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We consider a mode approximation model for the longitudinal dynamics of a multisection semiconductor laser which
represents a slow-fast system of ordinary differential equations for the electromagnetic field and the carrier densities.
Under the condition that the number of active sections q coincides with the number of critical eigenvalues we introduce
a normal form which admits to establish the existence of invariant tori. The case q = 2 is investigated in more detail
where we also derive conditions for the stability of the quasiperiodic regime.

1. Introduction

Semiconductor lasers play a crucial role in many areas of modern technology. Especially in photonic
networks they are used for fast data regeneration. Typically, these devices possess a non-stationary
working regime, and their behavior is characterized by a multi-scale dynamics and by occurring of
instabilities of higher co-dimension. The construction of semiconductor lasers with several sections
allows to control these nonlinear effects.

Under certain physical conditions, the longitudinal dynamics of edge emitting multisection semi-
conductor lasers can be characterized by the temporal behavior of the electro-magnetic field E and of
the effective carrier density N within the active zone of the device. The corresponding mathematical
model is referred to as travelling wave model (see [5], [6] and references therein). In this model, the
time evolution of the state variables is described by the following differential system in some Banach
space

dE
dt

= H(N)E,

dNj

dt
= ε(fj(N) − ET gj(N)E∗), j = 1, . . . , k.

(1.1)
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Here, E is a complex vector depending on time t and on the one-dimensional space variable z
characterizing the longitudinal direction of the laser, E∗ represents the complex conjugate of E, and
N = (N1, . . . , Nk)T is a real vector whose components describe the spatially section-wise averaged
carrier density in the k active sections. Hence, the variables N1, . . . , Nk depend on time only. H(N) is
a first order differential operator with respect to z such that the first subsystem in (1.1) represents
a linear hyperbolic system of partial differential equations. ET gj(N)E∗ is a Hermitian form implying
the symmetry of (1.1) with respect to rotation of the complex variable E (phase shift of the electro-
magnetic field). Thus, system (1.1) couples a linear system of partial differential equations (PDEs)
for E with a system of ordinary differential equations (ODEs) for N . The crucial fact that the variables
E and N act on different time-scales is expressed by the presence of the small parameter ε which is the
ratio between the averaged lifetime of a photon and the averaged lifetime of a carrier (in applications,
ε ≈ 10−2, or often smaller [2], [4], [5]).

The slow-fast structure of (1.1) permits to derive conditions ensuring the existence of a finite-
dimensional invariant manifold such that the PDE-ODE system (1.1) can be reduced to an ODE
model. For this purpose we need the following assumption (see [8], [5]):

Assumption: there exist a negative number κ and a simply connected compact set K ⊂ R
k such

that for all N ∈ K the spectrum of H(N) can be decomposed as

specH(N) = σcH(N) ∪ σsH(N),

where

ReσcH(N) = 0, ReσsH(N) < κ < 0.

According to this splitting, to any N in some small neighborhood of K there exist spectral
projections Pc(N) and Ps(N). We assume that σcH(N) consists of a finite number q of eigenvalues.
Let the column vectors of the q × q-matrix B(N) form a basis for the space ImPc(N), and let Ec be
the coordinates in this basis, i. e. E = B(N)Ec for E ∈ ImPc(N). In [5] it has been proven that
for sufficiently small ε there exists a finite-dimensional, exponentially attracting smooth invariant
manifold with the representation E = εν(Ec, N, ε), where ν is a smooth bounded function defined
for N in some neighborhood of the set K.

On this invariant manifold, system (1.1) takes the form [4], [5], [8]

dEc

dt
=

[

Hc(N) − εα(N)F (Ec, N) + O(ε2)
]

Ec,

dN

dt
= εF (Ec, N) + O(ε2),

(1.2)

where Ec ∈ C
q, N ∈ R

k, and

Hc(N) := B(N)−1H(N)B(N),

α(N) := B(N)−1Pc(N)∂NB(N),

F (Ec, N) :=
(

f1(N) − (B(N)Ec)
T g1(N)(B(N)Ec)

∗, . . . ,

fk(N) − (B(N)Ec)
T gk(N)(B(N)Ec)

∗) .

