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a b s t r a c t

A one-parameter family of time-reversible systems on three-dimensional torus is considered. It is shown
that the dynamics is not conservative, namely the attractor and repeller intersect but not coincide. We
explain this as the manifestation of the so-called mixed dynamics phenomenon which corresponds to
a persistent intersection of the closure of the stable periodic orbits and the closure of the completely
unstable periodic orbits. We search for the stable and unstable periodic orbits indirectly, by finding non-
conservative saddle periodic orbits and heteroclinic connections between them. In this way, we are able
to claim the existence of mixed dynamics for a large range of parameter values. We investigate local and
global bifurcations that can be used for the detection of mixed dynamics.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

In the present paperwe study chaotic dynamics of the following
system of three differential equations

ψ̇1 = 1 − 2ε sinψ1 + ε sinψ2

ψ̇2 = 1 − 2ε sinψ2 + ε sinψ1 + ε sinψ3

ψ̇3 = 1 − 2ε sinψ3 + ε sinψ2,

(1)

whereψi ∈ [0, 2π), i = 1, 2, 3, are angular variables, so the phase
space of (1) is a three-dimensional torus T3. Note that system (1) is
time-reversible: it is invariant with respect to the reversal of time
t → −t and the involution R:

ψ1 → π − ψ3, ψ2 → π − ψ2, ψ3 → π − ψ1. (2)
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System (1) was proposed in [1] by A. Pikovsky and D. Topaj
as a simple model describing dynamics of four coupled rotators.
Every individual rotator is described by the equation Ψ̇k = ωk, k =

1, . . . , 4, where ωk is a constant and Ψk is an angular coordinate
with period 2π . It was assumed that the frequencies ωk are such
that ωi − ωi+1 = 1, i = 1, 2, 3. Then, for the phase differences
ψi = Ψi − Ψi+1 one obtains the equations ψ̇i = 1. The terms
with ε in (1) correspond to introducing a coupling between the
rotators. The particular choice of coupling in (1) makes the system
reversible, which leads to a very non-trivial dynamics.

It was noticed in [1] that, at sufficiently small ε, the behavior of
system (1) looks conservative. In particular, for the Poincarémap Tε
on an appropriately chosen cross-section elliptic islands are clearly
observed, see Fig. 1(b). Moreover, the time-averaged divergence
of the vector field equals to zero up to the numerical accuracy.
However, with the increase of ε the apparent conservativity gets
destroyed; in particular, the average divergence starts differ from
zero.

An interesting nonconservative effect observed in [1] is the
asymmetry of the numerically obtained invariant measure for the
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Fig. 1. Phase portraits of the Poincaré map of system (5) with (a) ε = 0.1, and (b) ε = 0.35. The dynamics appears conservative.
(a) Reversible attractor. (b) Reversible repeller.

Fig. 2. Phase portraits of the Poincaré map of system (5) with ε = 0.49 for iterations of a uniform grid of 10000 initial conditions on the cross-sectionΠ ; the last 100 out of
1000 iterations of each point are shown. (a) Forward iterations; the average divergence is div ≈ −0.00122 and (b) backward iterations div ≈ 0.00122. The resulting pictures
are visually identical to those obtained by iterations of initial conditions uniformly distributed only on the line Fix(R) (the reversible attractor and repeller, see Section 2).
Note that the numerical attractor and repeller intersect but do not coincide.
map Tε . The invariant measure was produced as follows. On the
cross-section ψ2 = π/2 take the line Fix(R) : ψ1 + ψ3 =

π which consists of the fixed points of the involution (2). For a
uniformly distributed set of initial points on this line, consider
the iterations of Tε , and average over the iterations. The resulting
sequence of point densities apparently converges to a limit density
µ+. However, beginning from a certain threshold value of ε, this
density is visibly non-symmetric with respect to the involution R.
This means that the invariant density µ− obtained by backward
iterations of the same initial points on Fix(R) is different from µ+

(these densities are related by the action of R), even though the
supports of these densities seem to overlap strongly.

We performed the similar computation for a uniformgrid of ini-
tial conditions taken on the cross-sectionΠ : ψ1+ψ3+2ψ2 = 3π
(see (3)–(5)), and obtained the same picture, see Fig. 2. Thus, for
the majority of initial conditions the forward and backward aver-
ages differ. By Birkhoff ergodic theorem, the forward and backward
averages can be different only for a measure zero set. This means
that the numerically obtained measures µ+ and µ− must be zero
for our uniformly distributed set of initial conditions. Therefore,
the numerically produced invariant measures are, apparently, mu-
tually singular and not absolutely continuous with respect to the
Lebesgue measure, i.e. the system is not conservative.

We interpret this phenomenon as a manifestation of the so-
called reversiblemixed dynamics [2]. It corresponds to the persistent
coexistence of infinitely many periodic sinks, sources, saddles, and
symmetric elliptic points. It is known [2–5] that for a generic
reversible map the closure of the set of attracting periodic points
can intersect the closure of the set of repelling periodic points. In
this case, the numerically obtained attractor, which contains the
stable periodic points and their closure, and the repeller, which
contains the unstable points and their closure, will intersect but
they will not coincide.

This is very compatible with the numerical pictures for the
Pikovsky–Topaj model. In this paper we show that the reversible
mixed dynamics is indeed present here. We do not search for
the attracting/repelling periodic orbits directly, as their periods
are apparently very large. Instead, we establish their existence by
finding non-transverse heteroclinic cycles which include saddles
of small periods (up to period 7 in our experiments). Crucially,
the saddles are non-conservative, i.e., one of the saddles is area-
contracting (i.e. the Jacobian J of the period map is less than 1)
and the other saddle is expanding (J > 1). It is proven in [3]
that bifurcations of such cycles that contain both contracting and
expanding saddles lead to a simultaneous birth of infinitely many
periodic attractors and repellers; see [6,7] for generalizations to
other classes of attractors and [4] for the reversible case.

