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Generically, periodic orbits of a smooth area-preserving two-dimensional map are either
hyperbolic (saddle) or elliptic depending on the values of their multipliers. The multipliers of an
elliptic periodic point belong to the unit circle, λ1,2 = e±iω, and are not real. According to KAM-
theory, when the map is Cr with r = 5, . . . ,∞, ω the generic elliptic periodic point is surrounded
by closed smooth invariant curves filled by quasiperiodic orbits. The KAM-curves cover the most
part of a small neighborhood of the elliptic point, however between any two KAM curves there are
resonant zones with at least two “subharmonic” periodic orbits inside each one. Generically, one of
this orbits is saddle and its stable and unstable manifolds intersect transversely along a homoclinic
orbit [1]. In other words, while for a majority of initial conditions the behavior near a generic elliptic
point is quasiperiodic, there are also thin zones of chaotic behavior which accumulate to such point.

In this paper we show that the chaotic dynamics in the resonant zones is ultimately rich and
complex beyond comprehension. In order to give a rigorous meaning to this statement we use the
notion of Cr-universality introduced in [2]. The definition is based on the following construction.

Let f : M → M be an area-preserving Cr-map of a two-dimensional symplectic manifold M and
D1 ⊂ R

2 be the unit disk. Consider an arbitrary Cr-embedding ψ : V → M of an open neighborhood
V of D1 into M and assume that the ratio of the area of image to the area of preimage is constant,
i.e., areaM(ψ(B))/area(B) is the same for every disc B ⊂ V . If fn(ψ(D1)) ⊂ ψ(V ) for some n ∈ N,
we can define a renormalized iteration of f by

fn,ψ = ψ−1 ◦ fn ◦ ψ|D1
.

Obviously the map fn,ψ : D1 → V is area-preserving and of class Cr. The set of all possible
renormalized iteration is called the dynamical conjugacy class of f .

Note that since the transformations ψ can contract areas (with the requirement that the
contraction rate should be constant), the discs ψ(D1) can be arbitrarily small (and they can be
situated anywhere in M). Thus, the dynamical conjugacy class of f contains information about
the behavior of arbitrarily long iterations of f on arbitrarily fine spatial scales.
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We say that the map f is Cr-universal if its dynamical conjugacy class is dense in the Cr-
topology among all symplectic maps D1 → R

2.
In this case the dynamics of f is extremely rich as its iterations approximate arbitrarily well

(in appropriately chosen coordinates) every two-dimensional symplectic map. This property is a
manifestation of the utter degree of dynamical complexity.

The main result of the paper is the following

Theorem 1. Cr-generic maps with an elliptic periodic point are Cr-universal.

In other words, in the class of area-preserving maps which have elliptic periodic points, the
universal maps form a residual subset, i.e., they belong to an intersection of at most countably
many open and dense subsets, in the topology of Cr-uniform convergence on compacta. In the case
of real-analytic maps, i.e., when r = ω, this can be clarified as follows: given any Cω-map f with
an elliptic periodic point O we will take any, arbitrarily large compact neighborhood K ⊆ M of
the point O and take an open complex neighborhood Q of K such that f is analytic in some open
neighborhood of cl(Q). Take a sufficiently small neighborhood O of f in the space of real-analytic
maps with the topology of uniform convergence in cl(Q). We will show that a generic map from O
is Cω-universal.

Note that it is enough to prove that the universal maps form a dense subset — the genericity will
follow automatically. Indeed, let g1, g2, . . . be a countable dense subset of the set of all symplectic
maps D1 → R

2. Let Um be the set of all area-preserving maps f of M for which the dynamical
conjugacy class intersects with an open 2−m-neighborhood of each of the maps g1, . . . , gm, i.e., there
exist numbers n1, . . . , nm and coordinate transformations ψ1, . . . , ψm such that the corresponding
renormalized iterations fn1,ψ1, . . . , fnm,ψm satisfy ‖fn1,ψ1 − g1‖ < 2−m, . . . , ‖fnm,ψm − gm‖ < 2−m.

