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It is known that a rapid development of the qualitative theory of multidimensional dynamical 
systems began in 1960s, which was stimulated, to a large extent, by the works of Anosov and 
Smale who laid the foundations for the hyperbolic theory. It was discovered, in the same years, 
that in contrast to two-dimensional vector fields, structurally unstable multidimensional fields can 

form domains in the space of dynamical systems. Smale [1] was the first to point out that fact. 
He constructed an example of three-dimensional diffeomorphism where structural instability was 
present on a wandering set, i.e., a structurally unstable one-dimensional manifold of a fixed saddle 
point unremovably touched the stable foliation of Anosov's torus. Somewhat later, the. researchers 
discovered open domains of systems in which the instability was concentrated on non wandering sets. 
Here we must, first of all, point out domains of everywhere dense structural instability connecte~ 
with homoclinic tangencies (Newhouse domains [2, 3]) as well as systems with Lorenz attractor's 

[4, 5). However whereas only two invariants, kneading invariants, are required in a nonsymmetric 

case (one in a symmetric case) in order to describe Lorenz at tractors [6), the situation is considerably 

more complicated in Newhouse domains [7, 8, 9], namely, infinitely many invariants (in particluar, 

the so-called n -moduli "[10, 11]) are required. The materialization of the latter fact is that in 

Newhouse domains systems with a countable set of periodic motions of any order of generation 
.. are dense ~ well as systems with a countable set of homoclinic tangencies of any order. Another 

important characteristic property of systems in Newhouse domains is the property of coexistence 
- -of a countable set of periodic orbits of different topological types. As applied to two-dimensional 

diffeomorphisms, this property manifests itself as follows: in Newhouse domains connected with a. 
homoclinic tangency of a fixed saddle point diffeomorphisms which, along with the saddle periodic 
orbits, have a countable set of stable (completely unstable) periodic orbits if the saddle value Cf 

of the fixed point is smaller than unity (larger than unity) are everywhere dense. Here Cf = IA'YI, 
where A and 'Y are eigenvalues of the mapping linearized at a fixed point. 

In this work, we consider two-dimensional diffeomorphisms with structurally unstable hetero
clinic cycle which contains fixed saddle points and heteroclinic orbits. We assume that-exactly one 
of the latter orbits is structurally unstable and, along it, a stable and an unstable manifold have 
a quadrat.ic tar:~ency. When the saddle values of all fixed points of the cycle are simultaneously 
less than or lar>!;er than unity, the resluts do not differ, in principle, from the known results in the 
case of diffeomorphisms with a homoclinic tangency. However, if there are at least two fixed points 
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in a cycle, one of which has a saddle value larger than unity, then · a new phenomenon appears, 
namely, there are Newhouse domains in the vicinity of the diffeomorphism with such a cycle where. 
the diffeomorphisms which have simultaneously a countable set of saddle orbits, a countable set of 
saddle orbits, and a countable set of completely unstable periodic orbits are dense. In their totality, 
these orbits are "unseparable" from one another since the closures of both the sets of stable and 
of the sets of completely unstable periodic orbits also contain saddle periodic orbits of nontrivial 
hyperbolic subsets. 

Note that these statements are also valid for general one-parameter families of twc:rpimensional 
diffeomorphisms and three-dimensional flows. The last circumstance is especially important for 
problems of nonlinear dynamics since these new phenomena can be found in dynamical models 

with an alternating divergence (for instance, in Chua's circuits, see [12]). 
Since homoclinic tangencies naturally appear upon small smooth perturbations of a diffeomor

phism with a structurally unstable heteroclinic cycle, we shall first give a short review of some 
results connected with homoclinic bifurcations. 

1. A SHORT REVIEW OF HOMOCLINIC BIFURCATIONS IN THE CASE OF 
TWO-DIMENSIONAL DIFFEOMORPHISMS 

Let a c r-smooth (r 2: 2) twc:rdimensional diffeomorphism g0 have a structurally stable fixed 

saddle point 0, whose stable WJ and unstable W0 manifolds have a quadratic tangency at the 

points of a certain homoclinic orbit f 0 • Suppose that the point 0 has eigenvalues .\o and /o, where· 
l.\ol < 1, I"Yol > 1. We assume that the saddle value. uo = l.\olhol of the point 0 is different from 
unity. Diffeomorphisms, close to g0 , which have a structurally unstable homoclinic orbit close to 
fo form, in the space of twc:rdimensional diffeomorphisms, a locally connected bifurcation surface 
H0 of codimension 1. Let g~-' be a one-parameter family of cr-smooth diffeomorphisms which is 

' transversal to Ho for J.L = 0. ., 
Here is a brief review of some most important and well known properties of homoclinic bifur

cations given with the use of the example of the family gw 

Note, first of all, the property of nonisolatedness of homoclinic tangencies. In the simplest 
version, it can be formulated as the following statement. 

Let xo be a point of the orbit fo. There exists a sequence J.Li of values of the parameter J.', such 
that the diffeomorphism gJJ.; has, at the point x P.i, a quadratic homoclinic tangency of manifolds of 

--i;~ fixed sa_4dle point 0i!i-' tchere J.Li-+- 0, Xp.j -+- Xo 1 01/>i -+- 0 as i-+- 00. 

. -- This statement is obvious, and its geometric meaning can be seen from Fig. 1 in which it is 
demonstrated how the secondary (quadratic) homoclinic tangency arises. 

Note, however, that the condition of genericity of the family g,. does not yet guarantee that 

in its bifurcation set all values of the parameter are associated with only nondegenerable bifurca
tions, in particular, if there are homoclinic tangencies, then they are only quadratic. As is shown 
in [8, 13), 

any generic family, which contains a system with homoclinic tangency, can be reduced, by an 
arbitrarily small smooth perturbation, again to a generic family in whose bifurcation interval there 
exist values of the parameter corresponding to an arbitrarily generate bifurcations. 

It is shown in Fig. 2 how. for instance, cubic tangencies of manifolds of the point 0,. can arise. 

Thus the question concerning the type of new homoclinic tangencies arising at I' =f: 0 requires a 
special attention since they are not automatically quadratic. 
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Quadratic tangency 

Fig. 1. 

The property of nonisolatedness of homoclinic tangencies is also manifested in the fact that 
systems with homoclinic tangencies densely fill up whole domains (Newhouse domains) in the space 
of dynamical systems. Moreover, such domains can be found in generic one-parameter families 
containing a system with a homoclinic tangency, namely, the following result is proved in [3]. 

Newhouse theore~. On the interval [ - po, J.Lo], for any JLo > 0 there exists intervals whe~ 

the values of the parameter J.l for which the diffeomorphism gp. has a quadratic tangency of invariant 

manifolds of a certain periodic saddle orbit are dense. 

This result is generalized in (14] to a multidimensional case for generic parametric families 
containing a system with a. homoclinic tangency. 

The property of coexistence of periodic orbits of different topological types is another important 
property which demonstrates homoclinic bifurcations. In the case of two-dimensional di:ffeomor

. · p.hisms, which a.re close to a. system with a. homoclinic tangency, it is manifested in the fact that 
'besides p~ii~dic saddle orbits belonging to nontrivial hyperbolic subsets (15], di:ffeomorphisms of 
·this kind. ~an also contain either stable or completely unstable periodic orbits according as the 
saddle value O'o of the point 0 is smaller or larger than unity respectively. For the first time, the 
statement concerning the coexostence of stable periodic orbits in the vicinity of a ho111oclinic tan
gency, which is often called a theorem of the existence of a cascade of sinks (sources}, was obtained 

in (15] a.nd can be formulated as follows. 

Assume that 0' < 1 ( resp. 0' > 1). Then, on the interval [- JLo,J..Lo] for any JLo > 0 there exists a 

sequence of nonintersecting intervals&; = (JLi, J.li•) contracting to J.l = 0 as i -+ oo and such that for 

JL E 8; the diffeomorphism gJJ. has an asymptotically stable (completely unstable, resp.) one-circuit 

periodic orbit.1 For J.l = J.li the diffeomorphism gp. has a one-circuit simplest structurally unstable 

1We ca.n sa.y tha.t a. periodic orbit, which lies entirely in a. sma.ll fixed neighborhood of the contour 0 U fo, is a. 
k-circuit if its intersection with the sma.ll neighborhood of the point zo of the homoclinic ta.ngency consists exactly 
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periodic orbit of the saddle-node type and, for p. = p.;*, it has a one-circuit simplest .structurally 
unstable periodic orbit with the multiplicator - 1. 

A similar result for a generic one-parameter famliy of multidimensional diffeomorphisms, in the 
case, where the unstable manifold of the point 0 is one-dimensional, was established in [16] (see 

" also [17], where the existence of a cascade of sinks was established for special families). '-, 

The existence of a cascade of sinks (sources) and the existence of Newhouse intervals associated 

with a homoclinic tan~ency make it possible to formulate the following result (theorem on the 

coexistence of a countable set of sinks (sources)). 

Let O"o < 1 ( uo > 1, resp.). Then, in Newhouse intervals, the values of the parameter p., for 

which g"' has a countable set of stable (completely unstable, resp.) periodic orbits, are dense . 

..::..:. Note t.h.at the authors of [9, 13] found, for multidimensional systems which are close to a 
system Witli a homoclinic tangency, conditions for the existence as well as the absence, in a small 

- · neighborhood of a structurally unstable homoclinic orbit, of periodic orbits of some topological · 

type.2 I~ particular, for the case of two-dimensional diffeomorphisms with a homoclinic tangency 
it follows that if uo < 1, then neither go nor diffeomorphisms close to g0 have completely unstable 

periodic orbits in the small neighborhood, U(O U fo) and if u0 < 1, they do not have stable orbits. 

Thus, under general conditions, two-dimensional diffeomorphisms with a structurally unstable 
homoclinic orbit and diffeomorphisms close to them cannot contain simultaneously. stable and 
complelely unstable orbits in its small neighborhood. As is shown in the present article, the 

of k points. 
2 For instance, it was established in [9, 13] that stable periodic orbits could appear even in the case, where the 
dimension of the unstable manifold of the point 0 was 2 (in this case its unstable multiplicators must be complex 
conjugate) and that these orbits unremovably appeared only in two- or even three-parameter families. Correspond
ingly, the attainment of the boundary of stability can be followed by the appearance of orbits with two or even 
three, respectivdy, multiplicators modulo unity. 
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countable sets of these orbits can coexist for diffeomorphisms which are close to diffeomorphisms 
with a structurally unstable heteroclinic cycle. 

2. STATEMENT OF THE PROBLEM AND FORMULATION OF THE MAIN RESULTS 

In this article we shall study the bifurcations and the structure of the set of nonwandering 
orbits of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally 
unstable heteroclinic cycle. 

Let us recall how a heteroclinic cycle is interpreted. Let a dynamical system have structurally · 
stable periodic saddle orbits P11 ••• , Pn and heteroclinic orbits f 12 , •.• , r n-1n and r n 1 such that 

rii+I c wu(L;) n W"(L;+t) , i = 1, ... , n- 1, r n 1 c wu(Ln) n·W"(Lt) . A heteroclinic cycle is: 

a set of orbits C = {£1 , •••• Ln, f 12, ••. , r n - tn. r nd· The cycle is structurally stable if all indi
cated intersections of invariant manifolds along heteroclinic orbits are transversal and structurally 
unstable if at least one .of the intersections is non transversal. 

Examples of two-dimensional diffeomorphisms with structurally unstable heteroclinic cycles are 
shown in Fig. 3. In the first case (Fig. 3a) the cycle contains several fixed saddle points (or periodic 

. . ~addle orbi~~ in the general case) and several heteroclinic orbits of which exactly one orbit (namely, 

·r,i1 ) is structurally unstable. In the second case (Fig. 3b) a simple structurally unstable heteroclinic 
. . 

·cycle is s~own. Here 0 1 and 0 2 are fixed saddle points, the manifolds wu(OI) and W" (0 2 ) intersect 

transversally at the points of the orbit f 12 , and the manifolds wu(02) and W"(01 ) have a quadratic 
tangency at the points ef the orbit r 21· 

The main attention will be paid to diffeomorphisms with the simplest structurally unstable 

cycles. Let fo be a diffeomorphism of this kind from the class cr (r ~ 3) on the two-dimensional 

smooth manifold M 2 • We denote by -\;, 'Yi the eigenvalues of the point 0; such that l-\;l < 1, 

1;;1 > 1, i = 1, 2, and by a; the saddle value of the point 0 ;, i.e., d; = l-\;;;1. We assume that 
a; f:. 1. Let U be a sufficiently small neighborhood of the heteroclinic cycle C = 01 U 02 U r 12 U r 21- . 

The diffeomorphisms which are close to fo and have a structurally unstable heteroclinic orbit 

form a locally connected bifurcation surface H of codimension 1 in the space Diff'" (M2) of two

dimensional cr -diffeomorphisms on M 2 • When investigating the bifurcations of systems with a 

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 216 1997 



ON NEWHOUSE DOMAINS OF TWO-DIMENSIONAL DIFFEOMORPHISMS 75 

structurally unstable heteroclinic cycle, it is natural to begin with the bifurcation in the one
parameter family f~A of diffeomorphisms which includes /o and is transversal to H. 

As is shown in the article, the solution of the problem concerning the coexistence in the neigh
borhood U of stable and completely unstable periodic orbits in systems which are close to fo 
essentially depends on the conditions satisfied by the saddle values 0'1 and 0'2 • It seems to be 
natural (and is proved, see Statement 2 in Section 7) that if the saddle values 0'1 and 0'2 are both 

smaller than unity (both larger than unity, resp.), then neither /o nor diffeomorphisms which are 

close to it have completely unstable (stable, resp.) periodic orbits in U. Quite a different situation 

is observed in the case when the saddle values 0'1 and 0'2 are on different sides of unity. Here stable 
and completely unstable periodic orbits may coexist. Moreover, we establish the follwing general 

result (Theorem 4). 

The fundamental theorem. Let /p. be a one-parameter family of two-dimensional diffeo

morphisms from the class f:T (r 2::: 3). We assume that for p. = 0 the family f~A is transversal to H, 

and fo E H . We also assume that one of the saddle values 0'1 and 0'2 of fo is smalle1' than unity, 
and the other is larger than unity. Then, on any interval [ -p.o, J.Lo] of the values of the parameter p. 

there exists a countable set of intervals Ll] which accumulate to J.l = 0 as i -+ oo and are such that 

(1) on ~1 the values of the parameter J.l, for which f~A has a structurally unstable homoclinic to 

0 1 orbit, are dense and the values of of the parameter J.l for which f~A has a structurally unstable 

homoclinic to 02 orbit are also dense; 

(2) on Ll1 the values of the parameter J.l, for which f~~o has a structurally unstable heteroclinic 

cycle containing the points 0 1, 0 2 and the heteroclinic orbits f 12 (J.L), where f 12(0) = r12 . and 

f21 (p.) c w:(o2) n w;(01) are dense (the orbit f 12 (p.) is structurally stable and at the points of 

the orbit f 21 (p.) the manifolds w:(02) and w;(Ot) have a quadratic tangency); ; , 

' .., 
{3) on Ll1 the values of the parameter J.l, for which f~~o have simultaneoulsy a countable set of 

stable and a countable set of completely unstable periodic orbits, are dense. 

