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Abstract—A system consisting of a chaotic (billiard-like) oscillator coupled to a linear wave
equation in the three-dimensional space is considered. It is shown that the chaotic behavior of
the oscillator can cause the transfer of energy from a monochromatic wave to the oscillator,
whose energy can grow without bound.
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1. SETTING THE PROBLEM AND RESULT

The system we consider (a linear wave coupled to an oscillator) is formally defined by the
Hamiltonian

H =
1
2

(
p2

y + p2
z

)
+ V (y, z) + εk(y, z)

∫

‖x‖�1
u(x, t) d3x +

1
2

∫ (
u2

t + (∇xu)2
)

d3x, (1.1)

where u(x, t), the massless Klein – Gordon field, is a scalar function on R
3 × R

1, and (y, z) ∈ R
2 are

coordinates in the configuration space of the oscillator ((py = ẏ, pz = ż) ∈ R
2 are the corresponding

momenta). The smooth potential V (y, z) is bounded from below and tends to infinity as ‖y, z‖ → ∞.
To avoid technicalities, we assume that V equals to infinity outside a bounded domain in the (y, z)
plane. The interaction coefficient k(y, z) is smooth and bounded along with the first derivatives,
and ε is small.

The corresponding equations of motion are

utt − Δu = −εk(y(t), z(t))ξ(x), (1.2)

where ξ(x) =

⎧
⎨

⎩
1 ‖x‖ � 1

0 ‖x‖ > 1
(the characteristic function of the unit ball in the x-space), and

ÿ +
∂

∂y
(V (y, z)) = −εk′

y

∫

‖x‖�1
u(x, t) d3x,

z̈ +
∂

∂z
(V (y, z)) = −εk′

z

∫

‖x‖�1
u(x, t) d3x.

(1.3)

We may think of the oscillator as being located in the unit ball in the x-space and emitting/receiving
the wave u(x, t). It can be shown (similar to [1–3]) that if the initial energy of the wave is finite
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(i.e.,
∫ (

u2
t + (∇xu)2

)
d3x < ∞ at t = 0), then the field u tends to a constant and, for a typical

choice of the interaction coefficient k(y, z),1) the energy of the oscillator decreases, and it comes
to a rest at some stationary point of the potential function as t → +∞, i.e., the energy flows from
the oscillator to the field and is carried away to infinity. In this paper we show that if the wave
has infinite energy, then an opposite process may take place. Namely, when the oscillator operates
in a chaotic regime, the energy can be pumped from the field to the oscillator, and the oscillator’s
kinetic energy can increase up to any given value.

The field equation (1.2) can be explicitly resolved:

u(x, t) = u0(x, t) +
ε

4π

∫
k(z(t − ‖s‖), y(t − ‖s‖))

‖s‖ ξ(x − s) d3s, (1.4)

where u0 is the solution to the homogeneous wave equation. We take as u0 a monochromatic
standing wave of infinite energy:

u0(x, t) = K sin(ωt)
∫

αk cos(k · x) δ(ω − ‖k‖)d3k (1.5)

(the fact that it is a standing wave is not very important; the fact that the frequency spectrum is
discrete and finite is used in an essential way). By placing (1.4) into (1.3) we obtain a system of
delayed differential equations

ÿ +
∂

∂y
(V (y, z)) = − Aωεk′

y(y, z) sin(ωt) − ε2k′
y

∫ 2

0
k(z(t − s), y(t − s))P(s) ds,

z̈ +
∂

∂z
(V (y, z)) = − Aωεk′

z(y, z) sin(ωt) − ε2k′
z

∫ 2

0
k(z(t − s), y(t − s))P(s) ds,

(1.6)

where

Aω = K

∫
αkξ(x) cos(k · x) δ(ω − ‖k‖)d3kd3x, (1.7)

and P(s) =
π

12
(16− 12s + s3)s (we denote here s = ‖s‖). This is a Hamiltonian system subject to a

conservative periodic perturbation of order ε and a dissipative2) correction of order ε2. Namely, if we
drop the O(ε2)-terms (those including the delay), system (1.6) will be defined by a time-dependent
Hamiltonian function

H =
1
2

(
p2

y + p2
z

)
+ V (y, z) + εAωk(y, z) sin(ωt). (1.8)

