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Leaky Fermi accelerators
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A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of
an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may
heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside
the billiard do not collide with each other and remain in the accelerator for a sufficiently long time. The heat
production is found to depend strongly on the type of Fermi accelerator. An ergodic accelerator, i.e., one that has
a single ergodic component, produces a weaker energy flow than a multicomponent accelerator. Specifically, in
the ergodic case the energy gain is independent of the hole size, whereas in the multicomponent case the energy
flow may be significantly increased by shrinking the hole size.
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I. INTRODUCTION

The dynamics of a point particle moving within a closed
region (billiard) with oscillating walls provides a mathematical
model for studying the phenomenon of Fermi acceleration
[1–7]. Such systems typically produce an increase in the
particle’s kinetic energy, and much effort is devoted to
quantifying this phenomenon. It has been shown that collisions
with periodically oscillating walls of an ergodic chaotic billiard
accelerate the particle so that on average its energy grows
linearly with the number of collisions and quadratically as a
function of time [5,7–9]. In particular, this behavior is observed
in a periodically oscillating dispersive billiard [5,9] and in a
stadium with an oscillating base [8]. Examples of such billiards
are shown in Figs. 1(a) and 1(d). It was discovered in [9,10]
that if the ergodicity of the frozen billiard is violated, i.e., the
shape of the billiard is changed in such a way that several
ergodic components are created during a part of the billiard
oscillation cycle, then the average energy growth is much
faster, typically exponential in time. A Bunimovich mushroom
deformed such that there exists particle exchange between
its integrable and chaotic components corresponds to such a
multicomponent, exponential accelerator [11]; see Fig. 1(c).
The mushroom is a special case of a large class of billiards with
mixed phase space where chaotic zones coexist with stability
islands; the exponential character of acceleration at a periodic
perturbation of such systems was established in [12,13].
The multicomponent accelerators can also be created by
pseudointegrability [10,14] and by division of the billiard
configuration space into disjoint pieces [9]; see Fig. 1(b).

Hereafter, to stress their nonergodic nature, we loosely
call accelerators that attain exponential-in-time acceleration
“multicomponent accelerators.” Notice that multicomponent
accelerators may have a finite [Fig. 1(a)] or infinite [Fig. 1(b)]
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number of ergodic components. In the latter case, as in
Fig. 1(b), some of these components may belong to an inte-
grable (or near-integrable) region composed of an uncountable
number of ergodic components. It follows from [9–15] that
under quite general conditions, such systems attain exponential
acceleration, yet it is also shown that the exponential accelera-
tion may be suppressed in these systems by choosing specific
degenerate protocols of boundary oscillations.

One of the primary applications of the Fermi acceleration
model is in plasma physics where it is used to study the heating
of charged particles due to electromagnetic waves [4,16]. In
such systems, the electrons absorb energy from the wave in the
plasma sheath, deposit it in the plasma bulk, and return back
to the sheath. Thus, the system is not closed and allows for
entry and exit of particles. Leaky chaotic systems also emerge
in numerous physical situations, such as chemical reactions,
optical microcavities [17,18], and hydrodynamic flows (see
the recent review and references therein [19]).

Stationary leaky billiards have been studied extensively. It
was shown that the escape rate through holes in the billiard
boundary depends sensitively on the hole position, size, and
billiard properties [19–24]. In this paper, we consider time-
dependent leaky billiards and provide estimates for energy
gain for the two above-mentioned classes of the accelerators:
ergodic [as in Figs. 1(a) and 1(c)] and multicomponent
[Figs. 1(b) and 1(d)]. We consider the small hole size limit and
observe that N̄ , the averaged number of collisions a particle
spends in the leaky accelerator, is inversely proportional to
the hole size for both cases. Then we demonstrate that for
the ergodic case, the averaged energy gain per particle grows
linearly with N̄ , whereas in the multicomponent case the
averaged energy gain is much larger and is approximated by
a quadratic polynomial in N̄ ; see Eqs. (6) and (7) versus (14)
and (16) and Fig. 3.

