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On models with non-rough Poincar6 homoclinic curves 
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The possibility of an a priori complete description of finite-parameter models including systems with structurally 
unstable Poincar6 homoclinic curves is studied. The main result reported here is that systems having a countable set of 
moduli of ~q-equivalence and systems having infinitely many degenerate periodic and homoclinic orbits are dense in the 
Newhouse regions of O-non-stability. We discuss the question of correctly setting a problem for the analysis of models of 
such type. 

1. Introduction 

It  is well-known that in three-dimensional  
smooth  dissipative systems, two types of  strange 
at tractors may occur: those of the Lorenz type 
and the quasi-attractors. The latter ones may 
have non-rough Poincar6 homoclinic curves in 
addition to rough ~1 homoclinic cures. Due to 

this fact, ei ther the system itself or a nearby 
system may  have a countable set of stable per- 
iodic orbits together  with a countable set of  
saddle-type periodic orbits [1,2]. The dynamics 
of  such systems turns out to be very sensitive to 
small per turbat ions  of the parameters .  This sen- 
sitive dependence  manifests itself in numerical 
experiments .  Quasi-at tractors can be observed in 
many  different systems such as the Lorenz 
model  '~2, the H r n o n  map,  systems with spiral 

chaos [4], systems with destruction of two- 
dimensional  tori [5,6], etc. In this regard,  the 
following question becomes of special impor-  
tance: in principle, is it possible to have a com- 
plete description of the dynamics of  such systems 

~lThis term was originally proposed by A.A. Andronov 
and is equivalent to "structurally stable". 

~2In the Lorenz system, the non-rough Poincar6 homo- 
clinic curves are contained in an attractor and they emerge 
near the boundary of the existence domain of the Lorenz 
attractor at cr = 10, b =8/3, and r>31 [3]. 

within the f ramework  of f inite-parameter 
families of  differential equations as in traditional 
models  of dynamical phenomena?  

The  setting up of a problem dealing with 
model  description goes back to Andronov.  It 
consists of: (1) dividing a pa ramete r  space into 

regions of  roughness and finding the bifurcation 
set; (2) dividing the bifurcation set into con- 
nected components  corresponding to the same 
phase  portrai ts  in the sense of topological 
equivalence.  Therefore ,  a good model  must pos- 
sess a sufficient number  of parameters  in order 
to render  possible the bifurcation analysis of the 
equil ibrium points, of the periodic, heteroclinic 
and homoclinic orbits, etc. 

As a formal  basis for further considerations~ 
let us introduce the following 

Definit ion. A family X ,  of  differential equations, 
which smoothly depends on a set of parameters  
/x belong to some region D C_ ~ ' ,  will be called 
g o o d  if, for some neighbourhood of the family 
X~ in the space of dynamical systems, there 
exists a continuous foliation with basis D and 
with Banach leaf of codimension m such that: (1) 
all leaves satisfy the Lipschitz condition with a 
c o m m o n  constant;  (2) X~ intersects each leaf at 
a unique point,  transversally to all smooth man- 
ifolds of  the same Lipschitz constant,  and close 
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enough to the leaf; (3) any two systems belong- 
ing to the same leaf are topologically equivalent 
and, moreover, the homeomorphism realizing 
the equivalence is close to identity when the 
systems are close enough. 

We shall suppose that it is reasonable to set up 
a problem of complete description only for good 
models in the sense of the definition given 
above. If some model does not satisfy this re- 
quirement then we can increase the number of 
parameters or, in the case when such a proce- 
dure turns out to be ineffective, make the 
equivalence relation less restrictive. For in- 
stance, if the details of the transitional processes 
are not interesting we may consider the O- 
equivalence i.e. the topological equivalence on a 
non-wandering set. 

It is evident that in a good model all bifurca- 
tions of periodic, homo- and heteroclinic orbits 
have a finite codimension and that the model is 
transversal to all bifurcation submanifolds. In the 
case of differential equations in the plane these 
requirements are sufficient for a model to be 
good (at least it is so in the case when all 
bifurcations have low codimensions). In the 
multidimensional case, fundamental differences 
already arise in the class of systems with trivial 
dynamics, i.e. without Poincar6 homoclinic 
curves. We consider two examples. The first one 
is a diffeomorphism of the plane with non-rough 
heteroclinic orbits (the simplest non-roughness 
being related to non-transversal intersection of 
the invariant manifolds of some periodic points). 
As shown by Palis [7], the set of such systems 
can be divided into a continuum of classes of 
topological equivalence which can be disting- 
uished by continuous topological invariants, the 
so-called moduli. 
Defin i t ion .  We say that a system X possesses a 
m o d u l u s  if X lies in a Banach manifold M on 
which a continuous functional h is defined which 
is not locally constant and such that the systems 
X 1 and X 2 belonging to M are not equivalent if 
h ( X l ) ~  h(X2). We say that X possesses m- 

modul i ,  if X lies in a Banach manifold M on 
which m independent moduli are defined and we 
say that X has a countable  set o f  modu l i  if X has 
any finite number of moduli. 