We find the pairs of non-conservative saddles by detecting local
bifurcations of a peculiar type. We notice that the Poincare map
Tε in this model is the square of a certain orientation-reversing
diffeomorphism T⋆ and find bifurcations which correspond to the
emergence of a symmetric periodic point of T⋆ with themultipliers
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(+1,−1). This bifurcation is described by the same normal form as
the bifurcation of periodic pointswithmultipliers (+1,+1)with an
additional symmetry (see Section 4). Note that there are 4 different
cases of normal forms for this bifurcation [8]. Two such cases have
been detected in the Pikovsky–Topaj model.

The first case corresponds to the birth of one symmetric elliptic
periodic orbit and a pair of saddles, one expanding and one con-
tracting. These saddles are born along with heteroclinic connec-
tions, and the non-transverse intersections necessary for the proof
of the mixed dynamics appear naturally (see Figs. 7(a), 10).

The second case corresponds to the birth of one symmetric sad-
dle periodic orbit, one sink, and one source. We find this bifurca-
tion at ε = ε∗

1 ≈ 0.6042. Because of an additional symmetry, the
Poincare map Tε has simultaneously 2 fixed points which undergo
this bifurcation. Thus, at ε > ε∗

1 the Poincare map Tε has 8 fixed
points: 2 sinks, 2 repellers, and 4 conservative saddles, see Fig. 13.
Most of the orbits tend to the stable fixed points.1 At ε < ε∗

1 all
the fixed points disappear, and we immediately see a large chaotic
attractor (and repeller, see Fig. 14). This phenomenon is related to
the existence of homoclinic intersections of the separatrices of the
fixed point at the bifurcation moment.2 Note that the numerically
obtained attractor and repeller visibly intersect, which means that
we have a large region in the phase space corresponding to the re-
versible mixed dynamics.

The paper is organized as follows. In Section 2 we discuss the
definition of reversible attractors, repellers, and mixed dynamics
for two-dimensional reversible maps. Our approach is based on
the notion of ε-orbits [11,12]. We also give a review of related
subjects. In Section 3 we discuss symmetry properties of the
Pikovsky–Topaj model. In Section 4 we present elements of the
theory of local symmetry-breaking bifurcations in reversible, non-
orientable two-dimensional maps. These maps naturally emerge
in systems with a time-shift symmetry [13,14] which is present
in the Pikovsky–Topaj model. In Section 5 we study symmetry-
breaking bifurcations in the model numerically. We show how
these bifurcations lead to the birth of pairs of non-conservative
saddles and non-transverse heteroclinic cycles with these saddles,
which creates mixed dynamics.

2. Mixed dynamics in two-dimensional reversible maps

Adynamical system is called reversible if it is invariant under the
time reversal t → −t and a certain coordinate transformation R.
The most basic case corresponds to R2

= Id, i.e. R is an involution.
In the case of discrete dynamical systems (i.e., iterated maps), one
says that a map f is reversible, if f and f −1 are conjugate by R, i.e.,

f −1
= R ◦ f ◦ R.

A periodic orbit is called symmetric if it is invariant with
respect to R. Any symmetric periodic orbit possesses the following
property: if it has a multiplier λ, then λ−1 is also its multiplier.
In particular, in the case of two-dimensional reversible maps, a
symmetric periodic orbit can have a pair of multipliers on the unit
circle, λ1,2 = e±iϕ , where ϕ ∈ (0, π), and this property will persist
for all small perturbations which do not destroy the reversibility.

1 However, at ε < εhet1 ≈ 0.690 there exist homoclinic intersections of the
invariant manifolds of the saddle fixed points. Therefore, the stable fixed points
coexistwith a chaotic set.Moreover, homoclinic tangencies can also exist for such ε.
Despite the saddle fixed points here are conservative (J = 1), the conservativity of
the Poincare map can be violated near the orbits of tangency and, according to [2],
the reversible mixed dynamics can exist even for some interval of ε > ε∗

1 , although
it can be hard to detect.
2 In a sense, this is a reversible analogue of Lukyanov–Shilnikov bifurcation of a

saddle–node with a transverse homoclinic [9,10] (the so-called transition to chaos
via intermittency).
Generically, the elliptic point of a sufficiently smooth reversible
map is surrounded by a large set of KAM-curves [15], which
may make dynamics near the elliptic point appear conservative
(however, the non-conservative behavior in the resonant zones
between the KAM curves is also generic [5]).

The dynamics near a non-symmetric periodic orbit of a
reversible system can be arbitrary. Just note that such orbits always
exist in pairs (one orbit in the pair is mapped to the other by R) and
the stability properties of the two orbits are opposite: the image by
R of an asymptotically stable periodic orbit, a sink, is an unstable
periodic orbit, a source. The image by R of a non-symmetric saddle
is also a saddle; however, it is important that if at one of these
saddles the Jacobian J of the period map is larger than 1, then the
Jacobian J is less than 1 at the other saddle.

A remarkable phenomenon in the dynamics of reversible
systems, which was called reversible mixed dynamics in [2], is
that the sinks, sources and elliptic points can be inseparable from
each other. For instance, it was shown in [5] that a generic elliptic
point of a two-dimensional reversible map is a limit of a sequence
of periodic sinks and a sequence of periodic sources. The main
mechanism of the emergence of the reversible mixed dynamics
is related to non-transverse heteroclinic cycles which include a
pair of non-symmetric saddles, one with J > 1 and one with
J < 1. According to [3,4], in a generic one-parameter unfolding
of this bifurcation there exist intervals where a typical value of
the parameter corresponds to the coexistence of an infinite set of
sinks, an infinite set of sources, and an infinite set of elliptic points,
and the intersection of the closures of these sets is non-empty
and contains a non-trivial hyperbolic set.3 The Reversible Mixed
Dynamics Conjecture (RMD-conjecture) of [2] claims that the same
phenomenon should take place for other types of codimension-
1 bifurcations of various symmetric homoclinic and heteroclinic
cycles in reversible systems. This conjecture is proven for certain
basic cases [2,4,18], see Fig. 3, but it remains open in full generality,
especially for the multidimensional case.