(1.3)

In what follows we use the q × q-matrices Gj(N), which are defined by

Gj(N) := B(N)T gj(N)B(N)∗, j = 1, . . . , q, (1.4)

such that we can represent F (Ec, N) in the form

F (Ec, N) :=
(

f1(N) − ET
c G1(N)E∗

c , . . . , fk(N) − ET
c Gk(N)E∗

c

)T
. (1.5)
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If we drop in (1.2) the O(ε2)-terms in (1.2), then we get the system

dEc

dt
= [Hc(N) − εα(N)F (Ec, N)] Ec,

dN
dt

= εF (Ec, N),

(1.6)

which is called mode approximation model. That model is in some sense an implicit system of ordinary
differential equations because the functions Hc(N) and α(N) usually are known only implicitly via the
solution of the characteristic equation for H. Mode approximations have been proven to be extremely
useful for numerical and analytical investigations of longitudinal effects in multi-section semiconductor
lasers since the dimension of system (1.6) is typically low (q is often either 1 or 2; see, e. g., [1], [7], [3],
[4]). In fact, using specific information about the eigenvalues of Hc(N), it is often possible to make
further significant simplification of system (1.2).

The goal of this note is to consider the case when for N ∈ K the q eigenvalues of Hc(N) are
all different. Moreover, we assume that the number of active sections is also q (that is k = q) such
that the set K is, typically, a single point in the N -space. In that case we will transform system (1.2)
into some normal form which, in particular, permits to establish the existence of invariant tori for
system (1.6). The case q = 2 will be studied in more detail.

We note that the normal forms we obtain can be viewed as small (of order O(
√

ε)) perturbations
of some conservative systems. In the case q = 2, for example, the conservative “nucleus” of the normal
form (see equation (3.9)) can be written as a Lagrangian system with two degrees of freedom, given
by the Lagrangian

L = a1

(du1

dt

)2
+ a2

(du2

dt

)2
+

du1

dt

du2

dt
− eu1 − eu2 + b1u1 + b2u2

with certain constants a1, a2, b1, b2. Clearly, the dynamics of small dissipative perturbations of such
systems is not exhausted by invariant tori only. Therefore, further analysis of our normal forms can
provide more insight into the dynamics of multi-section lasers.

2. Transformation to a normal form

We consider system (1.2), where we drop the index c, under the following assumptions:
(A1). There exists N 0 ∈ Rq, q ≥ 2, such that the q× q - matrix H(N 0) has q different eigenvalues

on the imaginary axis.

(A2). There is a neighborhood N of N 0 in Rq such that the matrices H and Gj , and the functions
fj, j = 1, 2, . . . , q, depend smoothly on N for N ∈ N .

We denote by λj(N) = µj(N)+ iωj(N) the eigenvalues of H(N) for N ∈ N . By assumption (A1)
we have

µj(N
0) = 0 for j = 1, . . . , q, ωl(N

0) 6= ωm(N0) for l 6= m. (2.1)

We also assume
(A3). For any different pairs (l, s) and (j, p) of indices it holds

ωl(N
0) − ωs(N

0) 6= ωj(N
0) − ωp(N

0).

Using the eigenvectors of H(N) as column vectors forming the matrix B(N) we have the repre-
sentation Hc(N) = M(n) + iΩ(n) with the diagonal matrices

M(n) = diag(µ1(N), . . . , µq(N)), Ω(n) = diag(ω1(N), . . . , ωq(N)).
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Thus, system (1.2) can be rewritten in the form

dE
dt

=
[

M(N) + iΩ(N) − εα(N)F (E,N) + O(ε2)
]

E,

dN

dt
= εF (E,N) + O(ε2),

(2.2)

where the complex vector E has the components E1, . . . , Eq. It can be shown (see [8]) that every
bounded orbit of system (2.2) must stay in a region of the phase space, where the variable N is close
to N0, i. e., where µj(N) is small for any j. For the sequel, it turns out to be useful to scale the
variable N as N = N 0 +

√
εn. Then, system (2.2) takes the form

dE
dt

=
[

M(N0 +
√

εn) + iΩ(N 0 +
√

εn)−

−εα(N0 +
√

εn)F (E,N 0 +
√

εn) +O(ε2)
]

E,

dn

dt
=

√
ε F (E,N 0 +

√
εn) + O(ε3/2).