Let  a diffeomorphism of the plane have two 
periodic points P1 and P2 of saddle type such that 
the unstable manifold of P1 touches the stable 
manifold of P2- In this case [7,8], the modulus is 
the quantity a =-1nlAll/ln13'21 where }k I is a 
multiplier of P1 and 3'2 is a multiplier of P2 
(Ix l < 1, 13"21 > 1). The presence of moduli is the 
main reason why one-parameter families, inter- 
secting transversally the "pellicle" of diffeomor- 
phisms with non-rough heteroclinic curves, are 
not good. In principle, if a heteroclinic non- 
roughness generates only a finite number of 
moduli the model can be enlarged to a good one 
by increasing the number of parameters. The 
conditions under which there may be a countable 
set of moduli in a given class were given in [9]. 
In the last case, there are no good models from 
the point of view of topological equivalence. 
However,  if we restrict ourselves to the O- 
equivalence then systems of this type turn out to 
be rough ones, and, consequently, every finite- 
parameter family is good. 

Our second example is the bifurcation at the 
emergence of a two-dimensional torus from a 
periodic orbit with multipliers e -+2"~i0'. Using ref. 
[10], we can prove that, in a space of smooth 
dynamical systems, there exist systems having 
arbitrarily degenerate periodic orbits with wind- 
ing numbers close to to in the neighbourhood of 
systems possessing a two-dimensional invariant 
torus with irrational winding number to. It is 
evident that, for such a model, any finite-param- 
eter family is not good even in the sense of 
O-equivalence. Nevertheless, it is worth men- 
tioning that, in this case, we can reasonably 
weaken the relation of equivalence in such a way 
that we obtain good models. Let us choose some 
positive integer q0 and consider that two flows on 
a smooth two-dimensional torus are equivalent 
(we take flows having a global cross-section) if: 
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(1) they have the same winding numbers; (2) 
they are topologically equivalent for a rational 
winding number  with denominator  less then q0. 
In o ther  words, we shall distinguish systems 
among a finite number  of the fundamental reso- 
nance zones only with the aid of a ratio of 
frequencies,  which is quite natural from a practi- 
cal viewpoint ~3. With such an equivalence rela- 
tion, it is sufficient to take two-parameter  models 
for  the investigation of a given bifurcation. 

In the above examples, the values of the pa- 
rameters  for which a model is not good form a 
nowhere  dense set in D. The situation is much 
more  complicated in the class of systems with 
strange attractors because non-rough systems 
may fill up some regions. Two examples of dense 
O-non-roughness  are best known: (1) models 
with Lorenz attractors and (2) models with non- 
rough Poincar6 homoclinic curve. For  systems 
with Lorenz attractors the pair of kneading in- 
variants [12,13] is a complete invariant of the 
O-equivalence.  This fact enables us to carry out 
the investigation of the dynamics using two- 
parameter  models. In the second case, the situa- 
tion is less trivial. In particular, this is due to a 
remarkable  phenomenon discovered by 
Newhouse.  It turns out [14] that any model 
transversal to a bifurcation "pellicle" of 
codimension one corresponding to some homo- 
clinic orbit with quadratic tangency intersects 
regions where the systems with non-rough Poin- 
car6 homoclinic curves are dense. The existence 
of Newhouse regions is a characteristic feature of 
systems with quasi-attractors. The results given 
below ( theorems 2-5)  show that systems with 
arbitrarily degenerate periodic and homoclinic 
orbits as well as systems with a countable set of 
moduli of O-equivalence are dense in these re- 
gions. Therefore ,  there is no good model in the 
sense of O-equivalence in the Newhouse regions. 
Moreover ,  we show that our  attempts to weaken 
the equivalence relation in a reasonable way, as 

~'3In particular systems, q0 can take very different values. 
For instance q0 takes values of several hundreds in ref. [11]. 

we have done for the flows on a torus, are vain 
in this case ( theorem 6). 

2. The types of systems with non-rough 
homoclinic curve 

Let  us consider a C'-smooth (3-< r-< ~) flow 
X 0 defined on a three-dimensional manifold M. 
Let  X 0 satisfy the following conditions: 

(A) X 0 has a periodic orbit L 0 of saddle type 

with multipliers A, 3' where 171 > 1 > I•1; 
(B)  the saddle value tr = ]A3~] < 1; 
(C) WS(L0) and WU(L0) have a quadratic 

tangency along a homoclinic curve F 0. 
Let  U be a small neighbourhood of the con- 

tour  L 0 U F 0. U consists of a solid torus V con- 
taining L o to which a handle containing a piece 
of the curve F 0 is glued. We denote by N the set 
of orbits of the flow X 0 entirely lying in U. Let  
S C U  be a smooth cross-section of L o. It is 
convenient  to study orbits belonging to the set N 
using a Poincar6 map of section S. This map can 
be represented as iterates of the map To: S--~ S, 
acting along orbits close to Lo, combined with 
iterates of the map TI: S---~ S, acting along orbits 
belonging to a neighbourhood U\V of the piece 
of F 0. We denote that the map T O can be written 
as [15] 

£ = Ax + f (x ,  y) x2y,  

; = 3'Y + g(x, y) xy 2 , (1) 

in some C r- 1-coordinates (x, y). Taking this fact 
into account, the equations of the manifolds 

