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a b s t r a c t

The existence of a homoclinic butterfly to a saddle with zero saddle value is established analytically for
the Shimizu-Morioka model.

© 2011 Elsevier B.V. All rights reserved.
In this paper we consider the Shimizu–Morioka system [1]

ẋ = y, ẏ = (1 − z)x − λy, ż = −α(z − x2).

It emerges as an asymptotic normal form for bifurcations of triply
degenerate equilibrium states and periodic orbits in systems with
certain types of symmetry [2,3]. The system was extensively
studied in [4–7,3], where it was, in particular, shown that there
exists a region of positive values of (α, λ) for which the system
has a Lorenz attractor [8]. This conclusion was based on one of the
criteria proposed in [9]: a Lorenz attractor is born at bifurcations
of a homoclinic butterfly to a saddle with zero saddle value and
separatrix value A such that |A| < 2 (see a proof in [10]; for
a definition of the saddle and separatrix values see e.g. [11]).
The existence of such homoclinic butterfly is a codimension-2
bifurcation. It was shown numerically that this bifurcation indeed
occurs at some (α, λ).

In this paper we provide an analytic (free of computer
assistance) derivation of the existence of the homoclinic loopswith
zero saddle value in this system. Unfortunately, we did not obtain
estimates for the corresponding separatrix value A (we explain
the setup of the problem in the last section). Thus, the Lorenz
attractor is not immediately given by our results, though they can
be considered as a step forward towards a fully analytical proof of
the existence of the Lorenz attractor.
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The homoclinic butterfly here is a pair of homoclinic loops
symmetric to each other by (x, y, z) → (−x, −y, z). By the
symmetry of the system, it is enough to establish the existence of
only one of the loops. The loop is an orbit which tends to the saddle
equilibrium state O(0, 0, 0) both as the time t tends to +∞ and to
−∞. The saddle value σ is the sum of the positive characteristic
exponent at Owith the nearest to the imaginary axis negative one.
In order to apply the criterion from [9], we need σ = 0, which is
equivalent to λ = (1 − α2)/α, as one can easily see. From now
on we impose this restriction on α and λ. After scaling the time
t → t/α and y → αy, the system takes the form

ẋ = y, ẏ = (a + 1)(1 − z)x − ay, ż = −z + x2, (1)
where a = λ/α = −1 + 1/α2.

Theorem 0.1. There exists a value a0 > 0 such that the system (1) at
a = a0 has a homoclinic loop to the saddle point O(0, 0, 0).

The proof occupies the next two sections. We search for the
homoclinic loop by means of a refined version of the ‘‘method of
comparison systems’’, developed in [12,13] for the analytic proof
of the existence of homoclinic loops in the Lorenz model. Roughly
speaking, the method consists in finding the traces which the
stable and unstable manifolds of the saddle leave on a Poincaré
section, the surface z = x2 in our case. Once certain bounds
are found for the position of the traces, we show that when the
parameter a varies the two traces meet one another, this event
corresponds to a formation of the sought homoclinic loop.

We also note that numerical investigations reveal indeed a
unique point a0 ≃ 1.718 for which the system possesses a
homoclinic orbit (cf. [4–6]).

http://dx.doi.org/10.1016/j.physd.2011.02.013
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mailto:g.tigan@imperial.ac.uk
mailto:gtigan73@yahoo.com
mailto:d.turaev@imperial.ac.uk
http://dx.doi.org/10.1016/j.physd.2011.02.013


986 G. Tigan, D. Turaev / Physica D 240 (2011) 985–989
Fig. 1. Surfaces and regions related to Lemma 1.1.
1. Estimating the unstable manifold

The equilibrium points of system (1) are O(0, 0, 0),O1(1, 0, 1)
and O2(−1, 0, 1). The Jacobian matrix associated to the system
at O(0, 0, 0) has the eigenvalues (1, −1, −a − 1) and the
corresponding eigenvectors (1, 1, 0), (0, 0, 1),


−

1
a+1 , 1, 0


. As

we see, O(0, 0, 0) is a saddle with a one-dimensional unstable
manifoldW u

0 and a two-dimensional stable manifoldW s
0 , and with

zero saddle value indeed (we assume a ≥ 0).
The one-dimensional tangent space toW u

0 at O is given by
TW u

0 = {(x, y, z) : x = y, z = 0} .