In addition to the Newhouse intervals indicated in the fundamental theorem (we shall call 

them interval of the first type), there can exist, in the family f~~o, Newhouse intervals of two more 

types which are characterized by the following main property which distinguish them from the 

intervals Ll]: in the intervals of the second and the third type the values of the parameter J.l, for 

-V.:hich f~~o ~ a structurally unstable homoclinic orbit of only one fixed saddle point (the point 

-_ 01 or the point 02 according as the type of the heteroclinic contour), are dense, and, in these 

intervals; there are no values of the parameter p. for which the diffeomorphism f~~o would have a 

homoclinic orbit of the other fixed saddle point. It should be also pointed out that the existence 
of Newhouse domains of the second and third types is possible not for any diffeomorphism with a 
structurally unstable heteroclinic cycle, namely, domains of this kind can only be in the vicinity of 

certain diffeomorphisms of the third class according to our classification. In Section 6 (by analogy 

with a structurally unstable homoclinic situation [15]) we divide diffeomorphisms with structurally 

unstable heteroclinic cycles into three classes according to the types of description of the set N0 of 
orbits which lie entirely in the neighborhood U. Figure 4 shows four types of diffeomorphisms with 
the structurally unstable cycle in the case where ~i and "/i, i = 1, 2 are positive. For diffeomorphisms 
of the first class (such as shown in Fig. 4a), as is proved in [18], the set N0 has a trivial structure: 

No= {Ot, 02, f 12, f21}; for diffeomorphisms of the second class (Fig. 4b) the set N0 admits a full. 
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Fig. 4. 

description in terms of symbolic dynamics (see Section 5); for diffeomorphisms of the third cl~ 

(examples of these diffeomorphisms are given in Figs. 4c and 4d) the set No, in general, does no· 

longer admit a full description, contains nontrivial hyperbolic subset (Theorem 3), and, on the 

bifurcation surface H3 of these diffeomorphisms (see Sections 8 a.nd 9) systems with structurally 
unstable periodic and homoclinic orbits are dense. 

We introduce the quantities 

- and 

(J =_In IA2I 
In htl 

Note that the invariant fJ is a modulus of 0-conjugacy (i.e., a continuous invariant of the 

topological conjugacy in a set of nonwandering orbits) of diffeomorphisms of the third class with a 

structurally unstable he'teroclinic cycle (Theorem 6), and the quantity a characterizes the type of 
stability of one-circuit periodic orbits. 

We assume that a < 1 since the case a > 1 reduces to the case under consideration for the 
diffeomorphism j-1 • Note that the condition a < 1 is one of the sufficient conditions for the 
existence of stable periodic orbits for diffeomorphisms on H3 (Theorem 12). In particular, for 

a < 1 in Newhouse domains of all three types the values of the parameter p. corresponidng to the . 
existence of a countable set of stable periodic orbits are dense. 
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(a) (b) (c) 

Fig. 5. p > 0 (a.), p = 0 (b), p < 0 (c). 

In order to give a general idea of Newhouse intervals of the second and third types and charac
terize the dynamical properties of the diffeomorphisms /IJ. for the values of the parameter J.1. from 

these intervals, we shall consider, for definiteness, the family /IJ. containing for J.1. = 0 the diffeomor
phism shown in Fig. 4c. We agree that the parameter J.1. belongs to the family in such a way that, 
for J.L > 0, f/.lo does not have heteroclinic orbits which are close to r 21 , and for J.L < 0 it has exactly 

two structurally stable ~eteroclinic orbits which are close to f 21 (Fig. 5). We have the following 

statement for this generic family (see Theorems 15 and 16): 

(1) Irrespective of the quantity a, on the interval ( -J.Lo, 0] there exists, for any J.Lo > 0, a 

countable set of intervals 61 from the fundamental theorem. 

(2) For J.L > 0, the diffeomorphism /p. does not have in U any homoclinic orbits of the point 0 1 

or heteroclinic cycles which include the jwints 0 1 and 0 2 • 

(3) In the case a < 1, 0'1 > 1, 0'2 < 1, on the interval (0, J.Lo] there exists a countable set p/ .., 
intervals 6~ which accumulate to J.Lo = 0 and are such that in !1~ the values of the parameter J.L, for 
which /p. has a structurally unstable homoclinic orbit of the point 0 2 , ·are dense, and the values of 

the parameter J.L, for which JIJ. has a countable set of stable peiodic orbits, are dense. In this case, 

the diffeomorphisms /p.for J.L ~ 0 do not have in U any completely unstable periodic orbits. 

( 4) In the case a < 1, 0'1 < 1, 0'2 > 1, on the interval (0, J.Lo] there exists a countable set of 

-~~tervals 6~ which accumulate to J.Lo = 0 and are such that in 6~ the values of the parameter J.L, 

--J.~r which "b has a structurally unstable homoclinic orbit of the point 0 2, are dense and the values 

of the parameter J.l., for which /p. has simultaneously a countable set of stable and a countable set 

of completely unstable periodic orbits, are dense. 

Here is the plan of this work. In Section 3 we describe some general geometric and analytic 
properties of diffeomorphisms with the simplest structurally unstable heteroclinic cycle. In particu
lar, we give here the definition of the generic one-parameter family /IJ. containing a diffeomorphism 

with a structurally unstable heteroclinic cycle, describe the properties of local mappings defined 
in the neighborhoods of the fixed saddle points 01 and 0 2 , and of global mappings defined in the 
neighborhoods of the heteroclinic orbits f 12 and f21 , we also introduce special neighborhoods. In 
Sections 4 and 5 we study the question of the existence and the structure of nontrivial hyperbolic 
subsets of the diffeomorphisms fw In Section 6 we divide diffeomorphisms with a structurally un

stable heteroclinic cycle into three classes according as the structure of the set No of orbits which 
lie entirely in the neightborhood of the contour. In Section 7 we prove the main result of the article, 
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namely, the theorem on the existence of Newhouse intervals of the first type in the family /~~> which 

contains a diffeomorphism with the simplest structurally unstable heteroclinic cycle (Theorem 4) 
and generalize this theorem to the case of diffeomorphisms with an arbitrary structurally unstable 

heteroclinic cycle (Theorem 5). In Sections 8- 10 we study certain dynamical properties of dif

feomorphisms of the third class with a structurally unstable heteroclinic cycle (on the bifurcation 

surface Ha) . 

We prove in Section 8 that the diffeomorphisms on H3 have moduli of 0-conjugacy (in par

ticluar, the invariant 0 is the principal modulus of this kind (Theorem 6)) and that on H3 the. 

diffeomorphisms with a countable set of 0 -moduli are dense (Theorem 9). In Sections 9- 10 we 

study the main bifurcations of periodic and homoclinic orbits of systems on H3 in the framework 
of one-parameter families where () is a parameter. On this basis, we establish in Section 10 the 
conditions for the existence and absence in U of stable and completely unstable periodic orbits of 
the difeomorphisms on H3 • Finally, in Section 11, we prove the existence of Newhouse intervals of 
the second and third types. 

3. GEOMETRIC AND ANALYTIC PROPERTIES OF DIFFEOMORPHISMS WITH A 
STRUCTURALLY UNSTABLE HETEROCLINIC CYCLE 

Let /o be a cr-smooth (r 2: 3) diffeomorphism which is defined on the two-dimensional smooth 

manifold M 2 and has the simplest structurally unstable heteroclinic cycle (Fig. 3b), i.e., fo has 

two structurally stable fixed saddle points 0 1 and 0 2 whose invariant mainfolds behave as follows: 

wu ( 01) transversally intersects W" ( 0 2) at the points of a certain heteroclinic orbit r 12 and wu ( 0 2 ) 

has a quadratic tangency with W"(Ol) at the point of a certain heteroclinic orbit f 21 • Let .\i ,'Yi 

be eigenvalues of the point oi such that l.\il < 1, I'Yil > 1, i = 1, 2. We denote by (ji the saddle 
,, 

value of the point Oi, i.e., q; = l.\ty;j. We assume that qi f. 1. ·~, 

We denote by DiW(M2 ) the space of cr-smooth diffeomorphisms on M 2 with a cr-topology .. 

Diffeomorphisms, which are close to fo and have a structurally unstable heteroclinic orbit which is 

dose to f 211 form in DiW(.-\t1 2) a locally connected bifurcation surface H of codimension 1. 

When investigating the bifurcations of systems with a structurally unstable heteroclinic cycle, it 
is natural to begin with bifurcations in a one-parameter family of diffeomorphisms which includes /o 

· and is tran$Versal to H ~ We give the definition of these families and describe some of its properties. 

- ·-.- 3.1. P~perties of transversal one-parameter families. Let giJ. be a one-parameter family 

of two-dimensional cr -diffeomorphisms (r 2: 2) which is smooth with respect to the parameter JL· 

We assume that for sufficiently small JL the family giJ. has two cr -smooth invariant curves 11 (JL) 

and 12(p.) which smoothly depend on JL and are such that for JL = 0 the curves 11 (0) and 12(0) 
have tangency at a certain point x0 • It stands to reason that, first of all, we mean that 1t (JL) and 

12 (p.) are, respectively, compact pieces of the invariant stable and unstable manifolds or of different 

periodic saddle orbits of the diffeomorphismg~-' , or of the same orbit. Then, for JL = 0 we have, 

respectively, either a heteroclinic or homoc1inic tangency at the point x0 . 

Definition 1. We say that for JL = 0 the family g~-' unfolds generically the tangency between 

the curves 11 (p.) and 12 (p.) if the following conditions are fulfilled. 

1. The curves 11 (0) and 12(0) have a quadratic tangency at the point x0 • 

2. For JL f. 0 the curves 11 (p.) and 12(JL) have no points of tangency in the vicinity of xo .. 
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Moreover, for a sufficiently small J.Lo > 0 the interval [-J.Lo, J.Lo] of values of J.L is divided by the point 

JL = 0 into two parts such that for JL < 0 (or for J.L > 0) the curves lt(JL) and 12(JL) have no points 
of intersection close to x0 and for JL > 0 (or for J.L < 0 respectively) they have exactly two points 

Xt (JL) and x2 (JL) of transversal intersection, where Xi (JL) ~ xo as J.L ~ 0. 

3. The splitting fun<;tion p(J.L) of the curves 11 (JL) and l2(JL) relative to the point x0 is a smooth 

monotonic function of the parameter JL, and p'(O) ::j:. 0. 

When lt(JL) and 12(JL) are, respectively, the pieces of a stable and an unstable manifold or of 

different periodic saddle orbits or of the same orbit, we say that for JL = 0 the family g,.,. unfolds 
generically a heteroclinic or homoclinic tangency respectively. 

We can define the splitting function p(J.L) for all sufficiently small J.L, say, in the following way .. 

Let V be a certain small fixed neighborhood of the point xo. Then 

(a) p(O) = 0 for JL = 0; 

(b) if (/t (J.L) n /2 (JL)) n V = 0, then p(J.L) is the distance between the curves It (JL) n V and 

/2(J.L) n V; 

(c) if (/t(JL)n/2(JL))nV = {xt(J.L),x2(J.L)}, then p(J.L) is defined as follows: let it(JL) ~nd i2(J.L) be 

closed segments of the curves Zt(J.L) n V and 12(J.L) n V with the endpoints xt(J.L) and x2(JL). Then 

where d(· , ·) is the distance between the indicated point and the curve. 

The important property of these generic families is their stability against smooth perturbations, 

namely, if for JL = 0 the family 11 (JL) and l2(JL), then the close family g,.,. (Cr-close with respect t'~ 

the coordinates and ct-close with respect to the parameter) unfolds generically a tangency between 

the curves it (JL) and i2(J.L), which are close to /1 (J.L) and 12(J.L), respectively, for the values of the 

parameter JL close to zero. 

Definition 2. Let l(J.l) be a smoothly dependent on J.L one-parameter family of cr -smooth 

curves. We say that the curves lj(JL) accumulate in a regular -way to l(J.L) as j ~ oo if lj(J.L) 

· ac£umulat~ to l(J.L) as j ~ oo in the C 2-sense with respect to coordinates and in the ct-sense with 
reSpect to t.he parameter. 

The following statement is a simple consequence of the genericity of the family. 

Statement l.Let { 1~ (J.L)} and { 1~ (JL)} be two families of curves which accumulate .in a regular 

way to the curves It (JL) and l2(JL) respectively. Then there exist kt and k2, such that if i 2: kt and 

j 2: k2, then the family g,.,. unfolds generically a tangency between any of the curves {l~(JL)} and 

{I~ (JL)} for J.L = J.Lii , where /1-ii ~ 0 as i ~ oo and j ~ oo. 

3.2. Local and global mappings. Let U be a sufficiently small heighborhood of a heteroclinic 
cycle C = Ot u 0 2 u ft~ u f 2t. It is the union of two small disks Ut and U2 containing the points 
Ot and 02 and of a certain finite number of small neighborhoods of those points of the orbits ft2 

and f 2t. which are outside of Ut and U2 (Fig. 6). 

As is established in [10, 11], we can introduce on U6 , s = 1, 2, coordinates (x6 , Ya) such that the 
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Fig. 6. 

mapping To,(J.') = f,.,.lu. can be written as 

Xs = As(J.')X, + /.~(x.~, Ys 1 J.L)x.~y,, 

Ys = 'Ys(J.L)Ys + 9s(Xs, Ys, J.L)XsYs, 
(3.1) 

where f,(O, y,, J.L) = 0, g,(xs, 0, J.L) = 0, and, in addition, the functions on the right-hand sides 

of (3.1) are cr-1-smooth "With respect to the coordinates and C 1-smooth with respect to the 

parameter. In accordance with (3.1), the equations of the manifolds Wi~c (O,(J.L)) and Wi~c (O,(J.L)) · 
in these coordinates are y, = 0 and x, = 0 respectively. The mappings T01 (J.L) and T02 (J.L) are 
callled local mappings. 

For J.L = 0, in the diffeomorphism/a we choose in Ut a pair of points M{ ( xt, 0) and M! (0, Y!) 
belonging to the orbits f 21 and f 12 respectively. In U2 we shall also consider a pair of points' 

Mt ( xt' 0) and At/2 (0, Y2) belonging to the orbits r 12 and r 21 respectively. Let rrt c u, and 

II;- C U, be a sufficiently small rectangular neighborhoods of the points Mi and M,- . We dentoe 

the coordinates on Tij and II;- by (x0 ,, y0 .,) and (x~.~, Yts) respectively. 

For sufficiently large i and small I' the mapping Tj_,(J.L): I1j -+ TI;- can be written in the form 
[10, 11] 

·.-
- ._,_ .. 

. ~ - - · its= .X~(J.L)xo,(1 + (1-X,Ii + 1!, 1 -i)~f(xo,, Yts, J.L)), 

·Yos = 'Y;i(J.L)Y~s(1 + (1-X,Ii + h,l-i)qf(xo,, Yts, J.L)), 
(3.2) 

where (xo.,, Yos) E Tij, (x~s, Yts) E TI;-, and the functions ~t and 77[ are uniformly bounded with 

respect to i together with the derivatives with respect to the coordinates up to the order (r- 2) 

and with respect to the parameter. In addition, the derivatives of the order (r- 1) with respect to 

the coordinates of the functions on the right-hand sides of (3,2) tend to zero as i -+ oo. Thus, in . 

these coordinates. the mapping T~, for large k will be asymptotically close to a linear mapping. 
We denote by N,.,. the set of orbits of the diffeomorphism f~ which lie entirely in U. Note 

that all orbits of the set N,.,. , except for 0 1 and 0 2 , must intersect the neighborhoods Tij and 

II; (otherwise these orbits will not be close to those of the cycle C). As we can easily see from 
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Fig. 7. 

(3.2), the set of initial points on ITt, whose orbits fall in 11;, consists of a countable set of strips 

qf" =ITt nT~k11;, k = k.,, k,+ 1, ... , which accumulate to Wi~c (0.,). The method of constructing 

these strips is obvious from Fig. 7. Correspondingly, the images of the strips qf" relative to the 

mappings T~., are vertical strips O'f" = T~_,(O'f") on 11; which accumulate to Wi~c (0.,) {Fig. 8). 

It is obvious that for J.L = 0 there exist natural numbers n 1 and n2 such that /(;1 (M1- ) = M:j", 

1(;2 (Mi) = Mt. Let us consider global mappings, namely, the mapping T12 :::: !;;1 : 11} -)- U2 witli: 

respect to orbits close to f 12. and the mapping T21 = !;;2
: 112 -)- U1 with respect to orbits close 

to r21· 

For J.L = 0 the mapping T12 can evidently be represented as 

· • 
-~ - --

io2 - xj = a12xn + b12(Yn - Y1) + ... , 
iJo2 = c12xn + dt2(Yn - yl) + .. . , (3.3) 

where the- Jacobian J12 = a12d12- b12c12 of the mapping T12 at the point M} is nonzero since T12 . 

is a diffeomorphism, and d12 # 0 since wu(01 ) intersects W"(02 ) at the point M:j" transversally. 

