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Abstract—We propose a theoretical framework for explaining the numerically discovered phe-
nomenon of the attractor–repeller merger. We identify regimes observed in dynamical systems
with attractors as defined in a paper by Ruelle and show that these attractors can be of three
different types. The first two types correspond to the well-known types of chaotic behavior,
conservative and dissipative, while the attractors of the third type, reversible cores, provide a
new type of chaos, the so-called mixed dynamics, characterized by the inseparability of dissipa-
tive and conservative regimes. We prove that every elliptic orbit of a generic non-conservative
time-reversible system is a reversible core. We also prove that a generic reversible system
with an elliptic orbit is universal; i.e., it displays dynamics of maximum possible richness and
complexity.
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1. INTRODUCTION

1.1. Attractor–repeller merger. When we speak of dynamical chaos, we usually mean one
of two quite different types of dynamics. In Hamiltonian systems, we have conservative chaos, which
is something like a “chaotic sea” with elliptic islands inside. Chaos in dissipative systems is quite
different and is associated with strange attractors. Our goal in this paper is to attract attention to
another type of chaos, the third one, which was called “mixed dynamics” in [9, 20]. This type of
behavior is characterized by inseparability of attractors, repellers, and conservative elements in the
phase space [23].

In order to have both attractors and repellers, the system must contract the phase volume
somewhere and somewhere expand it. For example, any diffeomorphism of a compact phase space
will have an attractor and a repeller, unless the whole phase space is a chain transitive set (for
the definition of chain transitivity, see, e.g., [2] and Section 2). Attractors and repellers may be
separated from each other, as in Morse–Smale systems. However, it was recently established for
many examples [12, 13, 27, 28, 36] that when parameters of a system are varied, the numerically
obtained attractor and repeller may collide and start to occupy approximately the same part of the
phase space. Moreover, a further change of parameters does not seem to break the attractor–repeller
merger. Examples of such behavior in models of a Celtic stone and a “rubber ellipsoid” that roll on
a horizontal plane are shown in Fig. 1.

A theorem by Conley [7] establishes the existence of a Lyapunov function, non-increasing along
the orbits of the system, which attains its maxima on repellers and minima on attractors. The
attractor–repeller collision means that this function must have very degenerate critical points, so
the intuition based on the Conley theorem might suggest that this phenomenon should be very
exotic. However, in reality, the attractor–repeller merger appears quite robustly and persists for
significant regions of parameter values in the models where it was detected [12, 13]. As we will
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Fig. 1. Examples of attractor–repeller merger for the Poincaré map: (a, b) in a model of the Celtic
stone (the attractor is shown in black, and the repeller, in grey) [12] and (c, d) in a model of the
Chaplygin ball (rubber body) [27]. Here, the numerically obtained attractor A and repeller R are
depicted for different values of the energy of the system.

argue below, it is a generic phenomenon for the non-conservative time-reversible systems and, more
generally, for systems belonging to the so-called absolute Newhouse domain [41, 42].

A systematic study of this phenomenon requires a precise definition of what one means by
attractor or repeller. In this paper we discuss two closely related definitions, going back to Ruelle’s
work [34], which we think are most relevant in describing numerically obtained portraits of attrac-
tors/repellers. Accordingly, we propose two paradigmatic models (see Subsections 1.2 and 1.3 below)
for the attractor–repeller collision, the second less restrictive than the first one, and also discuss basic
dynamical phenomena associated with them in the context of time-reversible systems. The models
are different but not mutually exclusive. In fact, the dynamics underlying the attractor–repeller
collision is so extremely rich that both our models appear to be applicable at the same time.

1.2. Reversible core. The first model employs the notion of attractor as defined in the
works of Ruelle [34] and Hurley [26]. Both authors attribute important ideas to Conley [7], so we
use the term Conley–Ruelle–Hurley (CRH) attractor, which is a stable (with respect to permanently
acting perturbations) and chain transitive closed invariant set. A CRH repeller is a CRH attractor
in the reverse time (see precise definitions in Section 2). We also show that only three types of
CRH attractors are possible for a homeomorphism f of a compact connected separable metric
space M:

• conservative, when the whole phase space M is a chain transitive set and, hence, is a unique
CRH attractor and repeller (this includes, e.g., the case of volume-preserving maps on compact
manifolds);

• dissipative, when an ε-orbit from outside converges to a neighborhood of the CRH attractor;
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Fig. 2. Simple examples of a CRH attractor that is (a) a reversible core and (b) not a reversible core,
though it is a limit of CRH repellers.

• mixed, when a CRH attractor is, at the same time, a CRH repeller1 (it is then called a
reversible core); see Subsection 2.3 and Theorem 2.

The reversible core should be distinguished from a dissipative attractor, as the reversible core
does not attract any orbit. The dynamics here is not exactly conservative either, since the reversible
core, as we show in Section 2 (Theorem 1), is always a limit of a sequence of attractors (and a limit
of a sequence of repellers as well). Therefore, we can associate this type of stable sets with the
third, mixed, type of dynamical behavior.

We stress that there are no further possibilities in this scheme (no “fourth” type of chaos). The
CRH attractors and repellers cannot have non-trivial intersections: a CRH attractor either does not
intersect any CRH repeller or coincides with one of them. In the latter case such a CRH attractor
is a reversible core.

It is easy to construct trivial examples of a reversible core (see Fig. 2a).2 However, we also
provide a non-trivial example in Section 3 (see Theorem 3) and, in fact, show that the reversible
cores are present generically in non-conservative time-reversible systems and, hence, are relevant
beyond abstract schemes of topological dynamics. Numerical simulations with several models of
mechanics provide direct evidence for the possible existence of a reversible core in these models:
the attractor and repeller in Figs. 1a and 1c are separated, while those in Figs. 1b and 1d appear
to really coincide!

In theory, one could perform a quite straightforward procedure for the numerical detection of a
reversible core: if a numerically obtained attractor does not separate from a numerically obtained
repeller with the increase of the accuracy of computation, then this is a reversible core. As we
mentioned, a reversible core is always a limit of an infinite sequence of attractors (see Theorem 1),
so this observation gives a numerical criterion for the coexistence of infinitely many attractors
in the phase space. Other known criteria for this phenomenon are based on completely different
ideas [9, 17, 19, 21, 23, 30, 31, 41, 42].

1.3. Full attractor. In reality, however, the computations are rarely repeated many times
with ever increasing accuracy. It is difficult, and may be unnecessary, to distinguish whether the
attractor and repeller coincide exactly or are just very close to each other: in both cases one has a
right to speak about a mix of attracting and repelling dynamics.

This leads to a more relaxed idea of the intersection of attractors and repellers, based on a
different notion of attractor. We define the full attractor of a map f as the closure of the union of

1So it retains both forward and backward orbits of f in its small neighborhood.
2It is also easy to construct examples where a CRH attractor is a limit of CRH repellers but is not a reversible
core (see Fig. 2b). Non-trivial generic examples of such a situation can be found in [6].
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Fig. 3. A non-transverse heteroclinic cycle for a two-dimensional diffeomorphism with two saddle
fixed points, O1 and O2, and two heteroclinic orbits, Γ12 and Γ21, such that W u(O1) and W s(O2)
intersect transversely at the points of Γ12 and W u(O2) and W s(O1) have a quadratic tangency at the
points of Γ21. When (|J(O1)| − 1)(|J(O2)| − 1) < 0, bifurcations of this cycle lead the system into
the absolute Newhouse domain and create a non-destructible intersection of the full attractor and full
repeller.

all its CRH attractors, and the full Ruelle attractor3 as the prolongation of this set. Recall that the
prolongation of a set A is the set of all points attainable from A by ε-orbits for arbitrarily small ε
(see [2]). The precise definition of the full attractor is given in Section 2.

While closely related to the behavior of the system subject to a small bounded noise, i.e., to the
pictures of the dynamics obtained from numerical or other experiments, the attractors thus defined
are purely dynamical objects. Namely, these are closed invariant sets of the map f and they are
preserved by the topological conjugacy: if maps f and g are conjugate by a homeomorphism h, then
the full attractor of f is taken by h to the full attractor of g, and the full Ruelle attractor of f is
taken to the full Ruelle attractor of g. The full repeller and the full Ruelle repeller of f are defined
as the full and, respectively, full Ruelle attractors of f−1.