Wl~o¢(Lo) n S and Wt~oc(L0) N S have the forms 
y = 0 and x = 0 respectively. Let  M÷(x  +, 0) and 
M - ( 0 ,  y - )  be the pair of homoclinic points in 
the section S. Without loss of generality, we can 
suppose that x ÷ > 0 and y -  > 0. Let  the domains 
H 0 a n d / / i  of  S be lying in some neighbourhoods 
of  the homoclinic points M +(x+,0) and 
M - ( 0 ,  y - )  which are small enough so that 
T0(/-/~)AH i = O , i - - - 0 , 1 .  The map T 1 can be 
written as 
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£ - x + = F ( x , y - y - ) ,  f i = G ( x , y - y - ) ,  
(2) 

where F(0, 0) = G(0, 0) = 0. In virtue of condi- 
tion (B), we have 

O G ( 0 , 0 )  = 0  ' O2G(O,O)_2d#O"  
Oy Oy 2 

Therefore,  the following identity is valid [16]: 

G(x, y - y ) = D(x, y) [y - y -  - th(x)] 2 

+ C(x) x ,  

D ( O , y - ) = d ,  dp(O)=O, C ( O ) = c ¢ O .  

The domain of the map T~: IIo--~II~, acting 
along the orbits of the flow X 0 passing in the 
neighbourhood of L0, is a set 0-0 [17] consisting 
of a countable set of strips 

0-k°CHo, k = / 7 , / ~ + 1 ,  • . .  , 
• 0 with o" k = 110 A Tok //1 , 

(see fig. 1). The range of the map T~ is 0-1= 
oo k 0 Uk= ~ 0-~ where o l  = To0-k. Here/¢ is some suffi- 

ciently large integer (the smaller the sizes of H o 

-%,) 
I 

i 
! 

] 'r, "~ cn,) 

& 

I 
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and H 1 , the greater the integer/¢). As k---> ~, the 
strips 0-0 and 0 "1 accumulate to W~o c N/-/0 and 
Wl"oc N H 1 respectively. In [17], it was shown that 

0 1 the map Tk: o-k---> 0-k has the following form: 

= - k  
x 1 AkXo(1 + 3, %(x o, Yl)XoYl),  

Yo = y-kY~( 1 + Y-kOk(Xo, Y l ) X o Y l )  , 

where (Xo, Yo) E Ho, (x 1, Yl) ~//1 and z ~kXoYl 

and ~OkXoY ~ are functions having ( r -  2) continu- 
ous derivatives and being uniformly bounded 
with respect to k. 

The structure of the set N significantly de- 
pends on the nature of the intersections of the 
strips T 1 0-~ and 0-~ for various i and j. The 
nature of these intersections is mainly deter- 
mined by the signs of A, y, c, and d [16]• We can 
distinguish three types of non-rough Poincar6 
homoclinic curves [1] (see fig. 2 where the corre- 
sponding diffeomorphisms of the plane are given 
for A > 0 ,  y > 0 ) .  In the case of a curve of the 
first type (3' > 0, d < 0) the set N has a trivial 
structure: N =  {L0, F0} [16]• This is related to 
the fact that the intersection TlO- ~ fq 0-~ may be 

0 • non-empty only for j > i because the strip try hes 

(~)c<o,d<o (b)c~,o, dco 

(c) c<o, &o (d) c;,o, d>o 

Fig. 1. Fig. 2. 
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at a distance of order y-J from WlSoc ('~ H0, 
whereas the top of the strip TlOr ~ lies at a 
distance of order IAl iCy  -/ (see fig. 3a). We 
remark that, for A > 0 , 7 > 0 ,  c < 0 ,  d < 0 ,  the 
strips Tltr ~ and o'~ (for all i, ]->/~) lie on differ- 
ent sides of W~o c Cl H0, and T ltr~ Cl tr~ = O (see 
fig. 3b). 

In the case of a curve of the second type 
(A > 0, y > 0, c < 0, d > 0), the intersection of 
Tier ] and o'~ is regular for any i, j - / ~ ,  i.e. it 
consists of two connected components (fig. 3c). 
The preimage of each component under 
TiTio:  o ° - - > o  "° is a strip o'/~ ~ C tr ° ( a =  1,2). in 

0a  this case, it turns out that the map T 1 T O on o-ij is 
of saddle type in the sense of ref. [17]. There- 
fore, due to the lemma about a saddle-type fixed 
point in a direct product of spaces [17], the set N 
is equivalent to a suspension over a quotient 
system constructed from a Bernoulli scheme on 
three symbols (0, 1, 2} after identification of the 
two homoclinic orbits ( . . . .  0 . . . .  0, 1, 0 . . . .  , 
0 . . . .  ) and ( . . . ,  0 . . . . .  0, 2, 0 , . . . ,  0 . . . .  ) 
[16]. Here,  all the orbits belonging to N~F 0 are of 
saddle type. 

In the case of a curve of the third type (all 

I~t; i . . . . .  #"~ I ~-i I' ~'° I 

(a) (b) 

(c) 

M ~ 

(d) 

Fig. 3. 

remaining combinations of signs of A, % c, and d 
correspond to this type), the set N contains 
non-trivial hyperbolic subsets [16], but, in gener- 
al, these subsets do not exhaust the set N. The 
reason is that there may be irregular intersec- 
tions besides the regular ones (see figs. 3d). In 
the case A > 0, y > 0, a necessary condition for 
the existence of an intersection between Tlo- ~ 
and ~ is the inequality ~4 [2,19] 

j < iO - % + s y  -~/2 (3) 

A sufficient condition for a regular intersection 
of T l tr~ with cr~ is the inequality 

j < iO - T 0 - sy-~J2 (4) 

Here s > 0 is some constant independent of i and 
] while 

lnlAI 1 c x  + 
0 - lnly I , To - lnly-l--~ In  y _  ( m o d ( O  - 1 ) ) .  

