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Abstract

On the quantum stage space–time had the foam-like structure. When the Universe cools, the foam structure tempers and does not disappear.
We show that effects caused by the foamed structure mimic very well the observed Dark Matter phenomena. Moreover, we show that in a foamed
space photons undergo a chaotic scattering and together with every discrete source of radiation we should observe a diffuse halo. We show that
the distribution of the diffuse halo of radiation around a point-like source repeats exactly the distribution of dark matter around the same source,
i.e., the DM halos are sources of the diffuse radiation.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

Wheeler pointed out that at Planck scales topology of space–
time undergoes quantum fluctuations [1]. In the present Uni-
verse such fluctuations carry virtual character and do not lead
to detectable topology changes. However, in the past, the Uni-
verse went through the quantum stage when the temperature
exceeded the Planckian value and the fluctuations were strong
enough to form a non-trivial topological structure of space. In
other words, on the very early, quantum stage Universe had
to have a foam-like structure. During the cosmological expan-
sion, the Universe cools, quantum gravity processes stop, and
the topological structure of space freezes. There is no obvi-
ous reason why the resulting topology has to be exactly that
of R3—relics of the quantum stage foam might very well sur-
vive, thus creating a certain distribution of wormholes in space.
In the present Letter we show that the whole variety of the ob-
served Dark Matter (DM) phenomena admits a straightforward
interpretation in terms of the foam-like topological structure of
space. Moreover, the specific properties of the foam that are
read from the observed DM distribution coincide with those that
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are derived theoretically from very basic physical principles: we
show that the actual distribution of DM sources corresponds
to the ground state of the linear field theory on the foamed
space.

An arbitrary non-trivial topology of space can be described
as follows. Given a Riemanian 3D manifold M, we take a point
O in it and issue geodesics from O in every direction. Then
points in M can be labeled by the distance from O and by the
direction of the corresponding geodesic. In other words, for an
observer at O the space will look as R3 (endowed with a metric
lifted from M). Given a point P ∈ M, there may exist many
homotopically non-equivalent geodesics connecting O and P .
Thus, the point P will have many images in R3. The observer
might determine the topology of M by noticing that in the ob-
served space R3 there is a fundamental domain D such that
every radiation or gravity source in D has a number of copies
outside D. The actual manifold M is then obtained by iden-
tifying the copies. In this way, we may describe the topology
of space M by indicating for each point r ∈ R3 the set of its
copies E(r), i.e., the set of points that are images of the same
point in M. Most of the time, we will simply speak about the
images of points in R3, without referring to M.

Note that an observer ignorant of the actual topological
structure of M will greatly overestimate the density of matter
(as all the gravity sources outside the fundamental domain D
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are fictitious—each of them is just an image of some point
in D seen from another direction). However, one cannot im-
mediately apply the above picture to the explanation of DM
effects: the Dark Matter emerges on galaxy scales while we do
not see multiple images of galaxies densely filling the sky. Our
idea that allows to link the observed DM effects with the topo-
logical structure of space is that the fundamental domain may
be of such distorted shape that the direct recovery of the actual
topology of space by detecting images of sources could be im-
possible. Indeed, the non-trivial topology at present is a remnant
of quantum fluctuations at the very early Universe, and the ran-
domness built in the structure of the original quantum foam can
survive the cosmological expansion. Namely, at the quantum
stage the state of the Universe was described by a wave function
defined on the space of Riemanian 3D manifolds. Once quan-
tum gravity processes stop, the further evolution of the wave
function was governed by the cosmological expansion only. It
is highly unlikely that the expansion could led to a complete re-
duction of the wave function, i.e., to singling out one definite
topological structure of the Universe. In other words, if at the
end of quantum gravity era the Universe was not in a particu-
lar topological quantum eigenstate, it is not in such a state now.
One cannot, therefore, speak about a definite topological struc-
ture of space, i.e., assign a definite set E(r) of images to every
point r ∈ R3. A point r ′ ∈ R3 can be an image of r with a cer-
tain probability only, hence instead of a discrete set of images,
a smooth halo of images of every single point appears.

Even if we want to believe that a definite (classical) topolog-
ical structure has happened to emerge out of the quantum foam,
the randomness of this structure will persist: the wormholes
which remained as the quantum foam tempered will be ran-
domly cast in space. Moreover, we recall that a typical worm-
hole is obtained as follows: the interior of two remote spheres
is removed from R3 and then the surfaces of the spheres are
glued together.1 Such wormhole works like a conjugated cou-
ple of convex (spherical) mirrors, therefore a parallel beam of
geodesics diverges after passing through the wormhole. Thus,
if we place spherical wormholes randomly in R3, the flow of
geodesics that pass through a large number of the wormholes
will have a mixing property (like the flow of Sinai billiard, or
of Lorenz gas). For a point-like source for radiation or gravity,
it means that some portion of photons/gravitons will be scat-
tered by the spherical wormholes, which will create a specific
smooth halo around every single source.