The sets Um are open by definition. Moreover the intersection
∞⋂

m=1

Um coincides with the set U of

all universal maps. Thus U is an intersection of a countable sequence of open sets, i.e., we have
proved that when U is dense, it is also residual.

The proof of Theorem 1 is heavily based on the results of [3], where it was shown that universal
area-preserving maps exist in any neighborhood of any area-preserving map with a homoclinic
tangency. Therefore it remains to show that given any area-preserving map with an elliptic point, a
homoclinic tangency can be created by an arbitrarily Cr-small (r = 1, . . . ,∞, ω) perturbation within
the class of area-preserving maps.

In the non-analytic case this claim, as we will see, easily follows from the integrability of the
normal form near the elliptic point and similar statements can be found in [4]. The case of real-
analytic maps (i.e., r = ω) is more involved.

Let f be an area-preserving map and O be a period-m point of f . We assume that O is elliptic
and not strongly resonant, i.e., the eigenvalues of the derivative of fm at O are e±iν with 0 < ν < π
and ν 	∈ { 2π/3, π/2 }. We can always imbed f into a one-parameter family of area-preserving maps
for which ν will change monotonically as the parameter varies. So we may assume from the very
beginning that ν = πp/q where p, q are mutually prime integers and q � 3. A standard fact from
normal form theory is that one can choose canonical polar coordinates near O in such a way that
the map T := fm will take the form

T = Rπp/q ◦ F + o(rq), (1)

where Rπp/q stands for the rotation to the angle πp/q, and F is the time-1 map of the flow defined
by the Hamiltonian

H(r, ϕ) = −μr +
q−1∑

j=1

Ωj(μ)
j + 1

rj+1 + A(μ)rq cos(2qϕ) (2)

with some coefficients Ωj(μ); the small parameter μ is given by μ = πp/q − ν. In order to be
reducible to the form (1), the map T should be at least C2q−1 locally. It is possible that our
original map f is not sufficiently smooth to ensure that property. In this case we note that a
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finitely smooth family can be locally approximated by a C∞-smooth one without loosing the area-
preserving property. Therefore we may always assume that it is at least C∞ in a neighborhood of
each point of the orbit of the periodic point O without loosing in generality.

We can also assume Ω1(0) 	= 0 and A(0) 	= 0. These inequalities can be achieved by an arbitrarily
small perturbation of the map f (a precise description of the perturbation construction can be
found e.g. in [3, 5]). Consider values of μ such that μΩ1(0) > 0 and make the linear coordinate
transformation r 
→ ρ:

r = r0 + 2qrq−1
0 ρ/Ω1,

where r0 ≈ μ/Ω1(0) solves the equation μ =
∑q−1

j=1 Ωj(μ)rj
0. Then the vector field defined by (2)

takes the form

ρ̇ = 2qrq−1
0 A(0) sin(2qϕ) + o(rq−1

0 ), ϕ̇ = 2qrq−1
0 ρ + o(rq−1

0 ),

i.e., in these coordinates the map fm takes the form

T = Rπp/q ◦ Tμ + o(μq−1), (3)

where Tμ is the shift for the time 2qrq−1
0 ∼ μq−1 by the flow of

ρ̇ = sin(2qϕ), ϕ̇ = ρ. (4)

This system is invariant with respect to the rotation Rπp/q and has 2q saddle equilibria
P 0

k : (ρ = 0, ϕ = πk/q), k = 0, . . . , 2q − 1. All P 0
k belong to one orbit of Rπp/q, hence they form

one saddle periodic orbit of the map Rπp/q ◦ Tμ. The multipliers of this orbit are of order ∼ μ
q−1
2 ,

so an o(μq−1)-perturbation will not destroy the saddle, that is the map T for all small μ has a
period-(2q) saddle orbit Pμ composed of points Pk(μ) such that Pk(μ) → P 0

k as μ → 0, and the

multipliers of this orbit are of order ∼ μ
q−1
2 . The stable and unstable invariant manifolds W s

k (μ)
and W u

k (μ) of the points Pk(μ) depend continuously on μ and tend, as μ → 0, to the corresponding
stable and unstable manifolds, lsk and luk , of the equilibria P 0

k of system (4). System (4) has a
Hamiltonian: H0 = 1

2ρ2 + 1
2q (cos(2qϕ) − 1), and the union of the curves lsk and luk forms the zero

level of H0. Namely, luk is given by the equation

ρ = ξ0
k(ϕ) := sign(ϕ − πk/q)