(2.3)

From the definition of α(N) and Gj(N) in (1.3) and (1.4) respectively, it follows that system (2.3)
can be rewritten component-wise as

dEl

dt
= λl(N)El − ε

∑

1≤p,j≤q

αj
lp(N)



fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s



Ep+

+ O(|E|ε2), l = 1, . . . , q,

dnj

dt
=

√
ε



fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s



 + O(ε3/2), j = 1, . . . , q.

(2.4)

where |E| denotes the Euclidean norm. The following transformation aims to eliminate the terms
related to the off-diagonal elements of Gj

ms(N0 +
√

εn) on the right-hand side of dnj/dt. We apply
the transformation

ñj = nj +
√

ε
∑

m6=s

EmE∗
s

Gj
ms(N)

λm(N) + λs
∗(N)

, (2.5)

where N = N 0 +
√

εn. The relations Gj
ms(N) = Gj

sm(N)∗ and ωm(N0) 6= ωs(N
0) for m 6= s imply

that this transformation is real and non-degenerate for sufficiently small ε. From (2.5) and (2.2), (2.4)
we obtain

dñj

dt
=

dnj

dt
+

√
ε

∑

m6=s

(

dEm

dt
E∗

s +
dE∗

m

dt
Es

) Gj
ms(N)

λm(N) + λs
∗(N)

+ O(ε3/2) =

=
√

ε
(

fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s

)

+

+
√

ε
∑

m6=s

Gj
ms(N)

λm(N) + λs
∗(N)

(

λm(N) + λs
∗(N)

)

EmE∗
s + O(ε3/2) =

=
√

ε
(

fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s

)

+

+
√

ε
∑

m6=s

Gj
ms(N)EmE∗

s + O(ε3/2).
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Thus, we have

dñj

dt
=

√
ε
(

fj(N) −
∑

1≤s≤q

Gj
ss(N)|Es|2

)

+ O(ε3/2). (2.6)

We recall that N is defined by N = N 0 +
√

εn. It can be easily verified that the right hand side
of (2.6) keeps its form if we replace N by N 0 +

√
ε ñ.

For the field E the same relations hold as in (2.4), but if we replace N by N 0 +
√

εñ, then we have to
consider the first term separately. For this purpose, we rewrite the transformation (2.5) in the form

ñj = nj +
√

ε hj(N
0 +

√
εn,E,E∗), (2.7)

where hj is defined by

hj(N
0 +

√
ε n,E,E∗) :=

∑

m6=s

EmE∗
s

Gj
ms(N)

λm(N) + λs
∗(N)

.

Let h(N 0 +
√

ε n,E,E∗) be the column-vector with the components hj(N
0 +

√
ε n,E,E∗). Then (2.5)

can be represented in the form

n = ñ −√
ε h(N0, E,E∗) + O(ε).

By means of that relation we get

λl(N) = λl(N
0 +

√
ε n) = λl(N

0 +
√

ε ñ − εh(N 0, E,E∗) + O(ε3/2)),

so that we have

λl(N
0 +

√
εn) = λl(N

0 +
√

ε ñ) − εMl(N
0)h(N0, E,E∗) + O(ε3/2),

where Ml(N) is the row-vector defined by

Ml(N) + iWl(N) :=
∂λl(N)

∂N
. (2.8)

Thus, in the new variables, system (2.4) takes the form

dEl

dt
= λl(N

0 +
√

ε ñ)El − εMl(N
0)h(N0, E,E∗)El−

− ε
∑

1≤j,p≤q

αj
lp(N)

(

fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s

)

Ep + O(|E|ε2),

l = 1, . . . , q,

dñj

dt
=

√
ε



fj(N
0 +

√
ε ñ) −

∑

1≤m≤q

|Em|2Gj
mm(N0 +

√
ε ñ)



 + O(ε3/2),

l = 1, . . . , q, j = 1, . . . , q.