In the case where 0 is rational, i.e. 0 = p / q  and 
qr0lE'Z, the inequalities (3) and (4) admit the 
same integers for solutions (all these integers are 
greater than some constant/~(0, %)). Therefore, 
in this case, all the trajectories belonging to N~F 0 
are of saddle type [1,18]. If 0 is irrational the 
inequalities (3) and (4) are not anymore equiva- 
lent and, as a consequence, non-saddle-type or- 
bits can emerge in the set N. Moreover, flows 
with non-rough periodic orbits, flows with a 
countable set of stable periodic motions, and 
flows with non-rough homoclinic counters [1,2] 
are dense in the set of flows having non-rough 
homoclinic curves of the third type. The necessi- 
ty of studying systems with curves of the third 
type within the analysis of systems with quasi- 
hyperbolic behaviour can be explained using the 
following. 

~'4For the other combinations of signs of A and y, these 
conditions are given by similar inequalities [18]. We omit 
them here to avoid overloading the text. 
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(b) ~' 

Fig. 4. 

T h e o r e m  1. In any neighbourhood (in the C r- 
topology,  r-< 3) of a system with a non-rough 
Poincar6 homoclinic orbit,  there exist systems 

with orbits of the third type. 

An  illustration of this theorem is given in fig. 
4a for the case where X0 has a homoclinic curve 
of the second type. We choose a flow ,~ close to 
the f low X 0 such that the manifold Tl(Wl~oc n 
//1) of  X lies above W~o c N H 0 and intersects the 
strip or ° along the two components  W~ and Wk 2 

whereas  the strip T1 orl intersects W~o ~ n H 0. It is 
obvious that  .~ can be chosen in such a way that 

k 2 s 
T 1 T o ( W k )  would touch Who ~ n H 0. It is easy to 
convince oneself  that a non-rough homoclinic 
curve of the third type corresponds to this 
tangency (fig. 4b). 

3. Infinite degeneracies in a class of systems 
with a homoclinic orbit of the third type 

We suppose that F 0 is a curve of the third type. 
The  set of flows X which are Cr-close to X 0 and 
which have a single-circuit homoclinic orbit  F of 
the third type close to F 0 form a smooth sub- 
manifold H ,  of codimension 1 in the space of 
Cr-flows on M. 

T h e o r e m  2. A set B such that any flow be- 

longing t o  B has a countable set of periodic 
orbits of  saddle type each having a non-rough 
homoclinic curve of the third type is dense in H r. 

We give only a sketch of the proof  of theorem 
2. The  proof  is divided into three stages. The 
first stage consists in proving that flows with 
homoclinic contours formed by one rough and 
one non-rough homoclinic orbits of some single- 
circuit e5 periodic orbits of saddle-type are dense 

in H r. For  any flow X 1 E H r, let p/ be a fixed 
point  of  the map T 1T 0, Pi E or °. We denote by 
W~ and W~ respectively the connected pieces of 
the intersections with o -° of the stable and un- 
stable manifolds of the point pi #6. For arbitarily 
small ~ > 0 and for any k, there exists a pair of 
integers (i, j ) ,  j > i, greater  than/~ and satisfying 
the inequalities 

j >-- iO(X1)  - "to + s T - ~ / 2 ,  (s) 

j < i ( O ( X l )  + ~ )  - "r o - sT  -~/2 (6) 

~SA periodic orbit is called single-circuit periodic orbit if it 
corresponds to some fixed point of the maps T~ To. 

~6Since the intersection T1Totr ° n ~/0 is of saddle type due 
to (4) Pi is also of saddle type. 



S.V. Gonchenko et al. / On models with non-rough Poincar~ homoclinic curves 7 

M M ~'° fll ~-i-I 
i t  t I_l~tpx,_ f l l  I I I 

"~ t r - v t t  - I I I  t1/ ltlV/// 
I'Pl ' t i t  - I I I  

" ~ ~ . ~  

, t - t -LG,?"  lit  I I I  
I ~ t  l ' - - I~t - -  IJl I I I 

77/; 1: 
(a) (b) 

Fig .  5. 

Because (5) has the opposite inequality with 
respect to (3) we have Tltr ~ fq tr~ = ~  where- 
upon T1ToW ~ u fq Ws~ = O for the flow X 1 (fig. 
5a). Now, staying in H, ,  let us perturb the flow X 
in such a way that O(X) changes from O(X1) to 
O(X~) + ~. If 0(3(2) = O(X~) + ~, T~ ToW ~ inter- 
sects transversally W~ at two points for the flow 
X 2 because the inequality (6) coincides with (4) 
in this case (fig. 5b). Consequently, there is a 
flow X between X~ and X 2 such that T~ToW i ~  u 
touches W~ along some non-rough heteroclinic 
orbit (fig. 6a). Because the intersection of T~cr) 
with tr ° is always of saddle-type due to (4) the 
flow X has a rough heteroclinic orbit correspond- 

r7-7, 
l l ( i - t l t i~ I11 I / / l  

i 

(a) 

] I I U I A I I _  /~ 
I II lrl)lTai tll 

tlttT';///l 
L%t ~ \ ~ 1  I I i i  

Ib) 

Fig .  6. 

j u S ing to the intersection of TIToW ] with Wi. 
These two heteroclinic orbits together with the 
orbits Pi and Ps form the desired homoclinic 
contour. This is the simplest possible non-rough 
contour and we denote it by Cis. 