In general, the systems with a time-dependent Hamiltonian do not preserve energy, and the periodic
forcing may, in fact, lead to an unbounded growth of energy. Importantly, as the kinetic energy
grows, the forcing becomes effectively slow. It is known [4–7] that if a Hamiltonian system behaves
chaotically at all sufficiently large energies, then adding a slow periodic forcing creates orbits of
unbounded energy growth. Similar to [7], we will show that in the system of type (1.8) this growth
is linear in time; namely, one may construct orbits for which the energy gain per period of the force
is bounded from below by a nonzero constant of order ε. Using the fact that the delay terms which
can lead to a dissipation of energy are of order ε2, i.e., they are much smaller than the energy gain,
we show below that the full system (1.6) has, for sufficiently small ε, solutions for which the energy
grows up to any given value, linearly in time.

Our method does not allow us to show the existence of orbits for which the energy tends to infinity
(the larger the energy value we want to achieve, the smaller value of ε we have to take). Similarly, our

1)For a general choice of k(y, z) the state of oscillator may approach an invariant set on which the function k(y, z)
stays constant, see more in [1, 3].

2)We are not showing here that the delay term always leads to a dissipation of energy. In order to get some insight,
one can check that in the linear case (i.e., quadratic potential V and linear coefficient of interaction k) the
addition of this term shifts the spectrum to the left of the imaginary axis, i.e., creates dissipation (however, as
we consider bounded functions k and the potential V that is infinite outside a bounded domain, the linear case
is not the subject of this paper).
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approach is not applicable to the case of nonzero mass in the wave equation. However, we conjecture
that such orbits do exist in system (1.6), like they do in the time-dependent Hamiltonian system
defined by (1.8) (see [7]). We also think that our approach (based on a reduction to an invariant
manifold) is interesting in its own right. We stress that the mechanism of the sufficiently fast (linear)
energy growth we obtain here is based on the chaotic behavior of the oscillator. Would the oscillator
be integrable, the existence of adiabatic invariants [8, 9] would impede a possible energy growth in
the shortened system (1.8), and it seems plausible that the O(ε2)-dissipation due to delayed terms
should arrest the energy growth completely in this case. So, the picture we propose is the following:
while an integrable oscillator that interacts with a monochromatic wave (in R

3) should lose energy,
a chaotic oscillator may take the energy from the wave. Note that the reported effect cannot be
immediately interpreted as a resonant phenomenon: since the potential is infinite outside a bounded
domain, the region of allowed motions (the Hill’s region) in the configuration plane (y, z) is always
bounded, and since the velocities py and pz tend to infinity as the energy grows, it follows that
the characteristic return times tend to zero and become much smaller than the period of external
force.

In order to formulate the result precisely, we need to define what we mean by the “chaotic
oscillator”. Consider a system of ODE’s defined by the Hamiltonian

H =
1
2

(
p2

y + p2
z

)
+ V (y, z) (1.9)

(the Hamiltonian (1.8) at ε = 0). As we mentioned, we assume that V is infinite outside a certain
bounded region D. Following [7], assume that for each sufficiently large h, the system defined
by (1.9) has, on the energy level H = h, a pair of hyperbolic periodic orbits La and Lb such that
the unstable manifold of La has an orbit Γab of transverse intersection with the stable manifold of Lb,
and the unstable manifold of Lb has an orbit Γba of transverse intersection with the stable manifold
of La. Moreover, we assume that the orbits La, Lb, Γab and Γba depend continuously on h. When
these conditions are fulfilled, we call system (1.9) a chaotic oscillator. It is well known [10, 11] that
the existence of the transverse heteroclinic cycle implies a chaotic behavior indeed. Namely, fix a
value of h, and take a sufficiently small neighborhood U of the heteroclinic cycle La ∪Lb ∪ Γab ∪ Γba
on the energy level H = h. Then the set of all orbits that stay in U ∩ {H = h} is in one-to-one
correspondence with arbitrary sequences of the symbols a and b (one round made by the orbit near
La is coded by a, and a round near Lb is coded by b).