In any case, no matter what is the exact origin of the ran-
domness of the topological structure of space, one can take such
random structure into account by introducing a certain measure
on the space of all Riemanian 3D-manifolds M. The observed
topological or metric properties of space are then obtained by
averaging over this measure. Thus, for example, an individual
manifold M is defined by specifying, for any point r ′ ∈ R3 the
set E(r ′) of its images (the points in R3 that represent the same
point of M). Averaging over all manifolds M, gives a distrib-

1 One can imagine a more general construction as well, where a pair of more
complicated two-dimensional surfaces replaces the spheres.
ution K̄(r, r ′) of the images of r ′:

(1)K̄(r, r ′) = δ(r − r ′) + b̄(r, r ′),

where the first term corresponds to the point r ′ itself, while
b̄(r, r ′) is a certain smooth distribution of additional images
of r ′; namely, in the neighborhood of a point r of volume d3r

there is (on average) b̄(r, r ′) d3r images of r ′.
It means that a single particle of matter at the point r ′ is al-

ways accompanied by a smooth density b̄(r, r ′) of exactly the
same matter. This halo does not necessarily emit enough light
to be identified, but it will always contribute to gravity. Thus,
if the halo is not seen, it is detected by an anomalous behavior
of the gravitation potential of the point-source. Such anomalous
behavior is indeed universally observed starting with the galaxy
scales, and constitutes the DM phenomenon. The existence of
a quite rigid dependence between the density of luminous mat-
ter (LM) and the density of DM is a well-known observational
fact. This fact allows us to interpret the DM phenomenon as
an indication of the random topological structure of space, with
formula (1) giving

(2)ρDM(r) =
∫

b̄(r, r ′)ρLM(r ′) d3r ′.

In fact, the simple law

(3)b̄(r, r ′) ∼ |r − r ′|−2 at |r − r ′| � R0

(where R0 is the galaxy scale) provides quite accurate descrip-
tion of all known DM effects. In particular, it allows to recover
the whole variety of observed galaxy rotation curves [2]. It is
also consistent with the observed fractal structure of the distri-
bution of matter on large scales [3–8].

Note that relations (2), (3) give a good description for the
observed DM phenomena, independently of a theoretical in-
terpretation [2,3]. We will, however, show that in our picture
where b̄(r, r ′) is an averaged characteristic of the topological
structure of space, empirical law (3) acquires a basic physical
meaning.

It is also important that in our interpretation the DM halo
is not actually dark. The image r of a point r ′ represents the
same physical point, just seen from another direction. There-
fore, if the source of gravity at r ′ is also a source of radiation,
all its images in the halo will be luminous too. However, the
halo radiation has a diffuse character and the brightness is very
low (the halo radiates a reflected light, in a sense). In obser-
vations, relating the halo radiation to a particular point source
could be a very difficult task.2 In fact, the presence of a signif-
icant diffuse component in cosmic radiation, unidentified with
any particular source, is well known [9]. Usually, the observed
diffuse halos in galaxies are attributed to reflection from dust,
and the general diffuse component is assumed to originate from
very fade and remote galaxies, but it has never been related
to DM halos. However, it was very convincingly demonstrated

2 We note that we neglect here the red shift of light. In the actual Universe
every ghost image has its own red shift, depending on the value of the traversed
optical path, which puts an additional problem in relating the halo radiation to
the point source.
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in [10] that the observed DM/LM ratio within the intracluster
gas clouds is much less than that for galaxies. This observation
gives a strong argument in support of our theory of DM effects:
while for small and bright sources (galaxies) the luminosity of
the halo is filtered out by the observer and the halo appears to
be dark, for the extended radiation sources (cluster size plasma
clouds) the diffuse halo radiation comes from the same region
of space and is automatically accounted in the total luminosity
of the cloud.

Indeed, we show below that the intensity of sources of radi-
ation renormalizes according to the following law:

(4)Itotal(r) = Isource(r) + Ihalo(r),

where

(5)Ihalo(r) =
∫

b̄(r, r ′)Isource(r
′) d3r ′,

with the same b̄(r, r ′) as in (2). Therefore, in our picture, the
luminosity of the DM is always proportional to its density. The
gravitating halos of discrete light sources in the sky only appear
to be dark, because of their diffuse character.

