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Abstract. We demonstrate the scenario showing how the stable spatially localized solutions 
with nontrivial (periodic, quasiperiodic or chaotic) dynamics may appear in lattice dynamical 
systems. It is important to mention that bifurcations to such regimes occur when the strength of 
spatial interactions exceeds some threshold. In fact we first prove the persistence of stationary 
localized structures in a range of weak interactions and then from this result of the 'anti-integrable 
limit' type we make the next step to show the existence of bifurcations of these states to the 
stable spatially localized states with a nontrivial time dynamics. We also show how our approach 
can be applied to study bifurcations to nonstationary states with spatial structure of general type. 

PACS number: 6320P 
AMS classification scheme numbers: 58F15, 34D30, 34C35 

1. Introduction 

Lattice dynamical systems (LDS), that have recently been introduced, have allowed slightly 
more insight into the dynamics of extended systems. However, thanks to LDS, it became 
even more clear how very little is known about the spacetime dynamics. 

The most essential feature of the dynamics of extended systems, in contrast to non­
extended (pointwise) systems, is the presence of spatial interactions between the local 
(pointwise) subsystems. However, basically, all the mathematical results in the theory 
of LDS are concerned with situations where the presence of spatial interactions does not, 
in fact, change the character of dynamics of the collection of noninteracting local systems. 

However, many papers have been devoted to the numerical studies of coupled map lat­
tices (sec, e.g. [1(}-14, 16, 19,20,22]). These studies were concerned with the broad region 
of spatial interactions and revealed the very rich and beautiful spatio-temporal dynamics of 
extended lattice systems. However, the rigorous mathematical studies ofLDS are, naturally, 
far behind the numerics and deal eventually with the region of weak spatial interactions. 

Indeed, the two main activities that have emerged in the mathematical studies of LDS 
deal exactly with such situations. (Needless to say, the range of spatial interactions in these 
studies is usually very narrow and, what is very important, it always contains zero, i.e. the 
case where there is no space time dynamics at all because there are no spatial interactions.) 
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One of these activities is the construction of various types of solutions and the study 
of their stability in the range of weak spatial interactions. The procedure is as follows. 
(I) Pick some solutions of the local system. (2) 'Glue' them together by considering 
the collection of all these solutions at all sites of the lattice (certainly, such collection of 
solutions for local systems gives a formal solution for LDS without spatial interactions). (3) 
Find an appropriate Banach space and prove there an implicit function theorem to ensure 
that the corresponding solution persists (exists and is stable) for weak (but nonzern!) spatial 
interactions. 

This program (which is sometimes called the concept of anti-integrability [4, 17]) proved 
to be very efficient and allowed to construct various nontrivial solutions for many interesting 
and important lattice dynamical systems (see, e.g. [1,3-5,17-19,23-27]). 

Another active area of mathematical research, started in [9], is an attempt to understand 
the phenomenon of the spacetime chans. Again, it starts in the situation where there are no 
spatial interactions at all. However, it deals with local systems which have strongly chantic 
dynamics. Therefore, we consider an ensemble of trajectories of local systems which are 
chaotic and therefore cannot be explicitly written or described (unlike to the anti-integrable 
limit approach where solutions under consideration are fairly simple). The problem to study 
in this approach is proving that to each sufficiently small strength of spatial interactions there 
corresponds a unique natural invariant measure in an (infinite-dimensional) phase space of 
LDS which is spacetime mixing [9]. Again, the existence and uniqueness of such measure 
in an absence of space interactions follows trivially from the known facts in the theory 
of pointwise (finite-<limensional) dynamical systems. Instead of simple solutions of local 
systems one must now 'glue' together invariant measures of these chantic local systems, i.e. 
just to take their direct product. The problem is to show that under weak spatial interactions 
this measure, which generates identically zero spatial correlations, will be transformed into 
a measure which generates spatial correlations that decay with a distance along a lattice and 
also preserves a decay of time correlations. This program was realized for various LDS 
(see, e.g. [6,7,9,20]). 

However, the problems that are intrinsically related to the main features of extended 
dynamical systems must deal with the situations where the spatial interactions essentially 
influence the spacetime dynamics. 