The mixed dynamics is a distinct, independent form of
dynamical chaos, which should be distinguished from the two
well-known types of chaotic orbit behavior, the dissipative chaos
(associated with a strange attractor) and the conservative one
(associatedwith a ‘‘chaotic sea’’ and elliptic islands). In our opinion,
one should expect the mixed dynamics for every non-hyperbolic
two-dimensional reversible map with a non-trivial ‘‘symmetric
dynamics’’; the numerics we present in this paper supports this
claim.

The main feature of the (reversible) mixed dynamics is that
the attractor and the repeller of the system intersect but do not
coincide. In order to discuss this effect,we need an adequate formal
definition of the attractor. Following the ideas of [11,12,19,20] we
use the notion of ε-trajectories. Recall the definitions.

Definition 1. Let f : M → M be a diffeomorphismof amanifoldM
and letρ(x, y) be the distance betweenpoints x, y ∈ M . A sequence
of points xn ∈ M such that

ρ(xn+1, f (xn)) < ε, n ∈ Z

is called an ε-orbit of f .

Definition 2. We call a point y attainable from a point x if for any
ε > 0 there exists an ε-orbit which starts at x and ends at y.

3 This is a generalization of the well-known ‘‘Newhouse phenomenon’’ [16,17]
to the reversible case. In terminology of [6,7] systems with the heteroclinic cycles
of the above described type fall in the so-called ‘‘absolute Newhouse domain’’ and
their dynamics is ‘‘ultimately wild’’.
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Fig. 3. Examples of two-dimensional reversible maps with symmetric homoclinic and heteroclinic tangencies. Maps with symmetric nontransversal heteroclinic cycles are
shown in (a) and (b): here (a) O1 = R(O1) and J(O1) = J(O2)

−1 < 1, (b) J(O1) = J(O2) = 1. Case (a) is considered in [4], case (b) is considered in [2]. Maps with symmetric
homoclinic tangencies are shown in (c)–(e): here the point O is symmetric; the homoclinic orbit is symmetric in cases (c) and (e) of a quadratic and, resp., cubic homoclinic
tangency; (d) an example of a reversible map with a symmetric pair of quadratic homoclinic tangencies to O. Case (d) is considered in [18].
Definition 3. A closed invariant set B is called chain-transitive, if
every point of B is attainable from any other point of B.

Definition 4. A closed invariant set B is called ε-stable if for every
open neighborhood U(B) there exists a neighborhood V (B) such
that, for all sufficiently small ε > 0, the ε-orbits which start in
V (B) never leave U(B).

Definition 5. A chain-transitive, ε-stable, closed, invariant setA is
called an attractor of a point x if every point of A is attainable from
x. A set R is a repeller of a point x if it is an attractor of x for the
inverse map f −1.

It was the idea of Ruelle [11] that an attractor defined in such
way would give a proper picture of behavior of a system subject
to a bounded noise. In particular, this notion is convenient for the
analysis of numerical experiments.

Note that a point may have several attractors by this definition.
For any given δ > 0, for all sufficiently small ε > 0 a typical
ε-orbit of a point x will, eventually, enter the δ-neighborhood of
any of the attractors of x and will never leave it. Moreover, it will
then visit any neighborhood of any point of this attractor infinitely
many times. In the simplest case, if a point x belongs to the domain
of attraction of some periodic sink ps, then ps is the only attractor
of x. In the reversible situation, the source R(ps) will be the only
repeller of every point in its neighborhood.

Given a set C , the union of all attractors of all points of C will be
called the attractor AC of this set and the union of all repellers of
all points of C will be called the repeller RC of this set.

Definition 6. Let f be an R-reversible two-dimensional diffeomor-
phism, and dim Fix(R) = 1. The sets A = AFixR and R = RFixR are
called a reversible attractor and a reversible repeller of the map f .

Evidently, R(A) = R. The case when A and R do not intersect
is easy to imagine: just let A lie on one side of Fix(R), then R will
lie on the other side. In this case we will have a usual dissipative
dynamics. If f is an area-preserving map of a compact manifoldM ,
then the only chain-transitive set is the whole phase space M , so
A = R = M . The most interesting case, where A ∩ R ≠ ∅ and
A ≠ R, is different from both the dissipative and conservative
cases. Such picture was first observed in [21] and explained as the
‘‘coexistence of conservative chaos with the dissipative behavior’’,
see also [14,22,23]. We, however, do not interpret the intersection
of the attractor and repeller as a conservative phenomenon, be-
cause the existence of non-transverse homoclinic and heteroclinic
intersections implies the birth of sinks and sources, i.e. mixed dy-
namics, as it is explained above and demonstrated below. See also
more discussions in [24].
3. Symmetries in the model

Let us consider system Eq. (1). By means of the coordinate
change

ξ =
ψ1 − ψ3

2
, η =

ψ1 + ψ3 − π

2
,

ρ =
ψ1 + ψ3 − π

2
+ ψ2 − π,

(3)

the system is brought to the following form

ξ̇ = 2ε sin ξ sin η,
η̇ = 1 − ε cos(ρ − η)− 2ε cos ξ cos η,
ρ̇ = 2 + ε cos(ρ − η).

(4)

After the time change dtnew = (2 + ε cos(ρ − η))dt system (4)
recasts as

ξ̇ =
2ε sin ξ sin η

2 + ε cos(ρ − η)
,

η̇ =
1 − ε cos(ρ − η)− 2ε cos ξ cos η

2 + ε cos(ρ − η)
,

ρ̇ = 1,

i.e., a non-autonomous time-periodic system

ξ̇ =
2ε sin ξ sin η

2 + ε cos(t − η)
,

η̇ =
1 − ε cos(t − η)− 2ε cos ξ cos η

2 + ε cos(t − η)
.

(5)

Note that system (5) is well-defined for all ε < 2.
System (5) as well its time-shift maps possess symmetries of

various types. First of all, we note the following simple facts.