For J.L = 0 the mapping T21 can be written as 

iot - xt = a21X12 + b21 (Y12 - Y2) + · · ·, 
Yoi = c21x21 + d21 (Yt2 - Y2)2 + ... , 

(3.4) 

where d21 =/; 0 since the tangency wu(02) and W"(Ot) at the point M{ is quadratic and the 

Jacobian J21 = b21 c21 of the mapping T21 at the point Mi is nonzero since T21 is a diffeomorphism. 
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Fig. 8. 

The mapping Tt2(JL) = !;1 : ll! -+ U2 can be written as 

.io2- xt(JL) = a12xn + bt2(Yn- Y!(JL)) 

+O[(Ixnl + IYn- Y1(JL)I) 2 + IJLI(Ixnl + IYu- Y!(JL)I)], 
iio2 c12xu + dt2(Yu- Y!(JL)) 

+O[(Ixu l + IYn- Y1(JL)i) 2 + IJLI(Ixul + IYu- Y!(JL)I)], 

{3.5) 

where xf(O) = xt, Y!(O) = Y!, the points (xt(JL), 0) and {O,y!(JL)) are, respectively, the points of 

intersection of the orbit f 12 (J.L) with the neighborhoods nj and ll!. 
The mapping T21 (JL) = J:1 : n;- -+ U1 can be wirtten as 

.iot- xi(JL) = a21X12 + ~t(Yt2- Y2) + O[(lxd + IY12- Y2D2 + IJLI(Ixt21 + 1Yt2- y;-1)], 
YOI = JL + C2tXt2 + d2t(Yt2- Y2)2 {3.6) 

+ O[x~2 + IJL[(Ix121 + IY12 - Y21) + lxt2IIY12 - Y21] + o[(Yi2- Y2)2], 
·.-

-~here xt(oJ~ xt. 
Note ~hat the parameter J.L enters into the second equation of (3.6) a.dditively in the principal 

order. This is a consequence of our requirement that the family fp. should be transversal for 

JL = 0 to the bifurcation surface H. Indeed, it follows from (3.6) that the equation of the piece 

T21 (W.~c ( 0 2)) n nt of the unstable manifold of the point 0 2 has the form (in (3.6) we must set 

X12 equal to 0) 

d21 + . 2 
Yot = JL + b2(xot - x 1 (JL)) + ... 

21 

Thus! for d21JL > 0 the ·diffeomorphismf~o~ does not have heteroclinic orbits, which would be close 

to f 211 and for d21 JL < 0 it has exactly two structurally stable heteroclinic orbits, which are close 

to f 21 and intersect the piece W1~c {01) n nt of the stable manifold of the point 0 1 at points with 
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coordinates 

where a = 1, 2, and x31 -+ xt as J.L -+ 0. In this case, by virtue of (3.6), the splitting function . 

relative to the structurally unstable heteroclinic point Mi(xt, 0) has the form 

p(J.L) = sgn d21 x (J.L + o(J.L)). 

3.3. A special neighborhood of a heteroclinic cycle. It is convenient t~ choose, as 

a neighborhood of the heteroclinic cycle C, a special neghborhood (by analogy with the special 

. , h~ighborho~d of a structurally unstable homoclinic orbit (19, 20]), namely, we take sufficiently 

Tatge integer~ k1 and k2 and consider only the orbits which (for all sufficiently small J.L) get from 

-nf into ~;- during no less than k8 iterations of the mapping fw In particular, this means that 

nt and n; contain the strips O'Z8 and O'k8 with the numbers k ~ k8 in their entirety, and do not 

contain strips with num~ers smaller than k8 • Note, in addition, that it suffices to choose the values 
of the parameter p. that belong to the "bifurcation interval" 

(3.7) 

where C1 is a positive constant such that, for instance, (for diffeomorphisms with a structurally. 

unstable heteroclinic cycle shown in Fig. 4c), we have T21 (p.)(ll2) n nt = 0 for J.L > J.J.o, and, for 

J.L < -J.Lo, the set N(J.L) has a hyperbolic structure (Fig. 9b). 
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Then, without loss of generality, we can choose the neighborhoods nt and n; such that 

where 

nt = {(xot. Yod I lxol- xtl ~ Pkt/~2' IYotl $ lltl -k1 (Y1 + llkl,k2)}, 

nt = {(xo2, Yo2) I lxo2 - xtl ~ llkl,k2 I 1Yo21 $ l12l - k2 (Y2 + PA:l,k2 )}, 

ll! == {(xu, Yn) I lxnl ~ I.Xtlk1 (xt + PA:1 ,A:2 ), IYn - Y!l ~ LIA:1 ,A:,}, 

ll2 = {(x12,Yt2) I lxul :SI.X2Ik2 (x; +11k1 ,A:2 ),1Yt2- Y21 ~ PA:1 ,A::J, 

and C2 and C3 are positive constants independent of k1 and k2• 

{3.8) 

Let us prove this fact. We take, for definiteness, as initial neighborhoods llj and II;, small 

square with centers at the points Mf and M; respectively, and with the side 2eo long. Since special 
neighborhoods must not contain points, which, during the number of iterations of the mapping J, 
Sffialler than k,, get from nt intO rr; 1 We find from (3.2) that for SUfficiently large ~.:; and k2 the 

neighborhoods nt can be contracted in the direction of the coordinate y, and II; in the direction 
of the coordinate x so that 

IYotl ~ I'Ytl - k1 (Y1 +co), 

IYo2l ~ 1!2!- .4:2 (Y2 +co), 

lxnl ~ I.XI!k1 (xt +co), 

!x12l ~ I.X2Il:2 (xt + co). 
(3.9) 

Since iio2 = c12xn + d12(Yn - y}) + ... , by virtue of (3.5) and the validity of estimates {3.9) 

is required for the coordinates xn and iio2, the neighborhood ll} can be narrowed so that the 

coordinate Yn will stisfy the inequality 

(3.10) 

By virtue of (3.6) iio1 = J.1. + c21X12 + d21 (YI2 - Y2)2 + .... Since d21 =I= 0, it follows, by virtue 

of (3.9), that the neighborhood l12 can, in turn, be narrowed so that the coordinate y12 will satisfy 
the inequaltiy 

(3.11) 

or, by virtue of (3.7), the inequality 

(3.12) 

Now, by virtue of {3.6) and (3.9)-(3.12) the neighborhoods llf and nt can be narrowed so that 

the estimates 

(3.13) 

will be satisfied for the cooridnates x01 and x02 • If we carry out the same operation for the obtained 

neighborhoods of the heteroclinic points once again, we get relations {3.8)'. 
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(a) (b) 

Fig. 10. p >Po (a); p < - po (b). 

We call the neighborhoods defined by (3.8) special neighborhoods of the points Mi, Mi, M~ 
and Mi and will consider precisely these neighborhoods. We shall denote the corresponding 

special neighborhood of the heteroclinic cycle either simply by U or by U(kt. k2), when we want to 

emphasize the dependence of its dimensions on the minimal numbers of strips. Similarly, we shall 

denote the set N~J, when necessary, by N~J(kt. k2). 

4. CONDITIONS FOR INTERSECTION OF HORSESHOES AND STRIPS 

Since f 12 is the orbit of transversal intersection of the manifolds wu(OI) and W-'(02), the 

intersection of any strips T120'l1 with any strips ·O'J2 , for sufficiently large k and j and sufficiently 

small p, consists of one connection component (Fig. 10). The images T 21 (0'}2) of the strips 0'}2 

are shaped as horseshoes, which accumulate, as j -+ oo, to the "parabola" T 21 (W.~c ( 0 2)) C 

wu(02) n rrt (Fig. 10). It is clear that the orbits of the set N~J must intersect the neighborhood 

.. _gt at the _P.~ints of intersection of the horseshoes T21 ( 0']2) and the strips O'P1 for various i ~ f 1 and 

j?:_ f 2 • Co~sequently, the structure of the set N~J essentially depends on the geometric properties 

of these intersections. 
We say that the horseshoe T 21 ( 0']2) has a regular intersection with the strip 0'?1 if 

(1) the set T 21 (0'}2) n 0'?1 is nonempty and consists of two connection components; 

(2) the mappings TJ:>TJ2 and TJ;>Tj2, which are defined on O'J2 and have their range of values 

on T21 (0'}2) n 0'?1, are saddle mappings in the sense of [21] (roughly speaking, these mappings are 

expanding along the coordinate Yo2 and contracting along the coordinate x02 in rrt). 
Various kinds of intersections of the horseshoes T21 ( O'J2) and the strips rrt are shown in Fig. 11. . 

A horseshoe has a regular intersection with the strip 0'?1, an irregular intersection with the strip 

0'21, and an empty intersection with the strip 0'~1 • 
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M/ 
Fig. 11. 

cf.l 
j 

~I 
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Theorem 1. There exist a positive constant S1 and sufficiently large integers k1 and k2, such 

that for J.L E [- po;JLo], for any i ~ f1, j ~ k2 

( 1) if the inequality 

(4.1) 

where Sij = sl (hil-i+ I.X2Ij) (I.XIIk1 + I'Y2I-k2 + I!II-k1 + I.X2Ik2 )' is satisfied, then T2I (p)(uJ2)no-?1 = 
0; 

(2) if the inequality 

(4.2:) 
: 

is satisfied, then the intersection of the horseshoe T21 (J.L )( o-} 2) and the strip o-?1 is regular; 

(3) the inequalities 

and 

(4.3) 

{4.4). 

_ . are necess~~y for the horseshoe T21 (J.L )( o-}2) to have a nonempt-y and an irregular intersection, 

respective"ly, with the strip o-?1 

Proof. Item (3) of the theorem is, obviously, a consequence of items {1) and (2) . 

By virtue of (3.2) and {3.8) the coordinates ( xo1 , y0 I) of the points of t he strip o-?~ satisfy the 

inequaltites 

(4.5) 

and the coordinates (x12, y12 ) of the points of the strip o-} 2 satisfy the inequalities 

(4.6) 
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Let us consider, for definiteness, the case >.2 > 0, 11 > 0, c21 > 0, d21 > 0 (in the other cases 

the proof is similar). Then, by virtue of (4.6) and (3.4) the horseshoe T21(oJ2) on rrt is bounded 

by two "parabolas", the upper parabola 

Ct> d( + I\ lk1 I 1-k2 I\ li) + d21( +)2 Yo1 =J.L+c21-"2 X2 + -"1 + /2 + -"2 b2 xo1-x1 + ··· 
21 

(4.7) 

and the lower parabola 

Y~~) = J.L + c21>.~(xt -1>-1lk1 
- h2l-k2 

- l>-2lj) + :;1 (xo1- xi)2 +.... (4.8) 
21 

It is clear that the intersection of the strip u[ and the horseshoe T21 ( uJ2 ) is empty if, for 

instance, the majorizing parabolas from ( 4. 7) and ( 4.8) do not intersect the strip u?, i.e., if the 

inequality 

is satisfied. Thus (with due account of the sign of d2t), we have the inequality 

< -Cg(>.{(l>.1ik1 + l12l-~ + l>-2li) + h!ii(I.X1Ik1 + l12l-k2 + !11!-i)], (4.9) 

which is similar to (4.1) . 

Let us now find the conditions for the regularity of the intersection of the strip u[ and the 

horseshoe T21 (u}2). This intersection consists of two connection components if, for instance, the 

majorizing parabolas from ( 4. 7) and ( 4.8) each intersects the strip u? and this intersection consists' 
of two connection components. For d21 > 0, this ensures the inequality 

or 

(4.10) 

-This inequality is "similar" to (4.2). However, in order to prove the regularity of intersection· 

we have to show that the mappings Tj2T21 defined on the inverse _images of each of the connection 

components of the horseshoe T21 ( uJ2), defined by the inequality ( 4.10), will be saddle mappings. 

We denote these components on rrt by ~~i and ~~ and denote the restrictions of the mapping 

T21 onto the components T211 (~ij), s = 3, 4. of the strip uJ2 by TJ:>. We can rewrite the mapping 

T(.s) 
21 as 

(4.11) 
( _) ( I)" J.L + c21x12- iJo1 + ... 
Y12- Y2 = - · 

d21 

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 216 1997 

I 



88 GONCHENKO et al. 

Since by virtue of (4.5), (4.6) the relations 

are satisfied for the coordinate Xt2 on the strip uf2 and for the coordinate y01 on the strip ab1, 

respectively, it follows, by virtue of (4.11), that the mapping T,y> = Tj2TJ:>: aJ2 -t D.[j can be 

written in the "cross-form" 

(4.12) 

This is a saddle mapping (and contracting in cross-form coordinates) if, for instance, the inequalities 

I oxo11 1 -- <-
OXo2 2' l

oxotl 1 -- <-oyu 2' l
l)y121 < ~. 
oxo2 2 

are satisfied. It easily follows from (4.12) that these inequalities are satisfied if 

(4.13) 

(4.14) 

Note now that there obviously exists a positive constant St, independent of i and j, such that 
if inequality (4.1) is satisfied, then inequality (4.9) is also satisfied and if the inequality (4.2) is 

satisfied, then inequlatities (4.10) and (4.14) are simultaneously satisfied. This completes the proo~ 
of the theorem. 

5. CODING NONWANDERING ORBITS AND NONTRIVIAL HYPERBOLIC SUBSETS 

The convenient method of describing the structure of the set Np. is the construction of the 

codes for its orbits. We denote the sets of strips a21 on ITt, a11 on IT}, a22 on ITt, and a12 on 

. , !lz by a01 , .~11 , a 02, and a 12 respectively. We assume that the orbit A belongs to Np. and is not an 

asymptoti~. ·orbit to Ot and 0 2 . Then it obviously intersects the neighborhoods ITt, IT}, ITt, and 

IT2 only at the points belonging to the strips from the sets O'ot. O'tt. ao2. and 0'12 respectively. Let 

( ... , M;;J, ... , !vf~fJ• .. . ), a= 0, 1, f3 = 1, 2, be successive points of intersection of the orbit A and 

the strips from the sets O'afJ· The relations 

MJ1 E a2!(t) C ITt, 
'!~ T.k.(t)(M~ ) E 11 C IT-

1v 11 = 01 01 O'k1 (1) 1' 

MJ2 = Tt2(M{1) =: /;: 1 (Mit) E a2;(2) C ITt, 

M{2 = r;;(2
)(M02) E ak;(2) C IT2, 

(5.1) 

lvtgt1 = T2t(M2t) = /;:1 (M{2) E a2!+t(t) c ITt 
s = 0,±1, ... , 
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must obviously be satisfied for these points. Recall that in these relations n1 and n2 are natural 

numbers such that f;1 {Ml) = A1{, f;• (M2) = Nit. 

In accordance with (5.1) we define the coding of the orbit A. as an infinite sequence of two 

symbols {1, 2} 

k.(1)+nl k.(2)+n2 ----------( ... ' 2, 2, 1, 1, ... ' 1, 2, 2, ... ' 2, 1, 1 .. ·.), (5.2) 

in which the lengths of successive full segments consisting of symbols "1" and "2" are equal to 

(k,(1) + nt) and (k,(2) + n2 ) respectively. In other words, if a point .of the orbit A. falls in the 

neighborhood nt, then, in sequence (5.2) this point is associated with the symbol "1." In what 

follows, the symbol "1" will be associated with every successive point of the orbit A until a certain 

successive point falls in the neighborhood nt. We put this final point in correspondence with the 

symbol "2." We shall put the points of the next iterations into correspondence with the symbol 

"2" until a certain successive point of the orbit A again falls in the neighborhood nt. We put this 

final point into correspondence with the symbol "1", and so on. 

Codings ofform (5.2) can be generalized to orbits from N~S asymptotic to 0 1 and 0 2: The orbit 

to 0 1 will have the coding( ... ,1, ... , 1, .. . ), the orbit to 02 will have the coding( ... , 2, .... 2, ... ), 

the orbit rl2 will have the coding ( ... ,1, ... 1,2, .. . ,2, ... ), and the orbit r21 the coding 

( ... , 2, ... , 2, 1, ... , 1. .. ). The orbit, which is a -limiting (w-limiting, resp.), will be associated 

with a coding of form (5.2) which has an infinite sequence of symbols "1" appearing at the left 

(right, resp.) end. Similarly, the orbit from N which is a -limiting (w-limiting) with respect to 

0 2 will be associated with a coding of form (5.2) which has an infinite sequence of symbols "2" 

appearing at the left (right) end. 