One of these problems on chaos-<>rder transition has been formulated in [9]. It 
investigates the mechanism of the appearance of coherent structures from chans, when 
the strength of spatial interactions increases. There is to date very little progress in this area 
(see, e.g. [6,8]). Another problem, first formulated in [8], addresses the opposite situation 
when a complex behaviour of LDS is generated by spatial interactions while the dynamics 
of local systems is fairly simple. 

It is important to mention that neither of these problems are of a kind that can be handled 
by a perturbation theory but go into the ranges of spatial interactions that are bounded away 
of zern. Thus, the first problem is concerned with the appearance of coherent structures from 
the spacetime chaos while the second one with the mechanisms that generate the spacetime 
chaos via spatial interactions. In particular, the second problem goes beyond the range of 
weak spatial interactions where the concept of anti-integrability might work. 

Thus, the second problem deals with various (spacetime) bifurcations that increase the 
complexity of spacetime dynamics and appear when the strength of spatial interactions 
increases. One of such bifurcations, called the peak-crossing, has been studied in [10, II]. 

In this paper we study the rather general class of bifurcations which lead to spatially 
localized solutions with nontrivial time dynamics. Besides breathers these solutions include 
those with a quasiperiodic or chantic dynamics. 
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This paper is organized as follows. In section 2 we describe the class of LDS under 
study: here the pointwise subsystem is a map with two fixed points, one is exponentially 
stable and one is on the boundary of stability. This is a degenerate situation, so we assume 
that the local map depends on a number of parameters (the structural parameters) which 
unfold the degeneracy. We give a centre manifold theorem for the LDS composed of 
such maps with a weak spatial interaction. In section 3 we exploit this theorem to show 
that for small values of interaction parameter, singl<>-pulse spatially localized stationary 
solutions undergo essentially the same bifurcations as in the uncoupled system. In fact, our 
results are two-fold. On one hand, it is a standard consideration of the case of weak spatial 
interaction. On the other hand, we show that the interplay between the structural parameters 
and the parameter of spatial interaction for the reduced map on the centre manifold leads 
to the following phenomenon: for the frozen values of the structural parameters of the 
local subsystem, slightly below critical, there is a threshold. The originally stable localized 
stationary state bifurcates to a more complex localized solutions when the strength of spatial 
interactions exceeds the threshold. Thus, the degeneracies of the local subsystems of the 
LDS can be responsible for the nontrivial temporal behaviour of the LDS with nonzero 
spatial interaction. 

2. Centre manifold for stationnry localized states 

Consider a one-dimensional lattice dynamical system 

Xi = !(Xi; y, e) + e:F(Xi_n ... , Xi, ... , XHs; y, e) (I) 

where i E :1:, each x, belongs to Rk, the function [ is C' (r ~ I) with respect to all its 
arguments, y is a vector ofreal parameters ('the structural parameters'), 8 is the 'interaction' 
parameter which is supposed to be small, and :F is a C' function. Since the 'interaction 
term' :F depends on a finite number (28 + I) neighbouring values of x, it is a finite-range 
LDS. 

We suppose that at y = 0, 8 = 0 the local subsystem 

i=[(X;y,B) (2) 

has two fixed points x = 0 and x = x' (i.e. [(0) = 0, [(x') = x') such that x = 0 is 
exponentially stable (Le. II f' (0) II < I hence with no loss of generality we may assume that 
x = 0 is the fixed point of the local map at all small y) and x = x' is asymptotically stable, 
though having all k multipliers on the unit circle. 

We allowed for the dependence of the local map on B for greater generality. In particular, 
we may then assume that 

:F.~. = o. (3) 

Take any finite set I = {ir, ... , i~} of integers and consider the sequence 

{
x. =x· 

X· = {x?}: ~ 
x,=O ati<f.l. 

at i E I 

This is a stationary, spatially localized solution of (I) at B = 0, Y = o. The following 
variant of the centre manifold theorem describes the time evolution of solutions starting in 
a small neighbourhood of X· (in the uniform norm II X II = max IIx;!!) for small B and y. 
Denote Xl = {x," ... , x,,}. For any i, let d(i; I) be the minimal integer greater than or , . 
eqnal to Ii - i~l/s where i~ denotes here the element of I nearest to the given i (s is the 
radius of interaction). 
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Theorem 1. There exists a small 8 > 0 such that at all small 8 and y the iterations of any 
initial sequence X, 8-close to XO in the uniform norm, tend to an invariant centre manifold 
W' of the form 

(4) 

where 

(5) 

for some constant K and some C' -jUnctions <I> uniformly bounded along with all their 
derivatives. 