(2.9)

In the following step we eliminate the term

εMl(N
0)h(N0, E,E∗)El = ε El

∑

j,m6=s

M j
l Gj

msEmE∗
s
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in (2.9) by means of the transformation

Ẽl = El + εEl

∑

j,m6=s

M j
l

Gj
msEmE∗

s

(λm + λ∗
s)

2
. (2.10)

Differentiating (2.10) and taking into account (2.9) we get

dẼl

dt
=

dEl

dt
+ ε El

∑

j,m 6=s

M j
l Gj

msEmE∗
s

λm + λ∗
s + λl

(λm + λ∗
s)

2
=

= λlEl − ε El

∑

j,m 6=s

M j
l Gj

msEmE∗
s−

− ε
∑

1≤j,p≤q

αj
lp(N)

(

fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s

)

Ep+

+ ε El

∑

j,m 6=s

M j
l Gj

msEmE∗
s

λm + λ∗
s + λl

(λm + λ∗
s)

2
+ O(|E|ε2) =

= λlEl + ε El

∑

j,m 6=s

M j
l Gj

msEms−

− ε
∑

1≤j,p≤q

αj
lp(N)

(

fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s

)

Ep + O(|E|ε2) =

= λlẼl − ε
∑

1≤j,p≤q

αj
lp(N)

(

fj(N) −
∑

1≤m,s≤q

Gj
ms(N)EmE∗

s

)

Ep + O(|E|ε2),

l = 1, . . . , q.

(2.11)

By means of the next transformation we eliminate all terms on the right-hand side of (2.11) which
depend on the optical phase and are of order ε. We apply the following transformation with respect
to the Ẽl, l = 1, . . . , q,

El = Ẽl + ε
∑

s6=l

q
∑

j=1

αj
ls(N

0)fj(N
0)

Ẽs

λs(N
0) − λl(N

0)
−

− ε

q
∑

j=1

∑

s,m,p

αj
lp(N

0)Gj
ms(N

0)
ẼmẼ∗

s Ẽp

λm(N0) + λ∗
s(N

0) + λp(N
0) − λl(N

0)
,

where the last sum is taken over all triples of the indices s, m and p, ranging from 1 to q, excluding
those for which m = l and s = p or p = l and m = s. By (A3), the denominator λm(N0) +
+λ∗

s(N
0)+λp(N

0)−λl(N
0) is non-zero for these indices. Thus, the coordinate transformation (2.12)

is well-defined. Differentiating (2.12) we get

dEl

dt
=

dẼl

dt
+ ε

∑

s6=l

q
∑

j=1

αj
ls(N

0)fj(N
0)

Esλs(N
0)

λs(N
0) − λl(N

0)
+ O(|Ẽ|ε3/2) −

− ε

q
∑

j=1

∑

s,m,p

αj
lp(N

0)Gj
ms(N

0)
ẼmẼ∗

s Ẽp(λm(N0) + λ∗
s(N

0) + λp(N
0))

λm(N0) + λ∗
s(N

0) + λp(N
0) − λl(N

0)
.
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If we substitute for
dẼl

dt
the expression on the right hand side of (2.11), we get

dEl

dt
= λl(N)E l − εEl

∑

j

αj
ll(N

0)fj(N
0) + ε E l

∑

j,s

αj
ll(N

0)Gj
ss(N

0)|Es|2+

+ ε El

∑

j,s6=l

αj
ls(N

0)Gj
ls(N

0)|Es|2 + O(|E|ε3/2).

(2.12)

For the following we denote by Rl and Il the real and the imaginary parts of the factor of εE l in
(2.12), respectively:

Rl(N
0, E,E

∗
)iIl(N

0, E,E
∗
) :=

∑

j

αj
ll(N

0)fj(N
0) −

∑

j,s

αj
ll(N

0)Gj
ss(N

0)|Es|2 −

−
∑

j,s6=l

αj
ls(N

0)Gj
ls(N

0)|Es|2 :=

q
∑

j=1

α̃lj(fj(N
0) −

q
∑

s=1

Gj
ss(N

0)|Es|2) −
∑

s 6=l

βls|Es|2,

where we use the notation

α̃lj = αj
ll(N

0),

βls =

q
∑

j=1

[

αj
ll(N

0)Gj
ss(N

0) + αj
ls(N

0)Gj
ls(N

0)
]

.