If the heteroclinic orbit f 21 were structurally stable, then there would exist a one-to-one corre-
'7 

spondence between the set N~S of orbits (all of which would be saddle orbits in this case) and the 

set of indicated codings. In our case, where f21 is a structurally unstable heteroclinic orbit, this is 
not the fact. 

Note, first of all, that N~S cannot contain orbits with codings in which, for a certain s, the 

numbers j = k,(2) and i = k,+I(1) satisfy inequality (4.1) since in this case, T21 (oJ2)nu?1 = 0 by 

virtue of Theorem 1. Second, even if we restrict ourselves to codings in which, for all s = 0, ±, 1, ... 

· til~ numbers_ k,(2) and k,+I(1) satisfy inequality (4.2) with j = k,(2), i = k,+1 (1), there will not 
. - -
be a one-to-:one correspondence which is observed in a structurally stable case. To be more precise, 
here we have the following theorem. 

Theorem 2. For a·n arbitrary coding of form (5.2), in which oo > k,(1) ~ k11 oo > k,(2) ~ k2, 

and, for any s = 0, ±1, .. . , the numbers k,(2) and k,+l {1) satisfy inequality (4.2) with j = k,(2), 

i = k,+l ( 1), there exists in N IS a continuum of orbits of saddle type each of which has the given 

coding. The set of these orbits is in a one-to-one correspondence with a set of sequences, infinite 
in both directions, which are composed of two symbols. 

Proof. Inequality {4.2) guarantees that the intersection of the horseshoe T21uJ2 and the · 

strip u?1 is regular and consists of two connection components, which we denote by ti~i and ti~. 

It is clear that the orbits from N~S which have the same coding of form (5.2) but have points 

of intersection with different connection components of this kind, must be distinguished, namely, 
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the following sequence, infinite in both directions, will represent a coding which is more exact as 
compared to (5.2): 

k. (2)+n2 ka+1 (1)+n1 ka+1 (2)+n2 ---------~ __ _... __ __ 
( ... , 1, 1, 2, 2, ... , 2, a.,, 1, 1, ... , 1, 2, 2, ... , 2, a.,+1 , 1, 1, ... ). (5.3) 

This sequence consists of four symbols {1, 2, 3, 4}, where the symbol a., is either "3" or "4" depend

ing on whether the corresponding point of the orbit from N~ belongs to the component tl.~i or to · 

the component fl.~ of the strip uf1 (here i = k.,+1 (1), j = k.,(2)). 

Let us show that each sequence (5.3), in which, for every s the numbers i = k.,+I(1) and 

j = k.,(2) satisfy inequality {4.2), is associated with exactly one orbit of the saddle type which 

has successive points of intersection with the neighborhoods nt, II}, nt, and II2 for . which the 
following relations are satisfied: 

M " T.(aa- l)(M"-1) E A a•-1 01 c n+ 
01 = 21 12 uka(1)ka-1 (2)0' ka(1) 1 ' 

M " T.k.(1)( l-'") E 11 c n-11 = 01 lv.to1 0' k.(1) 1 • 

M02 = T12(Nf{1 ) E u2~(2) C IIt, 

M s T.k.(2)( li.S) 12 c n-
12 = 02 lv1 02 E 0' k.(2) 2 • 

(5.4) 

M .s+l r.<Q.) ( ~~ ·" ) E A Q. E 01 c n+ 
01 = 21 lV. 12 uk.+1 (1)k.(2) 0' k•+t (1) 1 ' 

s = 0,±1, .... 

Let us consider the sequence of mappings {in accordance with (5.4)) 

( _, _, ) r.<Q·- d( .s- 1 .!-1) 
Xo1•Yo1 = 21 X12 ,Y12 ' 

(i:g2, yg2) = T12(x~1• Yid, 
( - .s+1 - .s+1) T.(aa){ , .s ) 
Xo1 'Yo1 = 21 X12, Y12 ' 

(5.5) 

s=0,±1, ... , 

and show that system (5.5) has a unique fixed point. 

· · _·.::....:We set ~ .. (1) = k, k.,(2) = j, k.,+1 {1) = i in order to simplify the calculations that will follow. 

- J~t us co~~ider the mapping T12T;.;(1
) = T12Tt1: u21 -t uJ2. Since (3.2) Yo1 = /}kY11 (1 + ... ) , 

Yo2 = 12"iY12(1 + ... ) by virtue of (3.2), we can write the mapping T12Tt1 as 

io2 - xt(J.t) = b12(Y11- Y}(p)) + a12.-\txo1 + ... , 
12iY12(1 + ... ) = c12-Xtxot + d12(Yu- Y!(p)) + · · ·· 

(5.6) 

Since d12 =/: 0, we can express the coordinate (Yn - Y1) from the second equation in (5.6), for 

all sufficiently small p, in terms of Xot and Y12, namely, 
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Thus, we can rewrite the mapping T12TJ1 in the "cross-form" 

(5.7) 

Let us consider the intervals 

We can see from (5.7) that the mapping T12T~ in the "cross-form" coordinates has the set 
/ 1 x h as its domain of definition, and its range belongs to the set 12 x J1 • Note that mapping 
(5.7) is also contracting for sufficiently small i and j since, evidently, the estimates 

laxo21 layul C jA li ! 
a + a < 12 1 < 2 • 

Xot Xot 

are valid. 

When the conditions of Theorem 2 are satisfied, the mapping r8~•>: o']2 -+ ~~j·> C 0'?1 can also 

be rewritten in the "cross-form" (see the proof of Theorem 1 and, in particular, relation (4.12)) •; 
. ~ 

- +( ) _ b ( 1)(o,) J.L + c21A~(xo2 + · · .) - 'Yii(Yn + ... ) + d(. + ) Xot - x1 J.L - 21 - d a21A2 xo2 ... , 
21 

(5.8). 

( 
-) _ ( )(a.) J.L + c21A~(xo2 + ... ) - /}i(Yn + ... ) 

Y12 - Y2 - -1 d : 
21 

· · J~"cross-f<5~m" coordinates this mapping has the set !2 x J1 as its domain of definition, and its 

. ._r'a'ilge bel~hgs to the set h x h. Note that mapping (5.8) is also contracting, which fact was 
established in the proof of Theorem 1. 

Thus the sequence of points (5.4) and the sequence of mappings (5.5) corresponding to it 

are associatied with the sequence of saddle mappings infinite in both directions, which possess 
the following properties (in '"cross-form" coordinates): (1) the range of each mapping belongs to 

the domain of definition of the successive mapping; (2) all mappings are contracting (with the 

contraction constant smaller than ~). In this case, the lemma on a fixed saddle point in a countable 

product of spaces is applicable to this sequence (21]. According to this lemma, the sequence of 

mappings (5.5) has a unique fixed saddle point, which satisfies conditions (5.4). Consequently, 
when the conditions of Theorem 2 are satisfied, there exists in N a unique orbit, which has a given 
coding of form (5.3). We have proved the theorem. 
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6. CLASSES OF TWO-DIMENSIONAL DIFFEOMORPHISMS WITH THE SIMPLEST 
STRUCTURALLY UNSTABLE HETEROCLINIC CYCLE 

In this section we show (by analogy with the homoclinic case [15]) that diffeomorphisms with 
structurally unstble heteroclinic cycles can be divided into three classes according to the types of 
description of the set of orbits No. 

Note that we can always choose coordinates on U1 and U2 so that xi and Y1 be positive. Then, 

for p. = 0, the structure of the sets of solutions of inequalities (4.1)- (4.4) depends, first of all, on 
the signs of quantities A2, -y1 , c211 and d21· 

The simplest structure of the set of solutions of inequalities ( 4.1)- ( 4.4) for p. = 0 is observed in 
the case of diffeomorphisms corresponding to the following combination of signs: .A2 > 0, -y1 > 0, 
c21 < 0 (Figs. 4a and 4b). 

We shall place the diffeomorphisms in which d21 < 0 (Fig. 4a) in the first class. It is easy to 

see that in this case, for any i ;:::: k11 j ;:::: k2, and p. =:; 0, inequality ( 4.1) will always be satisfied, . 

i.e., T21 (oJ2) n o-?1 = 0 for all sufficiently large i and j and p. ~ 0. Moreover, in this case the 

horseshoes T21 ( o-}2) and strips o-?1 will lie on n{ on different sides of W1~c ( 0 1). As was shown 

in (18], here the srtucture of the set Np. is trivial for p. ~ 0, namely, N0 = {011 0 2 , f 12, f 2t}, and 

Np. = {01,02,f12} for J.L < 0. As was pointed out in [18], diffeomorphisms of the first class with 
a structurally unstable heteroclinic cycle may lie on the boundary of the Morse-Smale.system and 
systems with a complicated structure. 

Diffeomorphisms with a structurally unstable heteroclinic cycle in which .A2 > 0, -y1 > 0, c21 < 0, 
d21 > 0 (Fig. 4b) are referred to the second class. Note that here, for p. ~ 0 and for sufficiently large 

k1 and k2 , inequality (4.2) will always be satisfied, i.e., for any i 2: k1 and j 2: k2 the horseshoes 

T21 ( a-]2) and strips o-?1 have regular intersections. Then, according to Theorem 2, for p. ~ 0 al!, 

orbits of the set N 11.• ex.cept for r 21 for J.L = 0, are saddle orbits. In this case, if J.L < 0, then the 

set Np. has a hyperbolic structure and the orbits NJJ. are in one-to-one correspondence with the 

orbits of the topological Bernoulli scheme consisting of four symbols {1, 2, 3, 4}. In this case, the 
attainment of the bifurcation surface H2 for p. = 0 is followed by a "merging" of two heteroclinic 
orbits with codings ( ... , 2, ... , 2,3, 1, ... , 1, ... ) and( ... , 2, ... ,2,4, 1, ... ,1, ... ) into one (namely, 

the orbit r 21). 
_· :.~- DiffeoH.l~phisms with a structurally unstable heteroclinic cycle, which correspond to other 

_combinations of signs of the quantities .A2 , 'Yt. c21 and d2~t are r~ferred to the third class (these 

are, for instance, the diffeomorphisms shown in Figs. 4c and 4d). By virtue of Theorem 2, for all 

sufficiently small J.L the set N~-' contains nontrivial hyperbolic subsets, which can be described as 

follows. 
Let us consider the subsystem QJJ. of the topological Bernoulli scheme of four symbols {1, 2, 3,4} 

which satisfies the following conditions: 

(1) QJJ. contains orbits ( ... , 1, ... , 1, ... ) and ( .. . , 2, ... , 2, ... ); 

(2) Q does not contain orbits which would have segments of length exceeding unity and which 
would be composed of the symbols "3" and "4;" 

(3) the symbol "'1" cannot be followed by the symbol "3" or "4," and the symbol "2" cannot 
be followed by the sym~ol ""1:" the symbol "3" or "4" is necessarily followed by the symbol "1;" 
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(4) the length of any full segment, which is composed of the.symbol "1," is not smaller than 

kt + nt, and that composed of the symbol "2" is not smaller than k2 + n2 - 1. 
(5) Let k.,(2) + n2 - 1 and k.,+l (1) + nt be the lengths of full segments which are composed 

of the symbols "2" and "1" and follow one another. Then, for any s, the numbers j = k.,(2) and 

i = k.,+l (1) satisfy inequality (4.2). 

Similarly [15, 19), the following theorem can be deduced from Theorems 1 and 2. 
Theorem 3. Let f be a diffeomorphism of the third class. Then we can indicate in N"' a 

subsytem N"' such that, first, fi.N
11 

is a conjugate ofQ"' and, second, all orbits of the subsystem N"' 
are of a saddle type. 

In turn, diffeomorphisms of the third class can be divided into types each of which will be 
associated with a definite combination of signs of the quantities At, 12, c211 and d 2t. In the case 
where At or 12 are negative, the signs of the coefficients c2t and d2t inay change depending on the 

choice of the heteroclinic points Mi and M2. It is easy to see from (3.3) and (3.4) that if we 

replace the points Mi and M2 by M{' = T;;.1 Mi and M;;' = T02m2 M:;, then the signs of the 
new coefficients will be 

(6.1) . 

Then, without loss of generality, we can assume that c2t > 0 if A2 is negative and d 2t > 0 if it is 
negative. Thus we have seven possible different combinations of signs of the quantities A2 , /t, c2l! 

and d2t, indicated in 

Table 1 

Ht 
3 

H2 
3 

H3 
3 

H4 
3 

Hs 
3 

Hs 
3 

H1 
3 

A2 + + + + - - -

i't + + - - + + -

C21 + + + - + - + 

d21 + - + + + - + 

. _ We de~te by H3 a locally connected bifurcation surface of codimension 1 in DifF(M2) cor
respondil)g to diffeomorphisms of the third class which have fixed saddle points close to 0 1 and 
0 2 and a. structurally stable heteroclinic orbit close to r 12 and a structurally unstable heteroclinic . 
orbit close to f21· In order to show to which of the seven types the diffeomorphisms on H 3 belong, 
we shall denote the corresponding bifurcation surfaces by H3, a= 1, ... , 7. 

7. THE EXISTENCE OF NEWHOUSE DOMAINS IN WHICH SYSTEMS HAVING 
COUNTABLE SETS OF STABLE AND COMPLETELY UNSTABLE PERIODIC ORBITS 

ARE DENSE 

It is sufficiently obvious that by an arbitrarily small cr -smooth perturbation of the diffeomor

phism fo we can obtain a situation where the perturbed system f', which, generally speaking, no 
longer belongs to the bifurcation "film" H, will have structurally unstable homoclinic orbits either 
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(a) (b) 

Fig. 12. 

of the fixed point 01 (Fig. 12a) or of the fixed point 02 (Fig. 12b). Thus, by virtue of [3] we find 

that in any neighborhood of the diffeomorphism/a in Diff" (M2) there exist Newhouse domains, 
which are connected with the homoclinic tangencies of both point 0 1 and point 0 2 • 

It seems to be natural that if the saddle values 0'1 and 0'2 of the points 0 1 and 0 2 are simul
taneously smaller than unity (larger than unity), then, just as in homoclinic case, the indicated 

Newhouse domains will not have systems, which would possess completely unstable (stable) pe

riodic orbits lying in the small neighborhood of the cycle. This is indeed the case since here the 
following statement is valid. 

Statement 2. Let fo be a diffeomorphism with the simplest structurally unstable heteroclinic 
cycle C and suppose that the saddle values u 1 and u2 are simultaneously either smaller or larger 
than unity. Then there exists a neighborhood U of the cycle C such that neither fo nor the dif
feomorphisms, which are sufficiently close to fo, have in U either completely unstable if u1 < :1, 
0'2 < 1, or completely stable if u 1 > 1, 0'2 > 1, periodic orbits. 

Proof. Let, for definiteness, 0'1 < 1, 0'2 < 1. Suppose that j is a diffeomorphism, which is 

sufficiently close to / 0 , and let A be an n-circuit periodic orbit of the diffeomorphism!. Suppose 

that A intersects the neighborhood nt at successively arranged points belonging to the strips u?}, 
s = 1, ... , n, and intersects the neighborhood nt at successively arranged points belonging to the 

· · .-~~rips uJ~/! = 1, ... , n. Then a point of the orbit A, say, the point Mi1 , belonging to the strip u~1 , 
is· a fixed point of the following mapping performed in n circuits: 

(7.1) 

The Jacobian of this mapping, calculated at the point Mi1 , is equal to the product of the 

Jacobians of the factor-mappings from (7.1). Since f and J are close, the Jacobians of the global 

mappings are also close (since they are mappings performed in a finite number of iterations), and 

the saddle values are close (in any event 171 < 1, 0'2 < 1). Consequently, the Jacobian of the 

mapping Ti1ii ... i.,j., is a quantity of the order 

(7.2) . 
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i.e., smaller than unity by the hypothesis of the theorem. This means that a periodic orbit cannot 
be completely unstable. 