From the physical standpoint the foamed space is a porous
system. It means that the coordinate volume, which comes out
from the extrapolation of our local (solar) coordinate system,
always exceeds the actual physical volume (due to the presence
of wormholes). The ratio Vcoord/Vphys = Q defines the porosity
coefficient of the foamed space. When we use the extrapolated
coordinates we always overestimate (by the use of the Gauss
divergence theorem) the actual intensity of a source of grav-
ity or of an incoherent radiation. In gravity, the effect displays
itself as the presence of Dark Matter. Hence, the porosity coeffi-
cient of the foamed space Q can be related to the ratio of Dark
Matter density to the density of baryons in the Universe, i.e.,
Q = ΩDM/Ωb. Analogously, the same relation holds true for
the ratio of two components of radiation (diffuse background
and discrete sources), i.e., Q = Ωdiffuse/Ωdiscrete. The relation

ΩDM/Ωb ≈ Ωdiffuse/Ωdiscrete

is the basic indication of a geometrical (topological) nature of
DM effects.

We point out that certain models of the space–time foam
have already been considered in the literature (e.g., see Refs. [11,
12] and references therein). However the primary interest was
there focused on setting observational bounds on the possible
foam-like structure at extremely small scales (i.e., at very high
energies) � 102Lpl (where Lpl is the Planck length), while DM
phenomena suggest that the characteristic scale of the space–
time foam L (and respectively of wormholes) should be of
the galaxy scale, e.g., of the order of a few kpc. The rigor-
ous bounds obtained indicate that at small scales space–time is
extremely smooth up to the scales � 102Lpl , that was to be ex-
pected.3 The common feature of such models is that photons,

3 Indeed, at those scales topology fluctuations have only virtual character and
due to renormalizability of physical field theories they should not directly con-
tribute to observable (already renormalized) effects. Topology fluctuations were
in addition to the chaotic scattering, undergo also modified dis-
persion relations, as it happens in all Lorentz violating theories
with preferred frames (i.e., “Aether-like situations”, e.g., see
Refs. [13]) which should lead to a modification of the CMB
spectrum acoustic peaks. The foam-like structure discussed in
the present Letter surely violates the Lorentz invariance and
also leads to some modification of dispersion relations. How-
ever the Lorentz invariance and the standard dispersion rela-
tions violate only at galaxy scales (L ∼ of a few kpc) which
are unimaginably larger than any photon wave length λ = c/ω

detected. We recall that in the Friedman Universe λ,L ∼ a(t),
where a(t) is the scale factor and the ratio λ/L � 1 remains
constant up to the quantum era. Therefore, such a modification
cannot directly influence the CMB spectrum (though it surely
influences via the DM effects discussed).

2. Random topology of space

In order to set a general frame for the study of a foamed
space, let us start with a toy example where the space is a cylin-
der of radius R. The metric is the same as for the standard flat
Friedman model

(6)ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2),

but one of the coordinates, say z, is periodic (z + 2πR = z).
In what follows, for the sake of simplicity we neglect the de-
pendence of the scale factor on time in (6), i.e., consider the
Minkowsky space as the coordinate space. Thus the actual val-
ues of the coordinate z run through the fundamental region
z ∈ [0,2πR]. Such space can be equally viewed as a portion
of the ordinary R3 between two plane mirrors (at the positions
z = 0 and z = 2πR). An observer, who lives in such space,
may use the extrapolated reference system (i.e., z ∈ (−∞,∞)),
however he/she easily notices that all physical fields are peri-
odic in z. Consider the Newton’s potential φ for a point mass
M . In this space the exact expression can be easily found from
the standard Newton’s potential by means of the image method.
Indeed, the periodicity in z means that instead of a single point
mass Mδ(r − r ′) at the point r ′ the observer will actually see
an infinite series of images

δ(r − r ′) → K(r, r ′) =
∞∑

n=−∞
δ(z − z′ + 2πRn)

(7)× δ(x − x′)δ(y − y′),
and the Newton’s potential for a point source at r ′ = 0 takes the
form

(8)φ = −GM

∞∑
n=−∞

1/

√
ρ2 + (z + 2πRn)2.