(i) System (5) is reversible, i.e., invariant with respect to the
involution

R : ξ → ξ, η → −η (6)

and the time reversal t → −t .
(ii) System (5) is invariant with respect to the coordinate change

σ : ξ → π − ξ, η → π + η (7)

and the time shift t → t + π .

Property (ii) is called the time-shift symmetry [14]. It is often
met in problems where autonomous systems with periodic
perturbations are considered, see e.g. [13,14,25]. Denote as Ta→b
the time-shift map along orbits of system (5) from t = a to t = b.
It is easy to see that

T0→2π = (σT0→π )
2. (8)
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Indeed, property (ii) implies that Tπ→2π = σ−1T0→πσ and, since
σ = σ−1, we have

T0→2π = Tπ→2πT0→π = σ−1T0→πσT0→π = σT0→πσT0→π

= (σT0→π )
2.

Inwhat follows, wewill use the notation T for the Poincarémap
T0→2π and T⋆ for its square root σT0→π . Note that the map σ is
orientation reversing, while the time-shiftmap T0→π preserves the
orientation. Thus, we obtain an interesting fact that the Poincaré
map T for system (5) is the second iteration of an orientation
reversing map T⋆.

Importantly, the map T⋆ is reversible with respect to the invo-
lution R. To show this, we need to check the following relations:

R(σT0→π ) = (σT0→π )
−1R = (T0→π )

−1σ−1R = (T0→π )
−1σR. (9)

By (6) and (7), we have

Rσ = {ξ̄ = π − ξ, η̄ = π − η},

since ξ and η are 2π-periodic coordinates. Analogously,

σR = {ξ̄ = π − ξ, η̄ = π − η}.

Thus, relation (9) will be proven, if we show that the map T0→π is
reversible with respect to the involution Rσ = σR. Now note that
this just follows from the two facts: system (5) is invariant with
respect to the transformation ξ → π − ξ, η → π −η, t → π − t ,
and (T0→π )

−1
= Tπ→0.

We also remark that system (5) possesses an additional
symmetry S : ξ → −ξ or, since (5) is given on a torus, ξ →

2π − ξ . This property is evidently inherited by the Poincare map
T = T0→2π , so the phase portrait of T is symmetric relative to the
reflection with respect to the lines ξ = 0 and ξ = π . Note also
that these symmetry lines are invariant with respect to the map T
and divide the torus into two invariant annuli, 0 ≤ ξ ≤ π and
π ≤ ξ ≤ 2π . The annuli are also invariant with respect to T⋆,
however the map T⋆ maps the line ξ = 0 to ξ = π , and vice versa.

4. Local conservativity breaking bifurcations in orientation
reversing maps

The periodic orbits of the Pikovsky–Topaj model correspond
to periodic orbits of an orientation-reversing map T⋆, so we need
to recall the bifurcation theory for such maps, see [8] for a more
detailed account. For an orbit of an odd period q, the period
map T q

⋆ is orientation reversing, i.e. bifurcations of such orbits
are described by the theory of bifurcations of fixed points of
orientation-reversing maps. Bifurcations of orbits of even periods
for T⋆ are described by the theory of bifurcations of fixed points
of orientation-preserving maps in general. However, in our model
certain periodic orbits (e.g. the fixed points of T = T 2

⋆ and some
fixed points of T 3

= T 6
⋆ ) are S-symmetric, i.e., they lie on the

invariant lines ξ = 0 and ξ = π . For the bifurcation of the birth
of the S-symmetric points the corresponding normal form is the
same as in the orientation-reversing case, i.e. the theory below is
also applicable to them too.

Let us consider a one-parameter family fν of two-dimensional
maps. Assume that the maps are reversible, i.e. there exists an
involution R such that f −1

ν = R ◦ fν ◦ R. Assume that the maps
are orientation-reversing, i.e. det Dfν < 0.

Let at ν = 0 the map have an R-symmetric fixed point O,
i.e. f0O = O and RO = O. We assume that the set Fix(R) of fixed
points of the involution R is one-dimensional. Then, by Bochner
theorem [26], one can choose coordinates near O such that the
involution R is locally given by

R :


x → x
y → −y (10)
for all sufficiently small values of the parameter ν. Thus, Fix(R) is
the line y = 0.

Let λ1,2 be the multipliers of O. By the reversibility, λ−1
1,2 must

also be the multipliers. Since det Df0(O) = λ1λ2 < 0, the only
option is that

λ1 = −1, λ2 = +1.

The corresponding eigenvectors must be either orthogonal or par-
allel to the line Fix(R).We assume that the eigenvector correspond-
ing to the multiplier +1 is orthogonal to Fix(R).4

Put the fixed point O at the origin of the (x, y)-plane. The Taylor
expansion for the map f0 at O is as follows:

f0 :


x̄ = −x + A20x2 + A11xy + A02y2 + o(x2 + y2),
ȳ = y + B20x2 + B11xy + B02y2 + o(x2 + y2).

(11)

Note that the reversibility does not impose any restriction on the
coefficients of the quadratic terms, i.e. the inverse map (after the
change x → x, y → −y) will have the same form (11) up to higher
order terms. The coordinate transformation

xnew = x + ax2 + by2, ynew = y + cxy

keeps the map R-reversible and brings it to the form

f0 :


x̄ = −x + A11xy + · · · ,

ȳ = y + B20x2 + B02y2 + · · · ,
(12)

if we choose a = A20/2, b = A02/2, c = −B11/2. We further
assume that the following genericity condition holds:

A11 ≠ 0, B20 ≠ 0, B02 ≠ 0.

