to n = -l. 
For each greater value of n there are four sub-cases below. Each consecutive case corresponds to an 
additional degeneracy. This procedure is recurrent: the next successive fourth case corresponds to the 
previous one but with the value n increased by l. 

1) nl = 3n + 2, n2 = 2n + 1; at the moment of bifurcation the first (n - 1) coefficients vanish in 
both H3 and H4, the first 2n and (3n + 1) coefficients vanish in H2 and HI, respectively~ 

2) nl = 3n+ 3, n2 = 2n+ 1; at the moment of bifurcation the first n coefficients vanish in both H3 
and H4, the first (2n + 1) and (3n + 2) coefficients vanish in H2 and HI, respectively.1 

3) nl = 3n + 3, n2 = 2n + 2; at the moment of bifurcation the first n coefficients vanish in both H3 
and H4, the first (2n + 1) and (3n + 3) coefficients vanish in H2 and HI, respectively.1 

4) nl = 3n+4, n2 = 2n+2; at the moment of bifurcation the first n coefficients vanish in both H3 
and H4, the first (2n + 2) and (3n + 3) coefficients vanish in H2 and HI, respectively.1 

3. Symmetry of order q (q ~ 3) 

Let us consider a system in ]]{3 which possesses an equilibrium state (0, 0, 0) with three zero 
characteristic exponents Al = A2 = A3 = 0. Let the Jacobian matrix of the system at the equilibrium 
state be zero, and let the system be equivariant with respect to a turn over 27f / q around the z-axis. 
The system near the equilibrium state can then be written as 

{
tV =wF1(ww, w q , w q ) + w q- 1 F2(ww, w q , w q ) + 

+ ( G ( - q -q ) + -q-1G (- q -q )) z W 1 ww, W , W , Z W 2 ww, W , W ,z , 
._ - q -q - q -q 2 - q-q Z -Hl(WW, W , W ) + zH2(ww, w , w ) + z H3(WW, W , W , z), 

(3.1 

where W = x + iy and W = x - iy. We consider a three-parameter perturbation of (3.1) in the form 

{
tV =({.l1 + i{.l2)W + wF1 (ww, w q , w q ) + w q- 1 F2( ww, w q , w q ) + 

+ ( G ( - q -q ) + -q- 1G (- q -q )) z W 1 ww, W , W , Z W 2 ww, W , W ,z , 

Z = - {.l3Z + H 1(ww, w q , w q ) + zH2(ww, w q , w q ) + z2 H3(WW, w q , w q , z). 

(3.2 

We suppose that the main coupling term (the zw-term in the first equation in (3.2)) in non-zero 
at the bifurcation moment, i. e., 

G 1 (0, 0, 0, 0) yf 0. (3.3) 

We also assume that 

(3.4) 

Let A = G1 (0, 0, 0, 0) and B = H 3 (0, 0, 0, 0). Without loss of generality we assume B = 1 (this can 
always be achieved by a linear rescaling of z). One can check that a suitable coordinate transformation 

z -+ z + w(w, w) 
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eliminates all terms in H2 up to any prescribed finite order, provided 

ImA"#O (3.5) 

and 

1 Re A "# m' m = 1, 2, .... 

Condition (3.5) will be our standing assumption. If (3.6) holds, then we can assume thatl 

for some sufficiently large N. If, on the contrary, Re A . m = 1 for some integer m at the bifurcation 
moment, then the only term that survives in H2 is (ww)m, whence 

in this case. 
Let us rescale the phase and time variables: 

where (3 and I are some quantities defined further and T = J f..lI + f..l~' Then, the system (3.2) takes 
the form: 

w =eiDw + wF1 (T 2(3WW, T q(3W q , T q(3W q ) / T + 

+ w q- 1 F 2 (T 2(3WW, T q(3W q , T q(3W q ) / T 1-(3(q-2) + 

+Z(WG1 (T 2(3WW, T q(3W q , T q(3W q , T1Z) + 

+ w q- 1 G 2 (T 2(3WW, T q(3W q , T q(3W q , TI z) / T(2- q)(3) / T 1- 1 , 

i = - az + HI (T 2(3WW, T q(3W q , T q(3W q ) / TI+1 + 

+ zH2 (T 2(3WW, T Q(3W q , T Q(3W Q) / T + z2 H 3 (T 2(3WW, T Q(3W Q, T Q(3W Q, TI z) / T 1- 1 , 

where 

a = f..l3 / J f..lI + f..l~, 0 = Arg(f..ll + if..l2) 

are the normalized parameters. 

(3.7) 

After the normalization the monomials that have the factor T in positive powers will disappear 
as T ---+ 0, whereas the monomials that have the factor TO remain. Their coefficients play the role of 
some structural parameters of the system. The factor T in negative powers is allowed only in front of 
the terms whose coefficients vanish at the bifurcation moment; after normalization, the corresponding 
terms can also remain, and their coefficients can be regarded as the normalized governing parameters 
(in addition to a and 0). 