On scales r � R we may retain only one term with n = 0 and
obtain the standard Newton’s potential for a point mass φ ∼

strong enough only during the quantum stage of the evolution of the Universe,
while the possible subsequent inflationary phase should considerably increase
all characteristic scales of the foam. By other words, the relic foam—like struc-
ture of space may survive only on very large scales.
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−GM/r , while for larger scales r 
 R the compactification of
one dimension will result in the crossover of the potential to
φ ∼ GM

R
ln r (note that this is indeed the shape of the potential

that one reads from the observed galaxy rotation curves).
The anomalous behavior of gravity indicates that DM effects

show up at this model on the scale of distances of order R.
Indeed, let us consider a box of the size L and evaluate the total
dynamical mass within the box

(9)Mtot(L) = M

∫

L3

K(r,0) dV = M

(
1 +

[
L

2πR

])
.

Thus, if the observer is ignorant about the real topological struc-
ture of space he should conclude the presence of some extra
(odd) matter. The reason is obvious, when we expand the co-
ordinate volume it covers the physical (or fundamental) region
of space many times and we respectively many times account
for the same source (i.e., images of the actual source). Thus the
increase of the total mass is fictitious. In the simplistic model
under consideration the volume of the fundamental (physical)
region behaves as Vphys = L3 for L < R and Vphys = 2πRL2

for L > R. We note that at large distances L 
 R the parame-
ter Q(L) = Mtot(L)/M − 1 can be used to estimate the actual
value of the physical volume: Vphys(L) = L3/Q(L), i.e., Q is
the “porosity coefficient” of space at scales L ∼ R.

The space discussed above is rather simple: for an extended
source we will see a countable set of its images without distor-
tion. Therefore, one can easily detect the fundamental region of
space and avoid consideration of fictitious sources. In the case
of a general foamed topological structure this is hardly possible.
Nevertheless, whatever the topological structure of the mani-
fold is, we can apply the method of images: every topology can
be achieved by introducing a certain equivalence relation in R3

and gluing equivalent points together. Thus, a space of non-
trivial topology is completely defined by indicating for every
point r ′ ∈ R3 the set E(r ′) = {f1(r

′), f2(r
′), . . .} of the points

equivalent to it. In other words, a point source at a point r ′ in
the fundamental region is accompanied by a countable set of
images, or “ghost” sources:

δ(r − r ′) → K(r, r ′) = δ(r − r ′)

(10)+
∑

fi(r
′)∈E(r ′)

δ
(
r − fi(r

′)
)
,

where fi(r
′) is the position of the ith image of the source.

For example, consider any source for radiation J (r, t). Then
according to (10) the electromagnetic potential A(0, t) is de-
scribed by the retarded potentials

(11)A = 1

c

∫
Jt−|r|/c

|r| dV + 1

c

∑
i

∫
Jt−|fi(r)|/c

|fi(r)| dVi.

The first term of this formula corresponds to the standard, “di-
rect” signal from the source, while the sum describes the mul-
tiple scattering on the topological structure of space. A similar
formula is obtained for the gravitational field.
It is clear that all physical Green functions for all particles
acquire the same structure

(12)Gtotal(0, r) = G0(0, r) +
∑

fi(r)∈E(r)

Gi

(
0, fi(r)

)
.

Formally, one can use the standard Green functions, while the
scattering will be described by the bias of sources

(13)Jtotal(r, t) = J (r, t) +
∫

b(r, r ′)J (r ′, t) d3r ′,

where b(r, r ′) = K(r, r ′)−δ(r−r ′), i.e., we excluded the actual
point source. In gravity the second term in (13) corresponds to
the DM contribution (e.g., see [3]). We note that in general the
bias b(r, r ′) is an arbitrary function of both arguments, which
means that the non-trivial topological structure is capable of
fitting an arbitrary distribution of Dark Matter.

The function K(r, r ′) unambiguously defines the topological
structure of the physical space. However, for a general foamed
structure of space (a gas of wormholes) this function has a quite
irregular character, i.e., it is not directly observable. One has to
introduce a measure on the space of all 3D-manifolds and aver-
age the function K over this measure. The resulting function

K̄(r, r ′) = δ(r − r ′) + b̄(r, r ′)
gives the (average) density, at the point r , of the images of the
point r ′.