By the scaling x → x 1
√

|B20B02|
, y → y 1

|B02|
, we bring the map to

the form
x̄ = −x − αxy + · · ·

ȳ = y ± x2 ± y2 + · · ·

where α = −A11/|B02|. Note that every combination of the signs
‘‘+’’ ‘‘−’’ are possible, but the cases (−,−) and (−,+) can be
reduced to (+,+) and (+,−), respectively, by considering the
inverse map f −1

0 instead f0. Thus, we finally obtain the following
normal form:

f0 :


x̄ = −x − αxy + · · ·

ȳ = y + x2 ± y2 + · · · .
(13)

In order to study the bifurcations of the zero fixed point, we
need to consider a generic one-parameter unfolding within the
class of reversible maps. We refer the reader to [8] where it is
shown that the generic one-parameter family of perturbations of
f0 which keeps the map reversible can be written in the form

fν


x̄ = (−1 − α

ν

2
)x − αxy + · · · ,

ȳ = ν + (1 ± ν)y + x2 ± y2 + · · ·

(14)

where the dots stand for cubic and higher order terms in (x, y, ν).
Up to the terms of the third order and higher, map (14) coin-
cides with the composition of two maps: the symmetry S : x →

−x, y → y and the time-1 map of the two-dimensional, re-
versible, autonomous flow

ẋ = αxy,
ẏ = ν + x2 ± y2. (15)

4 The second variant (the eigenvector corresponding to −1 is orthogonal to
Fix(R)) would correspond to a very degenerate case: here themap R◦ f0 would be an
involution with the linear part equal to identity; by Bochner theorem an involution
is conjugate to its linear part; the only map conjugate to identity is the identity
map itself, so R ◦ f0 = id in this case, i.e. f0 ≡ R—this is definitely not the case of our
model.
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Fig. 4. Bifurcations of equilibria in the flow normal form (15). Figs. a and b correspond to bifurcation 0 → 4; Figs. c and d correspond to bifurcation 2 → 2.
Equilibrium states of system (15) belong either to the line x =

0 (R-asymmetric equilibria) or to the line y = 0 (R-symmetric
equilibria). In the ‘‘+’’ case, there are no equilibria at ν < 0 and 4
equilibria at ν > 0; in the ‘‘−’’ casewe have two equilibria at ν < 0
(R-symmetric) and two R-asymmetric equilibria at ν > 0. So, we
will speak of the 0 → 4 and 2 → 2 bifurcations; the corresponding
bifurcation diagrams are presented in Fig. 4.

Note that the flow of (15) commutes with the map S. Hence,
S-symmetric equilibria correspond to fixed points of the map (14),
while S-symmetric pairs of S-asymmetric equilibria correspond
to orbits of period 2. As S-symmetric equilibria happened to be
R-asymmetric here, and vice versa, we obtain the following
description of the bifurcations in the orientation-reversingmaps fν .

• In the ‘‘+’’ case, the degenerate fixed point that exists at ν = 0
splits into 4 periodic points at ν > 0: an R-symmetric elliptic
orbit of period 2 and two R-asymmetric saddle fixed points if
α < 0, and an R-symmetric saddle orbit of period 2 and two
R-asymmetric fixed points, a sink and a source, if α > 0.

• In the ‘‘−’’ case, at ν > 0 there are two R-asymmetric fixed
points, saddles if α > 0 or a sink–source pair if α < 0. At
ν = 0 they merge into the single degenerate fixed point O,
which becomes, at ν < 0, an R-symmetric orbit of period 2,
saddle if α < 0 and elliptic if α > 0.

As we mentioned, the same normal form (15) describes
bifurcations of S-symmetric fixed points of an orientation-
preserving reversiblemap,whichhave a pair ofmultipliers equal to
1. Namely, the normal form for suchmap coincideswith the time-1
flow of (15) up to the terms of the third order and higher. Thus, we
have the behavior similar to the orientation-reversing case, with
the difference that the R-symmetric period 2 orbits become pairs
of R-symmetric fixed points (S-symmetric to each other) [8].

Recall that in the Pikovsky–Topaj model periodic points for the
Poincare map T are periodic points for the orientation-reversing
map T⋆. If there is an orbit of period q for T , then either it
corresponds to an orbit of the same period for T⋆ (this can happen
only if q is odd), or there is one more q-periodic orbit of T (the
image of the first one by the map T⋆) such that together these two
orbits form an orbit of period 2q for the map T⋆. In the first case,
bifurcations are described by the above theory for orientation-
reversing maps (just note that a period-2 point for T q

⋆ is a fixed
point for T q), while in the second case bifurcations are described
by the theory for orientation-preserving maps—a particular case
of this theory corresponding to S-symmetric periodic orbits is
again described by Fig. 4. We have encountered both situations
(orientation-reversing and S-symmetric orientation-preserving) in
the model. In all cases we have found only bifurcations of 0 → 4
type, with α > 0 for bifurcations of the fixed points of T and α < 0
for the bifurcations of points of period 3 and 7 for the map T .

Note that the 0 → 4 bifurcation with α < 0 produces a
pair of R-asymmetric saddles,whose stable and unstablemanifolds
coincide for system (15). As the time-1 shift by the flow of (15) is
only an approximation to the map fν (up to multiplication to S),
these separatrix connections will split for a generic family fν and
transverse heteroclinic orbits will form. In the S-symmetric case,
however, one of the separatrices of each saddlemust coincidewith
the symmetry line, so these separatrices cannot split (while the
other pair of separatrices splits). See Fig. 7(a) for examples. Note
that the splitting of heteroclinic connections leads also to a creation
of non-degenerate homoclinic tangencies at certain parameter
values; this phenomenon plays a central role in our analysis of the
emergence of mixed dynamics.