If the entire phase space is chain transitive, then the attractor and repeller are equal to the
whole of the phase space, as we already mentioned; we consider such dynamics conservative from
the topological point of view. When the full Ruelle attractor and the full Ruelle repeller of f do
not intersect, we say that the global dynamics of f is dissipative. In the last remaining case, where
the phase space is not chain transitive but the full Ruelle attractor and repeller have a non-empty
intersection, we say that the global dynamics of f is mixed. As any reversible core is simultaneously
a CRH attractor and a CRH repeller, it belongs to both the full attractor and the full repeller, so
the existence of reversible cores implies the mixed dynamics of f . However, there are more general
possibilities for the mixed dynamics, as discussed below.

1.4. Heteroclinic cycles and the intersection of attractor and repeller. In retrospect,
the phenomenon of a non-removable intersection of the full attractor and repeller was discovered
in [23], where we proved that the closure of the set of asymptotically stable periodic orbits (sinks)
and the closure of the set of repelling periodic orbits (sources) may have a persistently non-empty

3Ruelle did not call this set an attractor, but he introduced it for the study of the behavior of epsilon-orbits. This
is the set A∗ in [34, Corollary 5.6].
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Fig. 4. Examples of codimension 1 bifurcations of homoclinic and heteroclinic tangencies in two-
dimensional reversible maps. The first two examples show maps with non-transverse heteroclinic
cycles: (a) with O1 = g(O2) and J(O1) = J(O2)

−1 < 1 and (b) with J(O1) = J(O2) = 1. The
last three examples show maps with homoclinic tangencies, with the point O symmetric in all three
cases: (c) quadratic tangency, with a symmetric homoclinic orbit; (d) example of a reversible map
with a symmetric pair of quadratic homoclinic tangencies to O; (e) cubic tangency, with a symmetric
homoclinic orbit.

intersection. Namely, for a class of heteroclinic cycles shown in Fig. 3, in any continuous family of
smooth two-dimensional maps for which the heteroclinic tangency splits, there exist open regions
(Newhouse regions) in the parameter space where a residual set of parameter values corresponds to
a non-empty intersection of the closure of sinks and the closure of sources.

The main property of the heteroclinic cycles that produce mixed dynamics is that they contain
two saddles such that the map is area-contracting near one of the saddles and area-expanding near
the other (the maps having cycles with this property are dense in the absolute Newhouse domain
of [41, 42]).

Heteroclinic cycles with this property appear naturally in reversible diffeomorphisms (a diffeo-
morphism f is reversible if it is conjugate to its own inverse f−1 by means of a certain involution g).
An example of a heteroclinic cycle of the type described above for a reversible diffeomorphism is
shown in Fig. 4a. Note a symmetry in this picture: the involution g : x → x, y → −y takes the
saddle fixed point O1 to the saddle fixed point O2, the invariant manifold W u(O1) to W s(O2),
and W u(O2) to W s(O1). In general, the Jacobian J of the map at O1 can be arbitrary; for in-
stance, let |J(O1)| < 1. Since f−1 near O2 is smoothly conjugate to f near O1, it follows that
|J(O2)| = |J−1(O1)| > 1. It was shown in [30] that if the map f is embedded into a family of
reversible maps for which the non-transverse heteroclinic cycle splits, then for generic values of
parameters from the corresponding Newhouse regions there exist infinitely many periodic sinks,
sources, saddles, and elliptic periodic orbits. Moreover, the closure of the set of periodic orbits of
each of these types contains the points O1 and O2; i.e., the attractors, repellers, saddles, and elliptic
orbits are inseparable from each other.

Similar results for reversible maps with another type of heteroclinic cycle (see Fig. 4b) were
obtained in [9]. Unlike the previous case, the saddle points O1 and O2 belong to the line of the fixed
points of the involution g; hence J(O1) = J(O2) = 1. The involution g takes W u(O1) to W s(O1) and
W u(O2) to W s(O2), and the map f has a symmetric pair of non-transverse heteroclinic orbits. In
contrast to the case of Fig. 4a, the map f near the fixed points O1 and O2 is conservative. However,
the conservativity is violated in this situation near the heteroclinic tangencies: the maps along
heteroclinic tangencies have, in general, a non-constant Jacobian.4 As shown in [9], bifurcations of
such a heteroclinic cycle also lead to reversible mixed dynamics (i.e., an unbreakable intersection of
the closures of the sets of attractors, repellers, saddles, and elliptic orbits). The same phenomenon
takes place at the bifurcations of a symmetric pair of homoclinic tangencies as in Fig. 4d (here

4Corresponding explicit conditions of general position are given in [9].
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g(O) = O and g(W u(O)) = W s(O); see [8]). We also plan to prove the existence of absolute
Newhouse intervals in one-parameter families of reversible maps which unfold symmetric quadratic
and cubic homoclinic tangencies, as in Figs. 4c and 4e, respectively.

1.5. Richness of reversible mixed dynamics. In this paper we investigate further the
mixed dynamics in reversible maps. We show (Section 3) that every elliptic periodic orbit of a
generic two-dimensional reversible diffeomorphism is a reversible core. We also show (Section 4)
that every elliptic periodic orbit of a generic n-dimensional (n ≥ 2) reversible diffeomorphism is
a limit of a sequence of uniformly hyperbolic attractors and repellers of all topological types possible
in an n-dimensional ball.

We recall basic definitions from the theory of non-conservative reversible systems in Section 3.
Such systems are known to appear in various applications. In particular, non-conservative time-
reversible dynamical systems are natural models for mechanical systems with nonholonomic con-
straints (for instance, the examples of dynamics shown in Fig. 1 are obtained for reversible systems
of this type). The existence of symmetric elliptic periodic orbits is a characteristic property of
reversible maps for which the dimension of the set Fix(g) of the fixed points of the involution g
is at least half the dimension of the phase space. In particular, they emerge in various homoclinic
bifurcations [8–10, 30]. According to the reversible mixed dynamics conjecture of [9], the mixed
dynamics emerging at the most typical homoclinic bifurcations of reversible systems must always
include a large number of elliptic periodic orbits.

It is known [35] that the dynamics of a reversible map near a symmetric elliptic periodic orbit
is, to a large extent, conservative: a significant portion of the phase space in a neighborhood of
such an orbit is filled with KAM tori. However, the dynamics in the resonant zones between the
KAM tori does not, in general, need to be conservative [17]. The results of Section 4 show that the
dynamics near a typical elliptic orbit is universal in the sense of [24, 25, 40–42]; i.e., the iterations
of the Poincaré map in the resonant zones near the elliptic orbit approximate, with arbitrarily
good precision, every dynamics possible in the given dimension of the phase space. Thus, on the
one hand, non-conservative reversible systems are of immediate importance for applications. On
the other hand, their dynamics is an example of ultimate richness and complexity: any generic
non-conservative reversible system with an elliptic point exhibits all robust dynamical phenomena
possible.

2. ATTRACTORS, REPELLERS, AND A REVERSIBLE CORE

In several papers [9, 13–17, 20, 22] a new, third, type of chaotic dynamics was identified, the so-
called mixed dynamics characterized by the attractor–repeller merger. Below we propose a scheme
which could formalize this idea.

2.1. Definitions of the attractor. We start with recalling definitions and simple facts from
topological dynamics. Consider a homeomorphism f of a compact separable metric space M.
A sequence of points x1, . . . , xN is called an ε-orbit of the map f if dist(f(xj), xj+1) < ε for all
j = 1, . . . , N − 1. We will say that the ε-orbit x1, . . . , xN connects the point x1 to xN and that xN
is attainable from x1 by an ε-orbit of length N .

A closed invariant set Λ is called chain transitive if for every ε > 0 and every two points x ∈ Λ
and y ∈ Λ there exists an ε-orbit that lies in Λ and connects x and y. If two chain transitive sets
Λ1 and Λ2 have a non-empty intersection, their union Λ1 ∪ Λ2 is also a chain transitive set.