√
1
q
(cos(2qϕ) − 1), |ϕ − πk/q| < π/q,

and lsk is given by ρ = −ξ0
k(ϕ). Thus, given any δ > 0, a curve Lu

k(μ) of the form ρ = ξu
k (ϕ, μ), where

ξu
k is defined on the segment |ϕ − πk/q| < π/q − δ, represents a piece of the unstable manifold

W u
k (μ) passing through Pk(μ), and ξu

k (ϕ, μ) → ξ0
k(ϕ) on this segment as μ → 0. A passing through

Pk(μ) piece Ls
k(μ) of the stable manifold W s

k (μ) is a curve ρ = ξs
k(ϕ, μ) where ξs

k is defined at
|ϕ − πk/q| < π/q − δ and tends to −ξ0

k on this segment.
As the curve luk coincides with lsk+1 at πk/q < ϕ < π(k + 1)/q, it follows that the curve Lu

k(μ) is
close to Ls

k+1(μ) at small μ, and the preservation of the area implies the existence of intersections
of Lu

k(μ) and Ls
k+1(μ) for all small μ. These are homoclinic intersections, i.e., the orbits of the

intersection points tend to P both at forward and at backward iterations of the map T . Note that
if we drop the o(rq)-terms in (1), the curves Lu

k(μ) and Ls
k+1(μ) will coincide for small μ (as they

will correspond to the same level lines of Hamiltonian (2)). In other words, we will have orbits
of a homoclinic tangency (of infinite order) in this case. Since making o(rq)-terms locally vanish
is a Cq-small perturbation, and we can always choose arbitrarily large q, this gives us homoclinic
tangencies by arbitrary small smooth perturbations of f . This complete the proof of Theorem 1 for
smooth maps.

The above argument with dropping the o(rq)-terms does not work in the analytic category.
Therefore in this case we have to choose another line of reasoning. Namely, we will show that there
is a tending to zero sequence of values of μ for which a homoclinic tangency between the stable and
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unstable manifolds of Pμ exists. Indeed, if this is not the case, then all the intersections between
W u

k (μ) and W s
k+1(μ) are transverse for all sufficiently small μ, hence every such intersection depends

smoothly on μ. Pick one of the intersection points of Lu
k(μ) and Ls

k+1(μ). Every point in the orbit
Γμ of this point corresponds to a transverse intersection of the stable and unstable manifolds of Pμ,
so each of the points of Γμ depends smoothly on μ. Choose any ϕ0 ∈ (πk/q, π(k + 1)/q). Denote
as Q0

μ that point in Γμ which lies on Lu
k(μ) between the point M1 = (ϕ = ϕ0, ρ = ξu

k (ϕ, μ)) and
the point M2 = T qM1 (the line Lu

k(μ) is invariant with respect to T q). Let Q+
μ and Q−

μ be the two
nearest to Q0

μ points of (transverse) intersection of Lu
k(μ) and Ls

k+1(μ), one to one side from Q0
μ and

the other to the other side, i.e., Q−
μ belongs to the piece of Lu

k(μ) between Pk(μ) and Q0
μ while Q+

μ

belongs to the piece of Ls
k+1(μ) between Q0

μ and Pk+1(μ). By construction, all forward iterations
of the points Q±

μ by the map T q lie in Ls
k+1(μ) between Q+

μ and Pk+1(μ), while all their iterations
by T−q lie in Lu

k(μ) between Pk(μ) and Q−
μ . Denote the segment of Lu

k(μ) between Q−
μ and Q+

μ as
wu(μ) and the segment of Ls

k+1(μ) between Q−
μ and Q+

μ as ws(μ). As we just explained, neither of
the iterations of the points Q±

μ lie in ws ∪ wu. Note that both the segments ws and wu have length
of order ∼ μq−1, as the points Q±

μ are no farther from Q0
μ than the points T−qQ0

μ and T+qQ0
μ and

the distance between the latter points is O(μq−1), see (3).

