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A class of nonrelativistic particle accelerators in which the majority of particles gain energy at an

exponential rate is constructed. The class includes ergodic billiards with a piston that moves adiabatically

and is removed adiabatically in a periodic fashion. The phenomenon is robust: deformations that keep the

chaotic character of the billiard retain the exponential energy growth. The growth rate is found analyti-

cally and is, thus, controllable. Numerical simulations corroborate the analytic predictions with good

precision. The acceleration mechanism has a natural thermodynamical interpretation and is applied to a

hot dilute gas of repelling particles.
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A simple way to accelerate a classical particle is to place
it in a bounded domain where the particle would move
inertially between elastic collisions with the boundary, as
in billiards [1], and then make the boundary oscillate. The
particle may gain or lose energy upon collision, depending
on whether or not the particle and the boundary move
towards each other [2]. When the balance of consecutive
gains and losses is positive, the particle accelerates. Fermi
proposed such a model for explaining the origin of cosmic
rays [3]. Similar models appear in studies of capacitive
discharges in plasmas [4], nuclear fission [5], and meso-
scopic devices [6]. In these models the billiard boundary
may move randomly or in a smooth fashion—hereafter we
consider the smooth case.

In the one-dimensional Fermi-Ulam model, the particle
energy remains bounded if the boundary oscillates
smoothly [2]. In the two-dimensional case, when the do-
main’s boundary moves so that at every instant the corre-
sponding billiard is chaotic, a nonsaturable ensemble
energy growth was numerically observed, suggesting
the particle energy may grow up to infinity [7–9]. The
existence of orbits with exponential energy growth for
any chaotic billiard whose shape oscillates slowly was
proven in [10]. However, it was also shown in [10] that
the energy averaged over an ensemble of solutions which
stay close to any given hyperbolic set of the billiards grows
much slower, linearly in the number of collisions, i.e., at
best quadratically in time. Numerical and analytical studies
show [8] that indeed, for various billiard shapes, the ob-
served ensemble energy growth is close to linear in the

number of collisions; the same growth rate was detected for
a driven elliptic (integrable) billiard in [11] for large en-
ergies (for small initial energies the growth is slower). Yet,
for a very special geometry of a nonergodic chaotic billiard
(a rectangle with an oscillating horizontal bar in its inte-
rior), we found that for typical ensembles the averaged
energy grows exponentially [9]. That particular example is
not robust: numerics shows that a small deformation of the
rectangle restores the standard power-law growth.
Note the difference between the power-law and expo-

nential energy growth: the former is suppressed by weak
linear dissipation, while the latter is not. Thus, devising a
robust exponential Fermi accelerator is crucial for ensuring
an effective energy transfer from the slow subsystem (the
moving boundaries) to the fast one (the particle).
In this Letter we propose a new class of accelerators that

provide an effective mechanism of the energy transfer,
namely, a robust exponential in time energy growth. The
machine works as follows. Take a billiard domainD in the
d-dimensional space and deform it slowly. The shape-
deformation cycle of a period � consists of 2 steps [see
Fig. 1(a); specific realizations used in the numerical simu-
lations are shown in Figs. 1(b)–1(e)]. In step 1, for t 2
ð0; ��Þðmod�Þ, the domain is connected, and at each fixed
moment of t the corresponding billiard dynamical system
is ergodic and mixing with respect to the standard Liouville
measure. At t ¼ �� the billiard domain separates into
two connected components, D�

1 and D�
2. In step 2, for

t 2 ð��; �Þðmod�Þ, the two components change their
shape while remaining disjoint, and at each fixed t each
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component defines an ergodic and mixing billiard dynami-
cal system. At t ¼ � the two components reconnect again
and form the same shape as at t ¼ 0. Then the process
repeats.