From (2.12) and (2.9) we obtain the system

dEl

dt
= λl(N)E l − ε El

(

Rl(N
0, E,E

∗
) + iIl(N

0, E,E
∗
)
)

+ O(|E|ε3/2),

dñj

dt
=

√
ε



fj(N
0 +

√
εñ) −

∑

1≤m≤q

|Em|2Gj
mm(N0 +

√
εñ)



 + O(ε3/2),

l = 1, . . . , q, j = 1, . . . , q.

(2.13)

Our next goal is to eliminate the term ε E lRl(N
0, E,E

∗
) on the right hand side of dE l/dt. For

this purpose we require:

(A4). The matrix M(N 0) consisting of the row-vectors defined in (2.8) is invertible.

Under the assumption (A4) we can introduce the new coordinate n implicitly by the system of
equations (l = 1, . . . , q):

µl(N
0 +

√
ε n) = µl(N

0 +
√

ε ñ) − εRl(N
0, E,E

∗
). (2.14)

Let R be the column vector with the components R1, . . . , Rq and µ be the column vector with
the components µ1, . . . , µq. Under the assumption (A4) we get from (2.14)

n = ñ +
√

ε(M(N 0))−1(M00ññ − M00nn − R + O(
√

ε)), (2.15)

where M00 is the bilinear form defined by

M00NN :=
∂2µ

∂N2
(N0)NN.

Substituting (2.15) into M00nn we get

M00ñ ñ − M00nn = O(
√

ε).

REGULAR AND CHAOTIC DYNAMICS, V. 11,
�

2, 2006, pp. 213–224 219



S. V.GONCHENKO, K. R. SCHNEIDER, D. TURAEV

Thus, we have by (2.15)

n = ñ −√
εM(N0)−1R + O(ε),

or

nj = ñj −
√

ε

q
∑

l=1

M jlRl + O(ε),

where we denote by M jl the entries of the matrix M(N 0)−1. Using the above formulas, and taking
into account (2.14) we obtain from (2.13)

dEl

dt
= El

(

µl(N
0 +

√
ε n) + iωl(N

0 +
√

ε n + εM(N 0)−1R) − iεIl)
)

+ O(ε3/2|E|),

dnj

dt
=

√
ε
(

fj(N
0 +

√
ε n) −

∑

1≤m≤q

|Em|2Gj
mm(N0 +

√
ε n)− =

q
∑

l=1

M jl d
dt

Rl

)

+ O(ε3/2),

l = 1, . . . , q, j = 1, . . . , q.

(2.16)

Introducing the notation (see (2.13))

ᾱlj := Imα̃lj −
q

∑

s=1

WlsReα̃sj, β̄ls := Imβls −
q

∑

p=1

WlpReβps,

Ḡjm(N0 +
√

εn̄) := Gj
mm(N0 +

√
εn̄) − 2γjmµm(N0 +

√
εn̄),

γjm :=

q
∑

p=1





q
∑

l=1

M jlReα̃p
l G

p
mm(N0) +

∑

l 6=m

M jlReβp
lm



 ,

where Wls denotes the entries of the matrix W (N 0)M(N0)−1, we may rewrite system (2.16) as follows
(note that the corrections 2γjmµm to the coefficients Gj

mm are of order
√

ε because µ(N 0) = 0 by
assumption):

dEl

dt
= El

(

µl(N
0 +

√
ε n) + i

[

ωl(N
0 +

√
ε n) −√

ε

q
∑

j=1

ᾱlj
d
dt

n̄j−

− ε
∑

s6=l

β̄ls|Es|2
])

+ O(ε3/2|E|),

dnj

dt
=

√
ε
(

fj(N
0 +

√
ε n) −

∑

1≤m≤q

|Em|2Ḡjm(N0 +
√

ε n)
)

+ O(ε3/2),

l = 1, . . . , q, j = 1, . . . , q.

