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Exponential energy growth due to slow parameter oscillations in quantum mechanical systems
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It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential
growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main
example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration
space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and
to the desertion of the states with a particular value of the quantum number.
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Introduction. It is well known [1–4] that the state of a
quantum mechanical system with slowly varied parameters
changes adiabatically: For a system in a given energy eigen-
state the transition amplitude to other energy levels due to
a slow change of parameters is small. More precisely, if
the dimensions are scaled such that the gap between the
neighboring energy levels is of order 1 and the parameters
of the system change periodically with the speed of order ε,
then the system in a state with definite instantaneous energy
will, after each period, return to the O(ε) vicinity of the same
initial state (with a possible phase shift [5]). This continues
for at least O(ε−1) periods, with probability close to 1. For
the modern theory of this phenomenon and proofs, see, e.g.,
Refs. [6,7]. In this paper, we describe a mechanism of the
energy level crossing, for which the system’s response to the
slow variation of parameters is still adiabatic (i.e., starting with
a definite energy state, the system, with probability close to
1, closely follows a state of definite instantaneous energy for
a long time); however, the new state after each period of the
parameter oscillations is, typically, different from the initial
one, and the averaged energy gain per period is positive.

This is surprising; the fact that the operator of the adiabatic
evolution over one period does not need to commute with the
instantaneous Hamiltonian, i.e., a perfectly adiabatic evolution
of a periodically driven system can lead to a fast climb up
the energy spectrum, seems to be not discussed in previous
works. The construction opens a peculiar way of controlling
the state of a quantum system and can possibly be used in
quantum computing, etc. As the spectral properties of the
Schrödinger equation translate to the spectral properties of
the wave equation, the theory can be applied to acoustical
or optical problems as well. In particular, it is plausible that
a similar construction can be used for a significant increase
in the optical frequency of the laser signal due to a properly
chosen protocol of a time-periodic modulation of the resonator
shape.

Level crossing is usually associated with symmetries in
the system, e.g., with the integrability of the corresponding
classical system [3,4,8], but our construction is different.
It is based on a periodic emergence and destruction of an
additional quantum number in the slowly perturbed system.
This can be achieved in a variety of ways, e.g., by imposing
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a magnetic field whose spatial coherence properties depend
on time, as in Eq. (4). Our basic example is a system with
a periodically disconnected configuration space. It may be
a quantum billiard—a free particle confined to a bounded
domain D ⊂ Rd (see Refs. [8–12] for references on quantum
billiards and Refs. [13,14] on quantum graphs). If d � 2, the
domain D can be slowly deformed in such a way that at some
moment two boundary arcs touch, after which D is divided
into two parts, D1 and D2 [15]. The two domains then evolve
separately until they reconnect again, and the process repeats
periodically. In general, there is no symmetry between D1

and D2, so at the separation moment the energy eigenstates
are divided into two groups. The eigenstates from group I are
eigenfunctions of the Laplacian in D1 and identically zero
in D2; the eigenstates from group II are eigenfunctions of
the Laplacian in D2 and zero in D1; cf. Ref. [1]. With time,
the shape of D1,2 changes and, typically, there is no level
crossing within each group, but the levels from different groups
can cross (see Fig. 1). As we show below, this can lead the
system at the moment of reconnection to an energy level that
is different from the initial one. Moreover, the corresponding
energy values recorded at the beginning of each period grow,
on average, exponentially with time.

One extends the class of examples with the divided
configuration space by adding a (possibly time-dependent)
potential inside the domain D. The same scheme is also
applicable in the one-dimensional case: One can consider a
time-dependent quantum graph whose connectivity changes
adiabatically with time. This can be achieved by cutting
some edges in an adiabatic manner [e.g., by introducing the
semipenetration boundary conditions such as in Eq. (2) below].
If the graph is periodically divided into disconnected parts
and reconnected again, then one should, in general, expect
the particle in such a graph to experience an exponential
acceleration.