At  the second stage, we show that the flows 
having a countable set of the simplest non-rough 
homoclinic contours are dense in H r. Let X 
belong to H r. Then, in any neighbourhood U 8 of 
the flow X in Hr, there is a flow X 1 having some 
countour Cit h. According to the construction, 
the perturbation leading to the formation of a 
non-rough contour may be localized in any small 
neighbourhood of the orbit L 0. Therefore, it is 
possible to achieve one more non-rough contour 
using some arbitrarily small perturbation of the 
flow X~ while keeping the tangency between the 
manifolds W"(p l )  and WS(ph). Consequently, 
there is a flow X 2 in U~ having contours Cqsl and 
Ci2 h. Repeating this procedure, we eventually 
obtain a flow X* C U 8 having a countable set of 
the simplest contours Ci~ a . . . .  , Ci, s , . . .  where 
in ,  Jn "--> oo as n ---> ~. These flows form a dense set 
in H r . 

At  the third stage, it is necessary to remark 
that we can achieve a non-rough homoclinic 
curve of Pi using arbitrarily small perturbation of 
a non-rough homoclinic contour C~j. Such an 
"operat ion" may be carried out independently 
for all contours of the flow X* and the statement 
of theorem 2 follows from this fact. 

We have to keep in mind that we have con- 
structed flows with non-rough homoclinic orbits 
having a sufficiently large number of circuits. 
Indeed, we can show that the flows with the 
simplest non-rough homoclinic orbits of single- 
circuit periodic orbits are dense in H r (the orbits 
are simplest in the sense that already the curves 

s j i u W; have a tangency with TITo[TITo(W i )] (fig. 
6b). 

In [1,2], it was noted that the structure of the 
set N in the case of a homoclinic orbit of the 
third type is essentially determined by arithmeti- 
cal properties of the invariants 0 and %. We 
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illustrate this feature with the following example. 
In order  for a system to have the simplest non- 
rough contour  C~j or the simplest non-rough 
homoclinic curve, it is necessary that the inter- 
section of T 1 o-~ with o-~ is not of the saddle type 
and, as a consequence of (3) and (4), the follow- 
ing inequality must be satisfied: 

[j - iO + %1 <$3" - i /2  ' (7) 

(We have replaced the integer /~ by i in the 
right-hand side because the intersections with S 
of the orbits making a contour totally lie in the 
strips labelled with the numbers i and j.) Thus, in 
order  for a system to have a countable set of 
simplest non-rough homoclinic contours or sim- 
plest non-rough homoclinic orbits it is necessary 
to satisfy a countable set of inequalities of the 
type (7) with i and j going to infinity. We come 
to the conclusion that 0 and % must be numbers 
allowing "supernormal"  non-homogeneous ap- 
proximations by rational fractions. 

One more  example of this kind is given by 
flows of H r having a countable set of stable 
double-circuit periodic orbits [1,2]. As shown in 
[1,2], a set B s consisting of flows for which the 
invariants 0 and % satisfy a countable set of 
inequalities similar to (7), 

Thus, we may conclude that "good"  arithmeti- 
cal properties of the invariants 0 and z 0 lead to 
"b ad "  properties of the orbits belonging to N. 
On the other  hand, in the case of "bad"  ability 
to approximate 0 and z 0 we may expect that the 
propert ies of the orbits belonging to N may turn 
out  to be "good"  (or at least that "bad"  orbits 
will have multiple circuits). 

Let  us consider a flow X* belonging to the set 
t/*~k=~ be a B mentioned in theorem 2. Let  ~kJk=0 

sequence of a single-circuit periodic orbits of the 
saddle type having non-rough homoclinic orbits 
F~ of the third type. It is obvious that X* 
belongs to the intersection of a countable set of 
smooth Banach submanifolds M,, such that any 
flow belonging to M m has m periodic orbits 
L 1 , . . . ,  L m close to L ~ , . . . ,  L*  together with 
non-rough homoclinic curves F 1 . . . . .  F m of the 
third type where all L k and F k smoothly depends 

on the flow. Let  Ak, 3'k (lYkl > 1 > I/~kl) be the 
multipliers of L k.  It follows from [15,19,20] that 

the quantities 0 k = - I n  I Akl/lnl3'kl are the moduli 
of O-equivalence on M m. (Note that the phase 
space U has a nontrivial fundamental group in 
this case and, from now on, we shall consider the 
equivalence of non-wandering sets with the aid 
of a homeomorphism which is homotopic to the 
identity.) As a result we come to the following 

- i /2  2 Vijl < j - -  iO + % - s~3" < v~j (8) 

is dense in H r. Here  s 1 is some constant de- 
termined by the parameters of the homoclinic 

I 2 ot (I Ill I - i /2  curve, v / j < v i j ,  v i j = O  A 3' ) , a = l , 2 .  For 
such flows, there exists a stable double-circuit 
periodic orbit in U corresponding to a fixed point 
of the m a p  ZlZoZlZJo for any pair (i, j )  satisfy- 
ing the inequalities (8). We note that the only 
necessary condition for the existence of a count- 
able set of simplest non-rough contours is the 
abnormally good ability to approximate 0 and %, 
whereas it is necessary and sufficient to satisfy 
the countable set of inequalities (8) for the exist- 
ence of a countable set of stable double-circuit 
periodic orbits. 