Let VðtÞ be the volume of D at time t and V1;2ðtÞ :¼
�1;2ðtÞVðtÞ be the volumes of the two components in step 2

[so �1ðtÞ þ �2ðtÞ ¼ 1]. Next we show that, provided the
ratio of the volumes of the two billiard components is
different at the separation and reconnection moments,

V1ð0Þ=V2ð0Þ � V1ð��Þ=V2ð��Þ; (1)

a particle of sufficiently large initial energy inside the
billiard at t ¼ 0 will, on average, gain energy. Indeed, we
show that the expectation of the logarithm of the energy
gain at the end of the billiard-deformation cycle (t ¼ �) is
strictly positive under condition (1); thus, the process leads
to a robust exponential acceleration of particles.

We use the Anosov-Kasuga averaging theory [12]. By
this theory, a system with slowly changing in time
Hamilton function approximately preserves the Anosov-
Kasuga invariant. Namely, given a one-parameter family
Hðx; p;�Þ of Hamilton functions, assume that for each
value of � the corresponding Hamiltonian system _x ¼
H0

pðx; p;�Þ, _p ¼ �H0
xðx; p;�Þ is ergodic with respect to

the Liouville measure on every energy level. If the parame-
ter is allowed to change slowly with time (� ¼ "t), the
energy will no longer be preserved. However, for the
majority of orbits, JðHðxðtÞ; pðtÞ; "tÞ; tÞ � JðHðxð0Þ; pð0Þ;
0Þ; 0Þ on time intervals of order "�1, where the adiabatic
invariant JðE; �Þ is defined as the phase space volume
bounded by the energy level Hðx; p;�Þ ¼ E. When the
particle energy in the billiard is large (so the particle moves
much faster than the boundary does), the Anosov-Kasuga
theory is applicable. The phase space of the billiard flow
bounded by the energy E is the product of the billiard
domain of volumeVðtÞ and the ball in the particle momenta

space p2
1 þ � � � þ p2

d � 2E. Hence, JðE; tÞ � Ed=2VðtÞ,
and we find that for ergodic billiards with slowly moving

boundaries the product I :¼ J2=d ¼ EV2=d remains nearly
constant for the majority of initial conditions for slow
times of order 1. The measure of the set of exceptional
trajectories vanishes as the energy grows.
Thus, if a particle at the beginning of the cycle has a

sufficiently large energy E, it is expected to have the

energy E0 � E½Vð0Þ=Vð��Þ�2=d at the separation moment
t ¼ ��. Similarly, a particle which belongs, after the sepa-

ration, to the component D�
i will have the energy �E �

E0½Við��Þ=Við0Þ�2=d � E½�ið��Þ=�ið0Þ�2=d at the reconnec-
tion moment t ¼ �. Since the particle moves much faster
than the boundary, the particle position is essentially
random at the separation moment. Thus, by the ergodicity,
the probability to be in the part Di at t ¼ �� equals to
�ið��Þ. Therefore, after a complete cycle, lnE increases by
2
d ln�ið��Þ

�ið0Þ with probability �ið��Þ. This gives us the expec-

tation of the random increase in lnE as

E
�
ln

�E

E

�
¼ 2

d

�
� ln

�
�

�

�
þ ð1� �Þ ln

�
1� �

1� �

��
; (2)

where � ¼ �1ð��Þ, � ¼ �1ð0Þ. The function on the right-
hand side of Eq. (2) achieves its minimum at � ¼ � [the
second derivativewith respect to� is positive at� 2 ð0; 1Þ,
� 2 ð0; 1Þ]. Hence, E½lnð �E=EÞ�> 0 under condition (1).
Since correlations decay fast due to the billiard mixing

property, we may further assume that the energy gain
Ei=Ei�1 after the ith cycle is essentially independent of
the gain on the previous round. We may thus apply the law
of large numbers to the sequence of the gain logarithms.
Then we find that for a typical trajectory limn!þ1
1
n lnEn

E0
¼ limn!þ1 1

n

P
n
i¼1 ln

Ei

Ei�1
¼ E½ln �E

E�> 0; i.e., the

majority of the initial conditions experience an exponential
in time energy growth, with rate (2).
The expectation of the energy gain after one cycle is