II. MODEL

Consider an accelerator that interacts with an ideal gas
by exchange of particles through a small hole (or a few
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FIG. 1. (Color online) (a) Sinai accelerator, (b) divided Sinai accelerator, (c) mushroom accelerator, and (d) stadium accelerator. See the
simulation section (Sec. III) for geometric specifications and dynamical properties.

small holes) on its boundary. We assume that the gas is
at equilibrium, i.e., there is a stationary distribution of the
particles’ speed, and the distribution of the angles at which
the particles move in the gas is uniform. We assume that
the particles move much faster than the billiard boundary.
Collisions with the moving billiard walls change the kinetic
energy of the particles inside the billiard, and, on average, this
may lead to an outgoing energy gain.

For a fixed kinetic energy Ein = v2
in
2 (we assume the particles

have a unit mass), the number density of particles entering
the billiard per unit of time is proportional to hvin, where
h is the size of the hole (the area of the hole for the
three-dimensional case). Thus, the incoming energy flow at
energy Ein is proportional to hvinEin. We assume that inside
the billiard, the particles do not collide or interact with each
other, so we can consider each of them separately. This gives
us the net energy production by the accelerator per unit of time:

G(Ein) = hvin[Eout − Ein], (1)

where Eout is the averaged value of the kinetic energy at the
moment of exit for a particle that enters the accelerator with
the energy Ein (we average over all possible initial angles and
positions in the hole, as well as over the phase of the billiard
oscillations at the entry moment).

Let p
N

denote the probability to exit the accelerator after
N collisions with the billiards walls, and let Ē(N ) be the
corresponding averaged exit energy. Then

Eout =
∑

Ē(N ; Ein)p
N
. (2)

We assume that the hole size h is small enough, so the
effect of the hole on the statistics of the billiard is negligibly
small (as in the case of the stationary Lorentz gas [23]).
Specifically, we assume that Ē(N ; Ein) can be approximated by
the averaged energy of a particle in the closed (i.e., nonleaky)
accelerator after N collisions. Additionally, we assume that
p

N
and, thus, N̄ , the averaged number of collisions before

exit, do not depend on Ein nor on the wall velocity u. This
is obviously true when the billiard walls are stationary, so we
extrapolate this claim to the case of slowly moving boundaries.
We confirm this claim numerically for the examples we
consider here (see Fig. 2). In fact, the numerics show that
p

N
can be well approximated by the geometric distribution

p
N

= 1
N̄

[1 − (1/N̄ )]N−1 [Fig. 2(c)]. The average value N̄ in

this setting is just a geometric characteristic of the billiard and
the hole. The natural assumption is

N̄ ∼ S

h
∼ V

Lh
, N2 ∼

(
V

Lh

)2

, (3)

where h is the size of the hole in the billiard boundary, S is the
size of the entire billiard boundary, V is the volume occupied
by the billiard, and L is the characteristic diameter of the
billiard. Relations (3) are confirmed by numerical experiments
[see Fig. 2(a)].

To find the net energy production (1), it remains to estimate
the dependence of the averaged energy 〈E〉 of a particle in the
closed accelerator on the number of collisions N . Let us recall
how energy is gained in the accelerators. The reflection law
for a particle hitting a moving wall is obtained by going to a
coordinate frame that moves with the same velocity as the wall
at the moment of collision. In the moving coordinates, we have
an elastic reflection law that, after returning to the stationary
frame, results in the reflection law

v′
⊥ = 2u(t,x) − v⊥ , v′

‖ = v‖ , (4)

where u(t,x) is the normal velocity of the wall at the collision
point x at the moment t ; v and v′ are the velocities before and
after the collision, and the subscripts ⊥ and ‖ stand for the
components of the velocity that are normal and parallel to the
wall, respectively.

If the billiard is chaotic, then the correlations between
the consecutive angles φ at which the particle hits the wall
decay fast. Therefore, the process described by Eq. (4) may
be approximated by a random walk with reflections: at each
collision, the particle velocity undergoes a reflection and
acquires an increment at a random direction.