An open set U ⊂ M is an absorbing domain if f(cl(U)) ⊂ U . An important fact is that

• the set DK,ε(x) of all points attainable from x by ε-orbits of length N ≥ K is always an
absorbing domain.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 297 2017



122 S.V. GONCHENKO, D.V. TURAEV

Indeed, this set is obviously open, so we just need to show that for any point z in the closure of
DK,ε(x) there is an ε-orbit of length at least K that connects x and f(z). By definition, z can be
approximated arbitrarily well by an end point xN of some ε-orbit x1 = x, . . . , xN , where N ≥ K.
Let dist(xN , z) < δ where δ is such that the images of any two δ-close points under f lie at a
distance smaller than ε from each other. Then dist(f(xN ), f(z)) < ε, i.e., x1, . . . , xN , f(z) is an
ε-orbit that connects x1 = x to f(z); i.e., f(z) ∈ DK,ε(x).

The only absorbing domain that a volume-preserving map of a compact manifold M can have
is M itself. Therefore, for any volume-preserving map, DK,ε(x) = M for every x; i.e., every two
points of M are connected by an ε-orbit for any ε > 0. Thus, M is a chain transitive set in this case.
There are other, non-volume-preserving, examples. For instance, for any homeomorphism which is
topologically conjugate to a volume-preserving map (like, e.g., any Anosov map on a torus [1, 3]),
the whole phase space is chain transitive (if the phase space is compact); another example is given
by the map ϕ �→ ϕ+ sin2(ϕ/2) of a circle, which has a single semi-stable fixed point.

We will no longer consider the case where the whole phase space is chain transitive. Thus, we
assume that some points of M are not chain recurrent (a point x is chain recurrent if its ε-orbits
return to it infinitely many times, i.e., if x ∈ DK,ε(x) for all ε > 0 and K > 0; see also [2]).

Define D(x) =
⋂

K,εDK,ε(x). This is a closed invariant set, and it is an intersection of a family
of nested absorbing domains. Such sets are stable, meaning that given any δ > 0 there exists a
sufficiently small ε > 0 such that no ε-orbit starting in this set can leave its δ-neighborhood. If a
stable set A is chain transitive, it has no proper stable subsets. If not, it contains a point y which is
not chain recurrent, and the set D(y) is a proper and stable subset of A. By (transfinite) induction,
one can show that every stable set has a chain transitive stable subset (cf. [26, 34]).

Following Ruelle and Hurley, we will call a chain transitive and stable invariant set an attractor
of the map f or a Conley–Ruelle–Hurley attractor (CRH attractor).

We identify observable dynamical regimes with trajectories which stay in a neighborhood of
CRH attractors. The logic is as follows: Whenever a certain dynamical process is observed, there
is never a guarantee that the dynamical system which generates it is known precisely (for example,
when we compute orbits of a given map numerically, the resulting sequence of points is, in fact, an
orbit of a slightly different map, due to rounding off). One therefore may claim that the observed
regimes are ε-orbits with a sufficiently small ε.

As a simplified model, one can consider the ε-orbits {xj} of the map f as realizations of a
random process such that the deviations xj+1 from f(xj) are independent random variables ξj with
probability densities supported in the ball ‖ξj‖ ≤ ε and bounded away from zero and continuous
in this ball. Then, for a fixed ε > 0 it is natural to define the ε-attractor of a point x0 as the set
Aε(x0) of all points which are ω-limit for the ε-orbits of x0 with positive probability. The result
does not depend on the choice of the probability density for ξj ; it is a union of finitely many closed
sets such that no forward ε-orbit starting in any of these sets can leave it, so the interior of this
set is an absorbing domain, and in each of these absorbing domains every two points are connected
by an ε-orbit. It immediately follows that if some point x∗ belongs to the intersection of some
εj-attractors for a sequence εj → 0 as j → +∞, then x∗ belongs to the intersection of a sequence
of nested absorbing domains, and every two points in this intersection are connected by εj-orbits
for all j; i.e., x∗ belongs to a stable and chain transitive set, a CRH attractor. Thus, every point
which is not in a CRH attractor stays outside the ε-attractors for all sufficiently small ε.

Another way to express the same idea is to note that the intersection A0(x) =
⋂

ρ>0

⋃
0<ε≤ρAε(x)

consists only of CRH attractors (moreover, each of these CRH attractors is attainable from x by
ε-orbits for every ε; we will further simply say that it is attainable from x). We note that the sets⋃

0<ε≤ρAε(x) are not closed, so it is difficult to investigate the structure of their intersection A0(x).
However, one can show that A0(x) is non-empty. Moreover, its closure A0(x) contains all CRH
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attractors attainable from x, so it is the closure of the union of all CRH attractors attainable
from x.

Thus, the following definition makes sense:

• an attractor of a point x is any CRH attractor attainable from x.

If the number of such attractors is finite, then their union is the full attractor of x. In the case of an
infinite number of such attractors, there is less certainty in the definition of the full attractor. One
candidate would be the closure of the union of all attractors of x, i.e., the above defined set A0(x).
It is a closed invariant set, but it may not be stable. It is easy to show that the minimal closed stable
set that contains A0(x) is the prolongation of A0(x), i.e., the set of all points which are attainable
from A0(x) for every arbitrarily small ε. We call it the full Ruelle attractor of x. Similarly, one
introduces the following definition:

• the full attractor of the map f is the closure of the union of all its CRH attractors, and the
full Ruelle attractor of f is the prolongation of the full attractor.

In the same way one produces definitions of repellers as attractors for the inverse map f−1.

2.2. Absolute Newhouse domain. With these definitions, our goal is to investigate how
attractors and repellers can intersect. The possibility of intersection of the full attractor and the full
repeller was discovered in [23]. The main idea of that paper is that a generalization of the classical
Newhouse phenomenon to maps which are not area-contracting leads to a persistent intersection of
the full attractor and full repeller (as we defined them here).

It was shown by Newhouse in [31, 33] that a two-dimensional diffeomorphism can have a wild
hyperbolic set, i.e., a zero-dimensional compact transitive hyperbolic set Λ whose stable and unstable
sets W s(Λ) and W u(Λ) have a tangency which is not removable by any C2-small perturbation. By
the definition, maps with wild hyperbolic sets form a C2-open region in the space of two-dimensional
diffeomorphisms; we call this region the Newhouse domain. If we take a map from the Newhouse
domain, then every map from its small neighborhood D in the space of C2 diffeomorphisms will
have a hyperbolic set Λ such that W s(Λ) and W u(Λ) are tangent. Since saddle periodic orbits are
dense in Λ and their stable and unstable manifolds are dense in W s(Λ) and W u(Λ), respectively,
the maps which have a homoclinic tangency of the stable and unstable manifolds of some periodic
orbit in Λ are Cr-dense in D (for every r ≥ 2).

As was first shown by Gavrilov and Shilnikov in [11], bifurcations of a homoclinic tangency to
a saddle periodic orbit of a two-dimensional map lead to the birth of stable periodic orbits if the
Jacobian J of the first return map at the saddle periodic point is smaller than 1 in absolute value.
Using this fact (which he established independently), Newhouse proved in [31] that maps with
infinitely many periodic attractors (stable periodic orbits) are dense (and form a residual subset)
in the part of the Newhouse domain of the space of Cr diffeomorphisms that corresponds to maps
which are area-contracting in a neighborhood of the wild hyperbolic set. Moreover, for a Cr-generic
map of this class the closure of the set of stable periodic orbits contains a wild hyperbolic set Λ and
all points homoclinic to Λ.

