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Abstract

We perform a bifurcation analysis of the Lang–Kobayashi system for a laser with delayed optical feedback in the

situation of moderate delay times. Using scaling methods, we are able to calculate the primary bifurcations, leading to

instability of the stationary lasing state. We classify different types of pulsations and identify a codimension two bi-

furcation of fold-Hopf interaction type as the organizing centre for the appearance of more complicated dynamics.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Delayed optical feedback is one of the funda-
mental mechanisms, leading to instability and
complicated dynamics in semiconductor lasers [1].
Optical feedback from an external mirror leads to
delay times, which are large in comparison to the
photon lifetime inside the cavity. This situation
has been studied extensively, both numerically and
in experiments, and shows a variety of complicated
dynamical phenomena. For large distances of the
mirror, there has been observed high dimensional
chaos, so-called low-frequency fluctuations (see e.g.
[2,3]). Other types of less irregular behaviour,

called regular pulse packages, were observed for
distances of only a few centimeters [4].
In contrast to that, the situation of smaller

feedback time has received much less attention. It
arises in integrated multi-section devices with a
DFB laser section and a passive external cavity
section which is only a few times larger than the
active section. Devices of this type have been
studied up to now mainly in the context of trav-
elling-wave equations [13,14,20]. For such short
feedback times, Petermann and Tager [8] discov-
ered the possibility of high frequency pulsations
(PT pulsations), caused by a beating between a
mode and an antimode of the external cavity. This
type of solutions has also been studied in [9–11].
In this paper, we will perform a bifurcation

analysis for the Lang–Kobayashi system, re-
stricted to the case of small and moderate feedback
times. This will lead to a refined investigation of
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how the stationary state of the laser without
feedback undergoes changes, loses its stability, and
with growing feedback gives rise to more compli-
cated behaviour.
To this end, we first introduce an appropriately

rescaled version of the Lang–Kobayashi model
with strength an phase condition of the feedback
signal as bifurcation parameters. In Section 2, we
restate known results about stationary lasing states
and their bifurcations [5–7] in this setting, derive a
formula for the condition for PT pulsations and
introduce the notion of mode degeneracy.
The importance of scaling techniques for a

systematic understanding of the rather compli-
cated characteristic equation of the delay system
has been pointed out by Erneux in [12]. In Section
3, we use the smallness the ratio of feedback time
and carrier lifetime to apply scaling techniques in
order to obtain approximating solutions for the
Hopf condition. In addition to the branch of bi-
furcations to PT pulsations, which has already
been discussed in [12], we obtain a second type of
solutions related to the DQS-pulsations, which
were discussed in [14,15] for multi-section lasers.
We investigate also the transition regime which
matches these two branches of solutions and dis-
cuss the role of a codimension two bifurcation as
an organizing centre for the appearance of more
complicated dynamics. Finally, we point out the
relevance of our asymptotic formulas for the bi-
furcation curves by comparison to numerical re-
sults for the full system.
The behaviour of a single moded laser under the

influence of delayed optical feedback can be de-
scribed by the Lang–Kobayashi rate equations

dE
dt

¼ 1

2
GðN ; jEðT Þj2Þ
�

� 1

sp

�
� EðT Þ

þ je�ix0sf � EðT � sfÞ; ð1Þ
dN
dT

¼ I� N
sc
�Re½GðN ; jEðT Þj2Þ	 � jEðT Þj2; ð2Þ

for the field amplitude E and the carrier density N
[16]. The lasing frequency x0 of the laser without
feedback is used as the reference frequency,
i.e., the actual field amplitude is given by
1
2
ðEðT Þeix0T þ c:c:Þ. With I we denote the pumping
current, and GðN ; jEðT Þj2Þ is the complex gain

function; sp; sc; sf are photon lifetime, carrier life-
time, and feedback time. The feedback rate j, has
to be computed from the reflectivities, external
losses, and the internal round-trip time (see [8]).
Equations of this type have been shown to be able
to describe a variety of different dynamical phe-
nomena in good agreement with experimental
data. Moreover, they can serve as a prototype
model to understand the basic mechanisms leading
to complicated dynamics in lasers with delayed
optical feedback.
To the general system (1), (2) we introduce now

some simplifications and rescalings. We want here
to restrict our attention to situations, where the
external round-trip time is not more than one or-
der of magnitude bigger than the internal round-
trip time. We use a rescaled time

t :¼ T
sf
:

Since we are not interested in high intensity effects,
we neglect nonlinear gain saturation and linearize
the complex gain function around the stationary
lasing state x0;N0 of the laser without feedback

GðN ; jEðT Þj2Þ � 1

sp
:¼ GN ð1þ iaÞðN � N0Þ:

With the rescaling

Nres :¼
1

2
sfGN ðN � N0Þ

we have simplified the optical equation to

dEðtÞ
dt

¼ ð1þ iaÞNres � EðtÞ þ ge�i/ � Eðt � 1Þ; ð3Þ

with the effective feedback strength g :¼ jsf . The
phase factor / :¼ x0sf will be treated as an addi-
tional free parameter. This seems naturally to us,
since already slight changes of sf change the phase
condition from 0 to 2p.
We next introduce the new variables into the

carrier equation, and additionally set

Eres :¼
ffiffiffiffiffiffiffiffiffiffi
scGN

p
E:

This rescaling of E does not affect the linear
equation (3). From this we obtain

dNresðtÞ
dt

¼ e J
�

� Nres � ðNres þ mÞjEresj2
�

ð4Þ
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with

e :¼ sf
sc
; ð5Þ

J :¼ sfGN

2
ðscI þ N0Þ; ð6Þ

m :¼ sf
2sp

: ð7Þ

Note that �m corresponds to the transparency
density for the rescaled N.
In the sequel we will use only the rescaled

equations (3), (4), omitting the subscripts for the
rescaled variables N and E. The feedback param-
eters g and / will be our primary bifurcation pa-
rameters. In addition we will make use of the fact
that e is small with respect to the other coefficients.
This is still true for a length of the compound
cavity of some millimeters.

2. The optical equation

2.1. Rotating waves and saddle-nodes

We start by recalling some basic facts about
stationary lasing states for the Lang–Kobayashi
system (compare e.g. [1,5,8]). Looking for rotating
wave solutions of the form

EðtÞ ¼ Eseixst; NðtÞ ¼ Ns ð8Þ
in (3), one obtains the equation

ixs ¼ ð1þ iaÞNs þ ge�ið/þxsÞ: ð9Þ
Splitting this into real and imaginary part gives the
conditions

Ns ¼ �g cosð/ þ xsÞ; ð10Þ
xs � aNs ¼ �g sinð/ þ xsÞ; ð11Þ
or equivalently, inserting (10) into (11),

xs ¼ �gða cosð/ þ xsÞ þ sinð/ þ xsÞÞ: ð12Þ
The carrier equation (4) may be used to determine
the intensity

jEsj2 ¼
J � Ns
Ns þ m

; ð13Þ

but the carrier equation does not affect the con-
ditions (10), (11) for Ns and xs. These rotating

wave solutions are called in the literature external
cavity modes (ECMs), and can be represented as
points in the ðx;NÞ-plane. In our coordinates the
origin in this plane corresponds to the stationary
state of the laser without feedback. Then, for small
feedback g, there is for all values of / only one
stable solution close to the origin, which for
varying / changes slightly its threshold density
and optical frequency. For larger feedback, the
number of solutions increases and some of them
may be unstable.
Indeed, from (10), (11) it is clear that in the

ðx;NÞ-plane all ECM solutions for fixed g are
located on an ellipse around zero. This ellipse
grows for increasing values of g. Changing only /,
all the solutions move along the ellipse (see [5]).
These solutions are determined only by the optical
equation (3), and we can use this equation also to
some extend for a study of the stability and bi-
furcations of the stationary points.
If xs is a double root of (12), then we have a

saddle-node bifurcation of rotating waves. To this
end we differentiate (12) with respect to xs and
obtain