(2.17)

Summarizing our investigations we have the result:

Theorem 1. Under the assumptions (A1) − (A4), to any compact region of the phase space of

system (2.4) there is a sufficiently small ε0 such that for 0 < ε ≤ ε0 system (2.4) is mapped into

system (2.17) by a coordinate transformation, which is O(
√

ε) close to identity in the given region.

Remark 1. System (2.17) is our wanted normal form.
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3. The truncated system

If we omit the O(ε3/2)- terms in (2.17) we get the truncated system

dEl

dt
= El

(

µl(N
0 +

√
ε n) + i

[

ωl(N
0 +

√
ε n) −√

ε

q
∑

j=1

ᾱlj
d
dt

n̄j − ε
∑

s6=l

β̄ls|Es|2
])

,

dnj

dt
=

√
ε



fj(N
0 +

√
ε n) −

∑

1≤s≤q

|Es|2Ḡjs(N
0 +

√
ε n)



 .

(3.1)

The following theorem gives an answer to the question about the deviation of the trajectories of
system (2.17) from the trajectories of the truncated system (3.1).

Theorem 2. Let the hypotheses (A1)−(A4) to be valid. Then the trajectories of the systems (2.17)
and (3.1) starting at the same initial point are uniformly O(ε)-close on a time interval of order

O(
√

1/ε).

Proof. We write system (3.1) and system (2.17) in the form

dz
dt

= ζ(z, ε), dw
dt

= ζ(w, ε) + O(ε3/2) (3.2)

respectively, where z, w ∈ C
2q. We denote by (·, ·) the usual scalar product in C

2q and introduce by
‖v‖ =

√

(v, v) a norm in C
2q. Let C be some compact convex region in C

2q. We denote by Z(z, ε) the

derivative of ζ(z, ε) with respect to z and by κ(ε) the maximal eigenvalue of 1
2
(Z(z, ε)+Z(z, ε)∗

>

) for

z ∈ C. In our case, the relation κ 6 κ0
√

ε can be easily verified.
Let z(t, ε) and w(t, ε) be the solutions of the corresponding systems in (3.2) satisfying z(0) = w(0),
and let δ(t) = z(t, ε) − w(t, ε). Under our assumptions we have

d
dt
‖δ(t)‖ ≤ ((z(t, ε), ε) − (w(t, ε), ε) + O(ε3/2), δ(t))

2‖δ(t)‖ +

+
(δ(t), (z(t, ε), ε) − (w(t, ε), ε) + O(ε3/2))

2‖δ(t)‖ =

=
((Z + Z∗>)δ(t), δ(t))

2‖δ(t)‖ + O(ε3/2) ≤ κ0

√
ε‖δ(t)‖ + O(ε3/2).

Taking into account δ(0) = 0 we obtain from this inequality

‖δ(t)‖ ≤ O(ε)eκ0

√
εt,

which implies the result claimed in the theorem.

If we represent E l(t), l = 1, . . . , q, in the form

El(t) =
√

Sl(t)e
iϕl(t), (3.3)

then we get from (3.1) the system

dϕl

dt
= ωl(N

0 +
√

ε n) −√
ε

q
∑

j=1

ᾱlj
d
dt

n̄j − ε
∑

s6=l

β̄lsSs,

dSl

dt
= 2µl(N

0 +
√

εn)Sl,

dnl

dt
=

√
ε
(

fj(N
0 +

√
εn) −

∑

s

Ḡjs(N
0 +

√
εn)Ss

)

,

l = 1, . . . , q.

(3.4)
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Let S and f be the column-vectors with the components S1, . . . , Sq and f1, . . . , fq, respectively,
let Ḡ be the matrix with the entries Ḡjs, 1 ≤ s, j ≤ q. Then the amplitude system to (3.4) can be
represented in the form

dSl

dt
= 2µl(N

0 +
√

εn)Sl,

dn
dt

=
√

ε
(

f(N0 +
√

εn) − Ḡ(N0 +
√

εn)S
)

.

(3.5)

Using the scaling τ =
√

ε t, µ̃l = µl/
√

ε, we get from (3.5)

dSl

dτ
= 2µ̃l(N

0 +
√

εn)Sl, l = 1, . . . , q,

dn

dτ
= f(N0 +

√
ε n) − Ḡ(N0 +

√
ε n)S.