Because of the averaging, the irregularities are smoothed
out, hence the bias function b̄(r, r ′) is observable. Indeed, the
averaging of (12) and (13) gives

(14)Gtotal(0, r ′) = G(0, r ′) +
∫

b̄(r, r ′)G(0, r) d3r

for Green functions, and

(15)ρtotal(r, t) = ρ(r, t) +
∫

b̄(r, r ′)ρ(r ′, t) d3r ′

for the density of matter. Therefore, when we can distinguish
two components in the observed picture of the distribution
of, say, gravity sources: discrete sources and a diffuse back-
ground, the discrete sources can be identified with the first
term in the right-hand side of (15), i.e., with “actually exist-
ing” sources, while the diffuse halo can be identified with the
second term, “the images”. Then, by comparing the observed
distribution ρ(r ′) of actual (discrete) sources with the observed
DM distribution

(16)ρhalo(r) =
∫

b̄(r, r ′)ρ(r ′) d3r ′,

one can extract an information about the structure of the bias b̄.
In fact, the homogeneity of the Universe requires from b̄ to be
a function of (r − r ′) only (which means that the form of DM
halos does not, in general, depend on the position in space). In
this case, the Fourier transform of (16) gives

(17)ρhalo(k) = b̄(k)ρ(k),

which defines b̄ uniquely. As we show in the next Section, the
bias b̄ extracted from the DM observations in this way has both
a very simple form and a transparent theoretical meaning.
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Note that being an averaged characteristics, the bias b̄ does
not determine the topology of space completely. Along with the
one-point distribution K̄(r, r ′), one can consider joint distribu-
tions of images for several sources:

K̄n(r1, . . . , rn; r ′
1, . . . , r

′
n),

which is the averaged density of the images of the points
r ′

1, . . . , r
′
n at the points r1, . . . , rn. Only when all the functions

Kn, n = 1,2, . . . , are determined, one will have a full descrip-
tion of the structure of the foamed physical space. However, the
one-point bias functions b̄(r, r ′) carries the most important in-
formation.

Thus, consider a source of radiation, constantly emitting
light with the frequency ω, i.e., we have a density of the EM
current J (r ′)eiωt such that

(18)
〈
J (r ′

1)J
∗(r ′

2)
〉 = δ(r ′

1 − r ′
2)Isource(r

′
1),

where Isource(r) is the spatial distribution of the intensity of the
source. In order to take into account the effects of the non-trivial
topology of space, J (r) should be modified according to (13),
i.e., J (r1)J

∗(r2) transforms into∫
K(r1, r

′
1)K(r2, r

′
2)J (r ′

1)J
∗(r ′

2) d3r ′
1 d3r ′

2

=
∫

K(r1, r
′)K(r2, r

′)Isource(r
′) d3r ′.

Averaging over different topologies gives

(19)
(
J (r1)J

∗(r2)
)

total =
∫

K̄2(r1, r2; r ′, r ′)Isource(r
′) d3r ′,

where K̄2(r1, r2; r ′, r ′) is, by definition, the joint distribution of
a pair of images of the point r ′.

The points r1 and r2 can be images of the same point
r ′ if and only if they are images of each other. Therefore,
K̄2(r1, r2; r ′, r ′) is proportional to K̄(r1, r2) = δ(r1 − r2) +
b̄(r1, r2); more precisely

K̄2(r1, r2; r ′, r ′) = δ(r1 − r2)K̄(r1, r
′)

(20)+ b̄(r1, r2)P (r1, r2, r
′),

where we denote as P(r1, r2, r
′) the density at the point r2 of

the distribution of images of the point r ′ under the condition
that the point r1 �= r2 is an image of r2.

As we see from (19), (20), while the phases of the source
current J (r ′) are delta-correlated (see (18)), there appear long-
range correlations in the density of the total current—due to the
term proportional to b̄(r1, r2) in the kernel K̄2. However, the
characteristic wave length in b̄(r1 − r2) is of order of galaxy
size, i.e., it is unimaginably larger than the wave length c/ω

of the light emitted. Therefore, the contribution of the coherent
part of the total current to the radiation is completely negligible:
by (19), (20) we find

(
J (r1)J

∗(r2)
)

total = δ(r1 − r2)

∫
K̄(r1, r

′)Isource(r
′) d3r ′

+ long wave terms,
which gives the following formula for the total intensity of
sources (actual plus ghost ones)

Itotal(r) =
∫

K̄(r, r ′)Isource(r
′) d3r ′

(21)= Isource(r) +
∫

b̄(r, r ′)Isource(r
′) d3r ′.

Comparing with (16), we see that the distribution of a diffuse
radiation background associated to a luminous source coincides
with the distribution of dark matter in the halo of the same
source.

Note that for a non-stationary remote source of radiation the
picture is more complicated. A momentary pulse at some point
will create a spherical EM wave emanating from the point—and
from its images. On the front of the wave only a small num-
ber of images will give an essential contribution, namely those
which have comparable and shortest optical paths. This will
lead to an interference picture on the front. We note that due to
wormholes the signal from some images can reach an observer
even earlier than the basic signal. Only with time elapsed, as the
larger and larger number of images contribute, the interference
picture disappears, and the diffuse radiation background given
by (21) establishes.