Theorem  3. Flows having a countable set of 
smooth moduli of O-equivalence are dense in 

Hr. 

Definit ion.  Let some Ck-smooth flow ( 1 -  < k-< 
~) on M have a periodic orbit L of saddle type. 
Assume that W S ( L )  and W U ( L )  have a tangency 
along a homoclinic orbit F. Since F is a non- 
rough homoclinic curve, the functions F and G 
appearing in eq. (2) satisfy F(0, 0 ) =  G(0, 0 ) =  0 
and diG(0, O)/Oy i = 0, i = 1, 2 , . . . ,  n for some n 
(1 <-- n <- oo). We say that a homocl inic  tangency is" 
o f  order n < k if O"+IG(O, O ) / O y  n+l 5~0 and that 
a homocl in ic  tangency is o f  indefinite order if 
n = k .  



S.V. Gonchenko et al. / On models with non-rough Poincar~ homoclinic curves 9 

Theorem 4. Flows with homoclinic tangencies of 
any order (both definite and indefinite) are dense 
in H r . 

The proof of this theorem is based on the follow- 
ing lemma. 

Lemma 1. Let O 1, 02, 03 be periodic orbits of 
saddle-type of some three-dimensional flow. Let 
WU(O~) and WS(O2) have a tangency of order n 
and let W~(O2) and W~(O3) have a quadratic 
tangency. Then an arbitrarily small Cr-perturba - 
tion which is localized in a small neighborhood 
of the orbits of tangency can make Wu(O~) and 
W~(O3) have a tangency of order n + 1. 

A proof of this lemma is not given here. We 
note only that it is gometrically evident in the 
case n = 1. Fig. 7 shows how to achieve a cubic 
tangency of WU(Ox) and W~(O3). First, one 
should obtain an intersection of W~(Q~) with 
W~(O2). Then, let us take some connected piece 
K 0 of WU(O~) lying beneath WS(O2) and let K~ 
be the ith iteration of K 0. For some i, K~ does 
not intersect W~(Oa) and lies slightly above it 
(fig. 7b). Furthermore,  with a small perturba- 
tion, K~ can have an intersection with W~(O3) at 
four points (fig. 7c). Then a particular deforma- 
tion from fig. 7b to fig. 7c gives the required 
cubic tangency (figs. 7d, e). 

To prove theorem 4, let us note that flows 
possessing n non-rough homoclinic contours are 
dense in H~ for any n, as follows from the proof 

of theorem 2. Let Cqh, Ci2h,..., CinJn (j, > 
in > " " " > Jl > i l)  be such a family of contours. 
Because of (4), the intersection of Tier ~ with 

0 Crk+ 1 is of saddle type for any sufficiently large k. 
Therefore,  we have successively: a quadratic 
tangency between W"(p~) and WS(pj), trans- 
verse intersections between WU(pj~) and 
W~(pA + 1), WU(ph + 1) and W~(ph + 2) . . . . .  
W~(pi2_l) and W~(p~2), a quadratic tangency 
between W~(p~2) and W~(pj2), transverse inter- 
sections between W~(ph) and W~(ph+~), etc. 
and, finally, a quadratic tangency between 

- - I  

(a) (b) 

"I 
(el (d) 

• u 

V (e) 

Fig. 7. 

W"(Pi, ) and WS(pj,) and a transverse intersec- 
tion between W"(p~,) and W S ( P i l  ) (see fig. 8 for 
the case n = 2). A small perturbation of such a 
contour generates quadratic tangencies between 
WU(pil) and WS(Pi), W"(Pi2) and 
WS(Pi3 ) . . . .  , W"(p~,) and WS(pj,), while the 
intersection of W"(pj,) with WS(p~,) obviously 
remains transverse. Furthermore, using lemma 
1, we can achieve a cubic tangency between 
WU(pil) and WS(Pi3 ), thereafter a quartic 

tangency between W"(p6) and WS(Pi4 ), etc. till 
producing a heteroclinic contour where WU(pq) 
has a tangency of order n + 1 with W~(p~.) while 
W"(pj,) has a transverse intersection with 
W S ( p i ) .  NOW, a homoclinic curve with a tangen- 
cy of the (n + 1)th order can be obtained for p q  

using an arbitrarily small perturbation of that 
contour. 
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/ /:, 

• /~- 

/ <  
(/ 

I- 
Fig. 8. 

Remark .  Systems with any finite order  of homo- 
clinic tangency were studied in [1]. An one- 
pa rame te r  analysis of  bifurcation was carried out 

in [16] for the case of  a quadratic tangency while 
a two-paramete r  analysis was per formed in [25] 
for  the case of a cubic tangency. This last work 
has shown, among other  results, the existence of 
an infinite number  of cusp bifurcation points in 
the pa rame te r  plane. Apparent ly ,  the proximity 

of  cubic tangencies also implies the phenomenon  
[26] of violation of the "na tura l"  bifurcation 

order  in one -pa ramete r  families of plane diffeo- 

morphisms  close to a system with a quadratic 
tangency. 

Homocl inic  tangencies can also lead to bifur- 
cations of periodic orbits with higher de- 
generacies.  