(3.6)

According to µ(N 0) = 0 we obtain µ̃(N 0 +
√

εn) = M(N 0)n + O(
√

ε). Since M(N 0) is invertible by
assumption (A4), we can implicitly introduce new variables η1, .., ηq by ηj = µ̃j(N

0 +
√

ε n).

Taking into account n = M(N 0)−1η + O(
√

ε) we get from (3.6) the system

dSj

dτ
= 2ηjSj, j = 1, . . . , q,

dη

dτ
= f̂(N0 +

√
εη) − Ĝ(N0 +

√
εη)S + O(ε),

(3.7)

where f̂ = M0f , Ĝ = M0G̃.

For ε = 0 the amplitude system (3.7) has the form

dSj

dτ
= 2ηjSj, j = 1, . . . , q,

dη

dτ
= F̂ (N0) − Ĝ(N0)S.

(3.8)

This system is conservative and reversible: setting Sj = euj we get from (3.8)

d2u

dτ2
= F̂ (N0) − Ĝ(N0)







eu1

...
euq






. (3.9)

Thus, the amplitude system (3.7) belongs to the class of conservative systems with a small (of or-
der O(

√
ε)) dissipation. In particular, if this system has an exponentially stable equilibrium or a pe-

riodic orbit, its Lyapunov exponents must be of order O(
√

ε) or less, i. e. the stability is rather
weak.

4. Existence of invariant tori

By Theorem 2, system (3.4) and therefore also system (3.7) provides a good description of the dynamics
of the original system (2.2). For example, the equilibria of (3.7) with non-negative Sj correspond to
invariant tori of system (3.1): the dimension of the torus equals q minus the number of zero components
of the vector S. Periodic orbits of system (3.7) lying in the region where all Sj are non-negative also
correspond to invariant tori of (3.1) with the dimension (q + 1) minus the number of identically
vanishing Sj. By the O(ε)-closeness of system (3.1) to the original system (2.2) it follows that if
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the invariant torus is normally-hyperbolic with the transverse Lyapunov exponent of order O(
√

ε) at
least (i. e. if the characteristic exponents of the corresponding equilibrium or the periodic orbit of the
amplitude system (3.7) lie on a distance of order at least O(

√
ε) from the imaginary axis), then this

invariant torus persists in the original system for all small ε.
In what follows we investigate the case q = 2 in more detail. The amplitude system (3.7) is

written here as
dS1

dt
= 2η1S1,

dS2

dt
= 2η2S2,

dη1

dt
= F1(N

0 +
√

εη) − G11(N
0 +

√
εη)S1 − G12(N

0 +
√

εη)S2 + O(ε),

dη2

dt
= F2(N

0 +
√

εη) − G21(N
0 +

√
εη)S1 − G22(N

0 +
√

εη)S2 + O(ε),

(4.1)

where we removed the “hat”-signs from F and G. In the general case, for ε = 0 system (4.1) has
a unique equilibrium satisfying S1 6= 0, S2 6= 0, namely

η1 = η2 = 0,

S1 = S∗
1 = (F1(N

0)G22(N
0) − F2(N

0)G12(N
0))/∆,

S2 = S∗
2 = (F2(N

0)G11(N
0) − F1(N

0)G21(N
0))/∆,

(4.2)

where
∆ = G11(N

0)G22(N
0) − G12(N

0)G21(N
0).

Thus, system (4.2) has an equilibrium with positive S1 and S2 if and only if

(F1(N
0)G22(N

0) − F2(N
0)G12(N

0))∆ > 0,

(F2(N
0)G11(N

0) − F1(N
0)G21(N

0))∆ > 0.
(4.3)

Such equilibrium corresponds to a two-dimensional invariant torus of system (3.4), or, in other words,
to a family (parametrized by two initial phases) of two-frequency solutions of (3.4) with frequencies
close to ω1(N

0) and ω2(N
0).

