On the effect of invisibility of stable periodic orbits at homoclinic bifurcations

S.V. Gonchenko ${ }^{\text {a }}$, I.I. Ovsyannikov ${ }^{\text {b }}$, D. Turaev ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Nizhny Novgorod State University, Institute of Applied Mathematics and Cybernetics, 10 Uljanova St., 603005 Nizhny Novgorod, Russia
${ }^{\mathrm{b}}$ Nizhny Novgorod State University, Department of Radiophysics, 23 Prospekt Gagarina, 603950, Nizhny Novgorod, Russia
${ }^{\text {c }}$ Imperial College, Department of Mathematics, London SW7 2AZ, UK

ARTICLE INFO

Article history:
Received 20 November 2011
Accepted 2 March 2012
Available online 19 March 2012
Communicated by I. Melbourne

Keywords:

Homoclinic tangency
Dynamical chaos
Henon map
Newhouse phenomenon

Abstract

We study bifurcations of a homoclinic tangency to a saddle-focus periodic point. We show that the stability domain for single-round periodic orbits which bifurcate near the homoclinic tangency has a characteristic "comb-like" structure and depends strongly on the saddle value, i.e. on the area-contracting properties of the map at the saddle-focus. In particular, when the map contracts two-dimensional areas, we have a cascade of periodic sinks in any one-parameter family transverse to the bifurcation surface that corresponds to the homoclinic tangency. However, when the area-contraction property is broken (while three-dimensional volumes are still contracted), the cascade of single-round sinks appears with "probability zero" only. Thus, if three-dimensional volumes are contracted, chaos associated with a homoclinic tangency to a saddle-focus is always accompanied by stability windows; however the violation of the area-contraction property can make the stability windows invisible in one-parameter families.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Among nonlocal bifurcations of multidimensional dynamical systems, a special role is played by bifurcations of homoclinic tangencies, i.e. non-transverse intersections of the stable and unstable manifolds of a saddle periodic orbit. Recall that an orbit that lies in the intersection of these manifolds is called homoclinic. When this intersection is transverse, it cannot be removed by any small smooth perturbation of the system. The existence of a transverse homoclinic orbit is an universal criterion of the nontrivial dynamics in the system, i.e. of the dynamical chaos. This is related to the fact that even for an arbitrarily small neighborhood of the closure of the transverse homoclinic orbit the set N of all orbits which lie entirely in this neighborhood (i.e. they never leave it) has a non-trivial structure. Namely, N contains infinitely many periodic, heteroclinic and homoclinic orbits, uncountably many Poisson-stable (non-trivial recurrent) orbits, etc. More precisely, N is a locally-maximal non-trivial hyperbolic set, and admits a complete description by means of symbolic dynamics, see [1].

In the case of non-transverse intersection, i.e. when we deal with a homoclinic tangency, the corresponding problem of the description of the set N becomes much more difficult. In fact, the problem of a "complete description" is unresolvable here. The main

[^0]source of the difficulty is that arbitrarily small perturbations of any system with the simplest, quadratic homoclinic tangency may lead to the creation of new homoclinic tangencies of arbitrarily high orders, and to the birth of periodic orbits of arbitrarily high orders of degeneracy [2-6]. This means that no finite-parameter unfolding can provide a complete picture of bifurcations of even the simplest homoclinic tangency. Therefore, in studying homoclinic tangencies we have to restrict ourselves with the analysis of most general, interesting and important dynamical properties only.

One of such important classical problems in this topic is the problem of the study of homoclinic bifurcations which lead to the birth of stable periodic orbits ("periodic sinks"). This has a special value from the applied point of view, as homoclinic tangencies present ubiquitously in the "strange attractors" observed in dynamical models from a huge variety of applications. While the periodic attractors which are born from the homoclinic tangencies have quite large periods and small attraction basins, their number may be very large, or even infinite [7], and altogether they may change the character of the chaotic dynamics, see more discussions, e.g., in [7,8].

General criteria for the existence/non-existence of stable periodic orbits in systems close to systems with a homoclinic tangency were obtained in [9,10]. The first result in this direction was established by Gavrilov and Shilnikov in [11] for twodimensional maps. Here, the answer depends on the so-called saddle value σ. Recall that the saddle value of a saddle periodic orbit is the absolute value of the product of the nearest to the unit circle stable (less than 1 in absolute values) and unstable (greater than 1 in absolute values) multipliers. Thus, for twodimensional maps, $\sigma=|\lambda \gamma|$, where λ and γ are the stable and,
resp., unstable multipliers of the saddle. It is shown in [11] that if a two-dimensional diffeomorphism has a homoclinic tangency to a saddle periodic point with $\sigma<1$, then stable periodic orbits are born at the bifurcations. Namely, in [11] main bifurcations of periodic orbits were studied for one-parameter families of twodimensional diffeomorphisms such that at a certain parameter value, μ_{0}, there is a quadratic homoclinic tangency which unfolds with a non-zero velocity as the parameter μ varies. It was shown, in particular, that if $\sigma<1$, then an infinite sequence (a "cascade") of disjoint intervals of parameter values for which there exists a stable periodic orbit converges to μ_{0}. Later the result was called a "theorem on a cascade of periodic sinks".

The stable periodic orbits studied by Gavrilov and Shilnikov are "single-round", i.e. they make only one round near the orbit of homoclinic tangency before closing up. If we consider more complicated stable periodic orbits, the multi-round ones, then infinitely many of them may coexist. Namely, for a twodimensional diffeomorphism which has a quadratic homoclinic tangency to a saddle with $\sigma<1$, for any generic one-parameter unfolding there exists a set \mathscr{B} of parameter values for which the system has an infinite set of coexisting multi-round stable periodic orbits. Moreover, this set is dense (and forms a residual subset) in open intervals on the parameter axis $[7,12]$. This effect is called the "Newhouse phenomenon". ${ }^{1}$ A popular conjecture [22] is that this set \mathscr{B}, while known to be residual, still has measure zero. This conjecture cannot be true in full generality: for a dense set of oneparameter families the set \mathscr{B} has positive measure [23]. Still it might happen that \mathscr{B} has measure zero for a residual set of oneparameter families, a progress in this direction see in [24].

For the multi-dimensional case, the existence of the cascade of single-round sinks was proven in [25], under conditions that $\sigma<1$ and that the unstable manifold of the saddle periodic point is onedimensional. It was, however, shown in $[4,15]$ that the violation of these conditions does not necessarily mean that stable periodic orbits cannot be born. Indeed, even if we restrict ourselves to the three-dimensional case and consider a homoclinic tangency to a saddle periodic orbit O with one-dimensional unstable manifold, then two completely different situations are possible in the case $\sigma>1$:
(i) the point O is a saddle, i.e. its multipliers are real;
(ii) the point O is a saddle-focus, i.e. it has multipliers $\lambda_{1,2}=\lambda e^{ \pm i \varphi}$, γ such that $0<\lambda<1<|\gamma|, 0<\varphi<\pi$.

It was shown in $[4,26,10]$ that in the case of a saddle with $\sigma>1$, generically ${ }^{2}$ no stable periodic orbits can exist in a small neighborhood of the orbit of homoclinic tangency, neither for the map itself, nor for any C^{1}-close map.