In [23] we considered heteroclinic cycles with two saddle periodic orbits, O1 and O2, such that
|J(O1)| < 1 and |J(O2)| > 1 (where J(O) is the product of the multipliers of O, i.e., the Jacobian
of the first return map at O). The cycle contains orbits of the heteroclinic intersection of W u(O1)
with W s(O2) and of W u(O2) with W s(O1), and we assume that one of these orbits corresponds to
a tangency of the corresponding stable and unstable manifolds. We showed in [23] that a generic
splitting of this tangency leads to the creation of a wild hyperbolic set Λ which contains both orbits
O1 and O2, i.e., Λ contains a pair of saddle periodic orbits such that the map is area-contracting
near one of the orbits and area-expanding near the other. In [42] such wild hyperbolic sets were
called ultimately wild ; the part of the Newhouse domain which contains maps with ultimately wild
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sets is called the absolute Newhouse domain [41, 42]. Using this terminology, we can formulate the
main result of [23] as follows:

• A generic two-dimensional map in the absolute Newhouse domain has infinitely many coex-
isting periodic attractors and repellers, and the closure of the set of these attractors and the
closure of the set of these repellers both contain the ultimately wild hyperbolic set Λ and all
points homoclinic to it.5

For such maps the full attractor and full repeller both contain the wild set Λ and its homoclinic
points, so they have a non-empty intersection. In spite of the intersection, the full Ruelle attractor
and the full Ruelle repeller can differ significantly, as the full Ruelle attractor also contains the whole
unstable manifold of Λ, while the full Ruelle repeller contains the whole stable manifold of Λ.6

We stress that this particular instance of the intersection of the attractor and repeller is, prob-
ably, the most basic model for the mixed dynamics in two-dimensional diffeomorphisms. Indeed, if
we see something which looks like a chaotic attractor, then it is natural to expect that it contains a
hyperbolic set and areas are contracted near this set. Similarly, it is natural to expect that a chaotic
repeller contains a hyperbolic set near which areas are expanded by the map. Collision of such sets
would involve creation of heteroclinic connections between the saddle periodic orbits belonging to
these two sets. This means the existence of heteroclinic tangencies at a sequence of parameter
values during the attractor–repeller collision process. Thus, the above described heteroclinic cycles
appear, so the maps undergoing the attractor–repeller merger can be considered with a good degree
of certainty as belonging to the absolute Newhouse domain.

Note that the generic ultimately wild hyperbolic sets serve as the limits of objects much more
complicated than just stable and unstable periodic orbits. It was shown in [20, 22] that they, gener-
ically, are the limits of sequences of stable and unstable closed invariant curves (i.e., quasiperiodic
attractors and repellers). In [42] it was shown that a generic ultimately wild hyperbolic set is a
limit of a sequence of hyperbolic attractors and hyperbolic repellers of all topological types possible
for a diffeomorphism of a two-dimensional disc. In fact, it was shown in [42] that the dynamics of
a C∞-generic two-dimensional diffeomorphism in an arbitrarily small neighborhood of the closure
of the set of points homoclinic to an ultimately wild set is universal ; i.e., iterations of such a map
provide arbitrarily good Cr approximations to all orientation-preserving Cr diffeomorphisms of a
two-dimensional disc into R

2, for every r. In this sense, the mixed dynamics near the intersection of
the full attractor and full repeller of a generic diffeomorphism belonging to the absolute Newhouse
domain is of maximal possible richness.

2.3. Reversible core. Next, we report a different, previously unnoticed, mechanism for the
coexistence of infinitely many attractors and repellers and their intersection. It is based on the
observation that there are, in fact, two types of CRH attractors: those which actually attract
something, and those which attract nothing.

Namely,

• we call a CRH attractor A a dissipative attractor if there is a point x �∈ A such that for any
ε > 0 there is an ε orbit that connects x to a point in A. Otherwise we will call the CRH
attractor A a reversible core.

It is obvious that every absorbing domain (different from the whole phase space M) must
contain at least one dissipative attractor. However, reversible cores may also exist (and they can

5For three-dimensional diffeomorphisms, analogous results were established in [18, 19, 21]; the existence of an
absolute Newhouse domain in any dimension was shown in [39].

6Note that in the case of area-preserving maps on compact surfaces, the closures of stable and unstable manifolds
of Λ coincide [37, 38], and this is in complete agreement with the fact that the attractor coincides with the
repeller in this case.
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exist C∞-generically, as we show in the next section). As explained next, the existence of a reversible
core immediately implies mixed dynamics.

By definition, given any δ > 0 there exists ε > 0 such that no ε-orbit that starts at a distance
greater than δ from the reversible core C can end at a point of C. Note that the set Uε(C) of
all points x such that some ε-orbit of x ends in C is open, and it is easy to see that it satisfies
the inclusion f−1(cl(U)) ∈ U ; i.e., it is an absorbing domain for the inverse map f−1. Thus, any
neighborhood of C contains an absorbing domain for the map f−1; hence the reversible core is
a CRH attractor for the inverse map as well, i.e., it is also a CRH repeller. Thus, the reversible
core is an intersection of a sequence of embedded absorbing domains for the map f and absorbing
domains for the map f−1 (see Fig. 2a). Any absorbing domain that encloses C must contain at
least one dissipative attractor, and any absorbing domain for the inverse map must contain at least
one dissipative repeller (i.e., a dissipative attractor for the map f−1). These attractors and repellers
are different from C (because they are dissipative) and stay at a finite distance from C (because
they are compact sets). Thus, we can take smaller absorbing domains around C and obtain one
more dissipative attractor even closer to C, and a dissipative repeller as well. This procedure can
be repeated infinitely many times, which gives the following result.

Theorem 1. Every reversible core contains a limit of an infinite sequence of dissipative attrac-
tors and a limit of an infinite sequence of dissipative repellers.

As we have attractors, repellers, and a kind of conservative object (reversible core) unseparated
from each other, we speak about mixed dynamics near the core. The numerical detection of a
reversible core can be based on the following

Theorem 2. If a CRH attractor has a non-empty intersection with a CRH repeller, they must
coincide and form a reversible core.

Proof. Since the attractor A and the repeller R are both chain transitive and have a non-empty
intersection, their union is also chain transitive. Therefore, every point of A ∪ R is attainable by
ε-orbits that start in A for every ε > 0, which means that A = A ∪R (because A, by definition, is
a stable set, meaning that ε-orbits that start in A cannot get far from A). Similarly, R = A ∪ R,
so A and R coincide. Now, since A is a CRH repeller, no ε-orbit that starts at a distance from A
bounded away from zero can get close to A if ε > 0 is sufficiently small. Thus, A = R is a reversible
core, and both forward and backward ε-orbits never leave its small neighborhood. �

By Theorem 2, if we have a reversible core, then in numerical simulations we would see that the
attractor and repeller occupy roughly the same region in the phase space. However, we will not see
that the attractor coincides exactly with the repeller: as numerics add some small noise, it makes
sense to expect that a numerical forward orbit will shadow some absorbing domain around the core,
while the backward numerical orbit will shadow some absorbing domain for the inverse map; such
domains cannot completely coincide. Thus, a numerical indication of the mixed dynamics would be
a numerically obtained attractor which would not coincide with a numerically obtained repeller but
would have a sizable intersection with it and the difference between these two sets would appear
small.

Remark. The question therefore arises: do Figs. 1b and 1d indicate the presence of a large
reversible core? Note that the systems whose phase portraits are depicted in Fig. 1 are not covered by
the theory developed in the next sections, as they cannot have generic elliptic points (the dimension
of Fix(g) is less than half the dimension of the phase space; for example, in the model of the
Chaplygin ball (Figs. 1c and 1d), the involution g that takes the attractor to the repeller is the central
symmetry, so it is orientation-preserving and Fix(g) is just one point). On the other hand, there are
various examples of reversible systems having symmetric generic elliptic points (see, e.g., [13, 27, 28,
36]). In particular, in the Suslov model [28] and in the Pikovsky–Topaj model [36], the involution g
of the corresponding two-dimensional Poincaré map is x → x, y → −y and, thus, the attractor and
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(a) (b)

(c) (d)

Fig. 5. Attractor (a) and repeller (b) for the Suslov model (the pictures are taken from [28]).
Attractor (c) and repeller (d) for the Pikovsky–Topaj model (the pictures are taken from [13]).

repeller are always symmetric with respect to the axes y = 0 (see Fig. 5). The question of whether
the “large” intersection of the attractor and repeller observed in Figs. 1 and 5 is a reversible core,
whether it is related to elliptic orbits in the cases of Fig. 5, and what it is related to in the cases of
Fig. 1 remains open.