The case o-1 > 1, o-2 > 1 can be considered by a complete analogy, i.e., it suffices to consider 

the diffeomorphismf-1 instead of f. 
Thus, in the cases where 0'1 < 1, o-2 < 1 or o-1 > 1, 0"2 > 1 the existence of only "classical" New- . 

house domains is possible in the vicinity of fo in which systems with a countable set of either only 
stable or completely unstable periodic orbits, respectively, are dense. Here, in the neighborhood 
U, stable and completely unstable orbits cannot coexist. 

As we shall show below, a situation is completely different in the case where the saddle values o-1 

and o-2 lie on different sides of unity. In this case, Newhouse domains connected with the homoclinic 
tangencies of the points 0 1 and 0 2 can "overlap" and, therefore, Newhouse domains ma.y exist here 
in which diffeomorphisms having simultaneously a countable number of completely unstable orbits 
are dense. 

We shall now prove the validity of this statement, but shall show that the Newhouse domains of 
the indicated type are observed when we consider parametric families, which are transversal to the 
bifurcation surface H of tw<r-dimensional diffeomorphisms with a structurally unstable heteroclinic 
cycle. 

The following fundamental theorem is valid. 
Theorem 4. Let fjj be a one-parameter family of two-dimensional diffeomorphisms of the 

class cr (r ~ 3) which is smooth with respect to the parameter JL. We assume that the family fl-' is 

transversal to the bifurcation surface H of diffeomorphisms with a structurally unstable heteroclinic 

cycle, and fo E H. We also assume that info the saddle values ojthe points 0 1 and 0 2 are on 

different sides of unity. Then, on any interval [ -JLo, JLo] of the values of the parameter JL there. 

exists a countable set of intervals Ll~, which accumulate to JL = 0 as i-+ oo, such that 

(1) on Ll~ the values of JL , for which the family fjj unfolds generically the homoclinic tangency 

of the point 0 11 are also dense; 
-, 

(2) on Lll the values of JL, for which fl-' has a structurally unstable heteroclinic cycle contain

ing the points 0 1 and 02 and the heteroclinic orbits ft2(JL), where f12(0) = f12, and i\1(JL) C 

w;(02 ) n w;(OI), are dense. At the points of the orbit f'l2(JL) the manifolds w;(02 ) and w;(01) 

have a quadratic tangency; 