1 ¼ g a sinð/ð þ xsÞ � cosð/ þ xsÞÞ: ð14Þ
Together with the conditions (10) and (11) this
gives in the ðx;NÞ-plane the straight line (compare
[5])

xs ¼ aNs �
1� Ns

a
: ð15Þ

Solutions above this line are always unstable, the
solutions below may be stable or unstable. We
want now to represent the condition for this bi-
furcation, as usually done in bifurcation theory, in
the space of the main parameters g and /. To this
end, we first solve the transcendental equations
(10), (11) for g and /, obtaining

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 þ ðx � aNÞ2

q
; ð16Þ

/ ¼
arccosð� N

gÞ � x for x � aN P 0;

� arccosð� N
gÞ � x for x � aN < 0;

8<
:

ð17Þ
and then plug in the saddle-node condition (15). In
Fig. 1, we have plotted the saddle-node condition
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(15) for fixed a ¼ 2, and the resulting curve in the
parameter plane (compare [1]). Note that this
curve has a singular point (called cusp point) which
corresponds to a triple root of (12). Its location in
the ðx;NÞ-plane can be computed as

xs ¼ 0; Ns ¼
1

1þ a2
; ð18Þ

and in parameter space

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ; / ¼ ð2k þ 1Þp � arctanðaÞ: ð19Þ

This value of g is the minimal feedback which is
necessary to have under an appropriate phase
condition more than one ECM on the ellipse.
The phase / is only determined up to addition

of multiples of 2p; looking at the interval
/ 2 ½0; 2p	, any bifurcation curve which leaves
this interval at one side enters at the same time
at the other side. At each branch of the saddle-
node curve the number of solutions changes by
two, leading to more and more ECMs for in-
creasing g (see Fig. 1). The situation with five
ECMs on the ellipse, given in the left part of the
figure corresponds to the parameter values, indi-
cated by the cross in the right-hand side of the
figure.

2.2. The Petermann–Tager condition

It was first observed by Petermann and Tager
in [8] that the existence of two ECM with the
same carrier densitymay lead to stable pulsations of
the laser with a frequency, given by the difference of
the two ECM frequencies. These numerical obser-
vations were confirmed by results of Erneux e.a.,
showing by asymptotic expansion techniques [11]
and later also with numerical path-following tech-
niques [9,10] the existence of such pulsating solu-
tions and corresponding Hopf bifurcations.
Here, we first want to derive an explicit condi-

tion for the existence of two ECMs with equal N.
This can be done again using only the opti-
cal equation (3). We start with two copies of Eqs.
(10) and (11)

N1;2 ¼ �g cosð/ þ x1;2Þ; ð20Þ
x1;2 � aN1;2 ¼ �g sinð/ þ x1;2Þ: ð21Þ
Assuming N :¼ N1 ¼ N2 and x1 6¼ x2, equations
(20) give

x1 þ / ¼ 2kp � ðx2 þ /Þ: ð22Þ
Adding now the two equations (21) yield

x1 þ x2

2
¼ aN or

x1 � x2

2
¼ x1 � aN : ð23Þ

Fig. 1. Saddle-node curve with cusp-point (circle) for a ¼ 2. Left: (x;N )-plane, ellipse for g ¼ 3:1 with 5 ECMs for / ¼ p. Right:
(/; g)-plane, number of ECMs.
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Inserting the relation (22) gives

/ ¼ kp � aN : ð24Þ
Since we excluded the case x1 ¼ x2, corresponding
to x1 � aN ¼ 0 (see (23)), we may divide (20) by
(21) to eliminate g, giving finally

N ¼ ðx1 � aNÞ cotðx1 � aNÞ: ð25Þ
In Fig. 2, we have plotted the resulting curve for

a ¼ 2 in the ðx;NÞ-plane and, using again (16),
(17), also in the ð/; gÞ-plane of our primary bi-
furcation parameters. According to (25), a varia-
tion of the parameter a does not change the picture
qualitatively. At the intersection points of the
different solution branches in the parameter plane,
we have two coexisting pairs of PT modes. How-
ever, the picture in the ðx;NÞ-plane indicates that
the pair from the first branch should have the
lowest threshold density. On the other hand, the
existence of a stable pulsating solution can be ex-
pected only, if one mode of the PT pair is stable.