In conclusion of this section, we recall that the observed ho-
mogeneity and isotropy of space require from the topological
bias b̄(r, r ′) that defines both the DM distribution (16) and the
distribution (21) of the sources of diffuse radiation to be the
function of the distance |r − r ′| only: b̄(r, r ′) = b̄(|r − r ′|). The
integral

(22)Q(L) = 4π

L∫
0

R2b(R)dR,

characterizes then the distortion of the coordinate volume or
the porosity of space (i.e., 1/Q gives the portion of the funda-
mental region or the volume of the actual physical space in a
coordinate ball of the radius L). In general there can be both
a situation where Q(L) tends to a finite limit as L → ∞ and
then Q(∞) defines the total amount of DM (Q = ΩDM/Ωb =
Ωdiffuse/Ωdiscrete), and the case where Q is unbounded. The last
case indicates the presence of a certain dimension reduction of
space at large distances (e.g., when Q(L) ∼ Lα the dimension
of the physical space reduces to D = 3 − α [5]).

3. Topological bias: Empirical and theoretical approach

In this section we derive a formula for the bias function
b̄(|r − r ′|) and show that it fits the observed picture of DM dis-
tribution quite well. While in empirical considerations it is more
convenient to view b̄(R) as a bias of sources (which means ex-
ploring the laws (16) and (21)), we achieve more theoretical
insight when choose an equivalent description of the random
topological structure of space by means of the bias of Green
functions (see (14)). This means that instead of saying that each
material point is accompanied by an infinite set of images, we
say that each source excites an infinity of fields. Indeed, on a
connected manifold of non-trivial topology there is an infinite
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number of geodesics connecting any two points. So the light
emitted at a point P arrives at a point Q by an infinite number
of non-homotopic ways. We may associate a separate EM field
with each homotopy class: each of the fields propagates inde-
pendently, but they sum up when interact with matter. When we
describe things in R3 by means of the bias functions, we thus
associate a separate field to each term in the right-hand side
of (12). These terms differ by positions of the images fi(r). In
our picture, where the topology is random, there is no preferred
position for the ith image, hence we have a system of an infinite
number of fields {Ai} which is symmetric with respect to any
permutation of them (in other words, the fields are identical).

It is widely believed that the effects of quantum gravity
should lead to a cut-off at large wave numbers. The cut-off at Λ

means that the photons with wave numbers |k| > Λ are never
excited. We say that the field does not exist at such k. One can
describe a cut-off of a more general form, by introducing a char-
acteristic function χ(k): at χ(k) = 1 the field with the wave
number k exists, while at χ(k) = 0 it does not. Because of the
renormalizability of all physical field theories, the question of
the determining exact form of the cut-off of a given field is of
little importance. However, for the system of an infinite number
of identical fields {Ai} the cut-off function acquires a meaning.

Indeed, let us define N(k) = ∑
i χi(k) where the sum is

taken over all the fields Ai . Thus, N(k) is the number density
of fields which exist (i.e., which are not forbidden to create par-
ticles) at the given wave number k. Here, the existence of the
cut-off means that N(k) can be finite for all k. As the fields sum
up when interacting with the matter, the values of N(k) greater
than 1 lead to a stronger interaction than in the case of a single
field. For example, consider a Newtonian potential4

�φ = 4πγρ.

In the Fourier representation we have

(23)φ(k) = −4πγ

k2
ρ(k).

If there exist N(k) identical Newtonian gravity fields with the
wave number k, each of them satisfies (23), while the effec-
tive potential (that which acts on matter) is given by φeff(k) =∑N(k)

i=1 φi(k) and satisfies, therefore,

φeff(k) = −4πγ

k2
N(k)ρ(k).

This is equivalent to a renormalization of the source density

ρ(k) → N(k)ρ(k),

and comparing with (17) gives

N(k) − 1 = b̄(k).

Thus, the Fourier transform b̄(k) of the topological bias func-
tion can be interpreted as the excessive number density of fields
(gravity or EM) at the wave number k, i.e., it is determined via
a cut-off function.