3. GENERIC REVERSIBLE CORES IN TWO-DIMENSIONAL REVERSIBLE MAPS

We now show that reversible cores exist for a large class of dynamical systems. We restrict our-
selves to reversible maps, as they are known to provide examples of mixed dynamics in abundance,
as we mentioned in the Introduction. Moreover, in this section we consider only two-dimensional
maps. Thus, let f be a Cr diffeomorphism (r = 1, . . . ,∞) of a two-dimensional orientable manifold
and assume that f is reversible, i.e.,

f−1 = g ◦ f ◦ g, (3.1)

where g is a Cr-smooth involution (a map such that g ◦ g = id).
A periodic orbit {x0, . . . , xm} of f is called symmetric if it is invariant with respect to g; namely,

gx0 = f jx0 for some j ≤ m (then, by (3.1), gfx0 = f j−1x0, and so on). It is easy to see that for
a symmetric periodic orbit at least one of its points is either a fixed point of h = g or a fixed
point of h = f ◦ g. Let x0 be such point; we call it a symmetric periodic point. By (3.1), h is an
involution and

T−1 = h ◦ T ◦ h,

where T = fm is the first return map near x0 (so Tx0 = x0).
For a symmetric periodic orbit,

• if λ is a multiplier, then λ−1 is also a multiplier.
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Indeed, let x0 be a symmetric periodic point, i.e., Tx0 = x0 and hx0 = x0. Denote by A = T ′

the derivative of T at x0. By the Bochner theorem [5], we can always choose coordinates near x0
such that the involution h is linear. By the equality T−1 = h ◦ T ◦ h, we have A−1 = h ◦ A ◦ h.
If Ae = λe, i.e., e is an eigenvector of A with the eigenvalue (multiplier) λ, then it follows from
the equality A−1 = h ◦ A ◦ h that A−1he = λhe, i.e., he is also an eigenvector of A with the
eigenvalue λ−1.

Note that if λ2 �= 1, i.e., the multipliers λ and λ−1 are different, then the eigenvectors e and he
are not collinear. Thus, the involution h interchanges a pair of non-collinear vectors, which means
that h reverses the orientation. We will further assume that the map f is orientation-preserving, so
the original involution g must be orientation-reversing in this case (recall that g = h or g = f−1 ◦ h).
This will be our standing assumption from now on.

Since the linearization matrix A is real, if λ is an eigenvalue of A, then the complex conjugate λ∗

must also be an eigenvalue. So, if a symmetric periodic orbit has a complex (not real) multiplier λ,
then λ∗ = λ−1, i.e., both multipliers must lie on the unit circle. This means that there exists
ω ∈ (0, π) such that the multipliers of the periodic orbit are e±iω. We call the symmetric periodic
orbit elliptic in this case.

It is well known [35] that a symmetric elliptic periodic orbit of a two-dimensional reversible Cr

diffeomorphism remains elliptic under Cr-small perturbations which keep the map reversible. So,
systems with elliptic orbits form an open subset in the space of g-reversible Cr diffeomorphisms.
Empirical evidence suggests that this open set should be quite large (cf. [13]). In particular, elliptic
orbits are born [8, 9, 30] at bifurcations of reversible maps with heteroclinic cycles described in the
Introduction and Subsection 2.2. Therefore, systems with elliptic periodic orbits form a dense (and
open) subset of the absolute Newhouse domain in the space Rr

g of two-dimensional g-reversible Cr

diffeomorphisms. On the other hand, bifurcations near elliptic orbits lead to creation of ultimately
wild hyperbolic sets [17], which means that the Cr closure of the set of systems from Rr

g with elliptic
orbits coincides with the Cr closure of the absolute Newhouse domain in Rr

g.
A natural conjecture (a similar conjecture for area-preserving maps can be found, e.g., in [32])

would be that if the map has a chaotic attractor but is not uniformly hyperbolic, then homoclinic
tangencies or cycles with heteroclinic tangencies can be created by Cr-small perturbations. No
mathematical technique is currently available for proving such a statement. Still it is reasonable to
conjecture that if a chaotic attractor is observed in a given g-reversible map, then most probably
the attractor is not uniformly hyperbolic and contains a wild hyperbolic set (unless we deal with
an Anosov map on a torus), and if the attractor intersects its own image under the involution g,
then the wild hyperbolic set is ultimately wild (i.e., it contains periodic orbits with Jacobians both
greater and less than 1). Thus, such a map can be suspected to be in the absolute Newhouse domain
and, in the case of orientation-reversing involution g, this means that elliptic periodic orbits should
be expected.

According to [35], most of the neighborhood of a generic7 elliptic point of a reversible map is
occupied by invariant KAM curves, as in the conservative case. However, as shown in [17], a generic
elliptic point of a two-dimensional non-conservative reversible map is also a limit of an infinite
sequences of periodic attractors and periodic repellers (that are born in the resonant zones). Here,
we strengthen this result and prove the following

Theorem 3. All symmetric elliptic periodic orbits of a Cr-generic two-dimensional g-re-
versible map are reversible cores.

7The genericity conditions in this case include the absence of strong resonances, i.e., ω �= π/2, 2π/3, and the non-
vanishing of one of the Birkhoff coefficients in the case of irrational ω/π or of one of the first Birkhoff coefficients
in the case of rational ω/π. In the conservative case the generic elliptic point is KAM stable [4]. In the reversible
case, the KAM stability, of course, holds, but, as Theorem 3 shows, elliptic points of a generic non-conservative
reversible map are stable in a stronger sense.
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Proof. Since a periodic orbit is a chain transitive set, it suffices to prove that each elliptic orbit
is (generically) surrounded by a sequence of nested absorbing domains both for the map f itself and
for its inverse. We start with proving that given an elliptic orbit P and an open neighborhood U
of P , one can make an arbitrarily small Cr perturbation of the map (within the class Rr

g of reversible
systems) such that the perturbed map f and its inverse f−1 would each have an absorbing domain
lying inside U and containing P .

Let x0 be a symmetric point on P and T be the first return map near x0. We can introduce a
complex coordinate z near x0 such that the map T will be the period map of the time-reversible
non-autonomous flow [29] defined by the differential equation

ż = iωz + F (z, z∗, t), (3.2)

where the Cr function F is 1-periodic, i.e., F (z, z∗, t) = F (z, z∗, t + 1), and it vanishes at z = 0
along with its derivative with respect to z and z∗, so z = 0 is the elliptic fixed point of T . The
reversibility means here that F (z, z∗, t) = F ∗(z∗, z,−t); i.e., this system is invariant with respect to
the transformation {t → −t, z ↔ z∗}, so here the involution h described at the beginning of this
section is the complex conjugation operation {z → z∗}.

One can add an arbitrarily small perturbation to (3.2) such that ω/π would become irrational.
Then the normal form theory for reversible maps [29] will ensure the existence of a Cr coordinate
transformation which brings the map T to the form

T = Rω ◦ T , (3.3)

where Rω : (z, z
∗) �→ (eiωz, e−iωz∗) is the rotation through the angle ω and T is the time 1 map

induced by the flow of
ż = iΩ(|z|2)z + o(|z|r), (3.4)

where Ω is a real polynomial such that Ω(0) = 0; all time-dependent terms are now in the o(|z|r)
term (which vanishes at z = 0 along with all derivatives with respect to z and z∗ up to the order r).
The next step is to remove the o(|z|r) term in (3.4), i.e., add a Cr-small perturbation after which
the map T will coincide in a sufficiently small neighborhood of zero with the time 1 map of the
reversible autonomous flow given by

ż = iΩ(|z|2)z. (3.5)

By an additional small perturbation we can always ensure that Ω1 = Ω′(0) �= 0.
By a Cr-small perturbation of the map f within the class of reversible maps, we can make

ω = 2πp/q where p and q are coprime integers (we will also assume that q ≥ r), while keeping
the map T in the form (3.3). We can also change equation (3.5) in such a way that in a small
neighborhood of z = 0

ż = −iμz + iΩ(|z|2)z + iδ(z∗)q−1 + iBzq+1 + iCz(z∗)q, (3.6)

where δ and μ are small real parameters and B and C are some real constants. Note that all
coefficients on the right-hand side of (3.6) are pure imaginary, so the equation is time-reversible, as
it should.