The curve W u
0 is divided by O into two branches, the separatrices.

Denote by W u
+

the separatrix which leaves O towards x > 0.
The equation of W u

+
in a small neighborhood of the origin can be

written as
y = x + b2x2 + b3x3 + · · ·

z = c2x2 + c3x3 + c4x4 + · · · . (2)
By plugging this Taylor expansion in (1) and equating coefficients
(recall thatW u

+
is invariantwith respect to the system)we find that

the equation ofW u
+
is

y = x −
(a + 1)
3(a + 4)

x3 + o(x3),

z =
1
3
x2 +

2(a + 1)
45(a + 4)

x4 + o(x4). (3)

So, for x small enough, W u
+
lies in the region R := {(x, y, z) : 0 <

y < x, 1
3x

2 < z < x2}.

Lemma 1.1. For every a ≥ 0, the separatrix W u
+

leaves R at a
finite moment of time by intersecting transversely the surface S :=
y = 0, z > 1,

√
z < x <

√
3z

. After crossing S, the separatrix

intersects transversely the surface S ′
:=


x > 0, y < 0, z = x2


.

After crossing S ′, it either stays in the region Q := {x > 0, y <
0, z > x2} forever, and then it tends to O and forms a homoclinic loop,
or it leaves Q by either transversely intersecting the plane x = 0, or
transversely intersecting the plane y = 0 at x < 1, Fig. 1.

Proof. The surface S1 := {y = x, x > 0, z > 0} is a surface
without contact for the orbits of the system:

d
dt

(y − x)

y=x

= −(a + 1)xz < 0.

This implies that no orbit fromR can leaveR by crossing S1 (wehave
y < x inside R, so if the orbit comes to y = x from R, then there
must be d

dt (y − x) ≥ 0 at the moment of contact, a contradiction).
The same is true for the surface S2 := {z = x2/3, y < x, x > 0}:
we have
d
dt


z −

1
3
x2


z=x2/3
=

2
3
x(x − y) > 0,

so no orbit can come to S2 from the side z > x2/3.
Let us check that leaving R by an intersection with S3 := {y =

0, z ≤ 1,
√
z ≤ x ≤

√
3z} \ O1(1, 0, 1) is also impossible. Indeed,

dy
dt


y=0,z<1

= (a + 1)x(1 − z) > 0,

d2y
dt2


y=0,z=1,x>1

= (a + 1)x(1 − x2) < 0,

so y must be an increasing function of t before the orbit intersects
S3, i.e. the orbit may come to S3 only from the side of negative
y, and not from R (where y > 0). Analogously, exiting R across
S4 := {z = x2, y ≥ 0} \ O1(1, 0, 1) is also forbidden, since

d
dt

(x2 − z)

z=x2,y>0,x>0

= 2xy > 0,

d2

dt2
(x2 − z)


z=x2,y=0,z>1

= 2(a + 1)x2(1 − z) < 0,

which means that any orbit that intersects S4 must approach it
from the side z > x2, i.e. not from R.

As the points O1(1, 0, 1) and O(0, 0, 0) are equilibria, the orbit
from inside R cannot pass through these points. Thus, since the
boundary of R is contained in S ∪ S1 ∪ S2 ∪ S3 ∪ S4 ∪ O1 ∪ O, the
separatrix W u

+
must either leave R by intersecting S, or stay in R

forever. Let us show that the latter case is ruled out.
Note that ifW u

+
stays in R for all times, it cannot tend to infinity.

Indeed, the function H(x, y) =
y2

2 −
a+1
2 x2 +

a+1
12 x4 is decreasing

along the orbits in R:

d
dt

H(x, y) = yẏ − (a + 1)x(1 − x2/3)ẋ

= −(a + 1)xy(z − x2/3) − ay2 < 0,

so x(t) and y(t) must stay bounded, which implies the bounded-
ness of z(t) as well (since z < x2 in R).