5. Local and global symmetry-breaking bifurcations. Numeri-
cal experiments

In this section we report the results of numerical experiments
that demonstrate both local and global bifurcations of breaking
reversible symmetry in the dynamics of Poincaré map Tε for the
Pikovsky–Topaj model. We detect the moment of the birth of
chaotic mixed dynamics which exists alongside with a simple
periodic attractor and repeller, and trace the existence of mixed
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Fig. 5. (a) T (Fix(R)) is tangent to Fix(R) at two points (ξ , η) = (0, 0) and (ξ , η) = (π, π) at ε = 0.6042 ≃ ε∗

1 ; the upper and bottom curves are the T -image of the lines
η = π and η = 0, respectively. (b) Zoom out of the area inside the black square near (ξ , η) = (0, 0) in Fig. a. It is seen that the bifurcation 0 → 4 has just happened,
i.e. ε < ε∗

1 . There are 4 fixed points (black points), 2 symmetric saddles on the line η = 0 and a pair of attractor and repeller on the line ξ = 0. The lines with the arrows
(here and for the subsequent figures) are numerically obtained stable and unstable manifolds of the saddles.
Fig. 6. (a) The image of T 3(Fix(R)) at ε = 0.457 > ε∗

31 . Here T 3(Fix(R)) intersects the line η = π at four points, pairwise symmetric with respect to the line ξ = π . (b) A
magnification of the rectangle region from Fig. a. In this region there are 4 fixed points for T 3 , two symmetrical elliptic ones and a pair of non-conservative saddles.
dynamics from sufficiently large to sufficiently small values of
ε when the dynamics appears practically indistinguishable from
conservative.

Note that the points of intersection of the line FixRwith T k(FixR)
correspond to R-symmetric periodic orbits of T . Indeed, if x ∈ FixR
and T k(x) ∈ FixR, then R(x) = x and R(T k(x)) = T k(x), then the
identity T−kR(x) = RT k(x) gives that T−k(x) = T k(x), i.e. T 2k(x) =

x. A tangency between FixR with T k(FixR) corresponds to a change
in the number of periodic points as the parameters of the system
change, so we use the tangencies in order to detect bifurcation
moments of the birth of new R-symmetric periodic points.

Using this approach, we found that a pair of symmetric non-
hyperbolic fixed points of the map T is born at ε = ε∗

1 ≃ 0.6042.
These points are S-symmetric, as they belong to the symmetry
lines ξ = π and ξ = 0 (see Fig. 5(a)). Recall that the map T is
a square of the orientation-reversing map T⋆. The fixed points of
T we discuss here form an S-symmetric period-2 orbit of T⋆. The
symmetry implies that the bifurcation of the birth of this orbit
is described by the normal form (15). Indeed, we see that, as ε
increases, both the fixed points of T = T 2

⋆ undergo a symmetry-
breaking bifurcation of type 0 → 4: at ε > ε∗

1 each point breaks
into four fixed points, two R-symmetric (i.e. belonging to FixR)
saddle points and an attractor–repeller pair on the invariant line
ξ = 0 or ξ = π , see Fig. 5(b).
At ε > ε∗

1 the system has a clearly visible sink–source pair
born at ε = ε∗

1 . At ε < ε∗

1 we did not detect sinks or sources.
Instead, we establish their existence in an indirect way, by finding
pairs of R-asymmetric saddles connected by orbits of heteroclinic
tangency (when such tangencies split as ε varies sinks and sources
are born [2–4]). We find such pairs of saddles near the bifurcation
moments when they split off a degenerate R-symmetric periodic
orbit.

At ε = ε∗

31 ≃ 0.455 we found the bifurcation of the birth of
an R-symmetric orbit of period 3 (see Fig. 6). At this value of ε the
curve T 3({η = π}) touches the lineη = π at twopoints symmetric
with respect to the line ξ = π . We checked that these points
correspond to different (symmetric to each other by S) orbits of
period 3 for themap T⋆, so they are fixed points of T 3

⋆ . Since themap
T⋆ is orientation-reversing, themultipliers of these fixed points are
(+1,−1). As ε increases, each point splits into 4 fixed points for
the map T 3: 2 symmetrical elliptic points and a symmetric pair of
saddles (see Fig. 6(b)). For the map T 3

⋆ we have, respectively, two
saddle fixed points and one elliptic cycle of period two, i.e., this
bifurcation corresponds to α < 0, see Section 4. Note that for ε =

0.457, as in Fig. 6, the Jacobian of the derivative of the first-return
map T 3 at the upper saddle is ≃0.7198 and the Jacobian at the
lower saddle is ≃1.3893. Thus, we indeed have here a symmetry-
breaking bifurcation, which creates an R-symmetric pair of saddles
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Fig. 7. (a) Creating of ‘‘small’’ heteroclinic orbits at ε ≈ 0.46207. (b) Creating of ‘‘large’’ heteroclinic orbits at ε ≈ 0.463.
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Fig. 8. (a) The dependence of the η-coordinate of the pair of non-conservative period-3 saddles as ε varies from ε∗

31 ≈ 0.457 to ε∗∗

31 ≈ 0.663; (b) graphs of the Jacobians for
these saddles.
with Jacobians different from 1, i.e. breaks the conservativity and
creates conditions for the birth of long-period sinks and sources
via bifurcations of heteroclinic and homoclinic tangencies to the
saddles.

There are two ways such tangencies can appear near this
bifurcation. The first way gives ‘‘small’’ heteroclinic orbits which
emerge due to the splitting of the separatrix connection which
exists in the flow normal form (15) as in Fig. 4(a). We found
examples of these orbits at ε ≃ 0.46207, see Fig. 7(a).
Another way leads to creation of ‘‘large’’ heteroclinic orbits. At
the moment of bifurcation the degenerate periodic point has one
unstable separatrix and one stable separatrix which leave a small
neighborhoodof the point. If there is no additional symmetry, there
is no reason why these separatrices cannot have intersections.
After the bifurcation, these separatrices become an unstable
separatrix of one saddle and a stable separatrix of the other saddle;
they may have transverse intersections and tangencies outside a
small neighborhood of the saddles. We find an example of such
tangency at ε ≃ 0.463, see Fig. 7(b). The corresponding values
of Jacobians are J1 ≃ 0.524 < 1, J2 ≃ 1.909 > 1. In both
these examples, the heteroclinic tangencies are constituent parts
of heteroclinic cycles that include saddle points with Jacobians less
and larger than 1, so splitting the tangencies as ε varies must lead
to the birth of stable and unstable periodic orbits.