The exponential Fermi acceleration in periodically driven
classical billiards was discovered in Ref. [16]; the same
phenomenon for classical billiards with periodically divided
configuration space was demonstrated in Ref. [15]. It was
shown in Refs. [17–23] that this is a partial case of a general
phenomenon: A slow periodic variation of the parameters of
a nonergodic Hamiltonian (classical) system of an arbitrary
nature leads, generically, to an exponential growth of energy.
A quantum mechanical analog of this principle would be that if
at high enough energies the gaps between energy levels become
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FIG. 1. Schematic diagram for the adiabatic evolution on lowest energy levels. (a) Particle in a periodically divided segment, Eq. (1), for
a(τ1) = 1 and a(τ2) = 3. During the separation phase (from τ1 to τ2) the nth left state (solid lines) has constant energy E = −1 + π2n2, while
the mth right state (dashed lines) cools from E = π 2m2 down to π 2m2/9. During the reconnection phase (from τ2 to τ1 + T ) there is no
division to left and right states, and the instantaneous energy levels (dotted lines) do not cross. This completely defines the new energy level
number k at the next separation moment τ1 + T (the ground state remains the ground state, etc.); the process repeats with period T . One can
observe the fast energy increase for the left states and desertion of the right states with time. (b) Nonrelativistic spin- 1

2 particle in a spatially
inhomogeneous, strongly oscillating magnetic field, Eq. (4), for B(τ1) = −1/4 and B(τ2) = 3/4. The field is spatially homogeneous for the
time intervals [τ1,τ2]mod T , so the instantaneous energy eigenstates separate into spin-up (dashed lines) and spin-down (solid lines) states.
During the separation phase the energy of the spin-up states decreases from E = m − 1/4 to E = m − 5/4, while the energy of the spin-down
states increases from E = n − 3/4 to E = n + 1/4. At the reconnection phase the field is inhomogeneous, which destroys the division of the
energy eigenstates (dotted lines) into two groups, so the level crossing does not happen. As a result, the level number of the spin-down states
at the separation moments τ1 mod T increases by 2 with each period. The level number of the spin-up states decreases by 2 with each period
until the lowest energy spin-up state 4E = 3 is reached. Then, after one more period T , it evolves to the spin-down ground state 4E = 1, from
which the energy growth starts.

all small of order ε (in order to ensure nonvanishing amplitudes
of the transition between the levels), then the quantum behavior
should, probably, mimic the classical one: A fast energy growth
should, typically, be expected if the classical limit system is
nonergodic. We do not know to which extent this conjecture
is true. Moreover, there exist systems for which the spectral
gaps do not uniformly tend to zero as the energy grows
(this happens, e.g., for quantum two-dimensional billiards,
as follows from the Weyl law Ek ∼ k, which implies that the
gap Ek+1 − Ek between the consecutive energy levels cannot
asymptotically vanish as the level number k increases [24]).
The quantum acceleration construction presented in this paper
does not rely on the classical dynamics properties in the high
energy limit and can ensure the exponential energy growth
starting even with the lowest energy state.

Toy model. We begin with a very simple model, where all
the computations can be done explicitly. It corresponds to a
particle confined in a segment of a straight line; this is the
simplest case of both a quantum billiard and a quantum graph.
Let a particle stay in a segment [−1,a] whose end point a

moves slowly and periodically in time, and for a portion of the
period the segment is divided into two parts, so the particle
cannot penetrate from one part to another. This is described by
the Schrödinger equation

iψt = −ψxx + V (x)ψ, (1)

with the boundary conditions ψ(−1) = ψ(a) = 0, where
a(εt) > 0 is a T -periodic function and ε > 0 is sufficiently
small. We introduce a barrier at x = 0 by allowing a dis-
continuity of the first derivative at zero and introducing the

following time-dependent boundary condition:

α(εt)ψ(0) + [1 − α(εt)][ψx(+0) − ψx(−0)] = 0. (2)

At α = 0 the barrier is absent, while at α = 1 the segments x <

0 and x > 0 are completely separated. It is easy to check that
the operator ψ → ψxx with this boundary condition remains
self-adjoint at each moment of time. We do not insist on any
physical meaning behind this separation mechanism; our goal
is just to be sure that the adiabatic separation of a segment into
two disjoint parts is mathematically feasible.

We assume that there is a total separation for a slow-time
interval [τ1,τ2] ⊂ (0,T ), i.e., α ≡ 1 for τ := εt ∈ [τ1,τ2]. We
choose V (x) = −1 at x < 0 and V (x) = 0 at x > 0 (this
just helps us to make the computations explicit). During the
separation interval, at each moment of τ there are two groups
of energy eigenfunctions: the “left” states ψ−

n (τ ) (n � 1)
concentrated completely at x ∈ [−1,0] and the “right” states
ψ+

m (τ ) (m � 1) concentrated at x ∈ [0,a(τ )]. The correspond-
ing energy levels are E−

n = −1 + π2n2 and E+
m = ( πm

a(τ ) )
2.