The basic example of chaotic oscillators in our setting is given by systems with billiard-like
potentials. Namely, let D ⊂ R

2 be the bounded domain such that V (y, z) is finite inside D and
infinite outside of D. Let the boundary of D consist of a finite number of smooth arcs, S1, . . . , Sn,
joined at corner points. Let Cr-smooth functions Q1(x, y), . . . , Qn(x, y) be such that, for each
j = 1, . . . , n, the function Qj is defined in a neighborhood of the boundary arc Sj, the arc Sj is a
level line of Qj (i.e., Qj(x, y)|(x,y)∈Sj

= const), and ∇Qj 
= 0 in the neighborhood of Sj . We will call
the potential V that equals to infinity outside of D a billiard-like potential if there exist Cr-smooth,
strictly monotonic functions W1(Q), . . . ,Wn(Q) such that for each j = 1, . . . , n the potential V in
a small neighborhood of the arc Sj is given by

V (x, y) = Wj(Qj(x, y)) (1.10)

(we do not include the corner points into the arcs Sj , i.e., they are open intervals, so their small
open neighborhoods do not need to contain the corner points, hence even if two arcs join at a
corner point, their small neighborhoods where (1.10) holds do not need to intersect, i.e., no relation
between the corresponding functions Wj arises). By scaling the momenta py,z to

√
h, system (1.9)

on the energy level H = h transforms into the system

H =
1
2

(
p2

y + p2
z

)
+

1
h

V (y, z) (1.11)

on the energy level H = 1. One can easily check that if V is a billiard-like potential (i.e., it is
defined by (1.10) near the boundary arcs), then the family of Hamiltonians (1.11) (with h−1 being
a small parameter) satisfies the conditions of [14] which guarantee that the flow defined by such a
Hamiltonian is an approximation, at h large enough, to the billiard flow in D. Namely, the billiard
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in D is a mechanical dynamical system which describes the following motion of a point mass [18]:
the particle moves inertially (with a constant velocity) inside the region D in a plane until it hits
the boundary of D, then the particle is reflected according to the elastic reflection law, the angle
of reflection is the angle of incidence, and so on. As it follows from [14], the time-shift maps by the
billiard flow in D and by the Hamiltonian flow defined by (1.11) with a billiard-like potential V and
h large enough are Cr-close outside the set of singular billiard orbits (i.e., such billiard orbits which
enter a corner point or are tangent to the boundary of the billiard domain D). Therefore, if the
billiard in D has a heteroclinic cycle of two hyperbolic periodic orbits La and Lb and two transverse
heteroclinic orbits Γab and Γba and neither of these orbits is singular, then system (1.11) on the
energy level H = 1 (and hence system (1.9) on the energy level H = h) also has such a heteroclinic
cycle for all h large enough, i.e., system (1.9) with a billiard-like potential V is a chaotic oscillator
according to our definition. In particular, the oscillator defined by a billiard-like potential is chaotic
when the underlying billiard is dispersive: all the boundary arcs are concave and meet each other
at nonzero angles at the corner points [14–18].

Let La and Lb be the two nonsingular hyperbolic periodic orbits of the billiard in D that are
connected by the transverse nonsingular heteroclinics Γab and Γba. Fix the speed of the particle in
the billiard to be equal to 1, and let Tc (where c = a, b) be the period of Lc, and (yc(t), zc(t))|t∈[0,Tc]

be the equation of the orbit Lc. Denote

vc =
1
Tc

∫ Tc

0
k(yc(t), zc(t))dt. (1.12)

Assume

va 
= vb. (1.13)

Theorem 1. Consider a system (1.2), (1.3) that describes a linear massless scalar field interacting
with a chaotic oscillator, with a billiard-like potential V and the interaction coefficient k(y, z)
bounded with first derivatives. Let condition (1.13) hold. Then there exists h0 such that for each ω for
which Aω 
= 0 (see (1.7)) and for any h1 > h0 there exists ε0(h1) > 0 such that for all ε ∈ (0, ε0) the
system has a solution with the wave component u given by (1.4), (1.5) and the oscillator component
(y(t), z(t), py(t), pz(t)) reaching from the energy h0 at t = 0 the energy h1 at some finite t (the
energy of the oscillator is given by (1.9)).

The proof of the theorem occupies the rest of the paper. In Section 2 we prove an invariant
manifold theorem which allows us to reduce the system of delayed differential equations (1.6) to a
four-dimensional nonautonomous system of ODE’s, which is O(ε2)-close to the Hamiltonian system
given by (1.8). This reduction is possible on any bounded set of values of (y, z, py, pz) for sufficiently
small ε. Note that the maximal value of ε for which we can guarantee the reduction increases as py

and pz grow, which is one of the reasons why we show only bounded energy growth in Theorem 1.
In Section 3 we apply the construction of [7] (modified for the non-Hamiltonian case) to the reduced
system, and finish the proof.