Note that equation (3.6) is the truncated normal form for the bifurcations of a symmetric
elliptic point with a degenerate resonance corresponding to the multiplier λ = e2πip/q and the
coefficient of the first non-trivial resonant term (z∗)q−1 vanishing at the moment of bifurcation.
For C = B(q + 1), equation (3.6) is Hamiltonian. However, varying B and C may break the
conservativity: the equation may have, e.g., asymptotically stable and unstable equilibria, as we
will see below.
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The equation is symmetric with respect to the rotation through the angle 2πp/q. This means
that the maps R2πp/q and T in (3.3) commute, so the map T q is the time q map of (3.6). In
particular, every equilibrium state of (3.6) is a period q point of T ; asymptotically stable equilibria
correspond to asymptotically stable periodic points. In this way, based on the analysis of stability of
equilibrium states of (3.6), it was shown in [17] that stable periodic orbits can be born at bifurcations
of elliptic periodic points in reversible maps. Here, we need a more detailed investigation of the
dynamics of equation (3.6).

To this aim, introduce polar coordinates: z =
√
ρeiφ/q. The equation takes the form

ρ̇ = 2ρq/2(δ − (B − C)ρ) sinφ,

φ̇ = q(Ω(ρ)− μ) + qρ(q−2)/2(δ + (B + C)ρ) cosφ.
(3.7)

Note that this system is invariant with respect to the transformation {t → −t, φ → −φ}.
Assume B �= 0 and B �= C. Choose sufficiently small ρ0 > 0, put

μ = Ω(ρ0), (3.8)

and consider the behavior of the system for ρ close to ρ0. We do this by scaling

ρ = ρ0 − ρ
q/2
0

2B

Ω1
V, (3.9)

where the range of values of V can be as large as we want if ρ0 is small enough (the coefficient
Ω1 �= 0 is equal to Ω′(0)). We also scale the small parameter

δ = (B − C)ρ0 +
2B

Ω1
(B − C)ρ

q/2
0 D, (3.10)

where the rescaled parameter D is no longer small and can take arbitrary finite values, and introduce
the new time s = 2(C −B)ρ

q/2
0 t. The system will take the form

V̇ = (D + V ) sinφ+O
(
ρ
(q−2)/2
0

)
,

φ̇ =
Bq

B − C
(V − cosφ) +O

(
ρ
(q−2)/2
0

)
.

(3.11)

The limit of this rescaled system as ρ0 → 0 is

V̇ = (D + V ) sinφ, φ̇ = β(V − cosφ), (3.12)

where β = qB/(B − C). This is a time-reversible system on the cylinder parameterized by (V, φ).
Importantly, this system can be solved. Thus, it is easy to see that the phase curves of this system
satisfy

cosφ+D = (D + V )
β

β − 1
+K|D + V |β

with indefinite constants K. At β = 1 this formula should be replaced by

cosφ+D = K(D + V )− (D + V ) ln|D + V |.

With these formulas, one can construct the phase portrait of system (3.12) on the cylinder for
different values of D and β, as shown in Fig. 6.

In particular, for β > 0 and |D| < 1 (see Fig. 6a) this system has two symmetric (with respect
to the involution φ → −φ) saddle equilibria O+(1, 0) and O−(−1, π) and two asymmetric equilibria
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Fig. 6. The phase portrait of system (3.12) on the cylinder (a) for D = 0, β = 1 and (b) for D = 0,
β = −1.

Ma,r = (−D,φa,r), where cosφa,r = −D, with the equilibrium Ma (with sinφa < 0) being asymp-
totically stable and Mr (with sinφr > 0) being asymptotically unstable. Two of the separatrices
of O+ coincide and form a homoclinic loop Γ+, while of the two other separatrices the unstable
separatrix U+ tends to Ma as t → +∞ and the stable separatrix S+ tends to Mr as t → −∞.
The same is true for O−: two of its separatrices form a homoclinic loop Γ− and the other two
separatrices tend one (U−) to Ma as t → +∞ and the other (S−) to Mr as t → −∞. In the
invariant annulus bounded by Γ+ and Γ−, all the orbits in its interior, except for the repeller Mr
and the separatrices S±, tend to Ma as t → +∞, while all the orbits except for the attractor Ma
and the separatrices U± tend to Mr as t → −∞.

It follows that if we remove a small neighborhood of Γ+ ∪ S+ ∪ Mr from the phase cylinder,
then the connected component that contains Ma is an absorbing domain. Note that it contains
the part of the cylinder corresponding to V → −∞. Similarly, one obtains an absorbing domain
corresponding to V → +∞; this is the connected component of the cylinder minus a small neigh-
borhood of Γ− ∪ S− ∪ Mr which contains Ma (see Fig. 7a). In the same way, by removing a
small neighborhood of Γ+ ∪ U+ ∪Ma or a small neighborhood of Γ− ∪ U− ∪Ma from the cylinder
and taking the connected component that contains the repeller Mr, we obtain a pair of absorbing
domains (with the boundaries Br+ and Br−, see Fig. 7a) for the system obtained from (3.12) by
the time reversal.

The absorbing domains do not disappear under small perturbations of the system, so they
persist for system (3.11) for all small ρ0. System (3.11) is obtained from (3.6) by rescaling the
coordinates. In the non-rescaled coordinates, z = 0 corresponds either to very large positive V or to
very large negative V , so in any case we find that for appropriately chosen values of μ, δ, B, and C,
both system (3.6) and the system obtained from it by the time reversal have an absorbing domain
containing the equilibrium at z = 0. Note that μ and δ can be made as small as we want by taking ρ0
small (see (3.8) and (3.10)), as required. Note also that the absorbing domains containing points
with large negative values of V do not extend beyond Γ+ and the absorbing domains containing
points with large positive values of V do not extend beyond Γ−. As these boundaries correspond to
bounded values of V , it follows that in the non-rescaled coordinates z these boundaries correspond
to |z| close to ρ0; i.e., the pair of absorbing domains around the point z = 0 (for system (3.6) and
for its time reversal) lies entirely in an O(ρ0)-neighborhood of this point (see Fig. 7b).

The time q map of system (3.6) is the map T q. Thus, we have constructed a Cr-small pertur-
bation of the map f such that the map T q = f qm (where m is the period of the periodic orbit P
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Fig. 7. (a) Boundaries of absorbing domains for system (3.12) and its inverse (with t replaced by −t).
The domains with boundaries Ba+ and Br+ contain, respectively, the attractor Ma and the repeller Mr
and the upper part of the cylinder. The domains with boundaries Ba− and Br− contain, respectively,
Ma and Mr and the lower part of the cylinder. (b) A pair of absorbing domains with boundaries Ba
and Br around the point z = 0 for system (3.6) and for its time reversal.

under consideration) and the map T−q have each an absorbing domain (Da and Dr, respectively)
in a small (as small as we want) neighborhood of some point on P . Obviously, a small open
neighborhood of the closure of

⋃qm−1
i=0 f iDa is an absorbing domain for the map f which contains

the whole orbit P and is contained in a small neighborhood of P . A small open neighborhood of
the closure of

⋃qm−1
i=0 f−iDr is an absorbing domain for the map f−1; it contains the whole orbit P

and is contained in a small neighborhood of P .
We can now finish the proof of the theorem. First, we recall the well-known fact that if a two-

dimensional g-reversible map with an orientation-reversing involution g has a symmetric orbit L
of period m with the multipliers λ1 = λ2 = 1 or λ1 = λ2 = −1, then by an arbitrarily small Cr

perturbation of the map one can ensure that in a small neighborhood of L all orbits of the same
period m will be either elliptic or hyperbolic (i.e., |λ1,2| �= 1).