E
� �E

E

�
¼ �1þ2=d��2=d þ ð1� �Þ1þ2=dð1� �Þ�2=d; (3)

which also achieves its minimum at � ¼ �, so Q ¼
E½ �E=E�> 1 under condition (1). Formula (3) provides
the rate of the exponential growth of the energy averaged
over the (infinite) ensemble of uniformly distributed initial
conditions. Indeed, assuming the independence of the

energy gains at consecutive cycles, we find E½En

E0
� ¼

E½Qn
i¼1

Ei

Ei�1
� ¼ Q

n
i¼1 E½ Ei

Ei�1
� ¼ en lnQ.

Note that for finite ensembles the deviation of the en-
semble average from the expectation for the energy gain
rapidly increases [9]. The standard deviation for the energy

gain after n cycles is �n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½E2

n=E
2
0� � E2½En=E0�

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En½ �E2=E2� � E2n½ �E=E�p ¼ en lnQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1 þ ð�1=QÞ2�n � 1

p
,

where �1 ¼ �ð1� �Þjð��Þ2=d � ð1��
1��Þ2=dj. For an ensemble

of K particles, the deviation of the statistical average from

the theoretical mean value is ��n=
ffiffiffiffi
K

p
, so the ensemble

rate given by (3) is observed only for a finite number of the

FIG. 1 (color online). General robust accelerator (a), divided
stadium at the beginning of the first (b) and second (c) stages of
the bar motion, (d) trapezium, (e) ‘‘double’’ Sinai billiard. Here
L ¼ 2h ¼ 2, the radius of the disks in (e) is 1

6 , the distance

between the centers is 4
3 , and the inclination angle of the

trapezium is 10�. At the compression stage the bar displacement
is 0.2 for trapezium, 0.28 for stadium, 0.18 for Sinai billiard, so
the growth rate of Eq. (4) stays the same: R � 0:08.
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boundary-oscillation cycles: n 	 lnK
ln½1þð�1=QÞ2� , after which

the smaller single-orbit rate (2) is eventually recovered.
We stress the generality of the construction: it is insen-

sitive to the choice of the billiard shape, to the manner by
which it is deformed, or to the dimension d. For numerical
verification, we take several two-dimensional chaotic bil-
liards. Their overall shape and size do not change in time,
while the crucial separation or reconnection of the billiard
domain is implemented by inserting a bar inside the bil-
liard. At t ¼ �� the bar divides the billiard into two disjoint
regions of areas V�

1 and V
�
2 . For t 2 ð��; �Þ, the dividing bar

moves so that the area V�
1 ¼ V1ð��Þ expands to V1 ¼

V1ð�Þ>V�
1 and the area V�

2 compresses to V2 < V�
2 [as

V1 þ V2 ¼ V�
1 þ V�

2 ¼ V ¼ const, condition (1) holds, so
the exponential growth is achieved]. At t ¼ � the bar is
moved vertically, so the two regions connect and the
particle mixes in the whole domain. By (3), the expected

energy gain is �2

� þ ð1��Þ2
1�� ¼ 1þ ð���Þ2

�ð1��Þ > 1, where � ¼
V�
1=V,� ¼ V1=V. In order to mimic a cyclic piston motion

in a cylinder, we perform the next stage symmetrically in
the opposite direction. The expected energy gain at this