4 For the relativistic generalization see Section 2 in Ref. [3].
Although the problem of determining the exact shape of the
cut-off is usually considered hopeless because the full quan-
tum gravity theory has not been developed, an approach de-
veloped in [14] allows one to derive possible types of cut-off
by means of simple thermodynamical models. For example, as-
sume that the energy density and the total excessive number
density of fields N = ∫

(N(k) − 1) d3k are finite. We also as-
sume that N is a conserved quantity (along with the energy).
Then the shape of the function N(k) is determined uniquely by
the condition that the system of the identical free fields is in
the thermodynamical equilibrium (one should only choose the
statistics for the fields and fix the values of thermodynamical
parameters). Indeed, the state of the system with N(k) identical
free fields at the wave number k is determined by the numbers
ni(k), i = 1, . . . ,N(k) of the particles with the wave number k

for each field. In the case of Fermi statistics for the fields (that
has nothing to do with the statistics for the particles which re-
mains Bose), there cannot be more than one field in the given
state, i.e., for every given k all the numbers ni(k) should be
different. The energy density at the wave number k equals to
ωk

∑N(k)
i=1 ni(k), where ωk is the energy of a single particle; as

we deal here with massless fields, we take ωk = |k| (we put
h = c = 1). In what follows we assume Fermi statistics for the
fields (Bose statistics leads to a similar result [5,15], however
the computations in Fermi case are simpler). Then, the state of
the lowest possible energy (“the ground state”) corresponds to
{n1(k), . . . , nN(k)(k)} = {0,1, . . . ,N(k) − 1}. This gives us the
energy |k|N(k)(N(k) − 1)/2 at the wave number k. The total
energy density is thus given by

∫ |k|
2 N(k)(N(k) − 1) d3k. The

ground state corresponds to the minimum of the total energy
density. As the total excessive number density of fields N =∫
(N(k) − 1) d3k is assumed to be conserved, the problem of

finding N(k) reduces to minimizing
∫ |k|N(k)(N(k) − 1) d3k

under the constraint
∫
(N(k) − 1) d3k = constant. This gives us

N(k) = 1 +
[

μ

|k|
]
,

where the “chemical potential” μ is fixed by the value of N .
For the bias function b̄ this gives

(24)b(k) =
{ μ

|k| for |k| < μ,

0 for |k| > μ.

One can make different assumptions and, perhaps, arrive
at different formulas for the bias. However, this simplest bias
function provides a very good description of the observed distri-
bution of DM. Indeed, in the coordinate representation bias (24)
takes the form

b(�r) = 1

2π2

μ∫
0

(
b̄(k)k3) sin(kr)

kr

dk

k

(25)= μ

2π2r2

(
1 − cos(μr)

)
.

As it was shown in [2], by choosing μ = π/(2R0) where R0 is
of order of a galaxy size (i.e., a few kpc), bias (25) applied
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to spiral galaxies produces the pseudo-isothermal DM halo5

ρ = ρ0R
2
C/(R2

C + r2), where RC is the core radius which has
the order of the optical disk radius RC ∼ Ropt. We note that this
is in a very good agreement with the observations (see [16]). In
fact, by fitting one parameter μ in accordance to Tully–Fisher
law [17], relations (16) and (25) quite accurately represent the
whole variety of the observed galaxy rotation curves [2,16] (we
recall that bias (25) is derived from thermodynamical consider-
ations, so it is quite natural to allow the chemical potential μ

fluctuate in space; exact mechanisms governing these fluctua-
tions are described in [2,3]).

From (22), (25) one can find that starting with the galaxy
scale the porosity of space behaves as Q(r) ∼ r/R0. Thus the
total dynamical mass for a point source within the radius r in-
creases also as

(26)M(r) ∼ M(1 + r/R0).

Importantly (see the previous section), the same conclusion
holds for the luminosity of the point source (i.e., for a galaxy or
an X-ray source). Therefore, one cannot immediately conclude
from (26) a linear growth of the ratio Mtot(r)/Mb(r) of gravi-
tational (dynamical or lensing) to the baryonic mass: the result
depends on how much of diffuse radiation is discarded at the
observations.

Observations suggest that the number of baryons within
the radius r behaves as Nb(r) ∼ rD with D  2 (see, e.g.,
Refs. [6–8] where the  r2 behavior was reported up to at
least 200 Mpc). Thus, the observed baryonic density Ωb falls
inverse proportionally to the deepness of the observations and
is well below 1. In the standard picture the total gravitational
mass grows as ∼ R3, as it should be in a homogeneous Uni-
verse, so the linear growth of Mtot(r)/Mb(r) predicted by bias
(25) is indeed consistent with observations. However, the linear
growth starts to show up with the scales larger than cluster size,
while the reported mass to luminosity ratio remains approxi-
mately the same on the galaxy scale and on the cluster scale. To
resolve the problem, we invoke the results of [10] where there
was demonstrated that the intracluster gas clouds may not carry
dark matter. In our picture this is indeed the case, as the intra-
cluster cloud is an extended source of X-ray radiation, of size
much larger than R0. Thus, the associated diffuse background
sums up with the “direct” signal, so all the ghost sources of
gravity that lie within the cloud are visible as well. This means
the absence of “dark” matter in the cloud or, in other words, that
the number of baryons in the cloud is greatly overestimated—
most of the contribution to the cloud luminosity is given by
the diffuse halo, i.e., by fictitious sources due to the non-trivial
topology of space. It is easy to check that correcting the baryon
density of the intracluster gas in accordance with (21), (25) pro-
vides indeed the linear growth of Mtot(r)/Mb(r) starting right
from the galaxy scale.