Now, take a countable base of balls Us, s = 1, . . . ,∞ (so every open set is a union of some
sequence of the balls Us). Choose one of these balls and take an integer m ≥ 1. As we just
mentioned, by an arbitrarily small perturbation of the map f within the class Rr

g one can ensure
that all symmetric orbits of period at most m that intersect the chosen ball Us are either elliptic or
hyperbolic. There are no other orbits of the same or smaller period in a neighborhood of an elliptic
or hyperbolic periodic orbit of period m, nor can such orbits be born under a Cr-small perturbation,
so the number of points of symmetric elliptic orbits of period ≤m in Us is finite and this property
holds for an open and dense set of maps from Rr

g. As we proved above, by an additional Cr-small
perturbation we can create a pair of absorbing domains (one for the map f and the other for the
map f−1) around each of the elliptic orbits of period ≤m that intersect Us, and these absorbing
domains lie inside

⋃mr
i=−mr f

i(Us). Absorbing domains persist under small perturbations of the map,
so the set Es,m with this property is open and dense in Rr

g. The intersection E∗ of the sets Es,m
over all Us and all integer m is a countable intersection of open and dense sets, so it is a residual
set and every map from this intersection is, by definition, Cr-generic. By construction, for every
map from E∗ and for every elliptic orbit of it, in any neighborhood of this orbit there exists a pair
of absorbing domains (one for the map itself and one for the inverse map) such that both domains
contain this orbit. Thus every elliptic orbit of every map from E∗ is simultaneously a CRH attractor
and a CRH repeller; i.e., it is a reversible core. �
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4. UNIVERSAL DYNAMICS NEAR ELLIPTIC ORBITS IN REVERSIBLE SYSTEMS

The richness of dynamics near a reversible core does not need to be exhausted by simple periodic
attractors and repellers. In particular, as we show in this section, near elliptic orbits of reversible
maps, the dynamics can be as complicated and diverse as possible for the given dimension of the
phase space. We will not restrict our consideration to two-dimensional maps here, so we start with
recalling the classification of periodic orbits of n-dimensional reversible maps.

Let M be an n-dimensional manifold. Let g : M → M be a Cr involution, so g ◦ g = id.
A diffeomorphism f : M → M is called a reversible map if it is conjugate by g to its own inverse.
A periodic orbit of f is called symmetric if it is invariant with respect to g; at least one point x0 of
a symmetric periodic orbit is a fixed point of an involution h, where h = g or h = f ◦ g. Let T be
the first return map near x0, so Tx0 = x0 and hx0 = x0. By reversibility

T−1 = h ◦ T ◦ h. (4.1)

Denote by A the derivative of T at x0. We can always choose Cr coordinates near x0 such that the
involution h is linear [5]. By (4.1), we have

A−1 = h ◦ A ◦ h. (4.2)

If Ae = λe, i.e., e is an eigenvector of A with the eigenvalue (multiplier) λ, then it follows from (4.2)
that A−1he = λhe, i.e., he is also an eigenvector of A with the eigenvalue λ−1.

Note that if an eigenvector of A corresponds to a multiplier which is not ±1 (i.e., λ �= λ−1), then
this eigenvector is not an eigenvector of the involution h. On the other hand, every eigenvector of
A which corresponds to λ = ±1 is a linear combination of eigenvectors which are, at the same time,
eigenvectors of h.8 One can also show that if A has an eigenvector e with the eigenvalue ±1 and
this eigenvector is not an eigenvector of h, then, without destroying the reversibility, one can add an
arbitrarily small perturbation to the map T such that, for the perturbed T , we would have Ay = λ̃e
and A(he) = λ̃−1he for some λ̃ different from ±1. This means that for a generic symmetric periodic
orbit, exactly those multipliers that correspond to the eigenvectors of A which are not eigenvectors
of h are different from ±1.

One can also show that the linearization matrix A for a generic symmetric periodic orbit has
no Jordan blocks. Thus, the invariant subspace I+ of A which corresponds to the eigenvalue +1 is
spanned by eigenvectors of A, and either all of them satisfy he = e or all of them satisfy he = −e.
The same is true for the invariant subspace I− which corresponds to the multiplier −1. However,
we can always, if necessary, replace the involution h by the involution T ◦ h (identity (4.1) would
not change) and ensure that the involution is identity on I−. After this choice is made, it can be
shown (see the remark after formula (4.6) in the proof of Theorem 5 below) that if h = −id on I+,
then the symmetric periodic point can be made to disappear by an arbitrarily small perturbation
of the map. Therefore, for the generic symmetric periodic orbit we have

h|I+⊕I− = id. (4.3)

It can be shown that condition (4.3) is necessary and sufficient for the symmetric periodic orbit
to persist under small smooth perturbations which preserve the reversibility. Below, such periodic
orbits will be called regular.

If the matrix A has some hyperbolic eigenvalues, i.e., multipliers not on the unit circle, then the
map T near the periodic point x0 has an invariant center manifold W c, which is an intersection of the

8If Ae = λe with λ2 = 1 and he �= ±e, then e+ he and e− he are linearly independent eigenvectors of A. Indeed,
since he is an eigenvector of A with the eigenvalue λ−1 = λ, we have A(e± he) = Ae ± Ahe = λe ± λ−1he =
λ(e± he).
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center-stable manifold W cs and the center-unstable manifold W cu. The invariant manifold W cs is
tangent to the invariant space of A which corresponds to all the multipliers smaller than or equal to 1
in absolute value (i.e., the multipliers on the unit circle or inside it), while the invariant manifold W cu

is tangent to the invariant space of A which corresponds to all the multipliers whose absolute value
is greater than or equal to 1 (the multipliers on the unit circle and outside it). We can choose
W cu = h(W cs); then the invariant center manifold W c = W cs ∩ h(W cs) will be h-invariant. The
center manifold W c is smooth (of class Cr for any finite r) and persists under Cr-small perturbations.
For every map close to f , all the orbits that never leave a small neighborhood of the periodic orbit
under consideration must belong to W c. The dynamics transverse to W c is hyperbolic (trivial): the
orbits not from W c either leave a small neighborhood of the periodic orbit both under forward and
backward iterations of f , or lie in W cs and exponentially approach W c under forward iterations of f
(so they leave a small neighborhood of the periodic orbit under backward iterations), or lie in W cu

and exponentially approach W c under backward iterations of f (and leave a small neighborhood of
the periodic orbit under forward iterations). The dynamics in W c is, generically, very non-trivial.
In particular, we have the following result.

Theorem 4. Consider a regular symmetric periodic orbit of a g-reversible Cr-smooth map f .
Assume the orbit has at least one pair of complex multipliers on the unit circle, i.e., λ = e±iω with
ω ∈ (0, π). Then for a Cr-generic g-reversible map sufficiently close to f, the periodic orbit is a
limit of an infinite sequence of uniformly hyperbolic attractors and uniformly hyperbolic repellers of
all topological types possible for a smooth map of a d-dimensional disc, where d is the dimension of
the center manifold for this orbit.

This theorem is an immediate consequence of a more general statement (Theorem 5) that em-
ploys the notion of a universal map from [40, 42]. Given a Cr-smooth diffeomorphism F of an
n-dimensional manifold M, we consider the set of the so-called renormalized iterations of F , de-
fined as follows. Take a unit ball Bn ⊂ R

n. Let ψ be a Cr map R
n → M which is a diffeomorphism

between R
n and its image ψ(Rn). Take the ball ψ(Bn) and suppose that its image F k ◦ ψ(Bn) lies

inside ψ(Rn) for some positive integer k. Then the Cr diffeomorphism Fk,ψ : Bn → R
n defined as

Fk,ψ = ψ−1 ◦ F k ◦ ψ|Bn is a renormalized iteration of F .

• The map F is called d-universal if the set of its renormalized iterations is Cr-dense in the set
of all orientation-preserving Cr diffeomorphisms from Bn to R

n.

By the definition, iterations of any d-universal map approximate arbitrarily well all dynamics
possible in a d-dimensional ball. Therefore, every Cr-robust phenomenon occurring in any d-dimen-
sional diffeomorphism is also present in each d-universal map. In particular, every d-universal map
has, simultaneously, uniformly hyperbolic attractors and repellers of all topological types possible
in the d-dimensional ball. Thus, Theorem 4 is a direct consequence of the following result, which
we obtain by using the theory from [42] on smooth perturbations of the identity.