stage is 1þ ð���Þ2
�ð1��Þ . Altogether, the predicted ensemble

energy growth rate (per the double-stage cycle) equals

R ¼ log

2
4
0
@1þ ð�� �Þ2

�ð1� �Þ

1
A
0
@1þ ð�� �Þ2

�ð1� �Þ

1
A
3
5: (4)

Figures 2(a) and 2(b) show the energy growth rate in the
three billiard geometries of Figs. 1(b)–1(e), where the
oscillating bar follows the above protocol. For ensembles
of 103–104 initial conditions, for 100 rounds of the two-
stage adiabatic cycle, the energy growth is indeed expo-
nential. Figure 2(a) corresponds to an abrupt introduction
and removal of the bar at the moments of division and
reconnection of the billiard. The observed growth rates
here are 0:086
 0:006 for the trapezium, 0:084
 0:006
for the stadium, and 0:082
 0:007 for the Sinai billiard
(the range of fitted slopes reflects calculation of 10 differ-
ent ensembles for each case). The rates are quite close to
the predicted valueR � 0:08 for each of the three geome-
tries (see Fig. 1 caption). Similar rates are achieved when
the bar is introduced and removed slowly, and the velocity
of both vertical and horizontal bar motion is continuous in
time: here R is 0:089
 0:009 for the trapezium, 0:085

0:004 for the stadium, and 0:080
 0:003 for the Sinai
billiard [see Fig. 2(b)]. Finally, Fig. 2(c) ( logE vs logt)
shows that the accelerators lose their exponential character
if the moving bar does not fully divide the domain into two
separated regions: in this case the energy growth is much
slower and appears to be power law.

As we see, the numerics conforms to the theoretical
predictions. It clearly shows that the choice of a billiard
is unimportant for the result. Of real importance is the
ergodicity violation during the boundary-oscillation cycle:
when the billiard table is connected we have one ergodic
component and when it is divided we have two ergodic

components (i.e., nonergodicity) on each energy level
in the phase space. Indeed, as Fig. 2(c) shows, when the
billiard stays ergodic for the whole cycle, the energy
growth is significantly slowed. One can explain this as
follows. The reflection law in the case of boundary moving
with normal velocity u is �v? ¼ 2u� v?, �vk ¼ vk, where
ðv?; vkÞ and ð �v?; �vkÞ are the normal and tangent to the

boundary components of the particle velocity before and
after the collision. This gives �E ¼ m

2
�v2 ¼ E� 2muv? þ

2mu2, so when v?=u � 1 the change in the particle’s

kinetic energy E at the collision is � ffiffiffiffi
E

p
. For a chaotic

billiard, correlations between energy gains and losses at
consecutive collisions with the slowly moving boundary
decay fast, so we model the change in E by a random walk

with independent increments of order
ffiffiffiffi
E

p
. By denoting

In :¼ EnVðtnÞ2=d, where tn is the time moment of the nth
collision, and En is the kinetic energy just after it, we thus
have Inþ1 � In ¼

ffiffiffiffiffi
In

p
�n, where �n are independent

bounded random variables. The approximate preservation
of the Anosov-Kasuga invariant means that this random
walk is unbiased to the main order, i.e., Eð�nÞ ! 0 as In
grows. The natural small parameter here is u=jvj � I�1=2,

so we estimate Eð�nÞ � I�1=2
n , which leads to EðInÞ & n.

The time intervals between the collisions are of order

jvj�1, i.e., tnþ1 � tn � E�1=2
n � I�1=2

n * n�1=2, hence
tn *

ffiffiffi
n

p
and EðtnÞ & t2n. Thus, the approximate preserva-

tion of EV2=d can be responsible for the observed (sub)
quadratic energy growth in driven ergodic and mixing

billiards. The nonconservation of EV2=d achieved by di-
viding and reconnecting the billiard is the core of our
construction of the exponential accelerator.
Since the construction is valid in any dimension d, the

exponential averaged energy growth should also be
observed when several repelling particles are put into
the accelerator simultaneously. The gas of N elastically

102

103

104

105

106

102

103

104

105

106

 0  20  40  60  80  100

Number of bar oscillations

(a)