2. INVARIANT MANIFOLD THEOREM

In this section we reduce the infinite-dimensional system of differential equations with delay to
a finite-dimensional system of ordinary differential equations. Consider the system

Ẋ(t) = F (X(t)) − δ

∫ τ

0
G(X(t − s), s) ds, (2.1)

where X belongs to an n-dimensional smooth manifold M, and the functions F and G are Cr-
smooth. Let F be such that the differential equation

Ẋ = F (X) (2.2)

REGULAR AND CHAOTIC DYNAMICS Vol. 19 No. 4 2014



ENERGY GROWTH FOR A NONLINEAR OSCILLATOR 517

has, for any initial condition, a solution defined for all t ∈ (−∞,+∞) (for example, this differential
equation is Hamiltonian with compact energy levels). The system (1.6) can be represented in this
form with δ = ε2. Namely, we introduce a variable θ ∈ S

1 and rewrite (1.6) as

ẏ = py, ż = pz, θ̇ = ω,

ṗy = − ∂

∂y
(V (y, z)) − Aωεk′

y(y, z) sin(θ) − ε2k′
y

∫ 2

0
k(z(t − s), y(t − s))P(s) ds,

ṗz = − ∂

∂z
(V (y, z)) − Aωεk′

z(y, z) sin(θ) − ε2k′
z

∫ 2

0
k(z(t − s), y(t − s))P(s) ds,

(2.3)

so X = (y, z, py , pz, θ = ωt) ∈ R
4 × S

1 here.

It is well known that given any continuous function X̂ : [−τ, 0] → Rn, there exists a unique
solution X(t) of Eq. (2.1) such that X(t) ≡ X̂(t) at t ∈ [−τ, 0]. One can therefore view the evolution
defined by Eq. (2.1) as a semiflow in the space C of continuous functions that act from [−τ, 0] to Rn:
the time-s map of the semiflow takes the initial condition X(s)|[−τ,0] to the segment X(s)|[t−τ,t] of
the corresponding solution. A smooth function μ : Rn × [0, τ ] → Rn defines a map Rn → C by the
rule X(s) = μ(x,−s); the graph of such a map is an invariant manifold for the semiflow defined
by (2.1) if the solution with the initial condition μ(X(0),−s)|s∈[−τ,0] satisfies

μ(X(t), s) = X(t − s) (2.4)

for all t � 0 and s ∈ [0, τ ]. When such a manifold exists, the restriction of system (2.1) onto it is a
system of ordinary differential equations

Ẋ = F (X) − δ

∫ τ

0
G(μ(X, s), s) ds. (2.5)

In other words, the existence of a smooth function μ which satisfies the invariance condition (2.4)
implies the existence of an n-parameter family of solutions (parameterized by X(0)) to the delayed
differential equation (2.1) which also solve the ordinary differential equation (2.5).

Lemma 1. Given any compact subset K of the X-space M, for all sufficiently small δ there exists
a Cr−1-smooth function μ : K × [0, τ ] → Rn such that for any X(0) ∈ K the solution X(t) of (2.1)
which starts with the initial condition μ(X(0),−s)|s∈[−τ,0] satisfies the invariance condition (2.4)
for the interval of t values for which the solution stays in K.

Proof. By the Cauchy – Picard – Lindelöf theorem [19], given any smooth functions μ, F and G, the
ordinary differential equation (2.5) generates a uniquely defined (on any given finite time interval)
solution for any initial condition from K if δ is small enough. This solution depends smoothly on any
parameter on which the system depends smoothly. In particular, the solution depends smoothly on
the function μ. Thus, we will show below that the solution is a C1-function of μ which is considered
as an element of the space of Cr−1-smooth functions.

Given μ and δ, take any X(t) ∈ K, consider its backward orbit by Eq. (2.5), and let X(t − s)
be the point on this orbit which corresponds to the (backward) shift to time s. Denote as φ(μ, δ)
the map K × [0, τ ] → Rn which (for given μ and δ) sends X(t) ∈ K and s ∈ [0, τ ] to X(t − s),
i.e., φ(μ, δ) is the backward flow of the ordinary differential equation (2.5). The flow has the same
smoothness as the equation, so if μ ∈ Cr−1, then φ(μ, δ) is Cr−1 with respect to X and s. At δ = 0
the flow φ(μ, δ) is generated by Eq. (2.2), so it is independent of μ. We will show in a moment that
φ depends C1-smoothly on μ and δ. As φ(μ, 0) does not depend on μ, it follows that the Frechet

derivative
∂φ

∂μ
vanishes at δ = 0. Hence, by the implicit function theorem, the equation

μ = φ(μ, δ) (2.6)

has, for every small δ, a unique solution μ ∈ Cr−1. If we plug this particular μ into the right-hand
side of (2.5), then Eq. (2.6) will exactly mean that condition (2.4) is satisfied by the solutions
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of (2.5). Thus, each of these solutions will also solve the original delayed equation (2.1), which is
the statement of the lemma.