We supposed (see (3.3), (3.4)) that the term zw in the first equation in (3.2) as well as z2 in the 
second equation does not vanish. Hence it can be seen from (3.7) that I ~ 1. In order for that those 
terms persist in the asymptotic normal form, we choose I = 1. Then the normalized system is given 
as 

24 

w =eiDw + wF1 (T 2(3WW, T Q(3W Q, T Q(3W Q) / T + 

+ w Q- 1 F 2 (T 2(3WW, T Q(3W Q, T Q(3W Q) / T 1-(3(Q-2) + Azw + 0(1), 

i = - az + z2 + HI (T 2(3WW, T Q(3W Q, T Q(3W Q) / T2 + 

+ zH2 (T 2(3WW, T Q(3W Q, T Q(3W Q) / T + 0(1). 
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By getting rid of the asymptotically vanishing terms, it can be rewritten as 

q-l 

tV =ei!2w + w LT2k(3-I(WW)k Rk(Tq(3W q, Tq(3W q) + 

k=O 
q-l 

+ Wq- l LT(2k+q-2)(3-I(WW)k Pk(Tq(3W q, Tq(3W q) + Azw, 

k=O 
q-l 

Z = - az + Z2 + LT2k(3-2(WW)kSk(TQ(3WQ, TQ(3WQ) + CmZT2m(3-I(WW)m, 

k=O 

(3.9 

where Ro(O, 0) = 0, So(O, 0) = 0; the last term arise only if the resonant relation (3.6) is violated, 
then the integer power m is here equal to (Re A)-I. 

In the limit T ---+ +00 the terms up to the orders rk, Pk, Sk survive, respectively, in Rk, Pk, Sk if 
and only if 

( 2k+qSk) 1 _ max _ 2k + qrk, 2(k - 1) + q(Pk + 1), 2 = -(3 < 
k-O, ... , Q I 

( 2k+q(Sk+1)) 
< k=O~~~Q-1 2k + q(rk + 1), 2(k - 1) + q(Pk + 2), 2 . 

(3.10 

If the monomial z(ww)m in the second equation in (3.9) is resonant, then it merges to the final 
asymptotic normal form in case where 

(ReA)-1 = m ~ 2~. 

Comparing (3.11) with (3.10) reveals that this term would appear in the resulting normal form simul
taneously with the term w(ww)m in the first equation (i. e., when rm ~ 0). 

Relation (3.10) is easily resolved giving 

{ 
[S~k] if 2k ~ q - 1, 

rk = [S2k
2
- Q] - 1 if 2k ~ q, (3.12 

_ [SQ-2] 
Po - 2 ' Pk = rk-l - 1 for k = 1, ... , q - 1. 

Thus, the structure of the asymptotic normal form is defined by the values of So, ... , SQ-l. 
Moreover, it follows from (3.10) that 

and 
So - 1 ~ SQ-l ~ So - 2. 

Therefore, the string of the integers Sk has the following structure: for some integers ko and kl such 
that 0 ~ ko < kl ~ q - 1 and for some integer d ~ 0 

So = ... = Sko = d, Sko+l = ... = Ski = d - 1, Sk = d - 2 at k > k l . (3.13) 

Furthermore, we have from (3.10) 

qd + max(2ko, 2kl - q) ~ ~ < qd + min(2ko, 2kl - q) + 2 
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2ko < 2kl - q + 2 and 2kl - q < 2ko + 2, 

I (k1 - ko - ~) I < 1, 

{ 
ko + ~ if q is even, 

kl = 

kl = ko + ~ ± ~ if q is odd. 
(3.14 

The obtained relations (3.11)-(3.14) describe completely the structure of the asymptotic normal 
form, namely, this is the following system 

~ ~ ~ 

q-l 

'Ii; = eirlw + 2)ww)k (wRk(Wq, wq) + wq-1A(wq, wq)) + Azw, 
k=O 

q-l 

i = -az + z2 + 2)ww)k3k(Wq, wq) + Cmz(ww)m, 
k=O 

(3.15 

where Rk, Pk, Sk are polynomials of degrees rk, Pk, Sk respectively, where rk and Pk are expressed 
through of Sk via (3.12). The integers Sk have the structure given by (3.13), (3.14) (the negative values 
of some of rk, Pk or Sk mean merely the absence of the corresponding terms in the normal form (3.15)). 
Here, Ro(O, 0) = 0, 30 (0, 0) = O. The value of Cm is non-zero if and only if m = (Re A)-l and rm ~ O. 

Formulae (3.13), (3.14) define a natural order in the normal forms given by (3.15): the order 
follows the increasing of d and for each fixed d the increasing values of ko (in case q is odd there are 
also two possible values of kd. 

Thus, the list starts with the following systems 

q = 3: { 
~ = eirlw + ~000~2 + Azw, 

z = -az + z + SlOOWW, 

q> 3: {
'Ii; = eiDw + Azw, 

i = -az + z2 + 3 100ww. 

They correspond to d = 0, ko = 1 (the case d = 0, ko = 0 is trivial). For q > 4 the list of normal 
forms corresponding to d = 0 is continued by 

We re~all that if in the above system Re A = 11m for some positive integer m, m :s;; ko, then the 
term Cmz(ww)m should be added to the last equation. Note that for q ~ 3 the systems above have 
the rotational symmetry w f--+ weiCP . Hence they can further be reduced to two-dimensional systems. 

26 REGULAR AND CHAOTIC DYNAMICS V. 3, .Nil, 1998 



ASYMPTOTIC NORMAL FORMS 

The next are the normal forms with d = 1. We list them only for q = 3, 4 : 

q = 3: 

q = 3,4: 

q = 3,4: 

{
tV =ei!2w + Pooow2 + Azw, 

i = - az + z2 + SlOOWW + SOlOW3 + SOOl w3 , 

{
tV =ei!2w + RlOOW2W + Pooowq-1 + Azw, 

i = - az + z2 + SlOOWW + SOlOWq + SOOlWq + S200(ww)2 + C1zww, 

tV =ei!2w + RlOOW2W + Pooowq-1 + Azw, 

q-1 

i = - az + z2 + L SkOO(ww)k + SOlOWq + 
k=l 

+ SOOlWq + Snowq+1w + SlOlwwq+1 + C1zww. 

Here, C1 i- 0 if and only if Re A = 1. 
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