Proof. Let Y denote the vector composed of differences {x, - X'lief and the parameters 
8 and y; we denote by Z the rest of the x-variables. The map (1) is a C'-smooth map of 
the space (Y, Z) with the uniform norm. The origin (Y, Z) = (0, 0) is a fixed point of this 
map. Schematically, the map (I) can be written as 

{ 
Y = AY + Gt (Y, Z) 

(6) 
t = HZ + CY + G2(Y, Z) 

where G t •2 denote small nonlinear terms, A is a finite-dimensional matrix whose 
eigenvalues, according to our assumptions on the fixed points of the local map, are eqnal 
to unity in absolute value, H is a linear opemtor such that II H II < I and C is a bounded 
linear opemtor which is just the derivative of the right-hand sides of (I) with respect to the 
parameters 8 and y at X = X·, 8 = 0, Y = O. Since Y is a finite-dimensional vector, the 
centre manifold theorem applies immediately to such map. 

In terms of the original notation it reads as follows. For some small 8, for all small 
8 and y, in the 8-neighbourhood of X· there exists an invariant manifold W' of the type 
(4) such that for any initial sequence X such that IIX - X·II .;;; 8, if the forward itemtions 
of X by the map (1) stays all in the 8-neighbourhood, then they tend to W'. Note that by 
our assumption the fixed point X· is asymptotically stable for the map (I) at 8 = 0, Y = O. 
Therefore, it follows that for any 8 any forward orbit starting in the 8-neighbourhood of 
X· stays there forever, provided 8 and y are sufficiently small. Thus, any forward orbit 
starting close to X· tends to the centre manifold. 

It remains to prove estimates (5). As is well knowo, the centre manifold is found as 
the limit of the itemtions of the surface Z = 0 by the map 

{ 
Y = AY + X(IIYj811)G t (Y, Z) 

t = HZ + CY + x(IIYj8IDG2(Y, Z) (7) 

where X(u) is a smooth function eqnal identically to I at lui';;; 1 and to 0 at lui ~ 2. This 
map is defined for all Y, not necessary small now, and it coincides with the original map 
at II YII .;;; 8. The initial surface Z = 0 satisfies (5). Thus, to complete the proof it remains 
to check that if some surfaces have the form (5) where the C' -norm of the functions <1>, is 
uniformly bounded by some appropriate constant, its image by (7) has the same form with 
the norm of the new functions <1>, bounded by the same constant. 

One can see (since :~ in (7) has bounded inverse uniformly for all Y and Z from the 
domain of definition) that it is equivalent to veriJYing that after rescaling Z ..... (KB)DZ""" : 
{x, ..... (KB)d(i;f)x"now}'.f the map (7) remains smooth and contmcting in Znow in the 
uniform norm. But the latter obviously follows from the structore of the map (I) provided 
(3) holds and K is chosen large enough. D 
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The theorem above shows that the loss of stability of the spatially localized statioruuy 
states leads to creation of the new localized solutions. The temporal behaviour of such 
solutions is finite dimensional, respective to the dimension of the centre manifold. Even 
if it is one dimensional, the new solutions may be temporally periodic, and for the greater 
dimensions they may be quasiperiodic or even temporally chaotic. 

Note that, obviously, this result is not quite so sensitive to the choice of the norm in 
the space of infinite sequences {x,}. Indeed, the theorem shows that any uuiformly small 
perturbation relaxes to a (exponentially) self-localized state. Thus, all the bifurcations will 
be the same, despite whether the problem stodied in the uuiform norm, or, say, in 1,. 

In the next section we give the simplest example of the application of theorem I to 
the stody of the loss of stability of single-pulse localized solutions for the case of linear 
diffusive interaction. 