_ (3) on .D-1 the values of JL. for which f~~o simultaneously has a countable number of stable and a 

~~~ountable~-ilumber of completely unstable periodic orbits, are dense. 

· Proof. We shall show, first of all, that item 3 of the theorem follows from item 1. We shall 

assume, for definiteness, that 0'1 > 1, o-2 < 1. Let JL = JLi E .Ll~. Then, by virtue of statement 1 

of the theorem, there ~xists. arbitrarily close to JLi, a JL = JL~ such that /~-'1 has a structurally 
' 

unstable homoclinic orbit f' 1 of the point 0 1 . Since o-1 > 1, it follows, according to the theorem 

on a cascade of sinks (sources), that in any heighborhood of the point JL! there exists an interval 

81 E Ll] of values of JL such that for JL E 81 the family fl-' has a completely unstable periodic orbit. 

Furthermore, on the interval 81 , again by virtue of Statement 1 of the theorem, there exists a. 

JL = JL; such that /~-'~ has a structurally unstable homoclinic orbit f'2, this time of the point 02. 

Since o-2 < 1, it follows, again according to the theorem on a cascade of sinks (sources), that there 
exists an interval 82 C 81 such that for JL E 82 the family f~-' has a stable periodic orbit. Thus we find 
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that for J.t E 82 the diffeomorphismfll simultaneously has a stable periodic orbit and a completely 

unstable periodic orbit .which lie in U (these orbits lie entirely in certain small neighborhoods of 

the homoclinic orbits f1 and f2). Similarly, on the interval 62 we find a subinterval 84 such that 

for J.t E 84 the diffeomorphismfll has two stable orbits and two completely unstable periodic orbits 
lying in U. 

Thus we obtain a countable set of nested intervals 

such that for J.t E 82n the diffeomorphism/ll simultaneously has n stable and n completely unstable 

periodic orbits. This completes the proof of item 2 of the theorem. 

For definiteness, we shall begin the proof of item 1 of the theorem with the case of a cycle in 

which /1 > 0, ..\2 > 0, c21 > 0, d21 > 0 (Fig. 4c), a.nd shall assume that u1 > 1, u2 < 1. Then, 

for J.t = 0, the diffeomorphism/ll has in u a. structurally unstable heteroclinic orbit (namely, r2!), 
for J.t < 0 it has two structurally stable heteroclinic orbits, which are close to f 21, and for J.t > 0 
it does not have in U any. heteroclinic orbits passing through the points 0 2 and 0 1 . Note, that 

in the case under consideration, for J.t ~ 0 the diffeomorphismfll cannot have orbits which would 

be homoclinic to 0 1 and would lie in U since all curves from the set vvu ( OI) n rrt lie above the 

"parabola" T21 (J.t )(vJii~c ( 02)) n rr;z c wu ( 02)' and, conse~uently, (for J.t ~ 0)' above VVI~c ( 01). 

However, for J.t < 0 the family fll already can have orbits homoclinic to 0 1 . Moreover, we have the 

following lemma. 

Lemma 1. There exists a sequence {J.ti} of values of the parameter J.t such that J.ti ~ 0 as 
i ~ oo and the diffeomorphism Ill; has a structurally unstable one-circuit orbit r li homoclinic to 

Ot. In this case, the tangency of the manifolds W 8 (01 ) and W 8 (02) along f 1i is quadratic and, 

for J.t = J.ti, the family Ill is transversal to the bifurcation surface H1i of systems with a structurally . 
. , 

unstable homoclinic orbit, which is close to r 1i. 

Proof. We denote by I!(J.t) the segment T12(W1~c (01)) n III of the unstable manifold of the 

point 01. For small p the segment l!(J.') intersects the manifold W1~c(02) transversally. It is easy 

to see from (3.2) that the curves /!i = Tj2(l! n 0'?2) on II2 accumulate regularly (see Definition 2) 

to the segment l~ = wl~c ( 02) n rr;z' which is defined by the equation Xt2 = 0 on n;z. In this 

. case, by virtue of (3.2) and (3.5), the equation of the curve l!i is x12 = ..\2(p)ixt(J.t)(1 + ... ) and, 

by--virtue .of (3.6), for J.t = J.'i = -c21..\~xt(l + ... ) the diffeomorphismjll has in U a one-circuit 

. -structura~tY unstable homoclinic orbit f 1i of the point 0 1 . For large i, the tangency of the stable 

and the unstable manifold of the point 0 1 at the points of the orbit r ti is quadratic, and, by virtue 
of Statement 1, the family /~-' is transversal to the bifurcation surface Hi of diffeomorphisms with 

a structurally unstable homoclinic curve which is close to r ti. 
Lemma 1 and the Newhouse theorem [3] yield the following lemma. 

Lemma 2. There exists a sequence {til} of ranges of values of the parameter J.t which accu

mulate to J.L = 0, the sequence being such that on the interval til the values of the parameter J.L, 

for which the family of diffeomorphisms fll unfolds generically the homoclinic tangency of the point 

Ot, are dense. 

Lemma 3. Let J.t = J.Li be a value of the parameter J.L from the interval Lit $Uch that fll: has 
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a structurally unstable homoelinic orbit of the point 0 1 • Then there accumulates to the point J.Li a 

countable set of values J.Lij of the parameter J.L such that for J.L = J.Lij the family of diffeomorphisms 

JJ.& unfolds generically a homoelinic tangency of the point 02 . 

Proof. Suppose that for J.L = J.Li E ~l the diffeomorphism JJ.& has a structurally unstable 

homoclinic orbit of the 'point Ot and let M}:. E W1~c (Ot) n II} and M(. E Wi~c (Ot) n IIt be a 

pair of homoclinic points of this orbit. Then J!; (M}:.) = Mj. for a certain natural qi. Note that 

for J.L = J.Li, since J.Li < 0, the piece lu = T21 (W1~c ( 02)) of the unstable manifold of the point 02 

intersects the piece Wi~c (Ot) of the stable manifold of the point Ot transversally at two points 

(which are close to Mt). We denote these points by Mtt and Mt2· We take a piece lu1 of the. 

curve lu, that contains one of these points, say, Mu. As k 4 oo, the curves 1=1 = T~1 {lut) n II} 

accumulate regularly to the piece W1~c (01 ) n II} of the unstable manifold of the point 0 1 and, 

consequently, to the piece /~i (W1~c (01 ) n II}) (for a fixed i). For J.L = p.'[ the latter has a quadratic 

tangency with W1~c (01) n rrt at a certain point Mt, which is close to Jv!{. Furthermore, for all 

sufficiently small J.L, the piece ls2 = Ti21 (W1~c ( 02)) n II} of the stable manifold of the point 0 2 

transversally intersects the piece W1~c (Ot) n II! of the unstable manifold of the point 0 1 (at a 

point which is close to M!). Consequently, the curves 1~2 = T~i {132) n rrt accumulate regularly 

to the piece W1~c (Ot) n IIt of the stable manifold of the point 0 1 . Thus we have two families 

{1=1 } and {1!2 } of curves, cr-smooth and smoothly dependent on the parameter which accumulate 

regularly to the curves /~; (tV1~c ( Ot) 0 II!) and Wi~c ( Ot) n rrt re5pectively. For J.L = J.Li the latter 

have a quadratic tangericy. ~foreover, as follows from Lemma 2, for J.L = J.Li the family f~-' unfolds 

generically the tangency of the curves f~; (W1~c ( Ot) n II!) and W1~c ( Ot) n rrt. Then Lemma 3 

follows immediately from Statement 1. 
,, 
' ., 

The Newhouse theorem and Lemma 3 give the following result. 

Lemma 4. To the value J.L = J.Li there accumulate a countable set of intervals Ali of values of. 

the parameter J.L such that on Ali the values of J.L, for which the family fJ.& unfolds generically the 

homoclinic tangency of the point 02, are dense. 

_ ~ It is cl~~r that for large j the intervals Arj lie within Lif. Then, by virtue of Lemma 2, in the 

. iritervals ~~j the values of the parameter p,, for which f~-& has a structurally unstable homoclinic 

orbit of ~he point Ot, are dense and the values of the parameter J.L, for which f~-& has a structurally 

unstable homoclinic orbit of the point 02, are also dense. 

Now the proof of item 2 of the theorem is sufficiently obvious. Indeed, first, for all sufficiently 

small J.L (including the values of J.L from the interval Arj) there is in U a heteroclinic orbit f 12(p,), 

ft2(J.L) -+ r12 as J.L 4 0, along which the mainfolds wu(ot) and W 3 (02) intersect transversally. 

Second, as follows from the proofs of Lemmas 1-4, on the interval Li[j the values of p,, for which 

the family f~-' unfolds generically the heteroclinic tangency of the manifolds wu(02 ) and l-V"(Ot) 

a re dense. The moments of these tangencies correspond to the exstence in the diffeomorphismfJ.& 

of a structurally unstable heteroclinic cycle containing the points 0 1 and 0 2• This completes the 

proof of Theorem 4 for the case under consideration (i.e., the case foE HJ). 
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Fig. 13. 

In the case of diffeomorphisms with a structurally unstable heteroclinic cycle of a different type, 
the proof is completely similar, except for the case where fo is a diffeomorphism of the second class 

(/o E H2) (Fig. 4b), (i.e., the case A2 > 0, /1 > 0, c21 < 0, and d21 > 0). The matter is that the 

existence of Newhouse intervals ~l was proved precisely on the subinterval of the interval ( -J.£0 , Jlo], 

where fP. has two structurally stable heteroclinic orbits, which are close to r 21 . However, as was 

established above (see Section 5), for diffeomorphisms of the family fp., where fo E H2 , the set Np. 

has a hyperbolic sturcture for the values of the parameter Jl from this subinterval. Naturally, this 
family can have Newhouse intervals only for positive Jl, i.e., in the class of diffeomorphisms without 
heteroclinic orbits, which are close to r2l· Nevertheless, the fundamental theorem is also valid in 
this case and the proof follows immediately from Lemma 5. ·; -, 

Lemma 5. Let fp. be a one-parameter family, which is transversal for Jl = 0 to the bifurcation . ' 

surface H2 . Then, on the interval (0, Jlo] there exists a countable set of values of the parameter 

Jl: Jl =fife such that fife -t 0 ask -t oo and, for Jl = fife, the family fp. unfolds generically the second 

heteroclinic tangency of the manifolds W"(01 ) and W"'(02) which coN"esponds to a third-class 

diffeomorphism with the simples structurally unstable heteroclinic cycle . 

. - _ Figure. 13 illustrates the method for proving this lemma. First we take the diffeomorphism 

·~/p.. which -is close to fo (Fig. 13a) and such that the piece T21 (W1:c (02)) n rrt of the unstable 

- ~anifol~ ~f the point 0 2 lies above the piece W1~c (01 ) n nt of the stable manifold of the point 

0 1 and intersects the strip 0'~1 along two components WI and W~ (Fig. 13b). It is obvious that 

the value of Jl can be chosen such (Jl "' -c21A~xt) that the "parabola" T21TJ2Tt2Tcf1 (W~) (for a 

certain j ~ k2) touches the interval W1~c (01) n nt. It is easy to make sure that this _tangency is 

associated with a third-class structurally unstable cycle (corresponds to the diffeomorphism from 

Hj). 

7.1. Newhouse domains in the vicinity of diffeomorphisms with a structurally 
unstable heteroclininc cycle of the general type. · The fundamental theorem (to be more 

precise, its second part) is also valid in the case of one-parameter families which are transversal 

to the bifurcation surface of diffeom:orphisms with a structurally unstable heteroclinic cycle of the 
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genral type (Fig. 3a). 

Namely, let the diffeomorphism/a have structurally stable saddle periodic orbits PI, ... , Pn 

such that rii+I c wu(.Pi) n W"(~+I), r ni c wu(Pn) n W"(PI), i = 1, . .. In - 1. We assume 
that all the indicated intersections are transversal and only one intersection, say, the intersecion of 
the manifolds wu(Pn) and W"(PI), is nontransversal and, moreover, wu(Pn) and W"(H) have a 

quadratic tangency at the points of the heteroclinic orbit r ni· 

Let us consider a one-parameter family 1~ of cr -smooth ( r ~ 3) diffeomorphisms, smoothly de
pendent on J..L, which is transversal to the bifurcation surface of diffeomorphisms, with a structurally 
unstable heteroclinic cycle, which are close to fo. 

Theorem 5. Let J~ be a one-parameter family of cr -smooth (r ·~ 3) diffeomorphisms, which, 

for J..L = 0 is transversal to the bifurcation surface of diffeomorphisms with a structurally unstable 
heteroc/inic cycle which are close to f 0 • We assume that at least two periodic orbits from the set 

{PI, ... , Pn} have saddle values {the moduluds of the product of multiplicators), one of which is 

larger and the other is smaller than unity. Then, on any interval [ -p,o, J.Lo], where J..Lo > 0, there 

exists a countable set of Netehouse subintervals ~1 such that in ~1 the values of the parameter J..L, 

for which 1~ simultaneously has a countable set of stable orbits and a countable set of completely 

unstable orbits, are dense. 

Proof. Let q be a degree of the diffeomorphism of 1~ such that the points of periodic orbits 

P11 ••• , Pn are fixed for F~ = fZ· We choose exactly one points Oi, i = 1, ... , n, from each cycle 

~ and consider for J..L = 0, for the diffeomorphism F0 , a heteroclinic cycle, which includes the fixed 

points 0 11 .•• , On, and the heteroclinic orbits rii+I c f'ii+I• r nt c f' nt, where the orbits rii+I of the 

diffeomorphismF0 consist of the corresponding points of the orbits f'ii+I of the diffeomorphism/a, 
taken in q iterations. Fm the diffeomorphism F0 we have a cycle such that the intersection of th~ 
manifolds wu(Oi) and W"(O; + 1), i = 1, ... , n- 1, along the trajectory rii+I is transversal and 

wu (On) has a quadratic tangency with W" ( OI) along the orbit r ni· It is clear that for J..L = 0 the 
family F~ unfolds generically the heteroclinic tangency. 

By assumption, the saddle values of at least two points from OI, ... , On lie on different sides of 
unity. We shall first consider the case where OI and On are these points. Since the intersections . 

of the manifolds wu(Oi) and W"(01 + 1), i = 1, ... , n- 1, are transversal, it follows, by the cr-
.· ..\:lemma, that there exists in U a heteroclinic orbit fin along which the manifolds wu(OI) and 

. - . ....... 

W .. (On) intersect transversally. Let us consider the heteroclinic cycle C = {011 0 2 , f 1n, r nd· Ob-
viously, it is the simplest structurally unstable heteroclinic cycle, and, for the family F~ containing 

the diffeomorphism F0 with such a cycle Theorem 5 immedialtely follows from the fundamental 
theorem. 

Let us now consider the case where the saddle values of the points 01 and Oj, with j E 

{2, ... , n- 1}, lie on different sides of unity. First, we take some heteroclinic orbit f 1j C U along 

which the manifolds wu(OI) and W"(Oj) intersect transversally. Second, we shall consider the 

structurally unstable heteroclinic point lvf{ E W1~c (OI) n wu(On) and its neighborhood nt. We 

denote by/~ a connected piece of the set wu(On) n nt, which contains the point M{. It follows 

from the cr -..\-lemma that in rrt there lies a countable set of curves Wk from the set wu ( Oj) n rrt' 
which for sufficiently small J.L accumulate regularly to r: as k -7 oo. Then there exists a countable 
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set of values of the parameter J.l., J.1. = J.l.k, for which the curves w~c(J.Lk) have a quadratic tangency 

with W1~c ( 0 1 ) nnf. Correspondingly, for J.L = J.l.k the diffeomorphism F~ has a structurally unstable 

heteroclinic orbit rik at the points of which the manifolds W"(Oj) and W 5 (0t) have ·a quadratic 

tangency. By virtue of Statement 1, for J.1. = J.l.k, the family F~ unfolds generically a heteroclinic 

tangency which corresponds to the existence in F~,. of the simplest structurally unstable cycle 

CJJ = {01 , Oi, f 1i, fj~c}, for which the saddle values of the points 0 1 and Oi lie on the different 

sides of unity. This completes the proof of the theorem. 

8. MODULI OF !1-CONJUGACY OF THE THIRD CLASS DIFFEOMORPHISMS. WITH A 
STRUCTURALLY UNSTABLE HETEROCLINIC CYCLE 

In this section and in next two sections we shall study the structure of the set of nonwandering 
orbits and their bifurcations, properly of third-class diffeomorphisms with the structurally unstable 
heteroclinic cycle (i.e., in the class of systems on the bifurcation surface H3). The aim that we 

pursue is to find the conditions for the existence of stable and completely unstable orbits of these 
systems. We shall show that orbits of this kind appear as a result of the simplest saddle-node: 

bifurcations the control parameter of which is the quantity (J ~ -In I-A2I/ In h1 1. We shall also 

show that when (J varies continuously, homoclinic bifurcations will also "continuously" occur in 
diffeomorphisms on H3 • Such a considerable dependence of the structure of the set of periodic and 

homoclinic orbits precisely on (J is not accidental. This is a consequnce of the fact that (J is a modulus 

of !1-conjugacy of diffeomorphisms on H3 (i.e. , a continuous invariant of topological conjugacy on a 

set of nonwandering orbits) . This section is devoted to the proof of the last statement and of some 
other results concerning the moduli of !2-conjugacy of diffeomorphisms with structurally unstable 
heteroclinic cycles. 

Recall the definition of the modulus. 
Definition 3 [11, 7]. We say that the system f has a modulus if, in the space of dynamic~! 

systems, f lies in a certain Banach manifold M, on which the continuous, locally nonconstarit 
functional h is defined which possesses the following property: if h, h E M ·and / 1 and h are 

equivalent, then h(JI) = h(h) . The system f has m modulus if/lies in a certain Banach manifold 

on which there exist m independent moduli. Finally, we say that f has a countable set of moduli 
iff has m moduli for any preassigned m. 

It follows directly from [22] that the invariant 

·. - (J = _ In I-A2I 
In I'Ytl 

is a modulus of topological conjugacy of diffeomorphisms with a structurally unstable heteroclinic 
cycle, including first-class and second-class diffeomorphisms. However, if we restrict the consider
ation to the conditions of !1-conjugacy, then, on the corresponding bifurcation surfaces, the latter 

will be !1-structurally stable. At the same time, third-class diffeomorphisms will possess moduli of 

!1-conjugacy. 
Let U and U' be some neighborhoods of the heteroclinic cycles C and C' of the diffeomorphisms 

f and f'. Suppose that Q(/) and !2(!') are sets of nonwandering orbits lying entirely in U and U' 
respectively. Note that f2(j) does not always coincide with No {namely, 0.(/) ~ No). but all the 

same, the nontrivial set No (from Theorem 3) is contained in Q(J). 

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 216 1997 



ON NEWHOUSE DOMAINS OF TWO-DIMENSIONAL DIFFEOMORPHISMS 101 

Definition 4. We say that I and I' are locally 0.-conjugate if there exist neighborhoods U 
and U' of the heteroclinic cycles C and C' and a homeomorphism h: f2(/) -+ 0.(1') such that 

h(Os) = 0~, s = 1, 2, h(f12 ) = f~2 , h(f21) = f~1 , and the diagram 

is commutative. 

Q(/) 
.!.h 

Q(J') 

~ Q(J) 
.!.h 

I' 
""""'--+ n {!') 

Suppose that the heteroclinic points J:vft, iV!; and M~+, M~-, s = 1, 2, are chosen such that 

h(M+) = M'+ 
s s ' (8.1) 

We say that these points are conjugate. For the diffeomorphism f we shall consider a special 

neighborhood V = V(k1 , k2) ~ U. By virtue of the commutativity of the diagram, the continuity of 

h, and condition (8.1), for sufficiently large k1 and k2 we find that there exists a special neighborhood 

V' = V'(kt,k2) ~ U' such that h(Q(Jiv)) C V' and the homeomorphism h:Q(Jiv)-+ f2(J'Iv') 
preserves codings of form (5.2). Thus we find that codings of form (5.2) of the corresponding orbits· 

from Q(J) and Q(f') must coincide. In particular, since N0 C 0..(!), Q(J') must contain a set of 

orbits codings of which coincide with those of the orbits from N0 • Using these obvious properties 
of Q-conjugate diffeomorphisms, we can now prove the following result. 

Theorem 6. Let /, f' E H3 and let I and I' be locally n-conjugate in certain neighborhoods 
U and U' of the heteroclinic cycles C and C'. Then () = ()'. 

Proof. We assume that I and I' are n-conjugate in certain neighborhoods U and U' of 

heteroclinic cycles, but () > 9'. Let Mt, Ms- and M~+, M~-, s = 1, 2, be pairs of conjugate 