Thus, to finish the proof, it remains to show the smooth dependence of the flow of (2.5) on μ. It
is well known that the solutions of ordinary differential equations depend smoothly on the function
on the right-hand side of the equation. So we are left to show that the so-called Nemytsky operator
(or substitution operator) N which takes the function μ(X, s) to the function G(μ(X, s), s) is of
class C1 on the space of Cr−1-functions μ, provided G is Cr as a function of (X, s). In order to do
this, it is enough to check that the Frechet derivative of N at a given function μ is the operator of

multiplication to
∂G

∂X
(μ(X, s), s). For this, one needs to check that

‖G(μ + Δμ) − G(μ) − G′(μ) · Δμ‖
Cr−1 = o(‖Δμ‖

Cr−1 )

(we suppress, notationally, the dependence of s, so G′ denotes here the derivative of G with respect
to its first argument). This relation is rewritten as

∥
∥∥
∥

∫ 1

0
(G′(μ + ξΔμ) − G′(μ)) dξ · Δμ

∥
∥∥
∥

Cr−1

= o(‖Δμ‖
Cr−1 ),

which reduces to the obvious (since G is Cr) claim that G′(μ + ξΔμ) −→
Cr−1

G′(μ) as Δμ −→
Cr−1

0,

uniformly for all ξ ∈ [0, 1].

Applying this lemma to system (2.3), we find that for all sufficiently small ε it has a family of
solutions which satisfy the system of ordinary differential equations

ÿ +
∂

∂y
(V (y, z)) = − Aωεk′

y(y, z) sin(θ) + ε2F1(y, z, ẏ, ż, θ, ε),

z̈ +
∂

∂z
(V (y, z)) = − Aωεk′

z(y, z) sin(θ) + ε2F2(y, z, ẏ, ż, θ, ε),

θ̇ = ω,

(2.7)

where the smooth functions F1,2 incorporate the delay terms. Moreover, for all sufficiently small ε,
every solution of this system satisfies the original delayed equations (1.6) for the interval of time
for which the solution stays in a bounded ball in the phase space (we may take this ball as large
as we want; however, to increase the radius of the ball, we might need to take ε smaller).

3. A PARTIALLY HYPERBOLIC SET AND THE ENERGY DRIFT
As we have just shown, it is enough to establish the existence of the solutions of growing energy

in system (2.7). By taking a sufficiently large h0 and scaling time to
√

h0, we rewrite this system
as

ÿ +
1
h0

∂

∂y
(V (y, z)) = − Aω

ε

h0
k′

y(y, z) sin(θ) +
ε2

h0
F1(y, z,

√
h0ẏ,

√
h0ż, θ, ε),

z̈ +
1
h0

∂

∂z
(V (y, z)) = − Aω

ε

h0
k′

z(y, z) sin(θ) +
ε2

h0
F2(y, z,

√
h0ẏ,

√
h0ż, θ, ε),

θ̇ =
ω√
h0

.

(3.1)

At ε = 0 the first two equations are independent of θ:

ÿ +
1
h0

∂

∂y
(V (y, z)) =0,

z̈ +
1
h0

∂

∂z
(V (y, z)) =0.

(3.2)

As we mentioned, the assumption that our billiard-like oscillator is chaotic means that this system
has, at sufficiently large h0, a uniformly hyperbolic set Λ on every energy level H � 1 (where the
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rescaled energy H is given by (1.11) with h = h0). Namely, we take the two nonsingular hyperbolic
periodic orbits La and Lb of the billiard in D and the two transverse nonsingular heteroclinics Γab
and Γba that connect them. As we mentioned, by virtue of [14], the hyperbolic heteroclinic cycle
persists in the smooth Hamiltonian approximation (3.2) of the billiard, provided h0 is large enough.
This means that system (3.2) has on every energy level H = h � 1 a pair of hyperbolic periodic
orbits La(h) and Lb(h) and the heteroclinic orbits, Γab(h) and Γba(h) where Γab is the transverse
intersection of the unstable manifold of La with the stable manifold of Lb, and similarly for Γba:

Γab ⊆ W u(La) ∩ W s(Lb), Γba ⊆ W u(Lb) ∩ W s(La),

and these four orbits are close (at h0 large enough) to the corresponding orbits of the billiard on
the same energy level.