From (1.5) it follows that the original system (2.2) has the following symmetry: if (E(t), n(t)) is
a solution of (2.2) than also (E(t)eϕ, n(t)) is a solution, where ϕ is any real number. This symmetry
implies that the phase-space can be factorized by identifying all points (E1, E2) having the same
values of |E1|2, |E2|2 and E1E

∗
2 . The truncated system (3.1) has the same symmetry. In order to

prove that the torus, which corresponds to equilibrium (4.2), persists also for small ε, we note that the
quasiperiodic solutions which fill it are relative periodic, i. e., they become periodic in the factorized
state space.

Since systems (2.2) and (3.4) are close to each other (in the sense of Theorem 2), system (2.2)
will have a relative periodic solution close to the relative periodic solution of (3.4), for all sufficiently
small ε, provided the latter has no zero multipliers. This condition is equivalent to the requirement
that the equilibrium of the amplitude system (4.1) has no zero characteristic root.

The characteristic equation for the equilibrium (4.2) of system(4.1) can be written as

λ4 −√
ε(p11 + p22)λ

3 + λ2(2S∗
1g11 + 2S∗

2g22)+

+
√

ε
(

2S∗
1(g21p12 + g11p22) + 2S∗

2(g12p21 − g22p11)
)

λ + 4S∗
1S∗

2∆ + O(ε) = 0,
(4.4)

where we use the notation gij = Gij(N
0), pij = ∂(Fi − Gi1S

∗
1 − Gi2S

∗
2)/∂Nj |N=N0 . In case ε = 0,

where (4.4) can be reduced to the quadratic equation

%2 − 2(S∗
1g11 + S∗

2g22)% + 4S∗
1S∗

2∆ = 0 (4.5)

the condition S∗
1S∗

2∆ 6= 0 implies that no root of (4.5) vanishes, and, therefore, also no root of (4.4)
for sufficiently small ε.
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Thus, we arrive at the following result.

Theorem 3. For sufficiently small ε, system (2.2) with q = 2 has a unique two-dimensional

invariant torus, that is a family of two-frequency solutions with frequencies close to ω1(N
0) and ω2(N

0)
if and only if the conditions (4.3) are fulfilled.

The corresponding invariant torus will be stable if all roots of the characteristic equation (4.4)
are located in the left half plane and have a distance of order larger than O(ε) to the imaginary axis.
As we mentioned above, system (4.1) is O(

√
ε)-close to a conservative system. Therefore, in order

to ensure stability, the real parts of the characteristic roots (which tend to zero as ε → 0) must be
of order at least O(

√
ε) for non-zero ε. So, we make an ansatz λ = iν − √

εσ in the characteristic
equation (4.4), and get the following equation:

ν4 − 2ν2(S∗
1g11 + S∗

2g22) + 4S∗
1S∗

2∆+
+iν

√
ε
[

(p11 + p22 + 4σ)ν2 − 4σ(S∗
1g11 + S∗

2g22)+
+(S∗

1(g21p12 − g11p22) + S∗
2(g12p21 − g22p11))] + O(ε) = 0.

In the limit ε = 0, this yields
ν4 − 2ν2(S∗

1g11 + S∗
2g22) + 4S∗

1S∗
2∆ = 0,

(p11 + p22 + 4σ)ν2 = 4σ(S∗
1g11 + S∗

2g22) + 2S∗
1(g11p22 − g21p12) + 2S∗

2(g22p11 − g12p21).

Thus, the stability condition for small ε requires that all solutions ν 2 and σ of these equations must
be real and positive. A routine computation shows that this requirement is equivalent to the following
set of inequalities:

S∗
1g11 + S∗

2g22 > 2
√

S∗
1S∗

2∆, p11 + p22 < 0,

|S∗
1(g11p22 − g21p12) + S∗

2(g22p11 − g12p21) + |p11 + p22|(S∗
1g11 + S∗

2g22)| <

< |p11 + p22|
√

(S∗
1g11 + S∗

2g22)2 − 4S∗
1S∗

2∆.

(4.6)

Hence, we have the following result.
Theorem 4. The two-dimensional invariant torus established in Theorem 3 is asymptotically

stable for sufficiently small ε provided the inequalities (4.6) hold.
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