[^1]

Fig. 1. An example of a homoclinic tangency to a saddle-focus $(2,1)$.
However, in the case of saddle-focus, stable periodic orbits can be born even if $\sigma>1$ (one should then require $\lambda^{2}|\gamma|<1$, the volume-contraction condition). The main bifurcations that lead to the birth of stable periodic points near the homoclinic tangency in this case were studied in [15,10]. Importantly, one needs at least two parameters in order to study these bifurcations even if only single-round periodic orbits are considered. In particular, for the one-parameter unfolding of a homoclinic tangency to a saddlefocus with $\sigma>1$ the cascade of single-round sinks appears with "probability zero" only (see a discussion in [15,10]). In other words, when we have a chaotic behavior associated with a homoclinic tangency to a saddle-focus, transition from $\sigma<1$ to $\sigma>1$ does not destroy the sinks but makes them "invisible".

In this paper we analyze this effect in great detail. Namely, we show that crossing the boundary $\sigma=1$ leads to a dramatic transformation of the bifurcation diagram, especially in the part which corresponds to the bifurcations of single-round stable periodic orbits. One can get the idea of the structure of the bifurcation diagram from Figs. 2-5, the exact statements are given by Theorems 1 and 2.

2. Statement of the problem and main results

Consider a smooth three-parameter family of C^{r}-smooth, $r \geq 3$, diffeomorphisms f_{v} of an m-dimensional manifold, $m \geq 3$. Here we denote the vector of control parameters as $v=(\mu, \sigma, \varphi)$, where μ varies in a small neighborhood of zero, and φ and σ run some compact intervals in $(0, \pi)$ and $R \backslash 0$, respectively. We assume the following conditions are satisfied.
A. For all ν, the diffeomorphism f_{v} has a periodic point O with multipliers $\gamma, \lambda_{1}, \ldots, \lambda_{m-1}$ such that $\max _{i \geq 3}\left|\lambda_{i}\right|<\left|\lambda_{2}\right|=$ $\left|\lambda_{1}\right|=\lambda<1<|\gamma|$. The stable leading multipliers $\lambda_{1,2}$ form a complex conjugate pair, such that $\lambda_{1,2}=\lambda e^{ \pm i \varphi}$ and $\lambda \gamma=\sigma$, i.e. the control parameter σ is chosen such that its absolute value equals the saddle value of O and the parameter φ is the argument of the complex leading eigenvalues of O.
B. $\lambda^{2}|\gamma|<1$ for all v under consideration.
C. The interior of the range of variation of σ includes the value $\sigma_{0}=1$ (in the case $\gamma>0$) or $\sigma_{0}=-1$ (if $\gamma<0$).
D. At $\mu=0$ the stable W^{s} and unstable W^{u} invariant manifolds of the point O have a quadratic tangency at the points of a homoclinic orbit Γ (see Fig. 1). As μ changes, the tangency splits with non-zero velocity. In other words, the control parameter μ measures the distance between the manifolds $W^{s}\left(O_{v}\right)$ and $W^{u}\left(O_{\nu}\right)$ near one of the points of the former homoclinic orbit Γ (for an exact definition see in Section 3).

Condition A implies that $\operatorname{dim} W^{u}(0)=1, \operatorname{dim} W^{s}(0)=m-1$, and that among the stable multipliers λ_{i} (which correspond to the eigendirections tangent to $W^{s}(0)$) those largest in the absolute

Fig. 2. The comb-like stability domain S_{k} for the fixed point of the map $T^{(k)}$ in the space of three parameters (μ, σ, φ).
value make a complex-conjugate pair, so the point O is a saddlefocus of type (2,1), in the terminology of [10]. It also follows that 0 depends smoothly on the parameters v. Condition B means that the product of any three different multipliers of O is less than 1 in absolute value, so the map f_{v} contracts three-dimensional volumes near the orbit of 0 . Condition D implies that the family f_{v} intersects transversely, at $\mu=0$, a codimension- 1 bifurcation surface \mathscr{H} in the space of m-dimensional C^{r}-diffeomorphisms, which is composed by diffeomorphisms with a quadratic homoclinic tangency to a saddle-focus (2, 1). According to a criterion from [9,10], once conditions A, B and D are satisfied, stable periodic orbits can be born at bifurcations of f_{v}.

We will focus on the bifurcations of single-round periodic orbits, which are defined as follows. Let V be a sufficiently small neighborhood of the set $O \cup \Gamma$. Evidently, V is a union of a small neighborhood U of the orbit of the point O and the finite number of small neighborhoods of those points of Γ which do not belong to U. A periodic orbit from V is called single-round, if it visits every connected component of the set $V \backslash U$ exactly once (namely it may stay for an unbounded number of iterations inside U, then it leaves U and, after making a fixed finite number of iterations outside U, closes up immediately as it enters U again).

The way the single-round orbits bifurcate depends strongly on the saddle value, namely on whether $|\sigma|$ is larger or smaller than 1. The saddle value determines the area-contraction properties of f_{v} : at $|\sigma|<1$ the map contracts any two-dimensional area near the orbit of O, so the dynamics and bifurcations are effectively onedimensional $[26,10]$, while at $|\sigma|>1$ this property is violated, which leads to drastic changes in dynamics. Thus, condition C means the family f_{v} undergoes a jump in the "effective dimension" of its dynamics (cf. [26,10]).

The choice of φ as the third parameter is due to the fact $[9,30]$ that φ is an Ω-modulus for the diffeomorphisms from \mathscr{H} at $|\sigma|>$ 1, i.e. no two diffeomorphisms from $\mathcal{H} \cap\{|\sigma|>1\}$ can be topologically conjugate on the set of nonwandering orbits, if the corresponding values of φ are different. By the very definition of Ω-modulus, any change of its value leads to a change in the set of nonwandering orbits, i.e. to bifurcations of periodic orbits, homoclinic ones, etc. Indeed, the changes in φ are known $[9,30]$ to lead to the bifurcations, at $|\sigma|>1$, of single-round periodic orbits even if the homoclinic tangency does not split. Therefore, as we want to analyze bifurcations of the single-round orbits, we must take φ as an additional control parameter, cf. [15,10].

In the case of dimension m higher than 3, we need to impose more restrictions on the diffeomorphisms f_{v}. Namely, we assume that at $\mu=0$ the following conditions are satisfied by f_{v} for all values of the parameters (σ, φ) under consideration.
E. If $m>3$, then the extended unstable manifold $W^{u e}(0)$ is transverse to the stable manifold at the points of Γ, and the unstable manifold is not tangent at the points of Γ to the leaves

Fig. 3. The boundary of the stability domain in more detail.

Fig. 4. (a) Section $|\sigma|<1$. (b) section $|\sigma|>1$-the zone between L_{k}^{+}and L_{k}^{-}is divided by $L_{k}^{\omega \omega}$ and $P_{k}^{ \pm}$into the region where the first-return map $T^{(k)}$ has a stable fixed point (along with a saddle fixed point with a one-dimensional unstable manifold) and the region where $T^{(k)}$ has a pair of saddle fixed points, one with a one-dimensional unstable manifold and the other with a two-dimensional one.
of the strong stable foliation of the stable manifold which pass through these points.
F. If $m>3$, then the homoclinic orbit Γ does not lie in the strong stable submanifold $W^{s s}$ of the stable manifold.