2.3. Mode degeneracy

Writing condition (9) for rotating wave solu-
tions as

k ¼ ð1þ iaÞNs þ ge�i/e�k ð26Þ

with a complex spectral parameter k instead of
xs, we obtain the characteristic equation for the
linear delay differential equation (3), depending
parametrically on N. Hence, the ECM frequen-
cies xs are eigenvalues k which are purely
imaginary. An optical mode degeneracy occurs,
if there is a double eigenvalue, i.e., a double
root of (26). Differentiating (26) by k, we
obtain

1 ¼ �ge�i/e�k:

Together with (26) this has the unique solu-
tion k ¼ ð1þ iaÞN � 1, which is purely imagi-
nary only if N ¼ 1, giving k ¼ ixs ¼ ia. This point
with a degenerate ECM solution plays an impor-
tant role for the dynamics of the system. Note
that the saddle-node condition (15) is satisfied
there. Also the first branch of the PT curve limits
to this point, indicating that two ECM with equal
Ns merge in the degeneracy point with the
frequency difference going to zero. Correspond-
ingly, there is a point of tangency of the ECM
ellipse for g ¼ 1 and the PT curve (see left part of
Fig. 3).
There are further intersections between the PT

curve and the saddle-node curve. They are not ac-
companied by a mode degeneracy, but may also

Fig. 2. Petermann–Tager condition (25) for a ¼ 2. Left: (x;N )-plane; an arbitrary ECM ellipse for g > 1 intersects the curve at two

ECM solutions with equal N. Right: (/; g)-plane; due to the periodicity of / the first (thick line) and second branch (thin line) appear

repeatedly in the interval / 2 ½0; 2p	.
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lead to interesting bifurcations. However, since
they occur at much higher feedback levels, we will
not study them here.

3. Linearized dynamics at external cavity modes

After having obtained a lot of information from
the optical equation (3), we proceed in our stability
and bifurcation analysis of the external cavity
modes by considering the full system, including the
carrier equation (4). For the theoretical back-
ground of our treatment of nonlinear differential
delay systems we refer to [17,18].
First, we use a particular ECM solution

EðtÞ ¼ Eseixst; NðtÞ ¼ Ns; ð27Þ
where xs;Ns;Es satisfy the ECM conditions (9), as
a reference frame, introducing

EnewðtÞ :¼ e�ixstEðtÞ:
The rotating wave solution (27) then becomes a
stationary state of the transformed system

_EEnewðtÞ ¼ ðð1þ iaÞN � ixsÞ � EnewðtÞ
þ ge�ið/þxsÞ � Enewðt � 1Þ; ð28Þ

_NNðtÞ ¼ eðJ � N � ðN þ mÞjEnewðtÞj2Þ: ð29Þ

Splitting the equation for the optical field ampli-
tude into real and imaginary part as EnewðtÞ ¼
xðtÞ þ iyðtÞ, we obtain

_xxðtÞ ¼ ðxðtÞ � ayðtÞÞN þ xsyðtÞ
þ g½xðt � 1Þ cosð/ þ xsÞ þ yðt � 1Þ


 sinð/ þ xsÞ	;
_yyðtÞ ¼ ðaxðtÞ � yðtÞÞN � xsxðtÞ

þ g½yðt � 1Þ cosð/ þ xsÞ � xðt � 1Þ

 sinð/ þ xsÞ	;

_NNðtÞ ¼ eðJ � N � ðN þ mÞðxðtÞ2 þ yðtÞ2Þ:

This system can now be linearized in the form

d

dt
~vvðtÞ ¼ A~vvðtÞ þ B~vvðt � 1Þ

with ~vv ¼ ðv1; v2; v3Þ corresponding to variation of
x, y and N, respectively. The matrices A and B can
be computed as