This random walk proceeds differently for the two main
classes of accelerators, namely ergodic and multicompo-
nent [7]. In the ergodic case, the random walk becomes
unbiased in the large speed limit, which means that the square
of velocity (i.e., the kinetic energy) grows linearly with the
number of collisions. Indeed, by taking the square of Eq. (4),
the energy E

N
= 1

2v2
N

after the N th collision satisfies

E
N+1 = E

N
− 2u(t

N
,x

N
)v

N
cos φ

N
+ 2u2(t

N
,x

N
). (5)

Since |u| � v, the change in the billiard shape and relative
change in the energy are not significant for a large number
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FIG. 2. The distribution and the average number of collisions; see Eq. (3). (a) Dependence on the hole size. Here, the initial energy is
Ein = 9000 for the Sinai and divided Sinai accelerators, and Ein = 1250 for the mushroom and stadium accelerators. (b) No dependence on the
initial particles’ energy. Here h = 0.0005 for Sinai and divided Sinai accelerators, and h = 0.000 33 for mushroom and stadium accelerators.
(c) The exponential distribution of the exit probabilities for the stadium accelerator. Here Ein = 1250 and h = 0.000 33.

of consecutive collisions, so one can average Eq. (5) over
the ergodic measure in the (x,φ) space. The second term in
Eq. (5) can be much larger than the third one, but one can
check (see, e.g., [7]) that after averaging over the ergodic
measure and over the period of the billiard oscillation, the
second term vanishes (this is a consequence of the existence of
the so-called Anosov-Kasuga adiabatic invariant in the ergodic
case; see [2,7,9,25–29]). Corrections to the averaging due to a
slow change in the billiard shape and energy were computed
in [2]. It follows from [2] that, after the averaging, the O(uv)
term in Eq. (5) effectively acquires a small factor of order
|u|/v (see also [9]). Thus, the effective change of the averaged
energy per collision is of order u2 (i.e., it is a certain portion
of the kinetic energy of the wall).

It follows that in the ergodic case, the averaged energy
of a particle grows as 〈E(N )〉 − Ein = k ū2

2 N , where ū is the
averaged wall speed (average of |u|). Thus, we conclude [see
Eqs. (2) and (3)] that in the small hole limit,

Eout − Ein = k
ū2

2
N̄ = k

V

Lh

ū2

2
(6)

for some coefficient k that may depend on the billiard shape and
on the details of the protocol of the billiard wall oscillations.
By plugging this result into Eq. (1), we obtain that the energy
gain rate in the ergodic case is positive, independent of the
hole size h, and is given by

G(Ein) = kvin
V

L

ū2

2
, (7)

i.e., it is proportional to the kinetic energy of the billiard wall,
to the volume of the billiard, and inversely proportional to the
time L/vin the gas particle with the speed vin needs to traverse
the billiard once.

Next, we investigate the case of a multicomponent acceler-
ator. In this case, the ergodicity of the fast motion is broken,
so the O(uv) term in Eq. (5) does not average out. This means

that the random walk (4) in the velocity space acquires a
nonvanishing bias, so the particle speed is linear in N and
its energy is quadratic in N . A more precise description of this
process is done based on the theory developed in [7,9]. We
note that the time between two consecutive collisions tends
to zero as the particle speed grows, t

N+1 − t
N

∼ L/v
N

, and it

follows from Eq. (5) that �E
�t

= E
N+1 −E

N

t
N+1 −t

N

∼ Lu
N

cos φ
N
E

N
,

i.e., in the nonergodic case the energy changes exponentially
with time, with a certain random rate. On a longer time scale,
this process can be modeled by a multiplicative random walk
(see [7,9,13,15]):

En+1 = ξ 2
nEn, vn+1 = ξnvn, (8)

where En = v2
n

2 is the kinetic energy after n periods of the
billiard oscillations, and ξn is the sequence of independent,
identically distributed random variables, independent of the
initial energy. Importantly, it is shown in [7,13,15] that this
random walk cannot be decelerating and, typically,

E ln ξn > 0, Eξn > 1, Eξ 2
n > 1. (9)

If we ignore the details of particle behavior on the time
scales below the period T of billiard oscillations, we can infer
from Eq. (8) the following description for the behavior of the
averaged energy and speed gain at time t :

〈E(t)〉 = Eine
μt , 〈v(t)〉 = vine

λt , (10)

〈v(s1)v(s2)〉 = 〈v2(s1)〉; 〈v(s2)/v(s1)〉
= 〈v2(s1)〉eλ(s2−s1)

= 2Eine
μs1eλ(s2−s1) (s2 � s1), (11)

where μ = 1
T

lnEξ 2 > 2λ = 2
T

lnEξ > 0.
Note that the number of collisions up to time t can be related

to the particle speed via LN (t) ∼ ∫ t

0 v(s)ds. So, the averaged
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number of collisions up to time t is given by

〈N (t)〉 = k1vin
(eλt − 1)