Thus, theω-limit setΩ ofW u
+
must be non-empty and lie in the

closure of R in this case. Since the function H(x(t), y(t)) is mono-
tone along W u

+
, it has to be constant on Ω : H(x, y)|(x,y,z)∈Ω =

limt→+∞ H(x(t), y(t)). Therefore, sinceΩ is an invariant set, it fol-
lows that d

dtH = 0 onΩ , i.e.Ω must lie in y = 0. Similarly, as ż > 0
in R, it follows that z > 0 and ż = 0 on Ω , i.e. the ω-limit set of
W u

+
must be an invariant subset of the line {y = 0, z = x2, x > 0}.

The only such set is the equilibrium O1.
Let us show that W u

+
cannot tend to O1 without leaving R

at a finite time. We first note that the equilibrium point O1 is
exponentially stable at a > 2, and is unstable (a saddle-focus) at
0 ≤ a < 2. The linearization matrix of system (1) at the point O1 is0 1 0
0 −a −(a + 1)
2 0 −1


,

the characteristic equation is

p3 + (a + 1)p2 + ap + 2(a + 1) = 0.
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It is easy to see that at a ≥ 0 one of the roots, p∗, is real and strictly
negative (in fact p∗ < −1), and the other two roots are complex.
If (at some a ≥ 2) the separatrix W u

+
tends to O1 spiraling along

the two-dimensional eigenplane that corresponds to the pair of
complex eigenvalues, it must inevitably leave R at some finite time
moment. Therefore, ifW u

+
tends toO1 while remaining in R, it must

be tangent at O1 to the eigendirection corresponding to the real
negative root p∗. This eigenvector is given by


1, p∗,

2
1+p∗


, hence

near O1 the curveW u
+
will be given by

x = 1 + s + o(s), y = p∗s + o(s),

z = 1 +
2

1 + p∗

s + o(s), s < 0

(we take the small parameter s negative, in order to ensure that
y > 0 as it should be for W u

+
⊂ R). Now, as p∗ < −1, we find that

x2 − z =
2p∗

1+p∗
s + o(s) < 0 on W u

+
, which means that W u

+
cannot

stay in R when approaching O1.
We have proven that W u

+
must, for every a ≥ 0, intersect

the surface S at a finite moment of time t0. The intersection is
transverse since

dy
dt


y=0,z>1,x>0

= (a + 1)x(1 − z) < 0. (4)

Right upon crossing S, the orbit occurs in the region Q ′
: {x >

√
z > 1, y < 0}. Everywhere in this region ż > 0, so z is

monotonically increasing function of time, which implies that z >
z(t0) > 1 and, hence, x > 1, all the time the orbit remains in
Q ′. In particular, x(1 − z) stays bounded away from zero, which
implies that ẏ(=(a+ 1)x(1− z) − ay) is strictly negative for small
y, which implies that y remains bounded away from zero upon the
orbit enters Q ′. It follows that d

dt (x
2

− z)(=2xy − ż) is negative
and bounded away from zero all the time the orbit stays in Q ′,
which immediately implies that the orbit indeedmust intersect the
surface S ′

: {z = x2, y < 0, x > 0} transversely at a finite moment
of time.

After the intersection, the separatrix enters the region Q . If
it does not remain in Q forever, it must leave by crossing the
boundary ofQ . The boundary is formed by the surfaces z = x2, x =

0 and y = 0. Since

d
dt

(x2 − z)

z=x2,y<0,x>0

= 2xy < 0,

the separatrix W u
+
cannot leave Q by crossing the boundary x2 −

z = 0. So W u
+

leaves Q either by crossing x = 0, or by crossing
y = 0. As the line {x = 0, y = 0} is invariant with respect to
system (1), the separatrix W u

+
cannot intersect this line. Hence, if

it crosses the surface {x = 0}, it does it at y < 0, and the required
transversality of the intersection follows as dx

dt = y ≠ 0.
Let us show that when W u

+
leaves Q across y = 0, the

intersection is also transverse. First, we note that by virtue of (4)
it is impossible to cross from Q (where y < 0 and x > 0) to the
region {y > 0} at z > 1. Thus, when W u

+
leaves the region Q via

the surface {y = 0} the corresponding intersection point satisfies
1 ≥ z ≥ x2 > 0. In fact, x2 ≤ z < 1 at the intersection point:
since

dy
dt


y=0,z=1

= 0,
d2y
dt2


y=0,z=1,0<x<1

= (a + 1)x(z − x2) > 0,

no orbit can approach the line {y = 0, z = 1, 0 < x < 1} from
the side of negative y, so the only possibility for the orbit from Q
to intersect {y = 0, z = 1} would be to come to the point (1, 0, 1),
but the latter is an equilibrium state. Now, as the intersection point
of W u
+

with {y = 0} satisfies z < 1 and x > 0, we immediately
obtain the sought transversality of the intersection since

dy
dt


y=0,z<1,x>0

= (a + 1)x(1 − z) ≠ 0.