The strong-stable manifold of condition F is a uniquely defined smooth invariant ($m-3$)-dimensional manifold which is tangent at O to the eigendirections that correspond to the multipliers $\lambda_{3}, \ldots, \lambda_{m-1}$ (i.e. those strictly smaller than λ in absolute values). The extended unstable manifold $W^{u e}$ of condition E is a smooth three-dimensional invariant manifold which is tangent at O to the eigendirections that correspond to the multipliers $\gamma, \lambda_{1}, \lambda_{2}$. This manifold is not unique, however: it contains W^{u} and any two extended unstable manifolds are tangent to each other at every point of W^{u}. The strong-stable foliation is a uniquely defined smooth invariant foliation of W^{s} by $(m-3)$-dimensional leaves transverse (in a small neighborhood of O) to $W_{l o c}^{u e}$; the manifold $W^{5 s}$ is the leaf of this foliation which passes through 0 . For more discussions on the extended unstable manifold and strong-stable foliation see e.g. in [31]. Conditions E and F are written in a coordinate form in Section 3, formulas (12), (14) and (11).

Note that condition E is slightly weaker than the condition of transversality of $W^{\text {ue }}$ to the strong-stable foliation, which, along with condition F , would guarantee $[9,26,31]$ the existence of a three-dimensional, stable, and persistent to small smooth perturbations, invariant manifold which is transverse to $W^{s s}$ at O and which contains all orbits that stay entirely in a small neighborhood of Γ. However, even in the case where such an invariant manifold exists, we cannot immediately reduce the dimension of the problem by considering the reduction of the map

Fig. 5. The stability domains for different single-round periodic orbits at $|\sigma|>1$. Two auxiliary curves $C_{k}^{1}: \mu=-K_{1} \lambda^{k} \cos \left(k \varphi+\theta_{1}\right)$ and $C_{k}^{2}: \mu=K_{2} \lambda^{k} \cos \left(k \varphi+\theta_{2}\right)$ are also shown, which provide a mnemonic rule for determining the positions of the domains S_{k}. Namely, the domains S_{k} are centered around the points ($\varphi=\varphi^{*}, \mu=\mu^{*}$) such that $\cos \left(k \varphi^{*}+\theta_{2}\right)=0$ and $\mu^{*}=-K_{1} \cos \left(k \varphi^{*}+\theta_{1}\right)$. The same rule holds also for the domains S_{l} and S_{m} (one may draw the corresponding curves $C_{l}^{1,2}$ and $C_{m}^{1,2}$ and find the approximate positions of the domains S_{l} and S_{m} geometrically).

Fig. 6. Geometry of the first return map $T^{(k)}=T_{1} T_{0}^{k}$.
to this manifold, because the manifold is only C^{1}, in general, and we need more smoothness in our computations (for example, it is difficult to speak about quadratic tangency on the manifold which is not C^{2}). Thus, while the results here do not depend on m, we have to perform m-dimensional calculations. ${ }^{3}$

Now we may formulate the main result of the paper. Note that any point of a single-round periodic orbit can be obtained as a fixed point of the corresponding first return map defined by the orbits of the diffeomorphism f_{v} as follows. Let q be the period of the point O, i.e. $f^{q} O=O$. Define the so-called "local map" T_{0} as $\left.T_{0}(\nu) \equiv f_{v}^{q}\right|_{U_{0}}$, where U_{0} is a small neighborhood of O_{v} (the connected component of U which contains the point 0). In order to define the "global map" T_{1}, note that the homoclinic orbit Γ tends to the orbit of O both at forward and backward iterations of f. Thus, in U_{0} there are two points, $M^{+} \in W_{l o c}^{s}(O)$ and $M^{-} \in W_{l o c}^{u}(O)$, such that at $\mu=0$ they both belong to Γ, all the forward iterations of M^{+} by T_{0} and all the backward iterations of M^{-}by T_{0} stay in U_{0}, and $T_{0} M^{-} \notin U_{0}, T_{0}^{-1} M^{+} \notin U_{0}$. Since M^{-}and M^{+}are points of the same orbit Γ, there exists $n>0$ such that $M^{+}=f_{v}^{n} M^{-}$at $\mu=0$. Then, the global map $T_{1}(\nu)$ is defined as a restriction of f_{v}^{n} to a small neighborhood of M^{-}(see Fig. 6). By the construction, if M is a point of a single-round periodic orbit near M^{+}(i.e. it is the point where this orbit first enters U_{0}), then M is a fixed point of the first-return $\operatorname{map} T^{(k)}(\nu):=T_{1} T_{0}^{k}$, for some positive integer k.

Theorems 1 and 2 below provide a complete description of the stability domain for single-round periodic orbits that may emerge in the V at the bifurcations of the diffeomorphisms f_{v}.

[^2]Theorem 1 (Bifurcations of Single-Round Periodic Orbits). For all sufficiently small μ, for every sufficiently large k, in the space of the parameters $v=(\mu, \sigma, \varphi)$ there exist bifurcation surfaces L_{k}^{+}, L_{k}^{-}and L_{k}^{ω} such that the map $T^{(k)}$ has a fixed point with multiplier +1 at $v \in L_{k}^{+}$, a fixed point with multiplier -1 at $v \in L_{k}^{-}$, and a fixed point with multipliers $e^{ \pm i \psi}$, where $0<\psi<\pi$, at $v \in L_{k}^{\omega}$. The equations of these surfaces are

$$
\begin{aligned}
& L_{k}^{+}: \mu= \lambda^{k} \xi_{k}+\frac{1}{4 d} \lambda^{2 k}\left(\sigma^{-k}+K_{2} \cos \left(k \varphi+\theta_{2}\right)\right)^{2} \\
&+O\left(\delta^{k}\left(\gamma^{-2 k}+\lambda^{2 k}\right)\right) \\
& L_{k}^{-}: \mu= \lambda^{k} \xi_{k}-\frac{3}{4 d} \lambda^{2 k}\left(\sigma^{-k}+K_{2} \cos \left(k \varphi+\theta_{2}\right)\right)^{2} \\
&+O\left(\delta^{k}\left(\gamma^{-2 k}+\lambda^{2 k}\right)\right) \\
& L_{k}^{\omega}: K_{2} \cos \left(k \varphi+\theta_{2}\right) \sigma^{k}=1+O\left(\delta^{k}\right),
\end{aligned}
$$

where
$\xi_{k}(\sigma, \varphi)=\sigma^{-k} y^{-}-K_{1} \cos \left(k \varphi+\theta_{1}\right)+O\left(\delta^{k}\right)$
is the same for L_{k}^{+}and L_{k}^{-}; the coefficients $K_{1,2}, y^{-}, d, \theta_{1,2}, \lambda$ and γ are independent of k and depend on v smoothly, and δ is a constant less than 1.