λL

[see Eq. (10)] and, by Eq. (11),

〈N2(t)〉 = k2

L2

∫ t

0

∫ t

0
〈v(s1)v(s2)〉ds1ds2

= 2k2

L2

∫ t

0

∫ t

s1

〈v(s1)v(s2)〉ds2ds1

= 4k2
Ein

L2

∫ t

0

∫ t

s1

eμs1eλ(s2−s1)ds2ds1

= 4k2
Ein

(μ − λ)L2

[
eμt − 1

μ
− eλt − 1

λ

]
,

where k1,2 are some coefficients of order 1.
Rearranging the expressions for 〈N〉 and 〈N2〉, we get

〈E(t)〉 − Ein = 2k1μvinL〈N (t)〉 + 4k2μ
2L2

(
1 − λ

μ

)
〈N (t)2〉,

which, after averaging over the time t that the particle resides
in the billiard, gives

Eout − Ein = μ
L2

T

[
2k1

vinT

L
N̄ + 4k2

(
1− λ

μ

)
μT N2

]
. (12)

The rate μ in this formula is a well-defined quantity determined
by a one-period run of the accelerator, and an analytic
expression for μ is also available in many cases [7,9–15].
However, to compare the energy gain with that given by Eq. (6)
in the ergodic case, we need to relate the rate μ with ū2

2 , the
kinetic energy of the wall.

By Eq. (9), the exponential growth rate μ is always
non-negative. The minimal value μ = 0 is achieved when
the distribution of particles in the billiard remains uniform
during the period of billiard oscillations, as in the case of an
ergodic billiard. Hence, when the deviation from the ergodic
behavior is small, the rate μ is small and behaves like the
square of a certain quantitative measure of this deviation.
The violation of ergodicity in the exponential accelerator is
caused by changes of the phase space structure of the frozen
billiard as its shape changes with time. Therefore, we relate the
deviation from ergodicity to the magnitude of the shape change
over the period. As the billiard size is changed with the mean
speed ū, the dimensionless parameter estimating the ergodicity
violation is ūT /L. Thus, the rate of the energy increase over
the period T is, at small ū, given by

μT ∝
(

ūT

L

)2

. (13)

One can also extract this relation from the formulas for μ

for various cases of multicomponent accelerators (e.g., from
[7,9–12]). Notice that even when ū is not small, the ratio ūT /L

remains bounded and so does μT (we assume everywhere that
the typical length scale of the billiard does not change hugely
along the cycle, otherwise pathological behaviors may arise).
So, Eq. (13) can be used in this case as well; it would then
simply mean that the quantities on both sides of the relation
are of order 1.

Plugging Eq. (13) into Eq. (12), we find

Eout − Ein = ū2

2

[
k1

vinT

L
+ k2μT N2

]
, (14)

or, in the case ūT /L � 1,

Eout − Ein = ū2

2

[
k1

vinT

L
N̄ + k2

(
ūT

L

)2

N2

]
, (15)

where the new coefficients k1,2 depend on the shape of the
billiard and the protocol of the wall oscillation.

The term vinT/L is proportional to the number of collisions
per period. In our setting, this number is assumed to be large.
It is also important for the validity of the exponential growth
model that the particle is initially fast (i.e., vin 
 ū) yet it
remains in the billiard at least for one period. Therefore,
Eqs. (12), (14), and (15) are valid under the assumption

1 � vinT

L
� N̄ ;

in particular vin � V
T h

. When this condition is violated, our
theory is not applicable.

Comparing Eqs. (14) and (15) with Eq. (6), we see that the
energy gain in the multicomponent accelerator is much larger
than in the ergodic case. Even if the exponential growth rate
μ is very small, the coefficient of ū2N̄ in Eq. (14) is large
whereas the corresponding coefficient in Eq. (6) is simply
a constant. With the increase of μ, the quadratic in N̄ term
becomes dominant in Eqs. (14) and (15) and provides the
main contribution to the energy gain.

Using Eq. (3) for N̄ and N2, we finally find the energy
production rate of Eq. (1) for the multicomponent case:

G(Ein) = vin
V

L

ū2

2

[
k1

vinT

L
+ k2μT

V

Lh

]
. (16)

Clearly, the gain rate G can be made much larger than the
gain in the ergodic case by diminishing the hole size or by
increasing the incoming velocity.