To finish the lemma, it remains to consider the case where the
separatrix does not leave Q in a finite time. As ẋ(=y) < 0 and
ż(=x2 − z) < 0 everywhere in Q , the x- and z- coordinates will
stay bounded in this case for all times. Once the boundedness of
x is established, the boundedness of y follows immediately, since
x =


ydt and y keeps constant sign.

Thus, the orbit W u
+
stays in the bounded subset of Q , therefore

its ω-limit set is bounded and lies in the closure of Q . As x decays
monotonically along W u

+
, the coordinate x stays constant on this

ω-limit set, i.e. ẋ = y = 0 everywhere on it. This means that W u
+

tends to a compact invariant subset of {y = 0, x ≥ 0}, and the
only two such subsets are the equilibria O and O1. To complete the
lemma, we must prove thatW u

+
cannot tend to O1 without leaving

the region Q .
Note, first, that the separatrix cannot spiral towards O1 along

the two-dimensional eigen-plane that corresponds to the pair of
complex eigenvalues of O1—in this caseW u

+
would inevitably leave

Q at some finite time moment. Thus, W u
+
could approach O1 only

along the eigen-vector

1, p∗,

2
1+p∗


corresponding to the real

negative root p∗ (this is similar to the discussion above where we
showed that W u

+
cannot tend to O1 without leaving the region R).

We have that near O1 the curveW u
+
would then be given by

x = 1 + s + o(s), y = p∗s + o(s),

z = 1 +
2

1 + p∗

s + o(s), s > 0,

where the small parameter s is taken positive, in order to ensure
that y < 0, as it should bewhenW u

+
approachesO1 from the region

Q . Now, as p∗ < −1, we find that x2 − z =
2p∗

1+p∗
s + o(s) > 0 on

W u
+
, which contradicts toW u

+
lying in Q . �

This lemma allows us to establish the existence of the sought
homoclinic loop at some a0 > 0 in the following way. Let A1 be
the set of parameters a ≥ 0 for which the separatrixW u

+
leaves the

region Q by crossing x = 0, and A2 be the set of parameters a ≥ 0
for which the separatrix W u

+
leaves Q by crossing y = 0, Fig. 2.

Because of the transversality of the intersection of W u
+
with either

plane, the sets A1 and A2 are open (as subsets of [0, +∞)). Thus, if
we prove that both these sets are nonempty, i.e. there exist a1 ≥ 0
such thatW u

+
leaves Q by crossing x = 0 and a2 ≥ 0 such thatW u

+

leaves Q by crossing y = 0, we will immediately obtain that there
exists a0 ∈ (a1, a2)which belongs to neither of the two sets. By the
lemma, at a = a0, the separatrixW u

+
forms the homoclinic loop.

2. Behavior at small and large a

As we see, in order to prove our theorem, it is enough to show
that at large positive a the separatrixW u

+
stays in the region x > 0

for all times, while at a = 0 it leaves this region at finite t (it stays,
first, at x > 0, y > 0, then crosses to y < 0, and then intersects the
plane x = 0 without returning to y > 0).