During the slow motion of the boundary, the energy levels
within each group do not intersect, so we may assume that
the system evolves adiabatically, i.e., if the system is in
an eigenstate ψ−

n (τ ) or ψ+
m (τ ) at τ = τ1, then it remains

in this state at τ = τ2. Thus, we neglect small (at most
of the order ε) amplitudes of the transition between the
eigenstates [4].

After the reconnection at τ = τ2 the division into the two
groups becomes meaningless. We order the eigenstates by
their energy; it is obvious that the state ψ−

n (τ2) acquires

the number k = n +
[
a(τ2)

√
n2 − 1

π2

]
in this total order (i.e.,

k equals n plus the number of the right states with the

050203-2



RAPID COMMUNICATIONS

EXPONENTIAL ENERGY GROWTH DUE TO SLOW . . . PHYSICAL REVIEW E 93, 050203(R) (2016)

energies smaller than E−
n ), while the state ψ+

m (τ2) acquires

the number k = m +
[√

(m/a(τ2))2 + 1
π2

]
(here the square

brackets denote the integer part; note also that we assume
a generic choice of a(τ ), so that E−

n �= E+
m for any m and n at

the moments of the reconnection and separation). Between the
reconnection and the next separation at τ = τ1 + T the system
changes adiabatically, and we may assume, by the avoided
crossing theorem [3], that for a generic choice of α(τ ) and
a(τ ) the instantaneous energy levels do not cross for this time
interval. Therefore, the level number k is conserved between
the reconnection and the next separation. At the separation
moment the eigenstate with the number k is the right state

with the number m if k = m +
[√

(m/a(τ1))2 + 1
π2

]
and the

left state with the number n if k = n + [a(τ1)
√

n2 − 1
π2 ].

These formulas take a particularly simple form if we, for
example, choose a(τ ) such that a(τ1) = 1 and a(τ2) = 3.
Then the left state ψ−

n has the number k = 4n − 1 at the
reconnection moment and the number k = 2n − 1 at the
separation moment, while the right state ψ+

m has the number
k = 2m at the separation and the number k = m + [m/3] <

2m at the reconnection [see Fig. 1(a)]. Thus, the states with
odd k become left states after the separation and, after the
reconnection, they acquire a higher, and still odd, value of
knew = 2kold + 1. The states with even k become right, and
acquire a strictly lower value of k. As we see, even though the
system changes adiabatically all the time, and absolutely no
jumps between the energy levels is assumed, the level’s number
k changes with each period of the adiabatic oscillations. In
our example, if we start with a right state, it will, eventually,
become left; we also have that the left states gain energy
exponentially (the left level’s numbers double with each
period). Therefore, if we start with a superposition of a finitely
many eigenstates, then after finitely many periods we will, with
accuracy of order ε, have a superposition of only left states,
and the energy of the system will start growing exponentially
with time.

Genericity of the exponential growth. Let us show that
the exponential energy growth does not disappear if we
change the details of the above construction, and is a robust
phenomenon for a general class of systems with a periodically
divided configuration space. Even more generally, we consider
a quantum system with parameters which oscillate slowly
enough (so we assume that jumps between different energy
levels do not occur), and let for a part [τ1,τ2] of the oscillation
period an additional quantum number emerge, so the energy
eigenstates are divided into two groups, I and II, such that the
transition between group I and group II states is forbidden at
τ ∈ [τ1,τ2]. At each moment of time we order the eigenstates
by their energy Ek , k = 1,2, . . . , and introduce the indicators
σj (k) as follows: σj (k) = 1 if the eigenstate ψk belongs to
group I at τ = τj , and σj (k) = −1 if ψk belongs to group
II at τ = τj (j = 1,2). The two indicator sequences σ1,2

completely determine the energy evolution in the adiabatic
approximation. Indeed, at τ = τj , if the state ψk is group I
with the number m, then there are exactly m group I and
(k − m) group II states with the energies not exceeding Ek ,
so Sj (k) := σj (1) + · · · + σj (k) = 2m − k; if ψk is a group
II state with the number n, then there are n group I and

(k − n) group II states with the energies not exceeding Ek ,
so Sj (k) = k − 2n. Thus, after the separation moment τ = τ1,
the state ψk becomes the group I [if σ1(k) = 1] or group
II [if σ1(k) = −1] state with the number n or m equal to
[k + σ1(k)S1(k)]/2. After the reconnection at τ = τ2 this state
acquires the new number k̄ such that

k̄ + σ2(k̄)S2(k̄) = k + σ1(k)S1(k) and σ2(k̄) = σ1(k). (3)

By construction, this formula completely determines the
change in the energy level after each period of the parameter
oscillations: The new level number k̄ is a function of the
previous level number k, and vice versa. Thus, given an initial
energy level number k0, the iteration of the rule (3) provides a
uniquely defined trajectory ks—the sequence of the values of k

at the beginning of each period (the same is true for backward
iterations).