Definition. Let  some Ck-smooth flow ( k - > l )  
have a periodic orbit  L with a multiplier v = - 1  
while the absolute values of the other  multipliers 
remain  different f rom unity. Then a restriction of 
the Poincar6 map  to the central manifold can be 
writ ten in the form 

= y + l . y  n + • • • w h e n  v = 1 ,  

= - y  - l n Y  2 n + 1  + " ' "  when u = - 1 ,  

(where l .  # 0 is the nth Lyapunov value with 
1 -< n - k - 1 when u = 1 and with 

l < - n < - ( k - 1 ) / 2  when v = - l )  or, if all the 
Lyapunov  values are equal to zero, in the form 

~ =  vy + o ( y k ) .  

In the first case, the periodic orbit  L will be 
said to be n-degenerate. Otherwise,  we shall say 

that  the periodic orbit  has a degeneracy o f  indefi- 
nite order. 

L e m m a  2. Let the invariant manifolds of some 
periodic orbit  O in a three-dimensional C k- 

smooth  flow X have a tangency of order n < k 
and let the saddle value be less than unity. 
Consider  an arbitrary generic Ck-smooth n- 

pa rame te r  family M containing X. Then M con- 
tains flows with n-degenerate  periodic orbits with 
v = 1 and flows with [(n + 1) /2]-degenera ted  
periodic orbits with v = - 1 .  

The  following theorem is a corollary of this 
l emma  and of theorem 4. 

Theorem 5. Flows having periodic orbits of any 
order  of degeneracy (definite and indefinite) 
both  with multiplier v = 1 and v = - 1  are dense 

in H r. 

As was noted above,  any family transversal to H r 
intersects some Newhouse regions in which sys- 
tems with non-rough Poincar6 homoclinic orbits 
are dense. It  follows f rom [16] and [21] that 
systems with a countable set of stable periodic 
orbits are dense in these regions #7. From 

theorems 2-5 ,  we infer 

Corollary. Flows having a countable set of non- 
rough homoclinic orbits, a countable set of mod- 
uli of O-equivalence,  non-rough homoclinic or- 

#TThis result can also be derived from the fact that systems 
with homoclinic orbits of the third type are dense in the 
Newhouse regions (theorem 1) and systems with a countable 
set of stable periodic motions are dense in the "pellicle" of 
systems of such type [1,2]. 
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bits of any order  of tangency, and non-rough 
periodic orbits of any order  of degeneracy both 
with multiplier v = 1 and v = - 1  are dense in 
Newhouse regions #s. 

We come to the conclusion that models with 
non-rough Poincar6 homoclinic curves cannot be 
good from the viewpoint of the O-equivalence. 
One can try to weaken the equivalence relation, 
for  instance, to give up the consideration of the 
local behaviour of orbits. This can be done as 
follows. For  every orbit belonging to N, let us 
consider its code, i.e. an infinite sequence of 
symbols 0 and 1 where 0 corresponds to a pas- 
sage of the orbit near L 0 and 1 corresponds to a 
passage of the orbit n e a r / ~ V .  We say that any 
two systems close to X 0 are C-equivalent if the 
sets of their codes coincide. It should be empha- 
sized that we used a basic construction of the 
symbolic dynamics [22], namely: 

(1) the phase space of a smooth dynamical 
system is parti t ioned into a finite number of 
domains; 

(2) a code is established for each orbit accord- 
ing to the sequence of passages in these domains; 

(3) the shift map acting on the set of codes is 
studied. 

This construction is the main tool for studying 
systems with complex dynamics. One of the 
reasons at the basis of this assertion is the fact 
that the relation of C-equivalence that we intro- 
duced above practically coincides with the O- 
equivalence for systems with hyperbolic be- 
haviour and for systems with Lorenz attractors 
after a suitable choice of phase space partition. It 
is also obvious that the relation of C-equivalence 
is very natural when used in applications. For  
instance, the relation of equivalence that we 
introduced above for flows on torus can be con- 
sidered as some variant of C-equivalence. 

If we are interested only in stable motions, we 
may restrict ourselves to the study of the set of 

*SWe can show even more, for instance, that systems with 
a countable set of arbitrarily degenerate periodic and homo- 
clinic orbits are dense in the Newhouse regions. 

codes for the orbits belonging to the attractor. It 
is unknown what the structure of the attractor 
would be in the case of systems with non-rough 
homoclinic curves, but it is clear that all the 
stable periodic orbits necessarily belong to the 
attractor. Accordingly, we introduce the fol- 
lowing 

D e f i n i t i o n .  We say that two flows are C÷-equiva - 
lent if their sets of codes for stable periodic 
orbits coincide. 

The following theorem shows that there do not 
exist good models in Newhouse regions for this 
equivalence relation either. 

T h e o r e m  6. The systems with a countable set of 
moduli  of C-equivalence and the systems with a 
countable set of moduli of C÷-equivalence are 
dense in the Newhouse regions #9. 

Therefore ,  for systems with quasi-attractors, 
even the complete study of the set of stable 
periodic orbits cannot be achieved. How to cor- 
rectly set the problem of studying such systems is 
an extremely difficult question. Probably we 
have to give up the ideology of complete descrip- 
tion and restrict oneself to the study of some 
particular features and properties of a system. 
The properties which are worth studying must 
essentially depend on the specific problem under 
consideration. 