heteroclinic points. · 

We assume, for definiteness, that the diffeomorphisms f and /' are of the same type as those 
shown in Fig. 4c, i.e., .X1 > 0, 12 > 0, c21 > 0, d21 > 0. For f we shall consider the set of pairs 

(i,j) of natural numbe~, which satisfy ineqality (4.2), i.e., i and j such that the horseshoe T21 (crJ2) 

regularly intersects the strip cr?1 • If we take the logarithms of inequality ( 4.2), we get 

(8.2) 

(8.3) 

For I' we shall consider the set of pairs (i,j) of natural numbers satisfying inequality (4.3), i.e., 
the inequality 

(8.4) 

Note that, in any event, inequality (8.4) is satisfied by all numbers i and j for which T~1 ( cr}2 ) ncr?1 # 
0. 
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Finally, let us consider the set of pairs ( i, j) of natural numbers, which satisfy inequality (8.2) 

but do not satisfy inequality (8.4). For these i and j the inequality 

"()' I . "() J - r+ . . . <l<J -r+ ... (8.5) 

is satisfied, where the dots denote the terms which tend to zero as k1, k2 ---* oo. For sufficiently 

large k1 and k2, inequality (8.5) has a countable set of integer-valued solutions since () > ()' by 

assumption. Let i = i-, j = j* be one of those solutions. Then, since i = i*, j = j* satisfy 
inequality (8.2), by virtue of Theorem 2 the diffeomorphism f has nonwandering or-bits (of the 
saddle type that have codings of form (5.2) in which k_,(2) = j* , k_,+1(1) = i* for a certains. In 
particular, such a coding exists for a one-circuit periodic orbits which has one point of intersection 

with the strips o-f.1 and o-J'!. In this case, its point of intersection with the strip o-f.1 is fixed for 

the mapping T21TJ; T12TJ~: o-f.1 ---* o-f.1, which, in this case, is similar to the familiar map of Smale's 

horseshoe. On the other hand, the numbers i = i*, j = j* do not satisy inequality (8.4), and 

therefore T~1 (o-j?) n o-?.1 = 0 for f'. Thus, f' cannot have orbits with a coding, which would 

have adjoining symbols k_,(2) = j*, k_,+l (1) = i*. Consequently, I and /' cannot be n-conjugate. 

We have got a contradiction with the previous assumption that () > 81
• The case () < ()' can be 

considered by analogy. It suffices to change the places off and /' here. We have thus proved the 
theorem. 

Thus, by virtue of Definition 3 the functional () is the modulus of n -conjugacy of the third-class . 
diffeomorphisms. By analogy with systems with a structurally unstable homoclinic orbit [10, 11, 

8], we can show that () is not a unique n-modulus (see, e.g., [23]). Moreover, below we prove the 
existence of a countable set of n-moduli for the third-class diffeomorphisms. 

First of all, we have the following theorem. 
Theorem 7. In H3 , the set B such that any diffeomorphism from B has a strtt.cturally stable 

saddle periodic orbit with a structurally unstable homoclinic orbit is dense. ··, 

Proof. Let us consider, for definiteness, the case of diffeomorphisms on Hj. We shall consider 

a one-parameter family fe of diffeomorphisms on Hj and show that for any () = 80 on the interval 

(80 - c, Bo +c), for any c > 0, the values of()* such that the diffeomorphism/o• has a structurally 
unstable homoclinic orbit of the point 0 2 are dense. 

We fix () = 80 , and consider. for the diffeomorphism/so, the set of pairs ( i, j) for which inequality 

(4.2) is satisfied. In the.case where .A1 > 0, 1'2 > 0, c21 > 0, d21 > 0 it assumes the form 

(8.6) 

Now we set()= ()0 - c and consider, for the diffeomorphism/eo- &• the set of pairs (i,j) for which 

inequality (4.1) is satisfied, i.e., 

(8.7) . 

Let us now consider the set of pairs ( i, j) for which inequalities (8.6) and (8.7) are simultaneously 

satisfied. The set of these pairs is obviously countable for any c > 0. Let ( i*, j*) be one of these 

pairs. For the diffeomorphism/eo the strip o-?.1 and the horseshoe T2t(o-J!) intersect regularly. Then 

the curve 
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Fig. 14. 

lying in the strip u?.1 and the curves 

lying in the horse5hoe T21 ( uJ!) intersect. The points of intersection of these curves are homoclinic 

points of the saddle 02. For 8 = Bo-c the horseshoe T21 (u}!) and the strip u?.1 do not intersect, and 

therefore there are no corresponding homoclinic points. Consequently, there exists (J* E (80 - e, 80 ) 

for which fo· has a structurally unstable homoclinic orbit of the point 0 2 (Fig. 14). It also follows, 

from (3.2) and (3.4) that if the curves Wi~ and Wi'!j• are tangent, then this tangency is quadratic. 

We have thus found that on the bifurcation surface HJ systems with a structurally unstable 
homoclinic orbit of the saddle 0 2 are dense. Note, however, that diffeomorphisms of this kind do 
not have in U any homoclinic orbits of the saddle 0 1 . This obviously follows from the fact that 

for At > 0, 1'2 > 0, C2t > 0, d21 > 0 all curves from the set wu(Ot) n rrt lie above the curve 

; Ttf'Vt~c(02)nrrt. 
- <~~_In the c~e of diffeomorphisms from H§ (i.e., when At > 0, 1'2 > 0, C21 > 0, d21 < 0, see Fig. 4d) 
- ·the density· of the values of the parameter (} for which fe has a structurally unstable homoclinic 

orbit of the point 0 1 can be proved by analogy. It is also obvious that the diffeomorphisms in H§ 
do not have in U any homoclinic orbits of the saddle 0 2 . 

Theorem 7 will also be vaild in other cases of third-class diffeomorphisms, but the problem 
concerning the existence of homoclinic orbits precisely of the saddles 0 1 and 0 2 will be solved 
differently in different cases. and here we have the following theorem. 

Theorem 8. The follou:ing statemenis are valid: 

( 1) In HJ U H~, syst~ms u:ith a structurally unstable homoclinic orbit of the saddle 0 2 are dense 
and there are no systems with a homoclinic orbit of the saddle 0 1 . 

(2) In H§ U H~, systems with a structurally unstable homoclinic orbit of the saddle 0 1 are dense 
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Fig. 15. 

and there are no systems with a homoclinic orbit of the saddle 0 2 • 

~ 01 
vii 

(3) In Hj U Hi U HJ, systems with a structurally unstable homoclinic orbit of the saddle 0 1 aruJ 

systems with a strcturally unstable homoclinic orbit of the saddle 02 are dense. 

Figures 15 and 16 illustrate the main geometrical idea of item 3 of this theorem for the case of 

systems on Hj (i.e., for the case where A2 > 0, 11 < 0, c21 < 0, d21 > 0; see Table 1). Figure 15 

shows the moment of a nonregular intersection of the strip uf1 (where i is odd in this case) and 

the horseshoe T21 (uJ2) (the oddness of j does not matter) when there is a homoclinic tangency of 

the piece 
.~ .... _ .-

·of the un~table manifold of the point 0 2 and the piece 

of the stable manifold of the point 02. Similarly, Fig. 16 shows the moment of the homoclinic · 
tangency of the piece 

T2tTJ2[T12(Wl~c(OI)) n uJ2
] 

of the unstable manifold of the point 0 1 and the piece 
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---- -~--- --
- ·-· -- --.o:~-- .. - · 

Fig. 16. 

of the stable manifold of the point 0 1 • Note that the numbers i 1 and h are arbitrary, in principle, 
only i 1 must be even, and the numbers i and j are connected by the condition of nonregularity 9.f 
the intersection of the corresponding strips and horseshoes. By virtue of Theorem 1, i and j satisfy. 

inequaltiy ( 4.4) for J.L = 0, i.e., the inequality 

in which the number i is odd. This is connected with the geometry of the arrangement of the strips 

and horseshoes in the case of the systems on Hj. 
· · --~Using no~ Theorems 7 and 8, we shall prove the following result . 

. ~ - ~- Theor~-fu. 9. In H3, systems, which have a countable set of moduli of fl.-conjugacy, are dense. 

Proof. We shall use the results of (8] in which it is shown that any system with a structurally 

unstable homoclinic point can be arbitrarily slightly permuted (by a permutation of the class cr- 1 ) 

so that a system will result with a countable set of structurally stable saddle periodic orbits each 
of which has a structurally unstable homoclinic orbit. Note that we can choose these pemutations 
such that they will be lotalized in a small neighborhood of a structurally unstable homoclinic orbit, 
and, consequently, will not bring diffeomorphisms with a structurally unstable heteroclinic cycle of 
the third class out of the "film" H3. Thus we obtain from Theorem 7 that in H3 the set B* such 
that any diffeomorphism from B* has a countable set of structurally stable saddle periodic orbits, 
each of which has a structurally unstable homoclinic orbit, is dense. · 

Let us consider the diffeomorphism/* E B*. Suppose that it has structurally stable saddle 
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periodic orbits Oi, ... , o;, ... with a structurally unstable homoclinic orbits rz respectively. Obvi

ously, !* lies at the intersection of the countable set of smooth Banach manifolds Mn such that any 

diffeomorphism from Mn has n periodic orbits Oi, ... , 6~ close to Oi, . . . , 0~ with structurally 

unstable homoclinic orbits fj, ... , r:. Let Vk ,Pk (ivki < 1, IPkl > 1) be the multiplicators of the 

orbit Oz. It is shown in [10. 11] that the quantities 

are moduli of !"2-conjugacy of the systems on Mn· Obviously, the functionals (}k , k = 1, 2, ... , n, 
defined on the smooth Banach manifold Mn, are independent since, first, for different k they· 
can be expressed in terms of multiplicators of different periodic orbits and, second, their values 
change independently of one another when we pass from one system on Mn to another. The 
latter statement is connected, for instance, with the fact that the diffeomorphism f belonging to 

Mn also lies in the smooth Banach manifold Mni C Mn of codimension (n- 1), which contains 

diffeomorphisms where the values fJk, k = 1, 2, ... , i-1, i+1, n, are fixed and (Ji is not locally constant 
(i.e., is a modulus for systems on Mni)· Then, according to Definition 3, the diffeo~orphisrn J* 
has a countable set of !"2-moduli. This completes the proof of the theorem. 

9. STRUCTURALLY UNSTABLE PERIODIC ORBITS OF THE THIRD-CLASS 
DIFFEOMORPHISMS 

From the viewpoint ·of the bifurcation theory the important property of Q-moduli is that they 
can be regarded as controlling parameters in the investigation of nonwandering orbits, in particular, 
periodic and homoclinic orbits. In this section, we shall mainly consider bifurcations of periodk 
orbits. 

Theorem 10. In H3 systems with structurally unstable periodic orbits, are dense. 

Proof. We say that the periodic orbit L which lies entirely in U, is the k-circuit orbit if the· 

intersection L n IIt (and, hence, the intersection L with II! or IIt I or II2) consists of exactly k 

points. Such an orbit has exactly one intersection point with eaeh of the neighborhoods IIj and 

II; I s = 1, 2. Let Mot E IIt, 1\.Jn E II!, Mo2 E IIt' Ml2 E II2 be successive points of this kind. 

-~Tlien, for ·~tain i ;:::: kt, j;:::: k2 we have 

Correspondingly, 

Moi(xot. Yot) E o-?1
, 

Afo2(xo;,Yo2) E o-J2
, 

Mn(xn,Yu) E o}l, 

M12(x12, Yl2) E o-]2. 

The point !v/01 is, obviously, a fixed point of the mapping Tij in one circuit along the cycle, 

T. - T r.i T T.i . ,..01 -----'- ,..o1 ij = 21 02 12 Ol•Vj -r Vj • 
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By virtue of (3.2)- (3.4), the mapping Tij can be written as: 

io2- xt = a12A{xo1 + bt2(Yu - yl) + ... , 
"Y2jYt2(1 + ... ) = Ct2A{Xot + dt2(Yu- yl) + ... , 
i01 - xi = a21A~Xo2 + b21 (Yt2 - Y2) + · · ·, 
"YtiYu(l + · · .) = c21A~Xo2 + d21(Y12- Y2)2 + · · · · 

The coordinates of its fixed points satisfy the system of equations 

xo2 - xt = a12A{xo1 + bt2(Yu- Yl) +. ·., 
-y;i Y12(1 + ... ) = c12A{ Xot + dt2(Yu - Y1) + · ·., 
Xot - xt = a21A~Xo2 + b21 (YI2 - Y2) + . · ·, 
-y}iYu(l + ... ) = c21A~Xo2 + d21(Y12- Y2)2 + ... . 

(9.1) 

(9.2) 

Since d12 # 0, d21 # 0, it is easy to see that if system (9.2) has a solution, then the estimates 

(9.3) 

hold for the coordinates T/J. = y11 - Yl and 1]2 = Y12 - Y2 of this solution for sufficiently large i and 

J. 
For large i and j the first and third equations in (9.2) are resolvable for x01 and x02• When we 

substitute them into the second and fourth equations of system (9.2), we get the following system 
for T/J. and 1]2: 

(d121J1 + · .. ) - ("Y2i(1J2 + · · .) - A{(b21c121J2 + · · .)) - ("Y2i(Y2 + · · .) - A{(c12xt + · · .)) = 0. , 

(d211J~ + ... ) - ("Y1i(1Jt + ... ) - A~(bt2c211J1 + ... )) - ("Y}iy}(l + ... ) - c21A~xt(l + ... )) = 0, ' 

(9.4) 

where the dots denote the terms, which have, together with the first derivatives, the order o(IA{I + 
h;il + /IA~I + hlil), and, in addition, their second derivatives tend to zero as i,j--+ oo. 

Since d12 f::. 0, the first equation of system (9.4), for large i and j, is resolvable for 1]1 • When 

.. V(e-substitu~e this solution into the second equation of system (9.4), we get the following equation 
i<;>r_1}2: ·" ~: · 

(9.5) 

Obviously, for sufficiently large i and j, (9.5) does not have roots of multiplicity exceeding two. 
In addition, there exists a postive constant L3 , which is independent of i and j , such that if the 
inequality 

(9.6) 
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is satisfied, then Eq. (9.5) has exactly two roots of the form 

-i - > . .i + 
1,2 ± /1 Y1 - c21 2x2 ( 1 + ) 

112 = d .... 
21 

On the other hand, if the inequality 

(9.7) 

is satisfied, then Eq. (9.5) has no roots. 

Let us now consider, for definiteness, the case 11 > 0, ).2 > 0, c21 > 0, d21 > 0 (in other cases 

the proof is similar). After taking logarithms, inequality (9.6) a.s5Umes the form 

i < jfJ- T- L4().~ + li"i). (9.8) 

Correspondingly, if we take logarithms of inequality (9.7), we get 

i > j(J- T + L4().~ + li"i). (9.9) 

Thus, if the numbers i arid j of the strips satisfy inequality (9.9), then the mapping Tij does 

not have fixed points, and if i and j satisfy inequality (9.8), then Tij has exactly two fixed points. 

Let us consider now the one-parameter family fo of diffeomorphisms on H§. We fix (J = 00 and 

consider, for the diffeomorphism/eo, the set of pairs ( i, j) for which the inequaltity 

(9.10) 

is satisfied. The set of these pairs is countable. We set (} = 90 - 8 and consider the set of pairs 
( i, j) for which the inequality 

(9.11) . 

is satisfied. The set of these pairs is also countable. 

Let us now consider the set of pairs (i,j) for which inequalities (9.10) and (9.11) are simulta

neously satisfied. Obviously, the set of these pairs is countable for any 8 > 0. Let us consider one 
of these pairs, say, ( i*, j*). Then we find that the diffeomorphism/eo has two one-circuit periodic 

. · Qrbits whi~h. successively intersect the strips uJ~ and u?.1 and foo-6 does not have any periodic 

_ ~rl:>its of thii type. Since the solutions of system (9.4) continuously depend on the parameters and 

all of them lie in a bounded domain, we find, by virtue of (9.3), that there exists (}* E (Oo - 6, Oo) 
such that the diffeomorphism fo• has a structurally unstable one-circuit periodic orbit. We have 
proved the theorem. 

It follows from our discussion that this structurally unstable periodic orbit has at least one 
multiplicator equal to +1 and is a double multiplicator. If the second multiplicator is not equal to 
unity in absolute value,· then this periodic orbit is of a saddle-node type with the first Lyapunov 
value not equal to zero. If such an orbit is subjected to a bifurcation, either stable or completely 
unstable periodic orbit may be generated according as the absolute value of the second multiplicator 
is smaller or larger than unity. We shall consider questions concerning the existence of stable and 
completely unstable periodic orbits in third-class diffeomorphisms in the next sections. 
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10. STABLE AND COMPLETELY UNSTABLE PERIODIC ORBITS OF 
DIFFEOMORPHISMS ON H3 

109 

Note that the product of the multiplicators lit and 112 of the fixed point Mot of the mapping T;i 

is equal to the Jacobian J of this mapping calculated at the fixed point. Since T;j = T2tTj2Tt2Tjt, 

we have 

(10.1) 

From (9.1) and (9.2) we find that 

(10.2) 

where J12 = (at2d12 - b12ct2) is the Jacobian of the mapping T12 calculated for J.L = 0 a.t the point 

Mt- , and ht = -b2tc2ris the Jacobian of the mapping T2t calculated for J.L = 0 at the point Mi. 
Since T12 and T21 are diffeomorphisms, it follows that J12 =/= 0, J21 =/= 0. 

Thus we find from (10.2) that for large i and j, by virtue of {10.2) the Jcaobian of the mapping 

T ;j is a quantity of the order a{ o-4. 
10.1. A Case, where saddle values lie on the same side of unity. As was established 

in Section 7 (Statement 2), if both saddle values a1 and q2 are either smaller or larger than unity, · 

then neither f nor diffeomorphisms sufficiently close to f have, in a sufficiently small neighborhood 
U of the cycle, either completely unstable or stable periodic orbits' respectively. On the other hand, 
we have the following result. 

Theorem 11. In the case q1 < 1, q2 < 1 ( q1 > 1, q2 > 1 resp.) in H3 the systems with a 

countable set of stable periodic orbits (with a countable set of completely unstable periodic orbits, 
; , 

resp.) are dense. 

Proof. Let us consider the case q 1 < 1, q 2 < 1. Obviously, the case O't > 1, q 2 > 1 can be 

reduced to it by the substitution of / - 1 for f. Let fe be a one-parameter family of diffeomorphisms 
in H3. By virtue of Theorem 10, for this family the values of the parameter(} are dense if(}= 8i; 

for them fe has a one-circuit two-fold periodic orbits for which one multiplicator v1 is equal to 

"+1" and the other, v2 , by virtue of (10.2) is a quantity of order qf~. According to the hypothesis 

. ; o( the theor~m, 112 < 1 for sufficiently large i and j. When the parameter (} changes appropriately 
(for. instance; "Yt > 0, A2 > 0, c21 > 0, d21 > 0 when it decreases), then the saddle-node periodic 

- orbit decomposes into two. One of them is of saddle type and the other is asymptotically stable for 

the values· of the parameter f) from a certain interval 5;j = (Bi;• B;;*). Since the points 8i; are dense, 

the values of 8, for which the diffeomorphisms fe already have a countable set of stable periodic 
orbits, are also dense. 

This fact can easily be proved by the method of nested intervals. Indeed, we fix f) = 80 and 

consider the interval 5o = (B0 - €, 80 +c). We have shown that for any c > 0 on the interval 5o 

there exists a subinterval 81 such that for (} E 51 the mapping T;Ii1 , for sufficiently large i 1 and it, 
has an asymptotically stable fixed point. On the interval 5t we again find a subinterval 52 such 
that for (} E 52 already the mapping T;'li2 has an asymptotically stable fixed point for sufficiently 

large i2 and h, and, consequently, the diffeomorphism/e has two stable one-circuit periodic orbits. 
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Proceeding in this way, we get an infinite sequence of nested intervals 

stich that for fJ E 8n the diffeomorphismfe has n asymptotically stable one-circuit periodic orbits. 
All these intervals have a common point, say, the point (}*. Then fe• has a countable set of stable 
one-circuit orbits. These values of the parameter (} are dense by virtue of the arbitrariness of the 
choice of the initial 8o and c. 

10.2. Stable and ~ompletely unstable periodic orbits (the case when saddle values 

lie on different sides of unity). We introduce the quantity a= afa2. In the case where either 

0'1 < 1 < 0'2 or 0'1 > 1 > 0'2, we divide the bifurcation surface Ha into two parts and denote by H8 

(Hu, resp.) the part, which consists of diffeomorphisms with a< 1 {a> 1, resp.). 

Theorem 12. In H8 (in Hu, resp.) sustems with a countable set of stable (completely unstable, 
resp.) periodic orbits are dense. 

Proof. By virtue of Theorem 10 in Ha structurally unstable one-circuit periodic orbits are 
dense. We shall consider one of these orbits. By virtue of {10.1), its Poincare mapping Tij has a 