By [10], the set Λ(h) of all orbits which stay in a small neighborhood (on the level set H = h) of
La(h) ∪Lb(h) ∪ Γab(h) ∪ Γba(h) is a uniformly hyperbolic set which is in one-to-one correspondence
with the set of all sequences of a’s and b’s. More precisely, on each energy level we take two
small smooth cross-sections, Σa and Σb, to La and Lb, respectively ( we assume that the cross-
sections depend on h smoothly). Every orbit from Λ must intersect Σa ∪ Σb infinitely many times.
The sequence of a’s and b’s denoting the corresponding cross-sections that the trajectory passes
through gives the code, {ξi}+∞

i=−∞ (ξi ∈ {a, b}), of the trajectory. Namely, if Mi is the sequence of
points at which an orbit from Λ intersects Σa ∪ Σb, then Mi ∈ Σξi

.
The flow induced by (3.2) on any given energy level H = h defines Poicaré maps on these cross-

sections, denoted by

Πcc′ : Σc → Σc′, c ∈ {a, b}. (3.3)

These maps are such that for a trajectory of (3.2) that intersects Σa ∪ Σb at a point Mi ∈ Σc and
then at a point Mi+1 ∈ Σc′ we have

Mi+1 = Πcc′Mi. (3.4)

In other words, Πaa and Πbb are the Poincaré maps near the periodic orbits La and, respectively, Lb,
while Πab and Πba correspond to a passage near the heteroclinics Γab and Γba. The theory of billiard-
like potentials built in [14] implies that since the billiard orbits La, Lb, Γab, Γba are nonsingular,
the Poincaré maps Πcc′ for system (3.2) are Cr-close, at h0 large enough, to the corresponding
Poincaré maps defined by the billiard flow. In particular, the hyperbolicity of these maps for the
billiard flow (which follows from the fact that the periodic orbits La and Lb are hyperbolic and the
heteroclinic orbits Γab and Γba are transverse) is inherited in system (3.2) for all h0 large enough.

In fact, since each periodic orbit is a saddle, one can represent the two-dimensional cross-sections
Σa,b as the cross product of two certain small intervals

Σa = Ua × Wa, Σb = Ub × Wb,

where Ua,b ∈ R correspond to contracting directions and Wa,b ∈ R correspond to expanding
directions. By virtue of [11], since the heteroclinic orbits Γab and Γba are transverse, one can
write the Poincaré maps (3.3) in the so-called cross form (see [12, 13]). Namely, there exist smooth
functions

fcc′ : Uc × Wc′ → U ′
c, gcc′ : Uc × Wc′ → Wc, (3.5)

(where c, c′ ∈ {a, b}) such that a point Mi = (ui, wi) ∈ Σc is mapped to Mi+1 = (ui+1, wi+1) ∈ Σc′

by the map Πcc′ if and only if

fcc′(ui, wi+1) = ui+1, gcc′(ui, wi+1) = wi. (3.6)

Moreover, there exists λ > 0 such that
∥
∥∥
∥
∂(fcc′ , gcc′)

∂(u,w)

∥
∥∥
∥ � λ < 1. (3.7)

The latter inequality means essentially that the Poincaré maps Πcc′ are contracting in the u-
coordinate and expanding in the v-coordinate.
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From [7] it follows that the operator

{(ui, wi)}+∞
i=−∞ → {(fξi−1ξi

(ui−1, wi), gξiξi+1
(ui, wi+1))}+∞

i=−∞ (3.8)

is a contraction mapping for any code sequence ξ = {ξi}+∞
i=−∞, which gives us the existence and

uniqueness of the orbit Lξ(h) ∈ Λ(h) with the given code ξ (see [10, 11]). By fixing a code ξ, the
family of the orbits with this code parameterized by h, i.e., the manifold

L0
ξ =

⋃

1�h�h1/h0

Lξ(h)

for any given h1 > h1, is a normally hyperbolic invariant manifold of system (3.2). The system (3.1)
at ε = 0 is obtained from (3.2) simply by adding an equation θ̇ = ω/