It follows from (1) that infinitely many surfaces L_{k}^{ω} exist in the region $|\sigma|>1$ and they disappear (one by one) in the region $|\sigma|<1$. The surface L_{k}^{ω} is bounded by the two lines, P_{k}^{++}and P_{k}^{--}, where it adjoins to L_{k}^{+}and L_{k}^{-}, respectively. At $v \in P_{k}^{++}$the fixed point of $T^{(k)}$ has a double multiplier +1 , and at $v \in P_{k}^{--}$it has a double multiplier -1 . The surfaces L_{k}^{+}and L_{k}^{-}touch at the curve $P_{k}^{ \pm}$which corresponds to a pair of multipliers $(1,-1)$. These curves are given by the equations
$P_{k}^{++}:\left\{\begin{array}{l}\mu=\lambda^{k} \xi_{k}+\frac{K_{2}^{2}}{d} \lambda^{2 k}\left(\cos ^{2}\left(k \varphi+\theta_{2}\right)+O\left(\delta^{k}\right)\right) \\ K_{2} \cos \left(k \varphi+\theta_{2}\right) \sigma^{k}=1+O\left(\delta^{k}\right)\end{array}\right.$
$P_{k}^{--}:\left\{\begin{array}{l}\mu=\lambda^{k} \xi_{k}-\frac{3 K_{2}^{2}}{d} \lambda^{2 k}\left(\cos ^{2}\left(k \varphi+\theta_{2}\right)+O\left(\delta^{k}\right)\right) \\ K_{2} \cos \left(k \varphi+\theta_{2}\right) \sigma^{k}=1+O\left(\delta^{k}\right)\end{array}\right.$
$P_{k}^{ \pm}:\left\{\begin{array}{l}\mu=\lambda^{k} \xi_{k}+O\left(\lambda^{2 k} \delta^{k}\right) \\ K_{2} \cos \left(k \varphi+\theta_{2}\right) \sigma^{k}=-1+O\left(\delta^{k}\right) .\end{array}\right.$
It is seen from here that the curves P_{k}^{++}, P_{k}^{--}and $P_{k}^{ \pm}$stay in the region $|\sigma|>1+o_{k \rightarrow \infty}(1)$. As follows from (1)-(3), the surface L_{k}^{ω} and lines P_{k}^{++}, P_{k}^{--}and $P_{k}^{ \pm}$consist each of $\sim k \frac{\Delta \varphi}{\pi}$ connected components (where $\Delta \varphi$ is the range of the values of φ under consideration).

In Fig. 2, an illustration for the bifurcation set of fixed points of the map $T^{(k)}$ is shown. The surfaces L_{k}^{+}, L_{k}^{-}and L_{k}^{ω} correspond to codimension 1 bifurcations (fold, flip and Andronov-Hopf, respectively) and lines P_{k}^{++}, P_{k}^{--}and $P_{k}^{ \pm}$correspond to codimension 2 bifurcations. These bifurcations can lead to the birth of the stable fixed point for $T^{(k)}$ (i.e. a single-round periodic attractor of period $k q+n$). Therefore, parts of these bifurcation surfaces and lines form boundaries of the stability region for the map $T^{(k)}$. Indeed, the following result holds.

Theorem 2 (Stability Domains for Single-Round Periodic Orbits). The stability domain S_{k} of the periodic orbit under consideration (i.e. the region of parameters v for which the map $T^{(k)}$ has a stable fixed point) is bounded by the surfaces $L_{k}^{\omega}, L_{k}^{+s}$ and L_{k}^{-s}, where L_{k}^{+s} and L_{k}^{-s} are the subsets of L_{k}^{+}and L_{k}^{-}which are bounded by $P_{k}^{ \pm}$and P_{k}^{++}or P_{k}^{--} (respectively).

According to Theorem 2, the stability region S_{k} has a "comblike" structure, see Fig. 3 where boundaries of S_{k} are shown (compare with Fig. 2).

At $|\sigma|<1$, the region S_{k} is bounded only by the surfaces L_{k}^{+} and L_{k}^{-}and looks like a flat layer of thickness of order $\gamma^{-2 k}$ around the plane $\mu=\gamma^{-k} y^{-}$. Upon crossing to $|\sigma|>1$, the structure of $S_{k} \cap\{\sigma=$ const $\}$ changes: at every sufficiently large k this set consists of curvilinear triangles with the size of order $\gamma^{-2 k}$ in the μ-direction and the size of order $|\lambda \gamma|^{-k}$ in the φ-direction, repeated periodically (with period $2 \pi / k$) along the φ-axis, see Fig. 4.

In Fig. 5, stability regions S_{k}, S_{l} and $S_{m}(k<l<m)$ on a plane of constant σ with $|\sigma|>1$ are shown, corresponding to different single-round orbits.

The fact that at $|\sigma|>1$ the size of the individual stability triangles in the φ-direction tends to zero exponentially as $k \rightarrow$ $+\infty$ can lead to a perceived disappearance (in one-parameter families) of the infinite cascades of single-round sinks. Indeed, take any smooth one-parameter family F_{μ} of C^{r}-diffeomorphisms, such that at $\mu=0$ the diffeomorphism has a quadratic homoclinic tangency to a saddle-focus $(2,1)$ satisfying conditions B, E and F and, as μ varies, the tangency is split with non-zero velocity. Let φ_{0}, θ_{20} and σ_{0} be the values of φ, θ_{2} and $\sigma=\lambda \gamma$ at $\mu=0$. We assume $\left|\sigma_{0}\right|>1$; in particular $\lambda^{k} \gg|\gamma|^{-k}$ at large k. Since the family is smooth, we have $\varphi(\mu)=\varphi_{0}+O(\mu), \sigma(\mu)=\sigma_{0}+$ $O(\mu), \theta_{2}(\mu)=\theta_{20}+O(\mu)$. Thus, by (1), when the family intersects the zone between the surfaces L_{k}^{+}and L_{k}^{-}, we have $\varphi=\varphi_{0}+O\left(\lambda^{k}\right)$, $\sigma=\sigma_{0}+O\left(\lambda^{k}\right), \theta_{2}=\theta_{20}+O\left(\lambda^{k}\right)$. Now, we may see from (1), (3) that there exists a positive constant $\delta<1$ such that, for each sufficiently large k, if
$K_{2}\left|\cos \left(k \varphi_{0}+\theta_{20}\right)\right|<\left|\sigma_{0}\right|^{-k}\left(1-\delta^{k}\right)$,
then the family F_{μ} intersects the stability domain S_{k} of the fixed point of the first-return map $T^{(k)}$, and if
$K_{2}\left|\cos \left(k \varphi_{0}+\theta_{20}\right)\right|>\left|\sigma_{0}\right|^{-k}\left(1+\delta^{k}\right)$,
then F_{μ} does not intersect S_{k}.
We say that the family F_{μ} exhibits an infinite cascade of singleround sinks if there is a sequence of converging to $\mu=0$ intervals of μ for which F_{μ} has a single-round stable periodic orbit. By (4) and (5) we obtain the following.