 0  20  40  60  80  100

)b( )a(

102

103

104

105

50 100 200 400

E
ne

rg
y

)c()b( )a(

Trapezium
Stadium

Sinai

FIG. 2 (color online). Ensemble energy growth (the energy is
in the logarithmic scale). (a) Exponential growth for the three
geometries of Figs. 1(b)–1(e), where the bar is introduced and
removed abruptly. The energy is averaged over ensembles of
2000 initial conditions. (b) The same as (a) with slow and
smooth bar motion (the bar velocity is continuous, piecewise
linear in time). The graphs are smoother than in (a) since larger
ensembles (104 initial conditions) are taken. (c) When the bar is
90% of the billiard’s height and does not divide the billiard,
the energy growth slows down significantly: E� t1:55 for the
stadium and Sinai billiards and E� t1:95 for the trapezium
(5000 initial conditions). The apparent crossover to faster growth
rates at higher energies is in agreement with [11].
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colliding hard spheres is a billiard in an Nd-dimensional
configuration space. For a dilute gas (large N yet the total
volume occupied by the particles is a small fraction of the
box volume), we may accept the ergodicity of such billiard
(Sinai-Boltzmann hypothesis). Then, the above computa-
tions of the energy change during the cycle of division and
reconnection of the billiard must hold true. The Anosov-

Kasuga invariant for this gas is �ENd=2VN , where V is the
container volume and E is the total energy of particles.
Thus, when the shape of the container is changed slowly,

the product EV2=d is approximately preserved. This coin-

cides with the usual law TV2=d ¼ const of the adiabatic
compression for the ideal monatomic gas (where T ¼ E=N
is the temperature). We thus may apply standard thermo-
dynamic arguments in the computation of the energy gain
for the cycle of the container shape deformation.

Consider the cycle described by Fig. 1 and assume the
domain is filled with the ideal monatomic gas, and there is
no heat transfer through the boundary. By the adiabatic
compression law, if the initial gas temperature is T, then

at the end of step 1 the temperature will be T0 ¼
T½Vð0Þ=Vð��Þ�2=d. After separation, the fraction of gas

particles in D�
i is given by Ni

N ¼ �ið��Þ, where �i ¼ Vi=V.

Then the domains are deformed each on its own and their
temperatures evolve differently: at the moment before the

reconnection the temperature in Di is given by �Ti ¼
T0½Við��Þ=Við0Þ�2=d. After the reconnection the system
equilibrates at the temperature �T1N1=N þ �T2N2=N ¼
�T1�1ð��Þ þ �T2�1ð��Þ. Thus, after the complete cycle, the

ratio of temperatures is �T=T ¼ �1ð��Þ1þ2=d=�1ð0Þ2=d þ
�2ð��Þ1þ2=d=�2ð0Þ2=d, which coincides with (3); i.e., the
rate of the energy growth is independent of the number of
particles.

Finally, we remark that the billiard in an interval of a
straight line is trivially ergodic. Thus, our mechanism
includes the exponential energy growth in the one-
dimensional situation as well. For example, we obviously
achieve an exponential acceleration by repeating the cycle
of compressing the interval and then restoring it to its
original length abruptly. Yet, this simple mechanism, as
well as other one-dimensional examples, cannot be imple-
mented adiabatically. In this Letter, we show that in the
higher-dimensional case the effective acceleration can be
achieved without relying on the discontinuity in the bar
motion. Indeed the results in Fig. 2(b) correspond to a
regime where, at every instance, the billiard boundary
moves much slower than the particle does (this is important
since no resonances that could impede the particle accel-
eration appear as the particle velocity grows). The proposed
mechanism is of a very basic nature: we divide an ergodic
system into two components, each one is at equilibrium,
then we deform the components in such away that each part
remains at statistical equilibrium, but the effective tempera-
tures change in different ways, so at the end the sum of
the two equilibrium states is no longer an equilibrium for
the total system. Only after the ergodic components are

reconnected the system evolves to a new equilibrium. We
established that this process is responsible for the particle
gaining energy at an exponential rate on average. We end
by noting that this scheme can be applied also to smooth
time-dependent Hamiltonian models for particle motion
[13]; i.e., these should also admit a similar mechanism of
exponential acceleration by separating and reconnecting
their ergodic components. In particular, atom-optics bil-
liards [14] may provide a suitable experimental setting for
examining the robust exponential particle heating.
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