III. SIMULATIONS

There are two distinct predicted dependencies of the energy
gain on the hole size and on vin for the two types of leaky
accelerators. To examine these predictions, we consider two
classes of leaky accelerators where each is considered with
two sets of parameters—one corresponding to an ergodic case
and the other to a multicomponent case.

Dispersing accelerators [Figs. 1(a) and 1(b)]: at t = 0, a
vertical bar is inserted at a position xb to the double Sinai
billiard (a rectangle with two disks). Then the bar moves to the
right with a constant velocity u until time τ and then the bar is
removed. The cycle restarts at time T . We consider two cases:
(1a) an ergodic case in which the bar only partially blocks the
rectangle, covering 90% of the rectangle length (this case is
called “Sinai” in all figures); (1b) a multicomponent case in
which the bar completely divides the rectangle into two parts
(hereafter “divided Sinai”). Notice that each component of the
frozen billiards is ergodic and mixing [30]. These accelerators
exhibit exponential-in-time energy growth in the multicompo-
nent case and quadratic-in-time energy growth in the ergodic
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case [9]. To examine the leaky behavior, two holes of length
h are placed on the upper rectangle boundary; the holes are
shifted from the disk centers to avoid fast escaping orbits,
and two holes are introduced to avoid strong dependence on
the billiard oscillation phase. In all simulations, we use the
following parameters: the rectangle width is a = 4, its height
is b = 2, the disk radii are 1/2, the bar velocity is u = 0.1, the
bar is introduced at the position xb = 0.0915 and removed at
the time moment τ = 1.83, and the period is T = 5.49. The
initial energy and the hole size are as indicated in the figures.

Focusing accelerators [Figs. 1(c) and 1(d)]: The mushroom
is a multicomponent system having an integrable compo-
nent and a chaotic component [31], whereas the slanted
stadium is ergodic and mixing [32]. The oscillating mushroom
accelerator exhibits exponential-in-time energy growth [11]
whereas the oscillating stadium exhibits quadratic-in-time
energy growth [7,8].

The shape of the mushroom is determined by the following
four parameters: r is the radius of the cap; w is the half-width
of the hole at the bottom of the cap (it coincides with the
half-width of the stem at its highest point and w � r); � is the
length of the stem; and the angle θ describes the inclination of
the stem sides. When w = r , the mushroom becomes a slanted
stadium.

For the purpose of numerical experiments, we used the fol-
lowing protocols: r(t) = 1, w(t) = b0 − b1[1 − cos(t)], and
�(t) = a0 − a1 sin(t), a0 = 1, b0 = 1. For the mushroom, we
set a1 = 0.5 and b1 = 0.4; and for the stadium, a1 = 0.5,
b1 = 0. The hole is located at the bottom of the stem with
the center displaced by 0.01 from the center of the stem. In all
experiments, θ = 0.1111.

In each numerical experiment, 2000 particles are injected
at randomly chosen times during the period [0,T ] into the
billiard through the holes, with random positions in the hole
and entering angle. Each particle moves inside the billiard
undergoing elastic collisions with the boundary until it exits by
colliding with the hole. The exit time, the number of collisions
until exit, and the exit speed are recorded.

Figure 2(a) demonstrates that the average number of
collisions at exit, N , scales linearly with 1/h for both the
multicomponent and the ergodic cases. Figure 2(b) shows
that N does not depend on the initial energy, again for both
cases. Figure 2(c) shows the geometric distribution of the
exit collisions for the mushroom. These results support the
assumptions made in Eq. (3).

Figure 3 shows the dependence of G/vin = (Eout − Ein)h
on 1/h for the four billiard types. Figure 3(a) shows that
the net energy flow increases linearly with 1/h for billiards
with exponential acceleration (nonergodic case) as predicted
in Eq. (16). The inset shows that for sufficiently small holes,
the flow is essentially independent of the hole size for the
ergodic billiards as predicted by Eq. (7).