We traced the evolution of the pair of non-conservative
period-3 saddles as the parameter ε increases. We found, see
Fig. 8(a), that the saddles exist until ε = ε∗∗

31 ≃ 0.663 when
they collide with each other (and a pair of R-symmetric elliptic
period-3 points) at a 4 → 0 bifurcation and disappear. For all
ε ∈ (ε∗

31, ε
∗

30) the Jacobians of the saddles remain different from 1
(see Fig. 8(b)), and the stable and unstablemanifolds of the saddles
have intersections. Tangencies between the invariant manifolds
of the saddles appear easily for systems without an uniformly
hyperbolic structure, so we may conjecture that non-transverse
heteroclinic cycles involving these saddles exist for a dense subset
of the interval ε ∈ (ε∗

31, ε
∗∗

31), hence the mixed dynamics exists for
all ε from this interval.

One more bifurcation of the birth of period-3 point is detected
at ε = ε∗

32 ≃ 0.482. Unlike the previous case, here the curve
T 3({η = 0}) touches the line η = 0 at two S-symmetric points,
(ξ = 0, η = 0) and (ξ = π, η = 0), see Fig. 9(a). These points form
an S-symmetric period-2 orbit of themap T 3

⋆ . Due to the symmetry
S, this orbit splits into four after the bifurcation. So, for the map
T , we see that each of the period-3 orbits splits into four period-3
orbits, two R-symmetric elliptic orbits, and an R-symmetric pair
of saddles, see Fig. 9(b). We checked that the saddles are non-
conservative, with the Jacobians J1 ≃ 0.9988 (for the upper saddle)
and J2 ≃ 1.0012 (for the lower saddle) at ε = 0.485. We have
found orbits of heteroclinic tangencies between the separatrices
of the saddles at the same ε, see Fig. 10(a). However, the other
separatrices of the saddles do not split (see Fig. 10(b), they coincide
with the symmetry line), so the corresponding heteroclinic cycles
we have here are different from those considered in [3,4]. We,
therefore, do not have a theorem which, like in the previous case,
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Fig. 9. The same as Fig. 6 for ε = 0.483 > ε∗

32 .
Fig. 10. Orbits of heteroclinic tangencies between the separatrices of the saddles (a) ε = 0.485; ε = 0.487. The vertical invariant manifolds of saddle fixed points of T 3 do
not split.
would guarantee that, as the heteroclinic tangencies are split,
periodic attractors and repellers are born. However, they most
probably do; this question requires a further study.

The case of period-5 points is quite different. At ε = ε∗

5 ≃ 0.417
four tangent points between T 5(Fix(R)) and Fix(R) = {η = π∪η =

0} appear (see Fig. 11(a)). These points correspond to a pair of
period-2 orbits for the map T 5

⋆ ; the orbits are symmetric to each
other with respect to S. Each of these orbits is not S-symmetric by
itself. Therefore, as ε increases, we have the usual bifurcation of a
conservative-like parabolic orbit: each of the orbits splits into two
symmetric orbits, one elliptic and one saddle (see Fig. 11(b)).

Symmetric orbits of period 7 are born at ε = ε∗

71 ≃ 0.3795 and
ε = ε∗

72 ≃ 0.3805, at the moments of tangency of T 7(η = π)

with η = π and T 7(η = 0) with η = 0, respectively. Every
point of these orbits is a fixed point for T 7

⋆ . Therefore, with the
increase of ε, each orbit splits into 4 fixed points of the map T 7,
two R-symmetric elliptic points, and a symmetric pair of non-
symmetric saddles (this corresponds to two saddle fixed points and
one elliptic period-2 orbit for T 7

⋆ ), see Fig. 12. Thuswehave here the
same situation as in the first case of period-3 orbits.

We have also found that bifurcations of the birth of R-
symmetric orbits of period 9 (at ε = ε∗

9 ≃ 0.348) have the type
0 → 2 (the same as for period 5). The birth of an orbit of period 11
was detected at ε = ε∗

11 ≃ 0.323, howeverwe could not determine
the type of the corresponding bifurcation, since the elliptic zones
near this orbit happen to be extremely narrow, of the order of
numerical accuracy. We conjecture that conservativity breaking
bifurcations exist in thismodel for arbitrarily small ε, i.e., themixed
dynamics exist within apparently conservative ‘‘chaotic sea’’ for all
ε > 0.

The end of the mixed dynamics at larger ε is related with the
above described bifurcation of the birth of the fixed points of T at
ε = ε∗

1 ≃ 0.6042. Just after this bifurcation, forward iterations
of T for the majority of points of the phase space seem to tend to
the stable fixed points. These points become global attractors (and
their images by R, the unstable nodes, become global repellers). At
ε > εhet1 ≃ 0.690 when the invariant manifolds of the saddle fixed
points stop having intersections. At these values of ε the dynamics
of T is very simple, see Fig. 13(a). The map T has 8 fixed points:
four saddles S1, S2, S3 and S4, two unstable nodes (global repellers),
and two stable nodes (global attractors). In Fig. 13 we show also
a picture of the stable and unstable invariant manifolds W s,u

i of
the saddles Si, i = 1, . . . , 4. At ε > εhet1 these manifolds do not
intersect and form boundaries of the domains of attraction (W s

i )
and repulsion (W u

i ) for the global attractors and repellers.
At ε < εhet1 ≃ 0.690 the manifoldsW s

1 andW u
4 ,W

s
2 andW u

3 ,W
s
3

and W u
2 , and W s

4 and W u
1 begin intersect and heteroclinic cycles

form (see Fig. 13(b)). As a result, the dynamics becomes chaotic.
Moreover, one should associate this chaos with the mixed dynam-
ics, since the bifurcations of these cycles such cycles lead to the
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Fig. 11. (a) The image of T 5(Fix(R)) is shown for ε = 0.418 > ε∗