Figure. Illustration to the proof of Theorem 1.

Choose some sufficiently small μ0. There is a positive integer j such that T j(wu(μ0))∩ws(μ0) 	= ∅
(by Poincaré recurrence theorem, as the union wu(μ0) ∪ ws(μ0) bounds a set of positive measure,
some forward iterate of this set should intersect it, giving rise to the desired intersections, for
details see e.g. [6]). Fix any such j. Let Sμ be a point of intersection of T j(wu(μ)) with ws(μ).
By construction, Sμ cannot be an end point of either of the curves ws and T j(wu) (otherwise,
one of the iterations of a point Q+

μ or Q−
μ would get into ws ∪ wu, which is not the case, as we

mentioned). Recall also that the intersection of the curves ws and T j(wu) at Sμ is transverse
(this point corresponds to a homoclinic orbit, and since we assume that there are no homoclinic
tangencies for all small μ). Thus, the intersection cannot disappear as μ changes.

Indeed, both the curves ws and wu remain in a bounded region of the phase plane and, as
we mentioned, their length remains bounded, hence so does the length of T j(wu) (recall that j is
fixed and independent of μ). Therefore, by transversality, the intersection point Sμ will persist for
all μ for which the curves ws and T j(wu) depend on μ continuously. We do have the continuous
dependence for those values of μ for which the point Q0

μ lies in the interior of the segment (M1,M2).
At the moment the point Q0

μ arrives at the boundary of the segment [M1,M2] and leaves it, the
image of Q0

μ by either T q or T−q enters the segment [M1,M2] and becomes the new point Q0
μ. This

means that both the segments wu and ws are replaced by either T q(wu) and T q(ws) or T−q(wu)
and T−q(ws). Accordingly, the point Sμ of the intersection of T jwu with ws changes to T qSμ or

REGULAR AND CHAOTIC DYNAMICS Vol. 15 Nos. 2–3 2010



UNIVERSAL DYNAMICS 163

T−qSμ (and the corresponding homoclinic orbit remains the same). Thus, at each μ between 0 and
μ0 we have a point of intersection of T j(wu) and ws, with the same j > 0.

However, it follows from (3) that since the map Tμ is O(μq−1)-close to identity, the first j

iterations of the map T are O(μq−1)-close to the iterations of Rπp/q. Thus, if μ is small enough, the
curve T j(wu) will be close to Rπjp/qw

u. Hence, in order to have an intersection of T j(wu) with ws,
the number of iterations j must be a multiple of 2q, and the arc T j(wu) will be a part of the curve
Lu

k(μ). This is a contradiction: as j > 0, the arc T j(wu) must lie in Lu
k(μ) between Q+

μ and Pk+1,
i.e., it cannot intersect ws.

Thus, in a generic family where the multipliers e±iν of the elliptic point change monotonically,
every parameter value is a limit of a sequence of parameter values which correspond to homoclinic
tangencies to some saddle periodic orbit. This completes the proof of our theorem. �

Note also that given any area-preserving map with an elliptic periodic point and any finite
number of orbits of homoclinic tangency we can imbed it into a family of area-preserving maps in
which the multipliers of the elliptic point will change monotonically, and neither of the tangencies
will split [3, 5]. Thus, we can perturb our map in such a way that new tangencies will be born
one by one, without destroying the homoclinic tangencies obtained on previous steps. This proves
that arbitrarily Cr-close (r = 1, . . . ,∞, ω) to any map with an elliptic point there exists a map
with infinitely many orbits of a homoclinic tangency which accumulate to the elliptic point. By [3]
these tangencies can be of arbitrarily high orders. By [7], an arbitrarily small Cω perturbation of
a homoclinic tangency (within the class of area-preserving maps) can create a wild hyperbolic set
[8], so by combining our construction with the results of [7] we find that a Cω-generic elliptic point
is accumulated by wild hyperbolic sets. As a corollary, one also obtains that the two following open
domains in the space of two-dimensional area-preserving Cω maps have equal closure: the set of
maps which have an elliptic periodic point and the set of maps which have a wild hyperbolic set (the
Newhouse domain).