Theorem 3. There exists $\delta<1$ such that the existence of an infinite sequence of pairs of integers (j, k) such that
$\left|j-k \frac{\varphi_{0}}{2 \pi}-\frac{\theta_{20}}{2 \pi} \pm \frac{1}{4}\right|<\frac{1}{2 \pi K_{2}}\left|\sigma_{0}\right|^{-k}\left(1+\delta^{k}\right)$
is a necessary condition for the family F_{μ} to exhibit an infinite cascade of single-round sinks. The existence of an infinite sequence of pairs of integers (j, k) such that
$\left|j-k \frac{\varphi_{0}}{2 \pi}-\frac{\theta_{20}}{2 \pi} \pm \frac{1}{4}\right|<\frac{1}{2 \pi K_{2}}\left|\sigma_{0}\right|^{-k}\left(1-\delta^{k}\right)$
is a sufficient condition.
It is well known [33] (see also [34]) that inequality (7) is satisfied by infinitely many integer pairs (j, k) for a dense set of values of φ_{0}. Thus, a dense set of families F_{μ} exhibits the infinite cascade of single-round sinks. Since an intersection of F_{μ} with an open stability domain S_{k} is an open property, it follows that the set of families with an infinite cascade of single-round sinks is, in fact, residual (i.e. it is an intersection of countably many open and dense sets). However, it is also well known [33,34] that the values of φ_{0} and θ_{20} which satisfy inequality (6) for infinitely many integer pairs (j, k) compose a set of zero measure in the (φ, θ)-plane (this is a set of (φ, θ) which admit abnormally good, exponential nonhomogeneous approximations by rational fractions: at such φ and θ the pair of straight lines $j=k \frac{\varphi}{2 \pi}+\frac{\theta_{2}}{2 \pi} \pm \frac{1}{4}$ in the $(j, k)-$ plane comes to the distance of order $|\sigma|^{-k}$ to the points of the integer-valued lattice). Thus, in one-parameter families transverse to the bifurcation surface of systems with a homoclinic tangency to a saddle-focus with $|\sigma|>1$, the cascade of infinitely many single-round sinks appears with zero probability ${ }^{4}$ (in spite of being a generic phenomenon). Of course, as one can see e.g. from Figs. 4, 5, in any two-parameter family parametrized by μ and φ the infinite sequences of stability domains are always present, provided $\lambda^{2}|\gamma|<1$, see also $[15,10]$.

3. Local, global, and first-return maps, and bifurcations in the Henon map

In this section we prove Theorem 1. Recall [34,31,10], that in U_{0} one can introduce C^{r}-coordinates (x, u, y) (where $x \in R^{2}, u \in$ $R^{m-3}, y \in R^{1}$) such that the local map $T_{0}(\nu)$ for all μ close to 0 takes the following form
$\bar{x}=\lambda R_{\varphi} x+O\left(\left(x^{2}+\|u\|\right)|y|\right)$,
$\bar{u}=B u+O\left(x^{2}+u^{2}+\|u\||y|\right)$,
$\bar{y}=\gamma y+O\left((\|x\|+\|u\|) y^{2}\right)$,
where $R_{\varphi}=\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right)$ is the rotation matrix to the angle φ, and B is a matrix with the eigenvalues $\lambda_{3}, \ldots, \lambda_{m}$, i.e. its spectral radius is strictly less than λ. Note that the coordinate transformation which brings the map to form (8) depends smoothly on parameters. Namely, the transformation itself and its derivatives with respect to coordinates up to the second order are C^{r-2} with respect to the parameters [10]. As our map is at least C^{3}, it follows that in the new coordinates the map T_{0} and its derivatives up to the second order depend smoothly on v (e.g. λ, γ and B are smooth functions of v). The same holds true for the map T_{1} which we discuss below.

Formula (8) is called "the main normal form" for a smooth map near a saddle fixed point. It is very convenient for the study of homoclinic bifurcations. In particular, in these coordinates, the local stable and unstable manifolds of the point O_{v} are straightened: they are given by the equations $W_{l o c}^{s}\left(O_{v}\right):\{y=0\}$ and $W_{l o c}^{u}\left(O_{v}\right):\{x=0, u=0\}$.

[^3]At $\mu=0$ both $W_{\text {loc }}^{s}$ and $W_{\text {loc }}^{u}$ contain infinitely many points of the homoclinic orbit Γ. We take a pair of such points, $M^{+}=$ $\left(x^{+}, u^{+}, 0\right) \in W_{\text {loc }}^{s}$ and $M^{-}=\left(0,0, y^{-}\right) \in W_{\text {loc }}^{u}$, so that $M^{+}=$ $f^{n}\left(M^{-}\right)$for some $n>0$ at $v=v_{0}$. Let Π^{+}and Π^{-}be some small neighborhoods of the points M^{+}and M^{-}, respectively. The global map $T_{1}(\nu): \Pi^{-} \rightarrow \Pi^{+}$(defined as $\left.T_{1}=\left.f_{v}^{n}\right|_{\Pi^{-}}\right)$is written in the form
$\bar{x}-x^{+}=F\left(x, u, y-y^{-}, v\right)$,
$\bar{u}-u^{+}=H\left(x, u, y-y^{-}, v\right)$,
$\bar{y}=G\left(x, u, y-y^{-}, v\right)$,
where $F(0,0,0, \mu=0)=0, G(0,0,0, \mu=0)=0, H(0$, $0,0, \mu=0)=0$.

In coordinates of (8) we have
$G_{y}^{\prime}(0, \mu=0)=0, \quad G_{y y}^{\prime \prime}:=2 d \neq 0$.
Indeed, these relations mean that the curve
$\bar{x}-x^{+}=F\left(0,0, y-y^{-}, \mu=0\right)$,
$\bar{u}-u^{+}=H\left(0,0, y-y^{-}, \mu=0\right)$,
$\bar{y}=G\left(0,0, y-y^{-}, \mu=0\right)$,
i.e. $T_{1}\left(W_{\text {loc }}^{u}\right)$ at $\mu=0$, has a quadratic tangency with the plane $W_{\text {loc }}^{s}: \bar{y}=0$ at $(\bar{x}, \bar{u})=\left(x^{+}, u^{+}\right)$, which is our condition D .

Now we can write the following Taylor expansion for the functions F, G and H :

$$
\begin{align*}
F\left(x, u, y-y^{-}, v\right)= & a x+\alpha u+b^{\prime}\left(y-y^{-}\right) \\
& +O\left(x^{2}+u^{2}+\left(y-y^{-}\right)^{2}\right), \\
G\left(x, u, y-y^{-}, v\right)= & \mu+c x+\beta u+d\left(y-y^{-}\right)^{2} \\
& +O\left(x^{2}+u^{2}+(\|x\|+\|u\|)\right. \tag{10}\\
& \left.\times\left|y-y^{-}\right|+\left(y-y^{-}\right)^{3}\right),
\end{align*}
$$

$$
\begin{aligned}
H\left(x, u, y-y^{-}, v\right)= & \tilde{a} x+\tilde{\alpha} u+\tilde{b}\left(y-y^{-}\right) \\
& +O\left(x^{2}+u^{2}+\left(y-y^{-}\right)^{2}\right)
\end{aligned}
$$

note that the coefficients here are matrices or vectors, e.g. $a=$ $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right), b^{\prime}=\left(b_{1}, b_{2}\right)^{\top}, c=\left(c_{1}, c_{2}\right)$. We should also note that all the coefficients in (10) depend, in general, on the parameters. Namely, using that $d \neq 0$, we choose for every μ close to zero a (uniquely defined) value of y^{-}such that $G_{y}^{\prime}=0$ at $y=y^{-}$, i.e. the linear in $\left(y-y^{-}\right)$term vanishes in the expansion of G. Since such chosen y^{-}depends (C^{r-2}-smoothly) on v, all the coefficients of the Taylor expansion at $y=y^{-}$are also functions of v (we expand up to the second order, so the corresponding coefficients are C^{r-2} in ν).