Jacobian 

{10.3) 

Note now that the numbers i and j in this relation are not arbitrary. Since by hypothesis we 

consider a structurally unstable one-circuit orbit, the numbers of strips i and j, by virtue of {9.6) 

and {9.7), for J.L = 0, must satisfy the inequality 

{10.4) 

Thus we find that the numbers i are j related as 

{10.5) 

It follows from {10.3) and (10.5) that the Jacobian J of the mapping Tii• calculated at a saddle
node point, is a quantity of order 

(10.6) . 

'ri!~refore ·(f~r sufficiently large i and j) J < 1 if a < 1, and J > 1 if a > 1. Following now the 
- scheme of the proof of Theorem 11, we get the required statement. 

Let us consider now the problem of coexistence of stable and completely unstable periodic 
orbits of diffeomorphisms on Ha. As follows from Statement 2 and Theorem 11, the coexistence of 
stable and completely unstable periodic orbits is possible, in the general case when a 1 and a2 lie 
on different sides of unity. 

Let H! = H11 n (HJ U Hj U Hi U H~) (see Table 1). We denote by H88 the subset H!, which 

includes the systems on Hj and Hi for which a 1 > 1 and a2 < 1, and also systems on Hj and H~ 

for which a 1 < 1 and 0'2 > 1. Correspondingly, let H~ = Hun (Hj U Hj U Hi U H~) and denote by 

Huu the subset H!, which includes systems on HJ and Hi for which a 1 < 1 and 0'2 > 1 and also 

systems on Hj and H~ .for which a 1 > 1 and 0'2 < 1. 
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Theorem 13. (1) Systems on Hu do not have any completely unstable periodic orbits, and 
on Huu they do not have any stable periodic orbits. 

(2) On (H;\Hu) U (H~\Huu) systems, which simultaneously have a countable set of stable and 
a countable set of unstable periodic orbits, are dense. 

Proof. It should be pointed out at once that the case a < 1 reduces to a > 1 when we pass 

from the mapping f to the mapping f-1 • It is easy to see that upon this transform we again get a 
diffeomorphism of the third class with a structurally unstable cycle, but 01 is replaced by 02 and 

02 by 01. Respectively, 0'1 is replaced by u2\ 0'2 by 0'1
1

, d21 by-~, c21 by ,2 . In addition, c:u ::n -~1 

Therefore, it suffices to prove the theorem for diffeomorphisms on H 11 • For definiteness, we shall 

again consider the case of systems on HJ, i.e., the case A1 > 0, /2 > 0, c21 > 0, d 21 > 0. In the 
other cases the proof is completely similar. 

First suppose that u 1 > 1 and 0'2 < 1, i.e., f E H 1111 • We shall show that f does not have in U 
completely unstable periodic orbits. 

Let A be an s-circuit periodic orbit of the diffeomorphism/. Let A intersect the neighborhoods 

nt and nj at successi.vely arranged points belonging to the strips u?~ and uJ;, n = 1, ... , s, 
respectively. The point of the orbit A belonging to the strip u~1 is, obviously, a fixed point of the 

following mapping in s circuits: 

T.. . . . - rr T.i• rr T,it T T.i1 
11]1 .. ·'•1• = .L 21 02 • · • .L 21 02 12 01· (10.7) 

Note now that the numbers in ;:::: k1 and in ;:::: k2 in (10.7), are not, in general, arbitrary. In any 
case, for the mapping Ti1 j 1 ••• i.i. to have a fixed point, it is necessary that the coditions 

n = 1, .. . ,s -1, 
(10.8) 

be satisfied. 
By virtue of Theorem 1, since /1 > 0, A2 > 0, c21 > 0, d21 > 0, and JL = 0, the following 

inequalities must be satisfied (cf. inequalities (9.8)- (9.9)): 
·-

- -- ..... 

in+ I ~ inO + T + • • • 1 

i1 ~ jll(} + T + .... 
n = 1, ... , s -1, 

(10.9) 

The Jacobian I of the mapping TiJi1 ••• i.j. is equal to the product of the Jacobian of the factor

mappings in (10.7) and, consequently, there exists a quantity of order 

(10.10) 

Since u 1 > 1 and 0'2 < 1, inequalities (10.9) yield 

(10.11) 
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Fig. 17. 

Since a < 1, it follows that I < 1 for large it, ... , i 8 • This completes the proof of the first part of 
the theorem. 

Let us prove the second part of the theorem. Let now O't < 1 and u2 > 1, i.e., f E H;\Hu. 
Since a < 1, it follows that on H;\Hu the systems with a countable number of stable one

circuit periodic orbits are dense {Theorem 12). Thus it remains to prove that completely unstable. 
periodic orbits can also exist here. 

In order to show that this is so, we shall consider the mapping· Titil i,i-z in two circuits along the 

heteroclinic cycle C. We assume that the geometry of the corresponding intersections of the strips, 

and horseshoes is the following (Fig. 17). The horseshoe T21 ( uJ
1
2) intersects the strip u~1 regularly, 

and the strip u~1 irregularly; the horseshoe T2I(u};) intersects the strips u?
1
1 and O'~t regularly. 

Note that by analogy with the proof of Theorem 10, we can show that by small variations of the 
value of the parameter(} (the variations may be the smaller, the larger the values of i 11 i 2,ii. and 

h) we can obtain the situation where the mapping Tid1i2iz will have a structurally unstable fixed 

. poi_nt, one of whose multiplicators is equal to +1. The Jacobian of the mapping Titi1 i2 i-z at this 
. r>§tnt is a q;mntity of order 

(10.12) 

Note that here the numbers i 2 and it are related as i 2 =itO- T + ... since the intersection of 

the horseshoe T21 (u}
1
2) and the strip u~1 is irregular and the numbers it and h can be chosen, in 

principle, arbitrarily. To be more precise, the inequalities 

it < hO - T + ... ' (10.13) 

must be satisfied for them. Recall that the first of inequalities (10.13) guarantees that the horseshoe 

T21 (uJ
1

2) regularly intersects the strip u~1 , and the second and thir-d inequalities guarantee that the 

horseshoe T21 ( u12) regularly intersects the strips u~1 and u~1 • We fix i 11 and take h so large that 
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the Jacobian of the mapping T;1iti2 h is much larger than unity. By virtue of (10.12) and {10.13), 
we can do this since, by hypothesis, 0'2 > 1. 

Theorem 14. In the case where the saddle values lie on different sides of unity, on Hi U 

H~ U Hj the systems, which simultaneously have a countable set of stable and a countable set of 

completely unstable periodic orbits are, dense. 

Indeed, let us consider a one-parameter family fo of diffeomorphisms on H~, where l E {4, 5, 7}. 

By virtue of Theorem 8, the values of(} (we denote them by 8*), for which fo has a structurally 

unstable homoclinic orbit of the saddle 0 1 , are dense and the values of(} (we denote them by(}**),. 
for which fo has a structurally unstable homoclinic orbit of the saddle 02, are also dense. It follows 
from [15] that to each of the values (J• and (J•• there accumulates a countable set of intervals of the 
parameter 8, for which fo has a stable and, respectively, completely unstable periodic orbit. Now 
the statement can be proved by means of a standard procedure of the method of nested intervals. 

11. NEWHOUSE INTERVALS OF THE SECOND AND THIRD TYPES 

It was established above (see Section 7) that in the one-parameter family fJJ., which is transversal 

to the bifurcation surface of diffeomorphisms with the simplest structurally unstable heteroclinic 

cycle, there exist, in any neighborhood of the point J.L = 0, Newhouse intervals ~l of the first type, 
where the values of the parameter J.L are dense, for which there is 

(a) a homoclinic tangency of the point 01; 

(b) a homoclinic tangency of the point 0 2 ; 

(c) a structurally unstable heteroclinic cycle containing the points 0 1 and 0 2 ; 

(d) simultaneously a countable set of stable, completely unstable, and saddle periodic orbits (if 

the saddle values 0'1 and 0'2 lie on different sides of unity). 

We can also describe some properties concerning the arrangement of the intervals ~l on the'· 
J.L-axis. 

For instance, if fo is a first-class diffeomorphism, then the intervals ~l exist only for d21J.L < 0 

(i.e., in a class of systems with two heteroclinic orbits, which are close to f 2I), and for d21 J.L > 0 

the structure of the set N(p) is trivial, namely, N(J.L) = {01;02;f12}. 

If fo is a second-class diffeomorphism, then, as follows from the proofs of Theorem 4 and 

Theorem 2, the intervals ~1 exist only for d21J.L > 0 (i.e., in the class of systems without ·heteroclinic 

· ·orbits, which...:are close to r 12 ). and for d21J.L < 0 the set N (J.L) has a hyperbolic structure. 

· 'For the fiiird-class diffeomorphisms the situation is more complicated. It is easy to realize, for 

instance, fr~m Theorems 8 and 14 that in the family /JJ., where /o E Hi U H~ U Hj, the intervals 

~l exist both for positive and for negative p. 

As was proved in Theorem 4, in the case of family JJJ., where / 0 E Hj U Hj U Hi U Hg, the 

intervals ~l exist for d'ltJ.L < 0 (i.e., in the class of systems with two heteroclinic orbits, which 

are close to f2I). Here we are certainly interested in the question concerning the existence and 
structure of Newhouse intervals on the half-interval of values of J.L, where d21 J.L > 0. 

Note, first of all, that 

for d21J.L > 0 the diffeomorphisms of the family fJJ., where foE Hj U Hj U Hi U Hg, do not have 

in U homoclinic orbits of the point 0 1 in the case d21 > 0, or the point 0 2 in the case d21 < 0, . 
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neither they have heteroclinic cycles containing the points 0 1 and 0 2 . 

This statement is an obvious consequence of the geometry of the mutual positions of the invari
ant manifolds of the points 0 1 and 0 2 : 

in the case d21 > 0 all curves of the set wu(Ot) nnt for p. > 0 lie above the piece T21 Wi~c (02) n 
nt of the unstable manifold of the point 0 2 which, in turn, lies above W1~c (Ot) n nt; 

in the case d21 < 0, for p. < 0, the piece T21 W1~c ( 02) n nt of the unstable manifold of the point 

0 2 lies below W1~c (01) n nt, and all curves of the set W 8 (02 ) n nt lie above the latter. 

We shall show that for d21p. > 0 the indicated family 1~ includes Newhouse intervals of the 

second and third types. However, as distinct from Newhouse intervals of the first type, property (c) 

is no longer fulfilled for them, and properties (a) and (b) formulated at the beginning of this section 

cannot be fulfilled simultaneously. In addition, property (d) will not be fulfilled for Newhouse 

intervals of the second type. 
Let us consider, as before, the one-parameter family J~, which is transversal to H3 , but we shall 

introduce one more condition of the general position, namely, a i= 1. We shall assume that a< 1, 

since the case a > 1 reduces to a < 1 upon the substitution of /-1 for f. Thus we shall consider 
the problem of the existence and structure of Newhouse intervals for d21p. > 0 in the one-parameter 

family fu., where fo E H 8 (see Section 10). 
We shall begin with the case fo E Hu. Here we have the following theorem. 
Theorem 15. Let !11- be a one-parameter family of diffeomorphisms which is transversal to 

Hu for p. = 0. On the interval d21/L > 0 there are no completely unstable periodic orbits in N~-' 

and, in addition, there accumulates to p. = 0 a countable set of intervals !).~ such that 

(1) on !).~ the values of the parameter p., for which 1~ has a structurally unstable homoclinic · 

orbit of the point 02 (of the point 01, resp.) in the case d21 > 0 (in the case d21 < 0}, are dense, 

(2) on !).~ the t•alues of the parameter p., for which fl-' has a countable set of stable and saddl~ 

periodic orbits, are dense. 

Proof. Let us consider, for definiteness, a one-parameter family J~ such that fo E HJ n Hm 
i.e., the main parameters of the diffeomorphism fo satisfy the relations .A2 > 0, "YI >. 0, c21 > 0, 

d21 > 0, a < 1, and u1 > 1, u2 < 1. As was established above (Theorem 13), there are no systems 

on the bufurcation surface HJ n Hu which would have completely unstable periodic orbits in U . 

The main analytic condition for this is the inequality (see relation (10.9)) 

i $ j() + T + ... 1 {11.1) 

which is necessary for the intersection of the strip ub1 with the horseshoe T21a-i2 to be nonempty 

for p. = 0. For d21p. > 0 inequality (11.1) remains necessary. To be more precise, in this case the 

set of solutions of inequalities (4.2) and (4.3) belongs to the set of solutions of inequality {11.1). 

Since the condition a< 1 is fulfilled for the systems on HJ n Hu, it will be fulfilled for all systems, 

which are close to them. Thus. by analogy with Theorem 13, we can prove that 

for d21p. > 0 the diffeomorphisms !~-'' where fo E HJ n Hm do not have in U any completely· 

unstable periodic orbits. 
Thus, if the family /~-' includes, for d21p. > 0, Newhouse intervals, they can only be "classical" 

Newhouse intervals, i.e., intervals in which the values of the parameter J.L, corresponding to the 
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existence in f!J. of a countable set of stable periodic orbits, are dense (if fo E Huu 1 then completely 

unstable orbits, resp.). It remains to prove the existence of intervals of this kind, and this is a 

simple corollary of the following lemma. 
Lemma 6. There exists a countable set of values J.Lic of the parameter J.L such that d21J.Lic > 0, 

J.Lic ~ 0 as k ~ oo, and, for J.L = J.Lic, the diffeomorphismf!J. has a· structurally unstable one-circuit 

homoclinic orbit of the point 02. 

Proof. The piece T21 (Wi~c ( 02) n ll2) of the unstable manifold is, by virtue of (3.6), a 

"parabola" lu (p) 

(
Xot - xf (J.L)) 2 

Yot .= J.L + d21 b + ... , 
21 

which, for J.L = 0, touches the segment Yot = 0 on llf and for J.L > 0 lies above it (at a distance 

of order p). To the segment y01 = 0 on nt there always regularly accumulates a countable set of 
segments of the stable manifold of the point 02, say, segments, such that 

which, by virtue of (3.2) and (3.5), have an equation 

For J.L ::; 0 the parabola lu transversally cuts each of the curves If: with a sufficiently large number k 

at two points. The intersection points are associated with a one-circuit homoclinic orbit of the fixed 
point 0 2 • For J.L ~ 0, the parabola lu can already touch one of the curves lf:, and this corresponds 

to the appearance of a structurally unstable homoclinic orbit of the point 0 2 • The moment of 

tangency is associated with the value J.L'k = -r1kY1 (1 + ... ) of the parameter J.L· It is obvio~;s 
that this tangency is quadratic and the family f!J., for J.L = J.Lic, is transversal to the corresponding 
bifurcation surface hk of diffeomorphisms with a one-circuit structurally unstable homoclinic orbit 
of the point 02. We have proved the lemma. 

Theorem 15 follows from this lemma and from the Newhouse theorem [3]. 

Let us now consider the case of the family f!J., where foE H!\H64 • Here we have the following 
theorem. 

· · _:_:. Theore!D 16. Let 1'"' be a one-parameter family of diffeomorphisms which is transversal to 

_. _H~\Hu f<!;- J.L = 0. Then, to the value J.L = 0 on the interval d21J.L > 0 there accumulates a 

countable set of intervals D..7 such that 

(1) on~}, the values of the parameter p, for which f!J. has a structurally unstable homoclinic 
orbit of the point 02 in the case d21 > 0, and of the point Ot in the case d 21 < 0, are dense, 

(2) on D..~, the values of the parameter J.L, for which f'"' simultaneoulsy has a countable set of· 

stable, completely unstable, and saddle periodic orbits, are dense. 

Proof. Let us again consider, for definiteness, a one-param~ter family f/J. such that fo E Hl, 
i.e., the main parameters of the diffeomorphism fo satisfy the relations .X2 > 0, -y1 > 0, c21 > 0, 
d21 > 0, a < 1, and O't < 1. 0'2 > 1. 

Let us, first of all, consider in detail the diffeomorphism fo (for J.L = 0). 
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Lemma 7. The diffeomorphism fo has in U a countable set of structurally stable saddle one- . 
circuit periodic orbits for which the product of multiplicators is less than unity. 

Proof. As follows from Theorems 1 and 3, fo has a countable set of structurally stable saddle 

one-circuit periodic orbits. The point of intersection of this orbit with rrt is a fixed point of the 

mapping Tij = T21 (O)Tj2T12(0)Tj1 , where the natural numbers i and j satisfy the inequalities 

(11.2) 

The product of multiplicators Uij (a saddle value) of this periodic orbit is a quantity of order 

Let us consider the first inequality in (11.2) and set i = j(J + r- s in it, where s is a positive 

number such that j(J + r- sis an integer and i ~ kt. In this case we have 

(11.3) 

Since a < 1 and u 1 < 1. it follows that for a fixed j there exist a finite number of values of s 
such that 

It follows that the numbers s must satisfy the inequalities 

.llnal 
s < J lin Uti. (11.4) 

The number of solutions of inequaliy (11.4) (provided that j(J + r- sis an integer), for every fixed' 
j, is finite but tends to infinity as j ~ oo, and this proves the lemma. 

Let us fix now a sufficiently large j ~ k2 and consider a one-circuit periodic motion of P/ which 

intersects the strip o-Jl and the strip u?1 with the number i = i* - s0 such that the horseshoe 

T21 ( u]l) intersects the strips u?1, u?~1 , •.. , u?.1_ 1 obviously regularly and the strip u?.1 , where i* = 
j(J + r .. . , possibly irregularly (Fig. 18). By virtue of Lemma 7, we can choose the integer so such 

·· .that inequ.al_!ties (11.4) will be satisfied for s = s0 • In this case, the product of the multiplicatiors 
., _ .- .:· . 

- _of ' the peri~dic orbit P/ will be smaller than unity. Thus, the fixed point Pii of the mapping 

T21TJ2T12Tj1 corresponding to P/ has a saddle value smaller than unity. 

Let us show that in the generic one-parameter family f~ there will accumulate top. = 0 positive 

(since d21 > 0) values of I' for which the diffeomorphism f~ 'Yill have a structurally unstable 

heteroclinic cycle, which includes the saddles 02 and P/. 
Note that we can deduce from Theorem 3 that for sufficiently small p. the invariant manifolds 

of the saddles 0 2 and P/ possess the following properties: 

(1) wu(Pj) has a point of transversal intersection with W"'(02), 

(2) W"'(P/) has a point of transversal intersection with wu(Ot), 
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W(OJ 

Fig. 18. 

Indeed, in the first case, one of these heteroclinic orbits is associated with the coding 

i+n2 i+nt i+n2 i+nt oo .:-----.. __..._ _,.____----- _......._ 
( ... 2, 2, ... '2, 3, 1, 1, ... ' 1, 2, 2, ... , 2, 3, 1, 1, ... ' 1, 2, 2, ... ) 

of form (5.3) which is associated with a heteroclinic orbit passing through P/ and 0 2 • This orbit 

is structurally stable since the numbers i and j satisfy inequality ( 4.2). 
Similarly, in the second case, one of the heteroclinic orbits lying at the intersection of the 

manifolds W"'(P/) and wu(01) is associated with "the coding ·,· 

oo i+n2 i+n1 i+n2 · 
~ _,.____ __..._------
t· .. ' 1, 1, 2, 2, ... ' 2, 3, 1, 1, ... ' 1, 2, 2, .. . ' 2, 3, ... ) 

of form (5.3) which is also associated with a structurally stable heteroclinic orbits. 

It follows from (1) that to the piece T21 (Wi.~c (02)) n ITt of the unstable manifold of the point 
, 0 2 . there regularly accumulates, for all sufficiently small J.L, a countable set of compact pieces of the 

~~table m~ltifold of the orbit P/. 
-- . .. In tur~: it follows from (2) that to the segment W1~c (01) n rrt of the stable manifold of the 

point 0 1 there regularly accumulates, for sufficiently small J.L, a countable set of compact pieces of 

the stable manifold of the orbit P/. 
Then, by virtue of Statement 1 there will accumulate to J.L = 0 a countable set of values of the 

parameter J.L: J.L = J.Lk (J.L!c are positive) such that for J.L = J.Lic the family fp. unfolds generically the 

heteroclinic tangency of the manifolds W"'(P/) and wu(02 ). Since wu(Pj) transversally intersects 

W"'(02 ) (by virtue of Statement 1), the diffeomorphism/~-' has, for J.L = J.Lk, a structurally unstable 

heteroclinic cycle containing saddle periodic orbits P/ and 0 2 ,saddle values of which lie on different 
sides of unity. 
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