Two main sources of area-preserving maps are Hamiltonian and volume-preserving flows. A
Hamiltonian flow on a 4-dimensional symplectic manifold is volume-preserving on every energy
level, and the Poincaré map near a periodic orbit of a volume-preserving flow on a 3-dimensional
manifold is a two-dimensional area-preserving map. An analogue of Theorem 1 for the flows reads
as follows.
Theorem 2. For a Cr-generic volume-preserving flow on a 3-dimensional manifold the Poincaré
map near every elliptic periodic orbit is Cr-universal. For a generic Hamiltonian system on a 4-
dimensional symplectic manifold there exists a residual set of energy values such that on every
corresponding energy level the Poincaré map near every elliptic periodic orbit is Cr-universal.

As the number of periodic orbits for a generic volume-preserving flow (as well as for a generic
Hamiltonian flow on every energy level) is at most countable (see e.g. [5]), it is enough to show
the generic universality of the Poincaré map near a single elliptic periodic orbit. In fact, in the
non-analytic case (r = 1, . . . ,∞), Theorem 2 follows directly from Theorem 1, as it is obvious
that any Cr-small perturbation of the Poincaré map which is localized in a disc of a small radius
can be obtained via a Cr-small perturbation of the flow, and if the perturbed map remains area-
preserving, then the corresponding perturbation of the flow will keep the flow volume-preserving (or
Hamiltonian if we work in the Hamiltonian setting). However, this is not true in the real-analytic
case: an analytic map which is defined locally (in a neighborhood of the intersection of the elliptic
periodic orbit under consideration with some local cross-section) is not necessarily generated by
any flow which is analytic on the whole of the phase manifold. To overcome the problem, one has
to repeat for the flow case the arguments we made for 2-dimensional maps. In fact, to carry on
the reasoning made in the proof of Theorem 1 and in [3] one just needs to be able to imbed any
real-analytic volume-preserving or Hamiltonian flow X0 into an analytic finite-parameter family
Xε of volume-preserving or, respectively, Hamiltonian flows such that given any fixed number of
orbits of homoclinic tangency and periodic orbits (saddle and elliptic) of the original flow X0, every
homoclinic tangency can be split in a generic way (and without splitting the rest of the tangencies)
as parameters ε vary, and the multipliers of the periodic orbits can as well be changed without
splitting any of the tangencies. Such construction is done (as a part of a general scheme) in [5].
After that, the arguments of [3] are applied with no modifications. �
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It is commonly believed that a generic 2-degrees-of-freedom Hamiltonian system which, at least
for one energy value, is not Anosov must have an elliptic periodic orbit. The proof is known only
for the C1-case [9], and no approach is known up to date for the really interesting case of a higher
smoothness. However, elliptic periodic orbits do appear easily in Hamiltonian systems. Indeed, they
always exist near generic elliptic equilibria (the so-called Lyapunov families), i.e., near a minimum
of the Hamilton function. Far from integrability, elliptic periodic orbits appear via bifurcations
of homoclinic loops (see e.g. [10, 11] for the bifurcation of a homoclinic loop to a saddle-focus in
Hamiltonian and volume-preserving systems), via homoclinic tangencies [3, 7, 9, 12, 13], in slow-fast
systems [14], in billiard-like potentials for high energies [15, 16], etc. In essence, Theorem 2 shows
that incomprehensibly complex behavior on very long time scales should be typical for basically all
2-degrees-of-freedom Hamiltonian systems that appear in natural applications.

This work was supported by the Leverhulme Foundation and by ISF grant 273/07. The authors
are grateful to Gonchenko and Shilnikov for useful discussions.
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