5. On bifurcation of single-circuit periodic 
orbits in systems with indefinite order of 
tangency 

The  following question was considered in the 
aforement ioned pape r  by Robinson [21]: do 
there  exist stable periodic orbits in one-parame- 
ter  families of systems with non-rough homo- 

~'9Here as in theorem 2, we consider that the moduli are 
the quantities O k . 
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clinic orbits formed by a one-sided tangency of 
the manifolds of a periodic orbit of saddle-type? 
The results of [21] guarantee the existence of a 
countable set of intervals of stable periodic orbits 
for  analytic three-dimensional models where 
non-rough homoclinic orbit with one-sided 
tangency of the stable and unstable manifolds 
can be found, for instance, using computer  calcu- 
lations. Use is made of the fact that the tangency 
between the manifolds has always some finite 
order  for analytic flows. This result is well- 
known in the case of quadratic tangency 
[16,23,24]. Moreover ,  a multidimensional case 
was considered in [23,24] and several first bifur- 
cations of period doubling for stable periodic 
orbits have been studied therein. As established 
by us above, infinitely degenerate tangencies are 
also possible in the case of smooth (i.e.,  non- 
analytic) flows. In this connection, we consider 
the existence of stable periodic orbits for multi- 
dimensional systems in the case of one-sided 
tangency without the assumption of finite order  
of  tangency. 

Consider a continuous one-parameter  family 
X ,  of vector fields of class C r, r-> 2, given on a 
(n + 2)-dimensional smooth manifold M. Let  us 
suppose that the following condition is satisfied: 

(1) At  /z = 0 ,  the flow X~ has a non-rough 
homoclinic orbit F 0 associated with a periodic 
orbit  L 0 of saddle type with multipliers 

hi . . . . .  An, 3' such that lag[ < 1 < 13"1 and Ih,3'l < 
1, i = 1  . . . . .  n. 

In this case and for /x  small enough, the system 
X~ has a periodic orbit L/z of saddle type which is 
close to L 0 and which has multipliers hi/z, 3'/x such 
that hi, , --~ hi, 3". --~ 3' when/x --~ 0. Let  S be some 
(n + 1)-dimensional smooth local cross-section 
of L 0. Then the map T0~: S--~ S along the orbits 
of Xg belonging to a neighbourhood of the orbit 
L/z can be written in the following form in some 
appropriate coordinates 

£--  A(l .Qx + f (x ,  y, tz) x ,  

fi = 7,Y + g(x, y, i.t) y ,  

where x E ~ " ,  y E R  1, A(/z)  is a (n × n) matrix 
with eigenvalues /~I/.L, " • • , hn~, f,  g E C r-l, 
f (0 ,  0, /x) = 0, g(0, 0, /z) = 0. The manifolds 
W~oc(L0) O S and WlUc(L0) O S are given by the 
equations y = 0 and x = 0, respectively. For /x 
small enough, we can define the map TI~: S---~ S 
along orbits close to a piece of F 0 and lying 
outside some small neighbourhood of L 0. This 
map - from a small neighbourhood of the homo- 
clinic point P - ( x  = O, y = y ' )  E W~oc(Lo) n S 
onto  another  small neighbourhood of the homo- 
clinic point P+(x = x +, y = 0) E W~o~(Lo) n S - 
can be written in the form 

£ - x + = F ( x , y - y - , I . Q ,  y = G ( x , y - y - , I . t )  

where F(0, 0, 0) = G(0, 0, 0) = 0 and OG(O, O, O) / 
0y = 0 because of condition (1). We suppose that 
the following condition is satisfied: 

(2) A t / x  = 0, the tangency between WS(Lo) and 
WU(L0) along F o is one-sided. 

This condition means that there exist an e > 0 
and a constant a which is equal to either 
+1 or - 1  such that s ignG(0,  e , 0 ) = s i g n  
G ( 0 , - e , 0 )  = a and such that the inequality 
a G(0,  y - y- ,  0) -> 0 is satisfied for [y - y- [  -< e. 
In particular, condition (2) is valid when the 
tangency of WS(Lo) with WU(Lo) along F 0 is of 
even order.  However ,  in general, F 0 may also be 
a non-isolated single-circuit homoclinic curve but 
the case where WS(Lo) and WU(L0) partially 
coincide is not expected. 

We shall also assume that the following condi- 
tion is satisfied: 

(3) When a/z < 0 ,  there exists no single-circuit 
homoclinic curve associated with the orbit L 0 in 
a neighbourhood U(L o U 1"o) and, when a/z > O, 
there is a non-removable single-circuit homo- 
clinic curve in U. 
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Condition (3) means that the curve 
Tl.Wl~oc(L~) n S lies strictly above or below the 
surface W~oc(L.)n S when a/x < 0  and that it 
has points lying on different sides of WI~o~(L~) n 
S when a g  > 0. 

Theorem 7. Let a family X .  satisfy conditions 
(1)-(3)  for Iml-<m0. Then, in the interval 
[-/x0, +/x0], there exists a countable set of inter- 
vals A k = (/x~,/x 2) (/~k---> 0 when k---> ~, i =  1,2) 
such that for /x  ~ A k the system X .  has a stable 

i 
single-circuit periodic orbit. All the P'k are posi- 

i i 
tive if T > 0  but the values /z k and /xk+ 1 have 
opposite signs if y < 0. 
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