5 This result is valid for a single galaxy, while in the presence of a dis-
tribution of galaxies the resulting halo acquires the Burket—type form ρ =
ρ0R3

C
/(R2

C
+ r2)(R∗ + r) + ρH , where ρH is a homogeneous background

formed by all galaxies and R∗ is the scale at which DM halo merges to the
homogeneous DM background (e.g., see for discussions Ref. [3]).
Note that at very large scales the diffuse radiation can hardly
be separated from the very faint sources. Therefore, the pic-
ture of the homogeneous distribution of matter (i.e., of the
Friedman Universe) is restored. In fact, an arbitrary foam-like
structure of space (i.e., any choice of the bias b(r)) agrees
perfectly with the observational large-scale homogeneity and
isotropy of the Friedman Universe provided that the actual
physical volume Vphys(r) = 4/3πr3/Q(r) (the volume of the
fundamental region of the coordinate space) is homogeneously
filled with matter. Indeed, in this case the number of actual
sources within the radius r behaves as the physical volume
Nb(r) ∼ Vphys(r) ∼ r3/Q(r). Along with the actual sources we
always observe images (DM and diffuse radiation) and every
source produces �N ∼ Q(r) additional images. Thus the to-
tal number of images behaves always as Nb(r)Q(r) ∼ r3, i.e.,
produces a homogeneous distribution.

4. Conclusion

In conclusion, we briefly repeat basic results. First of all the
concept of space–time foam introduced by Wheeler can be cru-
cial in explaining properties of the present day Universe. The
random (“foamed”) topological structure leads to the fact that
every discrete source in the sky should be surrounded with a
specific halo (a random distribution of images). We call this
phenomenon a topological bias of sources. In gravity such halo
modifies the standard Newton’s law and appears as the Dark
Matter phenomenon. In particular, the Universal rotation curve
(URC) constructed in [2] on the basis of the topological bias
shows a very good fit to the empirical URC [16]. We stress that
in a general foamed space the bias b(r, r ′) is a random function
of both arguments which means that the form of the DM halo
can arbitrary vary in space. By other words any observed dis-
tribution of DM can be easily fitted by a proper choice of the
foamed structure. However, the simplest bias function which
we derived theoretically from a basic physical (thermodynam-
ical) considerations seems to give a quite accurate account of
the DM effects in a huge range of spatial scales.

As it was demonstrated in this Letter, in the foamed space
the halos around discrete sources are actually not dark, but form
the diffuse background of radiation. Moreover, the ratio of the
two components (the diffuse background and discrete sources)
is exactly the same as the ratio of DM and baryons (ΩDM/Ωb =
Ωdiffuse/Ωdiscrete).

We note that the foamed picture of our Universe allows to
explain the problem of missing baryons. Recall that the di-
rect count of the number of baryons gives a very small value
Ωb ∼ 0.003 for the whole nearby Universe out to the radius
∼ 300h−1

50 Mpc, e.g., see [18]. In our picture, this means only
that at the radius ∼ 300h−1

50 Mpc the actual volume is ten times
smaller, than in the Friedman space (Vphys  0.1VF ), i.e., the
actual density is ten times bigger which reconciles the observed
small baryon density with the primordial nucleosynthesis con-
straints.

We stress that any homogeneously filled with matter foamed
space (i.e., an arbitrary choice of the bias function b(r, r ′))
agrees perfectly with homogeneity and isotropy of the Universe



8 A.A. Kirillov, D. Turaev / Physics Letters B 656 (2007) 1–8
and does not contradict to the standard Friedman model. The
general foamed Universe can be viewed as the standard Fried-
man space filled with a gas of wormholes. In such a picture
the Large Scale Structure has an equilibrium character, for it
reflects the foamed topological structure of space (i.e., the dis-
tribution of wormholes) formed during the quantum period of
the evolution of the Universe.

Finally, we have demonstrated that in a foamed space any
non-stationary and sufficiently remote signal is accompanied
with a formation of a specific interference picture at the front of
the wave (stochastic interference) which rapidly decays.
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