5 . Here T
5(Fix(R)) intersects the lines η = 0 and η = π at four points each. (b) Magnification of the rectangle

region from Fig. a. In this region there are 2 fixed points for T 5 , elliptic and saddle one, both symmetric.
Fig. 12. (a) The image of T 7({η = 0}) at ε = ε∗

71 ≃ 0.380. (b) A magnification of the rectangle region from Fig. a. (c) The image of T 7({η = π}) at ε = ε∗

72 ≃ 0.381.
(b) A magnification of the rectangle region from Fig. c.
birth of attractors and repellers [2]. More heteroclinic connections
emerge with the decrease of ε, see Fig. 13(c), (d), so the chaotic set
grows. Theoretically, this chaotic set does not give a purely tran-
sient regime, since it must contain attractors and repellers born
from homoclinic tangencies. However, the numerically observed
orbits do not seem to see these attractors, and converge to the
stable fixed points. This coexistence of the mixed-dynamics type
chaos and stable fixed points continues until the moment ε = ε∗

1
when the fixed points disappear—then the large chaotic set be-
comes a visible limit set for the numerically obtained trajectories.
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a b

c d

Fig. 13. The stable and unstable manifolds of saddle fixed points of T are shown. These manifolds (a) do not intersect, ε = 0.7, (b) form heteroclinic intersections,
ε = εhet1 ≈ 0.690, and dynamics become chaotic. (c) Symmetric heteroclinic orbits appear at ε = εhet2 ≈ 0.679. (d) Developed homoclinic and heteroclinic tangles
(shown at ε = 0.650) exist at ε < εhet2 .
Fig. 14. (a) Attractor and (b) repeller for ε = 0.6 < ε∗

1 = 0.6042. The attractor and repeller are obtained by forward or, respectively, backward iterations of 100 points
uniformly distributed on the line Fix(R). One can see that the attractor and repeller intersect but do not coincide.
This chaos can definitely be identified with the mixed dynamics,
since the attractor and repeller intersect but do not coincide; see
Fig. 14.

Remark 1. In each of Figs. 1, 2 and 14, we show 105 points ob-
tained as follows. For Figs. 1 and 14we computed 10000 iterations
of 100 initial conditions chosen uniformly on the line Fix(R); the
last 1000 iterations are displayed for each of the initial conditions.
For Fig. 2, we computed 100 iterations for a grid, uniform on the
entire torus, of 100 × 100 initial conditions; the last 10 iterations
for each of the initial conditions are displayed. In the case of well-
developed mixed dynamics (Figs. 2 and 14) the obtained pictures
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look quite similar. Moreover, when we randomly picked just a sin-
gle initial condition and displayed the last 105 of its 106 iterations,
we again did not see much difference with Figs. 2 or 14.

6. Conclusion

One can distinguish three forms of dynamical chaos: strange
attractors, conservative chaos, and mixed dynamics. The first two
types are well known. Conservative chaos was, in point of fact,
discovered by Poincare; the theory of strange attractors stems from
the famous work by Lorenz [27]. The idea of mixed dynamics as
a new type of chaos emerged quite recently [3]. Its distinctive
feature is an unbreakable intersection of the attractor and repeller.
A propermathematical concept of themixed dynamics can be built
with the help of the ε-orbit construction, going back to works of
Anosov, Conley, and Ruelle (see Section 2).

In our opinion, the mixed dynamics phenomenon must be typ-
ical for time-reversible systems [2,4]. Thus, mixed dynamics is
observed in systems from application. In particular, many mod-
els of nonholonomic mechanics demonstrate such type of or-
bit behavior: non-holonomic constraints, though dissipation free,
typically destroy the Hamiltonian structure, but the reversibility
typically persists. Thus, non-holonomic constraints produce re-
versible systems without a smooth invariant measure in general
[28–30], which is a natural condition for the emergence of mixed
dynamics. For example, reversible mixed dynamics was observed
in a Celtic stone model [31], in the model of rubber Chaplygin
top [32,33], in the Suslovmodel [34], etc. Another, non-mechanical
application is given by the Pikovsky–Topaj system of coupled ro-
tators, which exhibits many important basic features of the re-
versible mixed dynamics. With the example of this system, we
show how the mixed dynamics emerges within what appears to
be a conservative chaos.We demonstrate that themain role here is
played by local and global symmetry-breaking bifurcations. Thus,
local bifurcations lead to the emergence of periodic orbits of dissi-
pative types within the ‘‘chaotic sea’’. These orbits can be a pair of
a sink and source, so the conservativity is violated explicitly. How-
ever, there is amore subtlemechanismof the conservativity break-
down, when the local symmetry-breaking bifurcation leads to the
birth of a pair of saddle periodic orbits, for which the Jacobian of
the periodmap is less than 1 at one of the saddles and greater than
1 at the other one. Invariant manifolds of these saddles intersect;
moreover, as parameters change, tangencies between these man-
ifolds also appear inevitably. In this way, non-transverse hetero-
clinic cycles emerge, bifurcations of which are known to lead to
the birth of infinitely many periodic attractors, repellers, and ellip-
tic orbits; these orbits coexist and the closures of the set of orbits
of each type have non-empty intersections with each other [2,4].

Another interesting phenomenon we have found in this model
is the possibility of almost instantaneous transition from a simple
attractor–repeller pair to a fully developed mixed dynamics. This
corresponds to a bifurcation where the attracting fixed point,
repelling fixed point, and a pair of symmetric saddles collide (to
form a degenerate saddle) and disappear. At the moment of such
bifurcation, the stable and unstable separatrices of the degenerate
saddle fixed point can have homoclinic intersections, so this point
can be a part of a ‘‘large’’ hyperbolic set. The significant portion of
this set survives the bifurcation, its stable and unstable manifolds
can naturally acquire homoclinic tangencies as parameters change,
and this leads to mixed dynamics. Indeed, as we have seen in the
Pikovsky–Topaj model, the attractor and repeller which emerge
after this bifurcation intersect over a set covering a large portion
of the phase space.
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