Figure 4 shows that the average energy gain, Eout − Ein,
grows linearly with vin for the multicomponent cases as
predicted by Eq. (14). The inset shows that this difference also
grows with vin for the ergodic case (at a slow pace). To the
leading order in h, one should not see such growth according to
Eq. (6). We explain the effect by the order h difference between
the statistics of the closed and leaky accelerators. For example,
averaging the second term of Eq. (5) over a boundary with the
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energy gain increases linearly with 1/h for multicomponent billiards
[see Eq. (16)], and it is independent of the hole size for the ergodic
billiards (for sufficiently small holes); see Eq. (7). Here, the initial
energy is Ein = 9000 for the Sinai and divided Sinai accelerators, and
Ein = 1250 for the mushroom and stadium accelerators.

order h hole produces corrections of order hūv, which cause an
order h bias in the random walk of the velocity. Figure 5 shows
the mean bias 〈vout − vin〉/〈N〉, which is indeed present and
does not vanish in the limit of large initial speed, both in the
ergodic and multicomponent cases. However, the bias is much
smaller in the ergodic case, confirming our conjecture that it
is of order h. The dependence of the energy gain on small u

for the multicomponent accelerators is more delicate to obtain
numerically due to the existence of two competing terms in
Eq. (16). By measuring the u dependence of the slope of the
energy gain dependence on 1/h, namely the u dependence of
the slope of curves such as those shown in Fig. 3, we obtained
that indeed the slope dependence on u is close to u4 (the
simulations were performed for u ∈ [0.1,0.2] in the divided
Sinai accelerator).
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IV. DISCUSSION AND CONCLUSION

A priori, a faster accelerator does not automatically imply
higher energy gain as faster particles escape earlier from
the accelerator, and the net energy gain reflects the balance
between the averaged escape time and the energy gained by
then. In this paper, we find that in a billiard the escape is mainly
determined by the average number of collisions, and from this
observation we are able to find the balance between these
two factors for two different types of accelerators. Our results
conclusively show that multicomponent leaky accelerators
produce higher net energy flow than their ergodic counterparts.
Moreover, we show that the difference increases significantly
when the hole size decreases.

One may worry that decreasing the hole size will lead to
very long residence times. However, for the multicomponent
case the residence time increases only logarithmically with
the hole size. Indeed, the number of collisions is related to
the residence time via LN (t) ∼ ∫ t

0 v(s)ds, hence in the mul-
ticomponent case the averaged residence time is proportional
to log N̄ ∼ log h, while in the ergodic case it is proportional
to

√
N̄ ∼ h−1/2. Hence, we expect that taking the small hole

limit for gaining energy may become practical in the case of
multicomponent leaky accelerators: they produce high gain at
a fast pace.

Another question that naturally arises is the effect of
interparticle collisions to our system. While our numerical
experiments are done in a single-particle setting (the ensembles
we consider correspond to different initial conditions for one
particle), the general conclusion [7,9,12,13,15] on the higher
acceleration rate in the nonergodic case holds true for any
dimension of the system. Therefore, if we consider the gas
of N colliding particles inside the three-dimensional billiard
as a system in 3N -dimensional configuration space, then we
will have the same enhanced acceleration rate provided this
system loses ergodicity for a substantial part of the billiard
oscillation period T . We have discussed two different kinds of
the ergodicity loss mechanisms. The first one is based on the
separation of the billiard into two unconnected components
during a part of the period. During the separation phase,

the system will lose ergodicity irrespective of the number
of particles, and the rate of the temperature growth will be
the same as in a single-particle case; see [9]. Thus, taking
collisions into account should not change the outgoing heat
flow in this case.

The other mechanism corresponds to choosing the billiard
shape in such a way (e.g., by combining scattering and focusing
components in the boundary) that elliptic islands emerge in the
phase space of the single-particle billiard. The strong heat flow
we achieve in this case is due to the fact that the particle can
get captured in the island, so the distribution of particles in
the billiard deviates from uniform for a significant portion of
the period T . Here, the interparticle collisions may restore the
uniformity and, therefore, impede the heat flow. Therefore, to
achieve the high heat flow in this case, the number of collisions
of a typical particle with other particles per period T must
be small. Then, the nonuniform particles’ distribution will
sustain for a substantial part of each oscillation period. This
gives us the following limitation to the system parameters:
vT < S, where S is the mean free path. In other words, the
frequency of the billiard wall oscillations must be higher
than the interparticle collision frequency for the gas inside
the billiard. We also need the number of the particle-to-wall
collisions per period to be sufficiently large, i.e., L � vT ,
which indicates that the size L of the billiard must be much
smaller than the mean free path S, i.e., the Knudsen number
of the gas inside the billiard must be sufficiently high [33].