There are only two logically possible types of trajectories
for the energy level number: loops, when the system returns
to the same energy level after a finite number of periods, and
unbounded trajectories, when the level number ks tends to
infinity as the number of periods s grows (in the latter case the
level number will tend to infinity also backwards in time). What
happens for a given initial state of a particular system depends
on the detailed structure of the group I and II energy spectra
at the moments of separation and reconnection. This structure
can be essentially arbitrary: While the asymptotic behavior at
large energies can be restricted by a Weyl type formula [24],
it is easy to build, for any given N , a potential in any given
domain such that the first N energy eigenvalues for a particle
in this potential would take any given values; cf. Ref. [25].
Thus, if the class of systems under consideration is sufficiently
large, we may think of the energy spectra of the group I and
II states as random, i.e., the indicator sequences σ1 and σ2

can be viewed as realizations of a certain random process (at
least until the energy level number reaches a sufficiently large
value N ).

The simplest model for σ1 and σ2 is given by sequences
of independent random variables. If β is the probability of
σ1(k) = 1, and γ is the probability of σ2(k) = 1, then S1(k) ∼
(2β − 1)k and S2(k̄) ∼ (2γ − 1)k̄. Now, Eq. (3) gives k̄ ∼ β

γ
k

with probability β [this corresponds to σ1(k) = 1], and k̄ ∼
1−β

1−γ
k with probability 1 − β [corresponding to σ1(k) = −1].

It follows that

ρ := E(ln k̄ − ln k) ∼ β ln
β

γ
+ (1 − β) ln

1 − β

1 − γ
.

It is a well-known fact that if β �= γ , then the right-hand side
is strictly positive (cf. Ref. [19]), i.e., the average logarithmic
energy gain per period is strictly positive in this case. By the
law of large numbers, we have essentially linear growth of
ln k with time: ln ks − ln k0 ∼ ρs for a typical realization of
the process under consideration. Therefore, the probability to
return to the initial value k0 falls rapidly with the number
of periods s if ρ > 0. This means that while several short
loops may exist, long loops are rare, and a typical trajectory
of the energy level number is unbounded. It is natural to
assume Ek ∼ kν for some ν > 0, thus the linear growth
of ln k with time implies the exponential growth of the
energy Ek . Obviously, the positivity of the logarithmic gain
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ρ cannot be violated by small changes to the statistics of
the transitions between the energy levels at the separation
and reconnection moments; it will persist even if we allow
for a nonzero amplitude of transition from one to several
levels with a small spectral gap, provided such events are
sufficiently rare. Thus, the exponential energy growth should
be a generic phenomenon in the adiabatic process under
consideration.

Note that ln k can be identified with the entropy of the
system in the energy eigenstate ψk [26]. The sustained linear
growth of entropy (hence, exponential growth of energy)
in classical systems with periodically divided configuration
space was described in Refs. [15,19]. The difference with the
quantum acceleration described here is that the mechanism
of the classical acceleration is the loss of the ergodicity
in the phase space, which leads to the destruction of the
adiabatic invariance of the entropy. This works in a universal
fashion for other nonergodic classical systems [22,23]. In the
quantum case, we have infinitely many adiabatic invariants—
the populations Ik , k = 1, . . . , + ∞, of the instantaneous
energy levels [Ik = |〈ψ(t)|ψk(εt)〉|2, where ψ(t) is the wave
function and ψk are the instantaneous energy eigenstates]. So,
the sustained entropy and energy growth is possible only if
all of these adiabatic invariants are destroyed, and the mere
ergodicity violation of the classical limit does not seem to be
enough for this.

Example of a slow energy growth and a long cooling
period. The exponential energy growth is not guaranteed in the
special case ρ = 0, and more subtle effects are possible. For an
example, we consider a nonrelativistic spin- 1

2 particle in a time-
dependent, spatially inhomogeneous, strong magnetic field.
We scale the Planck constant, the mass, and the charge of the
particle to 1, and consider the slowly changing vector poten-
tial A(x,y,z,εt) = [−yB(εt) − F (z,εt),xB(εt) + G(z,εt),0]
and scalar electric potential φ = V (z) − A2/2. As div A = 0,
the Pauli equation [4] takes the form

i
∂

∂t
ψ± = 1

2
(−� + 2iA · ∇)ψ± + V (z)ψ±

− 1

2
σ · B(z,εt)