A¼
N xs�aN x�ay

�ðxs�aNÞ N axþ y

�2exðN þ mÞ �2eyðN þ mÞ �eð1þ x2þ y2Þ

0
B@

1
CA;

ð30Þ

Fig. 3. Petermann–Tager (PT) and saddle-node bifurcation (SN) curves, mode degeneracy (MD) and cusp-point (CU) in the (x;N )-
plane (left) and in the (/; g)-plane (right).
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B ¼
g cosð/ þ xsÞ g sinð/ þ xsÞ 0
�g sinð/ þ xsÞ g cosð/ þ xsÞ 0

0 0 0

0
@

1
A:

ð31Þ
The characteristic equation for the eigenvalues

of this linear system is now given by the tran-
scendental equation

vðKÞ ¼ detðK Id� A� e�KBÞ

¼ ðK
h

� N � e�Kg cosð/ þ xsÞÞ2

þ ðxs � aN þ e�Kg sinð/ þ xsÞÞ2
i


 ðK þ eð1þ x2 þ y2ÞÞ þ 2eðx2 þ y2ÞðN þ mÞ

 K
�

� ð1þ a2ÞN þ axs

þ e�Kgða sinð/ þ xsÞ � cosð/ þ xsÞÞ
�

with complex spectral parameter K. Using the
ECM conditions

jEsj2 ¼ x2 þ y2; N ¼ Ns ¼ �g cosð/ þ xsÞ;
xs � aNs ¼ �g sinð/ þ xsÞ

we obtain the characteristic equation for the lin-
earization at the ECM solution as

vðKÞ ¼ ðK
h

þ Nsðe�K � 1ÞÞ2

þ ðxs � aNsÞ2ðe�K � 1Þ2
i
ðK þ eð1þ jEsj2ÞÞ

þ K
�

þ ðð1þ a2ÞNs � axsÞðe�K � 1Þ
�


 2ejEsj2ðNs þ mÞ: ð32Þ

3.1. The Hopf condition

For a Hopf bifurcation it is necessary to have
pair of pure imaginary solutions to (32), i.e.,

vðKÞ ¼ 0; K ¼ iX; X 2 R:
The resulting equation can again be split into real
part

0 ¼ 2XðcosX � 1Þ sinXðN 2
s

h
þ ðxs � aNsÞ2Þ

� XNs
i
þ eð1þ jEsj2Þ

h
� X2

þ 2 cosXðcosX � 1ÞðN 2
s þ ðxs � aNsÞ2Þ

þ 2NsX sinX
i
þ 2ejEsj2ðNs þ mÞ


 ðð1þ a2ÞNs � axsÞðcosX � 1Þ ð33Þ

and imaginary part

0 ¼ X
h
� X2 þ 2 cosXðcosX � 1ÞðN 2

s þ ðxs

� aNsÞ2Þ þ 2NsX sinX
i
� 2eð1þ jEsj2Þ


 ðcosX � 1Þ sinXðN 2
s

h
þ ðxs � aNsÞ2Þ

� XNs

i
þ 2ejEsj2ðNs þ mÞ


 ðX � ðð1þ a2ÞNs � axsÞ sinXÞ: ð34Þ

Due to the phase shift invariance of the rotating
waves, K ¼ 0 always solves the eigenvalue equa-
tion (32). Moreover, K ¼ 0 is a double solution to
(32) exactly at the saddle node curve (15). Exactly
in these cases, X ¼ 0 is a solution to Eqs. (33) and
(34).

3.2. Approximate solutions by scaling methods

In order to find approximating expressions for
solutions of (33), (34), we use the smallness of e.
Assuming that there are solutions where X 6¼ 0
stays away from zero as e tends to zero, we can
neglect terms of order e in (33), (34). From the
remaining terms

0 ¼ sinXðN 2
s þ ðxs � aNsÞ2Þ � XNs;