√
h0 for the phase θ ∈ S

1. As this
equation is decoupled from the first two, and the evolution of θ is nonhyperbolic (it is just a linear
rotation), the manifold L0

ξ × S
1 is the invariant normally hyperbolic manifold for system (3.1) at

ε = 0. The normally hyperbolic invariant manifolds are known to persist at small perturbations [20],
which implies that (3.1) has an invariant manifold Lξ(ε) close to Lξ × S

1 for all small ε (one might
need to take smaller ε to make h1 larger). Because the normal hyperbolicity is uniform, these
manifolds exist for all codes ξ for the same range of ε values. A formal proof of the existence of the
invariant manifolds Lξ(ε) is achieved as follows. Note that the Poincaré maps Πcc′ are defined for
all ε sufficiently small and depend smoothly on ε, so they can be written in the form

ui+1 = fcc′(ui, wi+1) + O(ε), wi = gcc′(ui, wi+1) + O(ε),

hi+1 = hi + O(ε), θi+1 = θi + O

(
ε +

1√
h0

)
,

(3.9)

where the energy h is defined by (1.8); the O(·)-terms are functions of ui, wi+1, hi, θi. Now, Lemma 1
of [7] is applied to these maps, which immediately gives the existence of the invariant manifolds
Lξ(ε) close to Lξ × S

1 provided ε is small and h0 is large enough.
By differentiating (1.8), we find that the rate of change of h = H(y, z, py, pz, θ) along an orbit

of (3.1) is given by

dh

dt
= ε(ωAωk(y, z) cos θ + O(ε)). (3.10)

Since the Poincaré map (3.9) at c = c′ corresponds to one round near the billiard periodic orbit Lc,
it follows from (3.10) that given an arbitrarily small δ, one can choose ε and h−1

0 small enough such
that

hi+1 − hi

θi+1 − θi
> ε(Aωvc cos θ − δ) (3.11)

in the map Πcc (c = a or b). In other words, as long as an orbit of system (3.1) stays near Lc, the
change in h can be estimated by the inequality

dh

dθ
> ε(Aωvc cos θ − δ). (3.12)

Recall that the constants va and vb are given by (1.12). By (1.13) we may fix the choice of La and
Lb such that

va > vb. (3.13)

Formally, system (3.1) is not of the form studied in [7]. However, the study in [7] (see Theorem 1
there) is reduced to the study of Poincaré maps Πcc′ of the form which includes (3.9) as a partial
case. Therefore, we may apply the results of [7] to the study of the behavior of the orbits of
system (3.1) which belong to the invariant manifolds Lξ(ε) (these orbits intersect the cross-sections
Σa ∪ Σb, so they are defined by the Poincaré maps Πcc′). Namely, we have two main conclusions.
First, we consider the codes ξ such that the symbols a and b go always in blocks of some fixed
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size, large enough for the transitions from a neighborhood of La to a neighborhood of Lb or from
a neighborhood of Lb to a neighborhood of La to happen relatively rarely, so the contribution of
these transitions to the change in h can be neglected (more precisely, it is absorbed in the small δ
term in (3.14)). Then, by (3.12), we find that for the orbits that stay on the invariant manifolds
Lξ(ε) with such codes ξ the evolution of h is estimated by

dh

dθ
> ε(Aωvc(t) cos θ − δ), (3.14)

where c(t) = a or b indicates where the orbit finds itself at the moment t, near La or near Lb.
Second, by repeating the corresponding construction in [7], for each small ε we can find a code ξ
and an initial condition on the corresponding manifold Lξ(ε) such that for the corresponding orbit

c(t) = a when Aω cos θ > 0, and c(t) = b when Aω cos θ < 0.

For such an orbit, we can rewrite (3.14) as

dh

dθ
> ε

(
Aω cos θ

va + vb

2
+ |Aω cos θ|va − vb

2
− δ

)
.

By integrating over one period of θ = ωt, we find that for this particular orbit the change of the
energy h over each consecutive 2π/ω interval of time is estimated by

Δh > ε(|Aω|(va − vb) − 2πδ) > 0

(recall that δ can be taken as small as we need and va > vb by assumption of the theorem). Thus,
the energy of the chaotic oscillator steadily grows along the chosen orbit (at a linear rate), which
completes the proof of the theorem.
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