Theorem 5. Consider a regular symmetric periodic orbit of a g-reversible Cr-smooth map f .
Assume the orbit has at least one pair of complex multipliers on the unit circle. Then any Cr-generic
g-reversible map sufficiently close to f, restricted to the local center manifold in an arbitrarily small
neighborhood of the periodic orbit under consideration, is d-universal, where d is the dimension of
the center manifold.

Proof. Take a regular symmetric periodic point x0 and consider a small piece of the local
center manifold W c that contains x0. We will show below that by an arbitrarily small perturbation
of the map within the class of Cr-smooth g-reversible maps one can create a periodic spot in W c,
i.e., an open d-dimensional ball in W c for which all points are periodic with the same period. After
that is done, we will just need an easy adaptation of the result of [42] to the reversible case in order
to make the map universal.
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Thus, we have a periodic orbit with multipliers e±iω1 , . . . , e±iωm (0 < ωj < π, m ≥ 1), with
s multipliers equal to +1, and with k multipliers equal to −1, so 2m+ k + s = d multipliers lie on
the unit circle and the remaining n − d multipliers are not on the unit circle. As it was explained
before, we may generically assume that there are no Jordan blocks in the linearization matrix A of
the period map T (for the multipliers ±1 this is due to (4.3); for the other multipliers we assume
that they are all simple). Also, by a small perturbation, we can make the values of ωj, j = 1, . . . ,m,
jointly rationally independent together with π.

Let σ be the linear map that changes the sign of the coordinates in the invariant subspace of
the matrix A corresponding to all real negative multipliers. Then, the normal form of the map T
near x0 is equal [29] to σ times the time 1 map induced by the flow of a system of differential
equations of the form

żj = iΩj(Z, u, v)zj +O(y) + o(‖x− x0‖r), j = 1, . . . ,m,

u̇ = F (Z, u, v) +O(y) + o(‖x− x0‖r),

v̇ = G(Z, u, v) +O(y) + o(‖x− x0‖r),

ẏ = H(Z, u, v, y)y + o(‖x− x0‖r),

(4.4)

where x = x0 + (z, u, v, y), the variables zj are complex (projections to the eigenspaces corre-
sponding to the multipliers e±iωj ), Z = (|z1|2, . . . , |zs|2), u ∈ R

s (these are the projections to the
eigenspace corresponding to the multipliers +1), v ∈ R

k (these are the projections to the eigenspace
corresponding to the multipliers −1), and y ∈ R

n−d (projections to the eigenspace corresponding to
the multipliers not on the unit circle); the functions F and G have zero linear parts, Ωj(0, 0, 0) = ωj ,
and H(0, 0, 0, 0) is a matrix with eigenvalues outside the imaginary axis. The o(‖x − x0‖r) terms
can be time-dependent; they vanish at zero along with the derivatives up to the order r. The O(y)
terms stand for the functions vanishing at y = 0. The normal form system is also σ-equivariant,
i.e., Ωj and F are even functions of v, while G is an odd function of v. The same normalizing
transformation brings the involution h from (4.1) and (4.2) to the form h(z, u, v, y) = (z∗, u, v, ĥy)
or h(z, u, v, y) = (z∗,−u, v, ĥy), where z∗ is complex conjugate to z and ĥ is some linear involution
in the y-space.

By adding a Cr-small perturbation to f , one can make the o(‖x − x0‖r) terms in (4.4) vanish
in a sufficiently small neighborhood of x0. Then, the map T near x0 will be equal to σ times the
time 1 map induced by the flow of the autonomous system

żj = iΩj(Z, u, v)zj +O(y), j = 1, . . . ,m,

u̇ = F (Z, u, v) +O(y),

v̇ = G(Z, u, v),

ẏ = H(Z, u, v, y)y.

(4.5)

The center manifold for this map is given by y = 0 (as it is invariant and is tangent to the eigenspace
of the matrix A corresponding to all multipliers on the unit circle). Thus the restriction of T onto W c

equals σ times the time 1 map induced by the flow of

żj = iΩj(Z, u, v)zj , j = 1, . . . ,m,

u̇ = F (Z, u, v),

v̇ = G(Z, u, v).

(4.6)
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Recall that either h|W c : (z, u, v) → (z∗, u, v) or h|W c : (z, u, v) → (z∗,−u, v). In the first case,
the reversibility requires that the functions F and G must be identically zero and Ωj must be real.
In the second case, the reversibility allows F (0, u, 0) to be an arbitrary even function of u. Thus,
generically, F (0, u, 0) = au2 + O(u4) with a �= 0, so by adding an arbitrary constant term to F we
can destroy the fixed point. It follows that the only generic case where a symmetric periodic orbit
may have multipliers equal to +1 corresponds to h being the identity on the u-space. The flow
normal form (4.6) is then rewritten as

żj = iΩj(Z,w)zj , j = 1, . . . , s, ẇ = 0, (4.7)

where w = (u, v) and Ωj is a real function. In the polar coordinates zj =
√

Zj e
iφj the system takes

the form
ϕ̇ = ϕ+Ω(Z,w), Ż = 0, ẇ = 0, (4.8)

where ϕ = (ϕ1, . . . , ϕs) and Ω = (Ω1, . . . ,Ωs). In these coordinates the involution h is given by
h(ϕ,Z,w) = (−ϕ,Z,w).

We further assume that det(∂Ω/∂Z) �= 0. Then, arbitrarily close to Z = 0 there exists a value
of Z = Z∗ such that the corresponding vector of frequencies Ω is a rational multiple of π, i.e.,
Ω(Z∗, 0) = π(p1/q, . . . , ps/q), where pj and q > 0 are integers. It follows that every point in the
torus (Z = Zj, w = 0) is 2q-periodic. Take a non-symmetric periodic orbit on this torus and
let M = (ϕ∗, Z∗, 0) be a point of this orbit. We can choose the frequencies Ω − Ω(Z∗, 0) as new
Z-coordinates near M (so M will be given by (ϕ = ϕ∗, Z = 0, w = 0) in the new coordinates). The
map T |2qW c in these coordinates is given by

ϕ = ϕ+ 2qZ, Z = Z, w = σ2qw = w.

By a small perturbation localized in a small neighborhood of the point f−1M , we can bring the
map T |2qW c near M to the form

ϕ = ϕ+ 2qZ, Z = Z(1− 2qε) − ε(ϕ − ϕ∗), w = w, (4.9)

where ε > 0 is a small parameter. The perturbation is localized in a small neighborhood of a non-
symmetric point f−1M , so by adding an appropriate perturbation localized in a small neighborhood
of the point gf−1M we can keep our map in the class of reversible systems; the map T |2qW c near
the point M would keep its form, as the orbit of M is not symmetric and hence does not enter
the small neighborhood of gf−1M . Now note that the map (4.9) is, at each level w = const, a
linear rotation near M . Therefore, for an appropriate choice of ε, all the points in a neighborhood
of M are periodic with the same period; i.e., we have created a periodic spot on W c in the small
neighborhood of the periodic point x0.

It is shown in [42] that arbitrarily close in Cr to a map f with a periodic spot there exists a
universal map f̂ such that the perturbation f̂ − f is supported in the periodic spot and, moreover,
any Cr-generic map close enough to f̂ is universal too. In our situation, we have a periodic spot,
which we denote by Q, on the center manifold W c; note that it is away from the set Fix(g) of the
fixed points of g. By [42], we can perturb the map f |W c to make it d-universal; the perturbation
can be extended outside W c in such a way that it will be supported in a small neighborhood of Q.
We then make the perturbed map f̂ reversible (i.e., we ensure that f̂−1 = g ◦ f̂ ◦ g) by adding an
appropriate small perturbation to f in a neighborhood of gQ (we can do it as Q and gQ do not
intersect).

Thus, let U be an open set in the space of g-reversible Cr diffeomorphisms such that the generic
symmetric periodic orbit P under consideration persists for every map f from U . We have shown
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that for any δ > 0, for a residual subset Uδ of U , the restriction of any map from Uδ to the local
center manifold W c(P ) in the δ-neighborhood of P is d-universal, where d = dim(W c(P )). Every
map which belongs to the intersection of the sets Uδj over a sequence δj tending to zero is Cr-generic
in U and has the desired property: its restriction to W c(P ) in an arbitrarily small neighborhood
of P is d-universal. �
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