(
ψ+
ψ−

)
,

where σ are the Pauli matrices and B =
[Fz(z,εt),Gz(z,εt),2B(εt)] is the magnetic field. We
consider only the wave functions ψ± which are independent
of (x,y). In other words, by imposing the boundary condition
ψ = 0 at x2 + y2 = δ2, we confine the particle to the δ-thin
infinite cylinder around the z axis, so in the limit δ → 0 the
problem becomes one dimensional, and the equation takes the
form

i
∂ψ±
∂t

= −1

2

∂2ψ±
∂z2

+ V (z)ψ± −
(

B(εt) C(z,εt)
C∗(z,εt) B(εt)

)
ψ,

(4)
where C = (Fz − iGz)/2. Computations become explicit if we
take V (z) = 1

2z2. Let the magnetic field oscillate periodically
as a function of the slow time τ = εt , so that for some
interval [τ1,τ2] during the period the x and y components

of the magnetic field vanish. Thus, the coefficient C in Eq. (4)
vanishes and the components ψ+ and ψ− of the wave function
evolve independently at τ ∈ [τ1,τ2]. During the rest of the
oscillation period, we assume that C is a nonconstant function
of z, i.e., the magnetic field direction varies with z, so ψ+
and ψ− become coupled. This means that the system has
an additional quantum number (spin up or spin down) at
τ ∈ [τ1,τ2], while for the rest of the period this quantum
number is destroyed.

According to the theory above, the slow time evolution
of such system is described by the values the energy level
number k takes at the beginning of each oscillation period; the
trajectories of the level numbers are completely determined
by the energy spectra at the moments of separation and
reconnection, τ1 and τ2. In our case, the spectrum at τ = τj

is given by E+
m = m − 1/2 − B(τj ) for the “up” states and

E−
n = n − 1/2 + B(τj ) for the “down” states (m,n � 1). We

take B(τ1) = −1/4 and B(τ2) = 3/4. Thus, if we order the
spectrum by the increase of the energy, the up and down states
will alternate. Namely, the energy levels with even number k

correspond to the up states and odd k correspond to the down
states, except for the ground state (k = 1) at the moment of
reconnection τ = τ2, which is also the up state. In terms of
the indicator sequences σj (k) from formula (3) this reads as
σ1(k) = (−1)k and σ2(1) = 1, σ2(k) = (−1)k at k � 2, and
their sums are given by S1(k) = −1,0, − 1,0, − 1, . . . and
S2(k) = 1,2,1,2,1,2, . . .. Thus, if σ1(k) = σ2(k̄), then either
k and k̄ are of the same parity, so S1(k) − S2(k̄) = −2, or k

is even and k̄ = 1, which gives S1(k) − S2(k̄) = −1. By (3),
we obtain the following law for the change of the energy level
number after one period:

Spin up: k̄ = k − 2 for even k � 4, k̄ = 1 if k = 2, and
k̄ = k + 2 if k is odd (spin down).

As we see, in the process under consideration, the non-
homogeneous magnetic field makes slow, large amplitude
oscillations in time in such a manner that it becomes spatially
homogeneous during a part of the oscillation period. This may
lead to a linear growth of the particle energy for the states
with a certain spin orientation (down states in our example),
while in the states with the opposite spin a constant amount
of energy will be lost with each period, until a minimal value
of energy is reached, after which the spin orientation changes
and the eternal acceleration starts [see Fig. 1(b)].

Conclusion. We have shown that a slow periodic change of
parameters of a quantum mechanical system leads, typically,
to an exponential growth of energy (due to an adiabatic level
crossing) provided an additional quantum number is created
and destroyed during the oscillation period. The basic example
of such processes is given by systems with periodically divided
configuration space. A slower rate of the energy growth is
also possible in special cases (such as in the example of
a spin- 1

2 particle in a strong, oscillating, inhomogeneous
magnetic field). For particular choices of the parameters of
our process the energy growth may be preceded by a period
of cooling. This happens when, for a group of energy states
with a particular “winning” value of the quantum number, the
system accelerates and, in the adiabatic approximation, the
state of the system remains in this group after each oscillation
period. Then a state which does not belong to this winner group
has to lose energy until a certain minimal value of energy is
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reached, after which the quantum number changes and the state
joins the winner group. Note that this leads to the desertion of
energy states with certain values of the quantum number: For
an arbitrary initial superposition of states of finite energy, the
system evolves with time to the superposition where most of
the contribution is given by the energy states with the winning
value of the quantum number only.
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