At room temperature, the gas particles may move with
the speed v of order of 500 m/s or higher; if the gas is
sufficiently dilute (e.g., if ρ ≈ 1021 m−3), one may take
S ∼ 10−3 m or higher. This gives T −1 > 1 MHz and L <

10 μm, i.e., the parameters can be comparable with those
of the MEMS devices. We can conclude that our results
suggest that a periodic modulation of a shape of a microcavity
at a radiofrequency might cause an anomalously high heat
production, depending on the shape of the cavity.

Another relevant setting is that of a hot plasma, which
can often be considered collisionless in tokamaks and various
other settings; e.g., for plasma temperatures of order 106 K,
the density of 1019 m−3, and a trap whose shape is modulated
at a radiofrequency, the above conditions for the validity of our
model limit the size L of the trap at several meters. Moreover,
the collision frequency of a plasma decreases with the increase
in temperature [34], so if the plasma that enters the trap through
the hole is dilute or hot enough to begin with, the collisionless
approximation will only improve inside the billiard as the
particles get heated up. Therefore, if the plasma traps of the
periodically modulated shapes that correspond to nonergodic
billiards can be created (e.g., by electromagnetic fields), then
we have at least a theoretical possibility of the sustained and
fast plasma heating via the mechanism suggested in this paper.

Finally, we note that performing multiparticle simulations
with particles having smooth attracting or repelling potentials
in oscillating accelerators of the three suggested types (ergodic,
dispersing multicomponent, and mixed phase-space multicom-
ponent) may reveal nontrivial phenomena as order parameters,
such as density, are varied: phase transitions between ergodic
and nonergodic states may lead to transitions between different
forms of energy gain.
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[3] L. D. Pustyl’nikov, Poincaré models, rigorous justification of the
second element of thermodynamics on the basis of mechanics,
and the Fermi acceleration mechanism, Russian Math. Surv. 50,
145 (1995).

[4] M. A. Lieberman and V. A. Godyak, From Fermi acceleration
to collisionless discharge heating, IEEE Trans. Plasma Sci. 26,
955 (1998).

[5] A. Loskutov, A. B. Ryabov, and L. G. Akinshin, Mechanism of
Fermi acceleration in dispersing billiards with time-dependent
boundaries, JETP 89, 966 (1999).

[6] D. Dolgopyat, Fermi acceleration, Contemp. Math. 469, 149
(2008).

[7] V. Gelfreich, V. Rom-Kedar, and D. Turaev, Fermi acceleration
and adiabatic invariants for non-autonomous billiards, Chaos
22, 033116 (2012).

[8] A. Loskutov, A. B. Ryabov, and L. G. Akinshin, Properties of
some chaotic billiards with time-dependent boundaries, J. Phys.
A 33, 7973 (2000).

[9] V. Gelfreich, V. Rom-Kedar, K. Shah, and D. Turaev, Robust
Exponential Acceleration in Time-Dependent Billiards, Phys.
Rev. Lett. 106, 074101 (2011).

[10] K. Shah, D. Turaev, and V. Rom-Kedar, Exponential energy
growth in a Fermi accelerator, Phys. Rev. E 81, 056205 (2010).

[11] V. Gelfreich, V. Rom-Kedar, and D. Turaev, Oscillating mush-
rooms: Adiabatic theory for a non-ergodic system, J. Phys. A
47, 395101 (2014).

[12] B. Batistic, Exponential Fermi acceleration in general time-
dependent billiards, Phys. Rev. E 90, 032909 (2014).

[13] T. Pereira and D. Turaev, Exponential energy growth in
adiabatically changing Hamiltonian systems, Phys. Rev. E 91,
010901(R) (2015).

[14] K. Shah, Energy growth rate in smoothly oscillating billiards,
Phys. Rev. E 83, 046215 (2011).

[15] T. Pereira and D. Turaev, Fast fermi acceleration and entropy
growth, Math. Model. Nat. Phenom. 10, 31 (2015).

[16] R. L. Viana, E. C. D. Silva, T. Kroetz, I. L. Caldas, M. Roberto,
and M. A. F. Sanjuan, Fractal structures in nonlinear plasma
physics, Philos. Trans. R. Soc. A 369, 371 (2011).

[17] C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu,
C. Pflugl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and

F. Capasso, Directional emission and universal far-field behavior
from semiconductor lasers with limaçon-shaped microcavity,
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