As it is seen from (10), we denote the distance between the curve $T_{1} W_{\text {loc }}^{u}$ at $y=y^{-}$and $W_{\text {loc }}^{s}$ as μ. We take μ as the first of our control parameters v (one can always make the first component of the vector v equal to μ by a smooth transformation in the space of parameters, provided our family is transverse to \mathscr{H}).

One may show (see $[31,10]$) that when the map T_{0} is brought to the form (8), the extended unstable manifold $W_{l o c}^{u e}$ is tangent to $u=0$ everywhere on $W_{l o c}^{u}$ and, in particular, at the point M^{-}; the leaves of the strong-stable foliation are given by $\{x=$ const, $y=$ $0\}$, and the strong-stable manifold $W_{l o c}^{s s}$ is $\{x=0, y=0\}$. Thus, condition F (i.e. $M^{+} \notin W_{\text {loc }}^{\text {ss }}$) can be written as
$x^{+} \neq 0$.
Condition E reads as the transversality of $T_{1}\{u=0\}$ to $\bar{y}=0$ at M^{+} and of the absence of tangency (at M^{+}) between $T_{1}\{x=0, u=0\}$ to ($\bar{y}=0, \bar{x}=x^{+}$). By (9), (10), this is equivalent to
$c_{1}^{2}+c_{2}^{2} \neq 0$,
and
$b_{1}^{2}+b_{2}^{2} \neq 0$.
By a linear rotation of coordinates $x=\left(x_{1}, x_{2}\right)$, one can always make the coefficient b_{2} vanish. Note that any linear rotation in the (x_{1}, x_{2}) coordinates does not change the form (8) of the local map. Therefore, without loss of generality, we can assume that

$$
\begin{equation*}
b_{2} \equiv 0, \quad b_{1}=b \neq 0 \tag{14}
\end{equation*}
$$

for all μ close to zero.
The advantage of the main normal form (8) is that we have good formulas for its iterations, uniform for arbitrarily large k. Namely, there exist functions $\rho_{1 k}, \rho_{2 k}, \rho_{3 k}$ such that two points $\left(x_{0}, u_{0}, y_{0}\right)$ and $\left(x_{k}, u_{k}, y_{k}\right)$ from U_{0} are related by $\left(x_{k}, u_{k}, y_{k}\right)=T_{0}^{k}\left(x_{0}, u_{0}, y_{0}\right)$ if and only if
$x_{k}=\lambda^{k} R_{k \varphi} x_{0}+\hat{\lambda}^{k} \rho_{1 k}\left(x_{0}, u_{0}, y_{k}, \nu\right)$,
$u_{k}=\hat{\lambda}^{k} \rho_{2 k}\left(x_{0}, u_{0}, y_{k}, \nu\right)$
$y_{0}=\gamma^{-k} y_{k}+\hat{\gamma}^{-k} \rho_{3 k}\left(x_{0}, u_{0}, y_{k}, \nu\right)$,
where $\hat{\gamma}$ and $\hat{\lambda}$ are sufficiently close to $|\gamma|$ and, resp., λ, and $|\gamma|<$ $\delta \hat{\gamma}, \hat{\lambda}<\delta \lambda$ for some constant $\delta<1$, the same for all v under consideration, and, as $k \rightarrow+\infty$, the functions ρ_{k} tend to zero, uniformly along with their derivatives up to the order $(r-2)$ [34,31,10].

Formula (15) represents the maps T_{0}^{k} in the so-called "crossform" (as a relation between (x_{0}, u_{0}, y_{k}) and (x_{k}, u_{k}, y_{0})). As we see, in the chosen coordinates, the cross-form for arbitrarily large iterations of T_{0} is uniformly close to that of a linear map. Thus, we do not rely on unnecessary and restrictive linearizability assumptions which are made some times in order to simplify the study of homoclinic bifurcations.

Using formulas (9)-(15) we derive the following.
Lemma 1 (Rescaling Lemma). Let f_{v} be a three parameter family of the diffeomorphisms, as described in Section 2. Then the first-return map $T^{(k)}(v)$ can be brought, by a smooth change of the coordinates and parameters, to the following form
$\bar{X}_{1}=Y+O\left(\delta^{k}\right), \quad\left(\bar{X}_{2}, \bar{U}\right)=O\left(\delta^{k}\right)$,
$\bar{Y}=M_{1}-M_{2} X_{1}-Y^{2}+O\left(\delta^{k}\right)$,
where the new coordinates $\left(X_{1}, X_{2}, U, Y\right)$ can take arbitrary finite values as k grows. The $O\left(\delta^{k}\right)$-terms are functions of $\left(X_{1}, X_{2}, U, Y\right.$, M_{1}, M_{2}) which exponentially tend to zero, along with the derivatives up to the order $(r-2)$, as $k \rightarrow+\infty$. The new parameters $\left(M_{1}, M_{2}\right)$ are related to the original parameters v as follows:

$$
\begin{align*}
M_{1}= & -d \gamma^{2 k}\left(\mu-\gamma^{-k} y^{-}+K_{1} \lambda^{k} \cos \left(k \varphi+\theta_{1}\right)\right. \\
& \left.+O\left(\hat{\lambda}^{k}+\hat{\gamma}^{-k}\right)\right) \tag{17}\\
M_{2}= & \gamma^{k}\left(\lambda^{k} K_{2} \cos \left(k \varphi+\theta_{2}\right)+O\left(\hat{\lambda}^{k}\right)\right)
\end{align*}
$$

where
$K_{1}=\sqrt{\left(c_{1}^{2}+c_{2}^{2}\right)\left(x_{1}^{+2}+x_{2}^{+2}\right)}$,
$\sin \theta_{1}=\frac{c_{2} x_{1}^{+}-c_{1} x_{2}^{+}}{K_{1}}, \quad \cos \theta_{1}=\frac{c_{1} x_{1}^{+}+c_{2} x_{2}^{+}}{K_{1}}$,
$K_{2}=b \sqrt{c_{1}^{2}+c_{2}^{2}}, \quad \cos \theta_{2}=-\frac{c_{1}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}$,
$\sin \theta_{2}=\frac{c_{2}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}$.

Fig. 7. Elements of the bifurcation diagram (a) for the Henon map (22), (b) for the first-return map $T^{(k)}$.

Proof. By virtue of (9)-(15), we can write the map $T^{(k)}=T_{1} T_{0}^{k}$ in the following form:

$$
\begin{align*}
& \bar{x}_{0}-x^{+}=\lambda^{k} a R_{k \varphi} x_{0}+\binom{b}{0}\left(y_{k}-y^{-}\right)+O\left(\hat{\lambda}^{k}+\left(y_{k}-y^{-}\right)^{2}\right) \\
& \bar{u}_{0}-u^{+}=\lambda^{k} \tilde{a} R_{k \varphi} x_{0}+\tilde{b}\left(y_{k}-y^{-}\right)+O\left(\hat{\lambda}^{k}+\left(y_{k}-y^{-}\right)^{2}\right) \\
& \gamma^{-k} \bar{y}_{k}+\hat{\gamma}^{-k} \rho_{3 k}\left(\bar{x}_{0}, \bar{u}_{0}, \bar{y}_{k}, v\right) \tag{19}\\
& \quad=\mu+\lambda^{k} c R_{k \varphi} x_{0}+d\left(y_{k}-y^{-}\right)^{2} \\
& \quad+O\left(\hat{\lambda}^{k}+\lambda^{k}\left|y_{k}-y^{-}\right|+\left|y_{k}-y^{-}\right|^{3}\right)
\end{align*}
$$