We consider the case of large a first. At large a > 0 system (1)
is slow-fast, with fast y-variable and slow (x, z). Therefore, given
any, arbitrarily large L > 0, for all a sufficiently large the system in
the ball UL : {‖x, y, z‖ ≤ L} has an attractive invariant manifold M
which is O(a−1)-close in this ball to the slowmanifold y = x(1−z)
obtained by formally taking the limit a = +∞ in the y-equation of
(1). Moreover, as t grows, every orbit from UL tends to M or leaves
UL, which implies thatW u

+
lies in M untilW u

+
stays in UL.
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Fig. 2. The separatrixW u
+
for small and large a. For a = 1 (left),W u

+
crosses first y = 0 at A(1.79, 0.00, 1.73), enters Q : x > 0, y < 0, z > x2 through B(1.46, −1.30, 2.14)

and leaves Q by x = 0 at C(0.00, −1.12, 1.13), while for a = 10 (right), after crossing y = 0 and entering Q ,W u
+
leaves Q by y = 0 at (0.97, 0.00, 0.99).
By plugging in (1) the equation y = x(1 − z) + O(a−1) for the
invariant manifold M, we find the system on M:

ẋ = x(1 − z) + O(a−1), ż = −z + x2. (5)

The origin O(0, 0) is a saddle equilibrium of this system. The curve
W u

+
is an unstable separatrix of O. It is easy to check that the

bounded region

0 ≤ x ≤

√
3, 1

3x
2

≤ z ≤ 3

is forward-invariant

for the limit system (a = +∞)

ẋ = x(1 − z), ż = −z + x2.

Thus, the separatrix of O stays in this region forever. Since the
divergence of the vector field is strictly negative here, there can
be no limit cycles or separatrix cycles, hence the ω-limit set of
the separatrix is the exponentially stable equilibriumO1(1, 1). This
picture is structurally stable, so for all a large enough the unstable
separatrix of the saddle O of system (5) also tends to O1, stays
in a uniformly bounded region of the (x, z)-plane and does not
intersect x = 0. As this separatrix isW u

+
, we thus have shown that

W u
+
stays in the region x > 0 for all times if a is sufficiently large.

In terms of Lemma 1.1 this means that the separatrix leaves the
region Q = {x > 0, y < 0, z > x2} by intersecting the plane
y = 0.

Let us now consider the case a = 0. By Lemma 1.1, the
separatrix W u

+
leaves the region R by intersecting the plane S at

a point (x∗, 0, z∗) with x∗ >
√
z∗ > 1. Denote

C∗
:= z∗/(x∗)2 < 1.

Let us show that before crossing y = 0 the separatrix satisfies

z < C∗x2, y > 0. (6)

In order to do this, let us denote y = kx and z = Cx2. System (1) at
a = 0 will take the form

ẋ = kx
k̇ = 1 − k2 − Cx2

Ċ = 1 − C(1 + 2k).
(7)

The separatrix here is the solution which tends to x = +0, k =

1, C = 1/3 as t → −∞. By (3), the separatrix satisfies

C =
1
3

+
1
90

x2 + o(x2), k = 1 −
1
12

x2 + o(x2),

hence at small x it lies in the region

Ċ > 0, k̇ < 0. (8)

Let us show that the orbit cannot leave this region at positive k.
First, note that Ċ > 0 at C = 0 and Ċ < 0 at C = 1, k > 0, so we
have C ∈ (0, 1) all the time. Next, we note that at the moment the
orbit leaves this region there should be either

k̇ = 0, Ċ ≥ 0, k̈ ≥ 0, (9)
or

Ċ = 0, C̈ ≤ 0, k̇ < 0. (10)

However, as it follows from (7),

k̈ = (C − 1)x2 if k̇ = 0,

and

C̈ = −2Ck̇ if Ċ = 0,

so neither (9) nor (10) can happen at 1 > C > 0 and k > 0.
Thus, we have shown that (8) is fulfilled all the time the separatrix
stays at k > 0, i.e. at y > 0. In particular, Ċ > 0, which means
that C ≡ z/x2 is an increasing function of time on the separatrix at
y > 0, which proves (6).

After the separatrixW u
+
crosses to {y < 0, z < x2}, the variable

x is decreasing and z is increasing (until W u
+
intersects the surface

S ′
= {x > 0, y < 0, z = x2}, see Lemma 1.1). This immediately

gives thatW u
+
satisfies

z > C∗x2, y < 0 (11)

all the time before the separatrix crosses the surface S ′.
Now, let us define a function

V =
y2

2
−

x2

2
+ C∗

x4

4
.