3. Loss of stability of single-pulse stationary states 

Let the interactions in the map (I) be linear and of radius I. Namely, we consider a 
particular case 

x, = I(x,; y) + e1J(x,_, - 2x, + X'H) (8) 

where 1J is a (k x k) diagonal matrix: 1J = diag(d], ... ,d.), and the local map I, as 
assumed above, has an exponentially stable fixed point x = 0 and, at y = 0, a degenerate 
fixed point x = x' which is asymptotically stable but has all the multipliers on the uuit 
circle. 

We are interested in the behaviour of the single-pulsed solutions-i.e. those which satisfY 
IIxo - x'il .;;; 6; IIxill,,,,, .;;; 6 for some small 6. By theorem I the iterations of any such 
iuitial state tend to a localized solution for which 

IIxill .;;; (Ke)I'1 

and the evolution of the coordinate Xo is given by a k-dimensional map (the restriction of 
(8) onto the centre manifold) 

x = I(x; y) - 2e1Jx + 0(e2
). (9) 

If the fixed point x = x' of the local map does not have a multiplier eqnal to I at 
y = 0, then at all small y and e the map (9) has a close to x· fixed point 

x:,y = x; - 2e(1 - !,(x;»-'1Jx; + 0(e2
) 

where x; is the fixed point of the local map (at e = 0). 
The linearization matrix of the map (9) at the fixed point is 

(10) 

!'(x;) - 2e(f"(x;)(1 - !,(x;»-'1Jx; -1J). (11) 

Given y, the critical value of e can be found (up to the terms of order e2) from the 
characteristic equation 

det[1.l - I'(x;) - 2e(i"(x;)(1 - !,(x;»-'1Jx; + 1J)] = 0 (12) 

subject to the requirement that the given number of the roots A lie on the uuit circle. By 
assumption, all the eigenvalues of f' (x') lie on the uuit circle at y = O. Therefore, in a 
general position, for any fixed small y, at appropriately chosen diffusion ratios d" ... , d. 
one can find from (12) the threshold value of e which corresponds to any given number of 
multipliers on the uuit circle. 
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Exceeding the threshold leads to a bifurcation to a nontrivial temporal dynamics. If only 
one mnltiplier (-I) crosses the unit circle, then the localized stationary state bifurcates to a 
solution of temporal period 2. When two mnltipliers cross the unit circle, an invariant torus 
is born, i.e. the solution may become quasiperiodic. The passage of three mnltipliers across 
the unit circle may give rise to a chaotic behaviour (see [2,28]) of the localized solution. 

As an example of calcnlations by formula (12), let us consider the LDS (8) with the 
local map 

f(x) = x + x(a(1 - x) - b(1 - x)2) 

where x E RI. The fixed points under consideration are x = 0 and x = x· = I. Here 
/,(0) = I + a - b, /,(1) = I-a. Thus, x = 0 is stable at b E (a, a + 2). 

The fixed point x = I is stable at a E (0, 2), and at a = 2 the mnltipJier becomes 
equal to -I. We have f"(l) = -2a - 2b, /'''(1) = -6b. The first Lyapunov value 
at the bifurcational moment a = 2 is -(f"'(I) + ~f"(I)') = -6(b + (b + 2)2). It is 
negative, therefore the fixed point x = I is asymptotically stable at a = 2. Theorem I and 
formnlae (9}-{12) are thus applied, which gives that if a < 2 but it is close to 2, then at 
b E (a, a + 2) and at all E E (0, Ee) the LDS under consideration has a stable localized 
stationary state X;.b., such that for some K 

Ixil :;;;; (KE)I'I at i # 0 

and 

x; = I - 2Ea-1 + 0(E2) 

(we assume 'D = I here). 
The critical value Ee corresponds to the loss of stability of lhis stationary state. By (12) 

(2 - ala 
Ee ~ 2(a+2b)' 

When E exceeds the threshold E = Ee the solution bifurcates to a spatially localized 
solution of temporal period 2. 

Acknowledgments 

DT is grateful for the kind hospitality at CDSNS and SAAC of the Georgia Institute of 
Technology. LB was partially supported by NSF grant #DMS96-0703. 