Let us shift the coordinates: $x=x_{0}-x^{+}+\eta_{k 1}, u=u_{0}-u^{+}+\eta_{k 2}$, $y=y_{k}-y^{-}+\eta_{k 3}$ (where $\eta_{k i}=O\left(\lambda^{k}\right)$ are some constants, $i=1,2,3$), so that the constant terms in the first and second equations of (19) vanish along with the linear in y term in the third equation. Then system (19) takes the following form:

$$
\begin{align*}
& \bar{x}_{1}=b y+O\left(\lambda^{k}\|x, u, y\|+y^{2}\right), \\
& \left(\bar{x}_{2}, \bar{u}\right)=O\left(\lambda^{k}\|x, u, y\|+y^{2}\right), \\
& \gamma^{-k} \bar{y}+\hat{\gamma}^{-k} O(\|\bar{x}, \bar{u}, \bar{y}\|) \tag{20}\\
& \quad=M+\left[\lambda^{k}\left(c_{1} \cos k \varphi+c_{2} \sin k \varphi\right)+O\left(\hat{\lambda}^{k}\right)\right] x_{1}+d \gamma^{k} y^{2} \\
& \quad+O\left(\lambda^{2 k} x_{1}^{2}+\lambda^{k}\left(\left\|x_{2}, u\right\|+x_{1} y+y^{2}\right)+|y|^{3}\right),
\end{align*}
$$

where
$M=\mu-\gamma^{-k} y^{-}+K_{1} \lambda^{k} \cos \left(k \varphi+\theta_{1}\right)+O\left(\hat{\lambda}^{k}+\hat{\gamma}^{-k}\right)$.
Now, one may check that after introducing the rescaled coordinates $y=-d \gamma^{-k} Y, x_{1}=-b d \gamma^{-k} X_{1},\left(x_{2}, u\right)=|\delta \gamma|^{-k}\left(\lambda^{k}+\right.$ $\left.|\gamma|^{-k}\right)\left(X_{2}, U\right)$ with $\delta<1$ sufficiently close to 1 , we bring the map to the sought form (16) (we use that $\lambda^{2}|\gamma|<1$ by condition B, so the $O\left(\lambda^{2 k}|\gamma|^{k} \delta^{-k}\left\|X_{2}, U\right\|\right)$-terms which appear at the rescaling of the last line in (20) can be estimated as $O\left(\delta^{k}\right)$ for δ sufficiently close to 1).

Due to the Rescaling Lemma, dynamics and main bifurcations of the first return map $T^{(k)}$ can be recovered by studying the limit map obtained from (16) as $k \rightarrow \infty$. Namely, we have here the Henon map
$\bar{X}_{1}=Y$,
$\bar{Y}=M_{1}-M_{2} X_{1}-Y^{2}$.
The bifurcation diagram for this map is presented in Fig. 7(a). The peculiarity of this figure is the existence of the stability triangle $S_{\text {hen }}$, with the vertices $B^{++}(1,-1), B^{--}(1,3), B^{ \pm}(-1,0)$. In $S_{\text {hen }}$ the Henon map has a stable fixed point. The boundaries of $S_{h e n}$ are formed by the bifurcation curves $L^{+}, L^{-} L^{\omega}$. The curves L^{+}: $M_{1}=-\left(1+M_{2}\right)^{2} / 4$ and $L^{-}: \quad M_{1}=3\left(1+M_{2}\right)^{2} / 4$ correspond to the moment of a saddle-node bifurcation and period-doubling
bifurcation, respectively. The curve L^{ω} : $\left\{M_{2}=1,-1<\right.$ $\left.M_{1}<3\right\}$ corresponds to the existence of a fixed point with a pair of complex conjugate multipliers ($e^{ \pm i \psi}, 0<\psi<\pi$). The points $B^{++}, B^{--}, B^{ \pm}$correspond to a pair of multipliers equal, respectively, to $(1,1),(-1,-1)$ and $(1,-1)$. The other shown curves, L^{2-} and $L_{2}^{\varphi}, L_{2-}^{\varphi}$, correspond to the existence of period two points with multiplier -1 and with multipliers $e^{ \pm i \psi}$ (for $0<\psi<$ π), respectively.

At large k, this structure is inherited by map (16); just the bifurcation curves may slightly deform and shift to the distance of order δ^{k}. Returning to the original parameters (μ, σ, φ) by formulas (17), we immediately obtain Theorems 1 and 2.

We remark that while the Rescaling Lemma is enough for the purposes of proving Theorems 1 and 2, i.e. for establishing the geometry of the stability domain of the fixed point of the first-return map (16), it is not enough for studying the dynamics emerging as the stability boundaries are crossed. The problem is that in the Henon map itself the bifurcations upon crossing the boundary L^{ω} are infinitely degenerate. Indeed, the Henon map has constant Jacobian $J=-M_{2}$, hence it is area-preserving at $|J|=1$, e.g. it is area-preserving on the stability boundary L^{ω}. The $o(1)$-terms in (16) break this property, so in order to determine the character of the Andronov-Hopf bifurcation in the map $T^{(k)}$ upon crossing the stability boundary L_{k}^{ω}, one would need to estimate these terms. A similar problem was solved for various cases of homoclinic bifurcations in [35,36,15,37,16,38,29,10]. In the same way one may show that the first-return map $T^{(k)}$ in our case is sufficiently close to the so-called generalized Henon map
$\bar{X}_{1}=Y, \quad \bar{Y}=M_{1}+M_{2} X_{1}-Y^{2}+Q_{k} X_{1} Y$
where $Q_{k}=O\left(\lambda^{2 k}|\gamma|^{k}\right)$. Its Jacobian is nonconstant and, as it was shown in [15,37], the Andronov-Hopf bifurcation of the fixed point is non-degenerate for this map at $Q_{k} \neq 0$ (see more about the bifurcations of this map in $[37,39,40]$). Using this fact, one establishes $[15,10$] that the Andronov-Hopf bifurcation upon crossing L_{k}^{ω} is non-degenerate (a single closed invariant curve is born from the fixed point) for the maps $T^{(k)}$ for all sufficiently large k, provided $\lambda|\gamma|$ is strictly greater than 1 . The analysis of the Andronov-Hopf bifurcation in the region where $\lambda|\gamma|$ is close to 1 remains to be done.

Acknowledgments

This research was supported by the RF Government grant no. 11.G34.31.0039, by RFBR grants no. 10-01-00429, no. 11-0100001, and no. 11-01-97017-povoljie, and by the Royal Society grant "Global Bifurcations".