By virtue of (1) at a = 0,

dV
dt

= xy(C∗x2 − z),

hence, by (11), (6), we find that V̇ ≥ 0 on the separatrix all the
time before the intersection with S ′. Thus, V is a non-decreasing
function along the separatrix, i.e. at the point of the separatrix
intersection with S ′ we have V ≥ V (0, 0, 0) = 0. In other words,
the pointW u

+
∩S ′ lies in the region y ≤ −


x2 − C∗x4/2. As C∗ < 1,

it follows that Φ(x, y) :=
y2

2 −
x2
2 +

x4
4 is strictly positive at this

point.
After the intersection with S ′, the orbit enters the region Q :

{y < 0, x > 0, z > x2}. In this region, at a = 0, the derivative
Φ̇ = xy(x2 − z) is positive, so y2

2 −
x2
2 +

x4
4 is positive and

bounded away from zero all the time the orbit stays in Q . Thus,
the separatrix cannot stay in Q and tend to O (as Φ is zero at O),
nor can it leave Q by intersecting the surface {y = 0, x ∈ (0, 1)}
(as Φ(x, 0) = x4/4 − x2/2 < 0 there). It follows, by Lemma 1.1,
that W u

+
enters the region x < 0 at a finite time moment.

We see that the separatrix behavior is different at small and
large a. As we explained in the end of the previous section, this
gives us the sought existence of a homoclinic loop at some a0 > 0,
see Fig. 3.
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Fig. 3. Two homoclinic orbits (homoclinic butterfly) at a ∼= 1.718.
3. Separatrix value

As we mentioned, one could obtain an analytic proof of the
existence of a Lorenz attractor in the Shimizu–Morioka system (1)
for an open set of parameter values adjoining the point (α0, λ0) for
which the system has the homoclinic butterfly to the saddleOwith
the zero saddle value, should we prove that the separatrix value
satisfies 0 < A < 2 at (α, λ) = (α0, λ0). The separatrix value A can
be defined in our case as follows. Let (x0(t), y0(t), z0(t))t=(−∞,+∞)

be the equation of the homoclinic loop (the two loops in the
butterfly are symmetric, so we can take any of them; for instance,
let us take the loop which corresponds to positive x0(t)). The
linearized system obtained by the differentiation of (1) at the
points of the loop is given by

d
dt

x
y
z


= B(t)

x
y
z


(12)

where

B =

 0 1 0
(a0 + 1)(1 − z0(t)) −a0 −(a0 + 1)x0(t)

2x0(t) 0 −1


. (13)

Let ξ1, ξ2 be any two vectors and let η = ξ1 × ξ2 be their vector
product. If the evolution of ξ1 and ξ2 is defined by Eq. (12), then the
evolution of η is governed by

dη
dt

= −(B⊤
− tr(B)I)η,

where I is the (3 × 3) identity matrix. Thus, we have the following
equation for the evolution of infinitesimal two-dimensional areas
near the homoclinic loop:

dη
dt

=


−(a0 + 1) −(a0 + 1)(1 − z0(t)) −2x0(t)

−1 −1 0
0 (a0 + 1)x0(t) −a0


η. (14)

Since x0(t) and z0(t) exponentially tend to zero as t → ±∞, the
asymptotic behavior of the solutions of (14) is determined by the
limit matrix

−(a0 + 1) −(a0 + 1) 0
−1 −1 0
0 0 −a0


.

Its eigenvalues are 0,−a0 < 0 and−(a0+2) < 0, so every solution
of (14) tends, as t → +∞, to a constant times the eigenvector
that correspond to the zero eigenvalue (this is the vector η∗

=

(1, 1, 0)⊤). Note that only one solution tends to η∗ as t → −∞.
We take this solution η(t), denote
lim
t→+∞

η(t) := Aη∗,

then A is the sought separatrix value. One can see that

|A| = sup lim
t→+∞

‖η(t)‖
‖η(−t)‖

where the supremum is taken over all the solutions of (14).
So, the absolute value of A gives the coefficient of expansion of
infinitesimal areas by the system near the homoclinic loop (the
sign of A describes the orientability of the loop; onemay check that
this definition of the separatrix values coincides with that of [8,10,
11]).

It was numerically checked [4–6] that 0 < A < 1 in our case,
i.e. conditions of [9,10] are fulfilled. We do not have an analytic
proof for this fact, which is the remaining obstacle for an analytic
proof of the Lorenz attractor in this system.
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