References 

[1] Afraimovich V S, Glebsky L Y and Nekorkin V I 1994 Stability of .tatiOIUll)' .tate. and topological spatial 
chaos in multidimensional lattice dynamical systems Rtznd. Comput. Dynam. Z 287-303 

[2] Ameodo A, Coulle. P, Spiegel E aod Tres.", C 1985 Aaymptotica1 chao. Physic. D 14 327-47 
[3] Aubry S 1997 Breathers in nonlinear lattices: existence, linear stability and quantization Physica D 103 

201-50 
[4] Aubry S and Abramovici G 1990 Chaotic trajectories in the standard map: the concept of anti-integrability 

Physica D 43 199--219 
[5] Bambusi D 1996 Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators 

Nonlinearity 9 433-57 
[6] Bricmont T and Kupiainen A 1996 High temperature expansions and dynamical systems Commun. Math. 

Phy •. 178 703-32 
[7] Bricmont T and Kupiain.en A 1997 Infurite dimensional SRB measures Physica D 103 18-33 
[8] Bunimovich L A 1995 Coupled map lattices: One step forward and two steps back Physica D 86 248-55 
[9] Bunimovich L A and Sinai Ya G 1988 Spacetime chaos in coupled map lattices Nonlinearity 1 491-516 



Localized solutions in lattice systems 1545 

[10] Bunimovich L A and Venkatagiri S 1996 Onset of chaos in coupled map lattices via the peak-crossing 
bifurcation Nonlinearity 9 1281-98 

[11] Bunimovich L A and Venkatagiri S 1997 On one mechanism of transition to chaos in lattice dynamical 
system Phys. Rep. 290 81-100 

[12] Cha .. H and Manneville P 1988 Spatiotemporal intermittency in coupled map lattices Physico D 32 409-23 
[13] Chate H and Manneville P 1989 Role of defects in transition to turbulence via spatiotemporal intermittency 

Physica D 37 33-41 
[14] Cha .. H and Manneville P 1989 Coupled map lattices as ceHu1as automata J. Stat. Phys. 56 357-70 
[15] Chate H and Manneville P 1992 Collective behaviour in spatially extended systems Prog. Theor. Phys. 87 

1-<iO 
[16] Crutchfield J and Kaneko K 1987 Phenomenology of the spacetime chaos Directions in Chaos ed Hao-Bai 

Lin (Singapore: World Scientific) pp 272-353 
[17] Defontaines A D, Pomeau Y and Rostand B 1990 Chain of coupled bistable oscillators: a model Physica D 

46201-16 
[18] Flach S 1995 Existence of localized exitations in nonlinear Hamiltonian lattices Phys. Rev. E 511503-7 
[19] Flach S and Willis C R 1992 Localized exitations in a discrete Klein-Gordon system Phys. Lett. A 181 232-8 
[20] Jiang M 1995 Equilibrium states for lattice models of hyperbolic type Nonlinearity 8 631-59 
[21] Kaneko K (ed) 1993 Theory and Applications of Coupled Map Lattices (Now York: WIley) 
[22] Kaneko K (ed) 1993 Focus issue on coupled map lattices Chaos 2; 279-460 
[23] Livi R, Spicci M and MacKay R S 1997 Breathers on a diatomic FPU chain Nonlinearity 10 1421-34 
[24] MacKay R S 1996 Dynamics of networks: features wbich persist from the uncoupled limit Stochastic and 

Spatial Structures in Dynamical Systems ed S T van Smen and S M Verduyn Lunel (Amsterdam: North­
Holland) pp 81-104 

[25] MacKay R S and Sepulchre T -A 1995 Multistability in networks of weakly coupled bistable units Physica 
D 82243-54 

[26] Nekorkin V I and Makarov V A 1995 Spatial chaos in a chain of coupled bistable oscillators Phys. Rev. Lett. 
744819-22 

[27] Sepulchre T-A and MacKay R S 1997 Localized oscillations in conservative or dissipative networks of 
weakly coupled autonomous oscillators Nonlinearity 10 679-713 

[28] Shilnik.ov A L. Shilnikov L P and Turaev D V 1993 Normal forms and Lorenz attractors Int. J. BifUrcation 
Chaos Appl. Sci. Eng. 3 1123-39 