0 ¼ �X2 þ 2 cosXðcosX � 1Þ


 ðN 2
s þ ðxs � aNsÞ2Þ þ 2NsX sinX; ð35Þ

we obtain the three conditions

Ns ¼ � X sinX
2ðcosX � 1Þ ; ð36Þ

xs � aNs ¼
X
2
; ð37Þ

Ns ¼ ðxs � aNsÞ cotðxs � aNsÞ: ð38Þ

This result coincides with Eq. (25) for the Pet-
ermann–Tager condition, i.e., for the existence of
two ECM solutions with the same threshold value.
Moreover, the Hopf frequency X coincides with
the difference of the two ECM frequencies (com-
pare (37) and (23)). For a more detailed analysis of
these solutions, see [11,12].
Fig. 2 shows the curve, given by (38), which

consists of several branches. Using Eqs. (16) and
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(17), we obtain the corresponding curve in the
(/; g)-plane of our bifurcation parameters.
Note that the two branches of solutions to (38)

which emanate from the point of mode degeneracy
in the (x;N )-plane, are mapped to the same
branch in the (/; g)-plane. Later we will see that
solving numerically the full system (33) and (34),
this coincidence will disappear, and two Hopf
branches both close to this approximate curve will
appear. This coincides also with the results in [9],
where for changing g corresponding pairs of Hopf
points have been found near the PT condition.
But in addition to these already known type of

solutions, we get another type of solutions to (33)
and (34), if we assume that X2=e remains finite for
e tending to zero (compare [15]). Here we may
replace trigonometric functions by Taylor expan-
sions and obtain for the rescaled variable

Xr ¼
Xffiffi
e

p

in leading order of e the equations

0 ¼ X2
r ðNs � N 2

s � ðxs � aNsÞ2Þ � ð1þ jEsj2Þ


 ððNs � 1Þ2 þ ðxs � aNsÞ2Þ � jEsj2ðNs þ mÞ

 ðð1þ a2ÞNs � axsÞ;

0 ¼ �X2
r ððNs � 1Þ2 þ ðxs � aNsÞ2Þ þ 2jEsj2ðNs þ mÞ

þ ð1� Ns þ aðxs � aNsÞÞ:

Eliminating X2
r , and using the new coordinates

�nn ¼ 1� Ns; �xx ¼ xs � aNs; ð39Þ
we get the Hopf condition

� 1

jEsj2
¼ 1þ ð1� �nnþ mÞ �nnþ a �xx

�nn2 þ �xx2

 

� ð�nnþ a �xxÞ2 � ð1þ a2Þ �xx2

ð�nn2 þ �xx2Þ2

!
: ð40Þ

The corresponding Hopf frequency is given by

X2 ¼ e
2jEsj2ðNs þ mÞð�nnþ a �xxÞ

�nn2 þ �xx2
: ð41Þ

From this, we get the constraint �nnþ a �xx > 0 in
addition to the condition (40). Note that according
to (41) the Hopf frequency along this branch of

solutions is comparable to the relaxation fre-
quency

X2 � X2
rel ¼ ejEsj2m

of the solitary laser. Hence we can interpret this
branch of Hopf bifurcations as an undamping of
the relaxation oscillation. The possibility of such
pulsations has been pointed out already by Ritter
and Haug in [7], performing a small signal analysis
and introducing further simplifications. In the case
of two-section DFB lasers, similar phenomena
were called DQS-pulsations (dispersive self Q-
switching), see [14]. In this case, obviously the
Fabry–Perot dispersion of the external cavity leads
to this type of instability.
Fig. 4 shows this DQS–Hopf curve together

with the bifurcation curves, calculated before.
Using Eq. (40), we obtain a bifurcation curve for
fixed intensity jEsj2. This means, the pumping pa-
rameter J has to be adjusted according to Eq. (13).
Alternatively one could also use (13) to eliminate
jEsj2 in (40), and from that obtain a Hopf curve for
constant J with varying intensity jEsj2. In the figure
we show the DQS–Hopf curve for several different
choices of the intensity jEsj2 and the parameter m
(transparency level). Note that the dependence on
these parameters originates from the carrier rate
equation (4), which has not been used to calculate
the conditions for saddle-node, PT, and mode
degeneracy.
Note that all these Hopf curves start and end at

the point of mode degeneracy

�nn ¼ �xx ¼ 0:

However, both the finite X and X ¼ Oð
ffiffi
e

p
Þ ap-

proximations are no more valid in a neighbour-
hood of this point. To derive a correct
approximation for the Hopf bifurcation curves
near the mode degeneracy point, one should notice
that near this point both the quantities X and e=X2

are small. Furthermore, closeness to the mode
degeneracy point means that the quantities �nn and
�xx are small as well. By expanding in powers of X,
e=X2, �nn and �xx, and omitting higher order terms, we
obtain from Eq. (33) the approximate relation

�nn� �xx2 � e

X2
Sð1þ mÞ þ X2

6
� 0;
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and from (34) the approximate relation

X2

4
� �nn2 � �xx2 þ 2

e

X2
Sð1þ mÞða �xx þ �nnÞ � 0:

To the leading order in X and e=X2 these equations
give

�nn � e

X2
Sð1þ mÞ þ X2

12
;

�xx � a
e

X2
Sð1þ mÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

X2
Sð1þ mÞ

� �2
ð1þ a2Þ þ X2

4

s
:

Note that we have here two disjoint branches of
the Hopf bifurcation curve. At small X and e=X2

we get small �nn and �xx, i.e., these branches are in-
deed close to the mode degeneracy point
(N ¼ 1; x ¼ a). Each branch is parametrized by
the value of X which runs monotonically from
Oð

ffiffi
e

p
Þ to small finite values, i.e., each branch

asymptotically matches one of the ends of the
DQS-type Hopf curve with one of the two Peter-
mann–Tager curves.
It should also be noted that the ‘‘minus’’ branch

intersects the saddle-node curve �xx ¼ ��nn=a (cf. Eq.
(15)). Indeed, the equation for the intersection
point is

� e

aX2
Sð1þ mÞ � X2

12a

� a
e

X2
Sð1þ mÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

X2
Sð1þ mÞ

� �2
ð1þ a2Þ þ X2

4

s
;

which gives indeed a unique solution

X3 � 2e
Sð1þ mÞ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
:

This intersection point (called ‘‘fold-Hopf inter-
action’’, or ‘‘Gavrilov-Guckenheimer point’’) is
remarkable because its presence implies further
nontrivial dynamics, such as bifurcation of in-
variant tori and homoclinic phenomena (see e.g.
[19]). According to recent results in [20], a curve of
torus bifurcation emanating from this point can be
continued to the torus bifurcation, which has been
found in [10]. However, on the torus branch close
to the fold-Hopf interaction point, further bifur-
cations of 1:2 resonance were observed.

3.3. Numerical solutions for the Hopf condition

After having studied analytically the two types
of Hopf bifurcations and their transition regime

Fig. 4. Thick lines: bifurcation curves for the DQS–Hopf (a ¼ 2). Crosses: low intensity (jEj2 ¼ 0:2). Solid lines: high intensity

(jEj2 ¼ 2).
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near the point of mode degeneracy, we now pres-
ent some numerical results: Fig. 5 shows a nu-
merical solution to the system of equations (33),
(34) for fixed values of the secondary parameters
a; m; e; jEj2. To make differences to the asymptotic
curves (in the figure dashed) better visible, we have
chosen e ¼ 0:01 only of moderate smallness. Apart
from the point of mode degeneracy, the computed
curve shows a good coincidence with the asymp-
totic PT and DQS curve.
Note that there are indeed two branches of the

Hopf curve, both approaching the PT curve in the
(/; g)-plane. Each of them is connected with one of
the two ends of the DQS curve. Moreover, one can
see that in the vicinity of the mode degeneracy one
branch of the Hopf curve meets the saddle-node
line in a point of tangency (fold-Hopf interaction).
Recall that in the (x;N )-plane the region above the
saddle-node line contains the ECM solutions of
saddle type, whereas below the saddle-node line
the nodes are located. This corresponds to the well
known fact that at a fold-Hopf interaction point
the type of the bifurcating equilibrium changes
along the Hopf curve [19].
The organizing centre of the whole scenario is

the point of optical mode degeneracy. It separates
the two different regimes of DQS and PT pulsa-
tions, and leads to the nearby fold-Hopf interaction

as well as to a second appearance of the Hopf curve
in the vicinity of this point, where the frequency on
this branch changes from order

ffiffi
e

p
to order 1.