References

[1] L.P. Shilnikov, On a Poincare-Birkhoff problem, Math. USSR Sb. 3 (1967) 353-371.
[2] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov, On models with a structurally unstable homoclinic curve, Soviet Math. Dokl. 44 (1992) 422-426.
[3] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev, On models with non-rough Poincare homoclinic curves, Physica D 62 (1993) 1-14.
[4] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev, Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits, Chaos 6 (1996) 15-31.
[5] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov, Homoclinic tangencies of an arbitrary order in Newhouse domains, J. Math. Sci. 105 (2001) 1738-1778.
[6] S. Gonchenko, L. Shilnikov, D. Turaev, Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps, Nonlinearity 20 (2007) 241-275.
[7] S.E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9-18.
[8] V.S. Afraimovich, L.P. Shilnikov, Strange attractors and quasiattractors, in: G.I. Barenblatt, G. Iooss, D.D. Joseph (Eds.), Nonlinear Dynamics and Turbulence, Pitman, Boston, 1983, pp. 1-51.
[9] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov, Dynamical phenomena in multidimensional systems with a non-rough Poincare homoclinic curve, Russ. Acad. Sci. Dokl. Math. 47 (1993) 410-415.
[10] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev, On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I, Nonlinearity 21 (2008) 923-972.
[11] N.K. Gavrilov, L.P. Shilnikov, On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve, Part I, Math. USSR Sbornik 17 (1972) 467-485; Part II., Math. USSR Sbornik 19 (1973) 139-156.
[12] S.E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 50 (1979) 101-151.
[13] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov, On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Russ. Acad. Sci. Dokl. Math. 47 (1993) 268-273.
[14] J. Palis, M. Viana, High dimension diffeomorphisms displaying infinitely many sinks, Ann. of Math. 140 (1994) 91-136.
[15] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev, On dynamical properties of diffeomorphisms with homoclinic tangencies, J. Math. Sci. 126 (2005) 1317-1343.
[16] S.V. Gonchenko, O.V. Sten'kin, L.P. Shilnikov, On the existence of an infinite set of stable and unstable invariant tori for systems from Newhouse regions with heteroclinic cycles, Russ. J. Nonlinear Dynam. 2 (2006) 3-25.
[17] E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. Poincare 15 (1998) 539-579.
[18] I.I. Ovsyannikov, S.V. Gonchenko, On bifurcations of three-dimensional diffeomorphisms with a structurally-unstable heteroclinic cycle that contains saddle-foci, Russ. J. Nonlinear Dynam. 6 (2010) 1-17.

19] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev, On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. II, Nonlinearity (submitted for publication).
[20] D. Turaev, Maps close to identity and universal maps in the newhouse domain, Preprint. arXiv:1009.0858v1.
[21] D. Turaev, Richness of chaos in the absolute Newhouse domain, in: Proc. ICM 2010, vol. 3, Hindustan Book Agency, 2010, pp. 1804-1815.
[22] L. Tedeschini-Lalli, J.A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks? Commun. Math. Phys. 106 (1986) 635-657.
[23] D. Turaev, On the genericity of the Newhouse phenomenon, talk at Equadiff 2003, Hasselt.
[24] A. Gorodetski, V. Kaloshin, How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency, Adv. Math. 208 (2007) 710-797.
25] S.V. Gonchenko, On stable periodic motions in systems close to a system with a nontransversal homoclinic curve, Russ. Math. Notes 33 (1983) 384-389.
[26] D.V. Turaev, On dimension of nonlocal bifurcational problems, Bifurcation and Chaos 6 (1996) 919-948.
[27] S.E. Newhouse, J. Palis, F. Takens, Bifurcations and stability of families of diffeomorphisms, Publ. Math. IHES 57 (1983) 5-72.
[28] J.C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory Dynam. Systems 21 (2001) 249-302.
[29] S.V. Gonchenko, V.S. Gonchenko, J.C. Tatjer, Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps, Regul. Chaotic Dyn. 12 (2007) 233-266.
[30] S.V. Gonchenko, Dynamics and moduli of Ω-conjugacy of 4D-diffeomorphisms with a structurally unstable homoclinic orbit to a saddle-focus fixed point, Amer. Math. Soc. Transl. 200 (2000) 107-134.
[31] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, 1998.
[32] D. Turaev, An example of a resonant homoclinic loop of infinite cyclicity, Moscow Math. J. 5 (2005) 219-229.
[33] A.Ya. Khinchin, Continued Fractions, Courier Dover Publications, 1964.
[34] S.V. Gonchenko, L.P. Shilnikov, On moduli of systems with a nontransversal Poincare homoclinic orbit, Russ. Acad. Sci. Izv. Math. 41 (1993) 417-445.
[35] V.S. Gonchenko, On bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency of manifolds of a neutral saddle, Proc. Math. Steklov Inst. 236 (2002) 86-93.
[36] V.S. Gonchenko, I.I. Ovsyannikov, On bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a "neutral" saddle fixed point, Notes of S. Petersburg Math. Inst. 300 (2003) 167-172.
[37] S.V. Gonchenko, V.S. Gonchenko, On bifurcations of the birth of closed invariant curves in the case of two-dimensional diffeomorphisms with homoclinic tangencies, Proc. Math. Steklov Inst. 244 (2004) 80-105.
[38] V.S. Gonchenko, L.P. Shilnikov, On bifurcations of a homoclinic loop of a saddlefocus with the index 1/2, Russ. Math. Dokl. 417 (2007).
[39] V.S. Gonchenko, Yu.A. Kuznetsov, H.G.E. Meijer, Generalized Henon map and bifurcations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst. 4 (2005) 407-436.
[40] S.V. Gonchenko, L.P. Shilnikov (Eds.), Homoclinic Tangencies, R \& C Dynamics, Moscow-Izhevsk, 2007.

[^0]: * Corresponding author.

 E-mail addresses: gosv100@uic.nnov.ru (S.V. Gonchenko), ivan.i.ovsyannikov@gmail.com (I.I. Ovsyannikov), d.turaev@imperial.ac.uk, dturaev@imperial.ac.uk (D. Turaev).

[^1]: 1 The multidimensional version of the Newhouse phenomenon was proven in [$13,9,14$]. Note that infinitely many more complicated attractors may also coexist for different classes of systems from the Newhouse domain. Namely, there may be infinitely many coexisting stable closed invariant curves (tori) [9,4,15,16,10], Henon-like strange attractors [17], pseudohyperbolic wild Lorenz-like attractors [9,18,19], and even hyperbolic (e.g. Plykin) attractors [20,21].
 2 The corresponding conditions of general positions are given in [9] (the conditions of a simple homoclinic tangency) and are analogous to the quasitransversality conditions from [27]. These conditions guarantee [9,26] the existence of a smooth two-dimensional invariant manifold which contains all orbits that stay in a small neighborhood of the homoclinic tangency. For two-dimensional maps, the condition $\sigma>1$ implies the expansion of areas near the homoclinic orbit, so it automatically prohibits the emergence of stable periodic orbits on the invariant manifold and, hence, in the whole neighborhood of the homoclinic tangency. The genericity (simplicity) conditions, beyond the quadraticity of the tangency, require also that (a) $\left|\lambda_{1}\right| \neq\left|\lambda_{2}\right|$ and (b) the so-called extended unstable manifold $W^{u e}(0)$ is transverse to the leaves of the strong-stable foliation at the points of the homoclinic orbit, see more details in [9,4,26,10]. These conditions are important in the context of this paper, as their violation can lead to the birth of stable periodic orbits even in the case of a saddle with $\sigma>1$ [28,29].

[^2]: ${ }^{3}$ For an example of a homoclinic bifurcation where the low smoothness of the invariant manifold leads to essential dynamical effects see [32].

[^3]: 4 Note that it is absolutely unclear whether a similar statement is true for cascades of sinks of an arbitrary, unbounded from above, number of rounds.