Since for the PT pulsation, the Hopf frequency
is given by the beating frequency of the two modes,
we can calculate explicitly the relation of this fre-
quency X and the feedback level g: inserting (37)
and (24) into (11), we obtain

g ¼ X
2 sin X=2ð Þ

����
���� ð42Þ

Fig. 5. Numerically obtained Hopf curves for e ¼ 0:01; m ¼ 1; jEj2 ¼ 0:5 [left (x;N )-plane, right: (g;/)-plane]; dashed: curves from
the asymptotic approximations (35), and (40); thin line: saddle-node curve; FH, fold-Hopf interaction.

Fig. 6. PT Hopf frequency X for changing feedback level g,
according to (42).
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Note that apart from the specific scaling of g and
the time unit, there enters no specific parameter
into this formula. Fig. 6 shows that the PT fre-
quency on the first branch is tunable between zero
and the value 2p in our rescaled time. However, it is
necessary to meet the appropriate phase condition.
For larger g there appear also more and more pairs
of PT modes with larger frequency difference, the
first of which leads to the second branch in Fig. 6.
In Fig. 7 we show the numerically obtained

Hopf frequency along the part of the Hopf curve,
connecting with increasing g the DQS and the PT
regime. One can observe, that for g < 1 (i.e., the
DQS case) the frequency is indeed of order

ffiffi
e

p
.

Then, after an intermediate regime around g ¼ 1,
the curve follows the curve given by (42).

4. Conclusions

We have studied Hopf bifurcations, leading to
pulsation instability of lasers with optical feed-
back. Restricting to the case of moderate feed-
back time, as it occurs in integrated multi-section
devices, we obtain a complete characterization
of solutions to the bifurcation equation and a
two-dimensional bifurcation diagram in the main

parameters feedback strength g and feedback
phase /.
Depending on the pulsation frequency, one can

distinguish two different types of pulsations, the
DQS- and Petermann–Tager (PT) pulsations. The
frequency of the first type is related to the relax-
ation frequency of the solitary laser, whereas for
the second type it is determined by the frequency
difference of two external cavity modes with the
same threshold density, leading to higher fre-
quencies. The occurrence of these two types of
pulsations is separated by a distinguished feedback
level (in our rescaled variables g ¼ 1). Using the
ratio of feedback time and carrier lifetime as a
small parameter, we were able to compute ap-
proximating expressions for the bifurcation curves
in the different regimes, showing also the influence
of secondary parameters. We also compared these
approximating formulas with numerical solutions
to the full problem.
Finally, we studied the transition between the

two types, which is organised by a point of mode
degeneracy and comes along with a codimension-
two bifurcation of Guckenheimer–Gavrilov type
(fold-Hopf interaction). This codimension two bi-
furcation is known to give rise to complicated
dynamics and nonlocal bifurcations.

Fig. 7. Right: Hopf frequency X for changing feedback level g along the bold part of the Hopf curve in the bifurcation diagram (left).

Dashed: asymptotic approximation for PT frequency, cf. Fig. 6.
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The two presented mechanisms for pulsations
seem to be fundamental for laser devices where a
moderately delayed feedback is present. Especially
the role of the point of mode degeneracy as an
organizing centre for the different types of pulsa-
tions seems to be a more general feature [15]. In-
deed, similar bifurcation scenarios have been
obtained in [20] for three-section lasers with one
active section. These results, however, are based on
a time domain model, and have been obtained by
centre manifold techniques and numerical path-
folloiving of bifurcation curves.
The high frequency pulsations of the PT type

(for appropriate device parameters more than 40
GHz should be possible), together with the shown
tunability of their frequency seem to be a prom-
ising feature for applications in optical communi-
cation technique.
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