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Elliptic islands appearing in near-ergodic flows 
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Abstract. It is proved that periodic and hom.oclinic trajectories which are tangent to the 
boundary of any scattering ( ergodic) billiard produce elliptic islands in the 'nearby' Hamiltonian 
flows i.e. in a family of two-degrees-of-:freedom smooth Hamiltonian flows which converge 
to the singular billiard flow smoothly where the billiard flow is smooth and continuously 
where it is continuous. Such Hamiltonians exist; indeed, sufficient conditions are supplied. 
and thus it is proved that a large class of smooth Hamiltonians converges to billiard flows in this 
manner. These results imply that ergodicity may be lost in the physical setting, where smooth 
Hamiltonians which are arbitrarily close to the ergodic billiards, arise. 

AMS classification scheme numbers: 58F15, 82COS, 34C37, 58F05, 58F13, 58F14 

1. Introduction 

The bebaviour of a point particle travelling with a constant speed in a region, undergoing 
elastic collisions at the region's boundary, is known as the billiard problem. This system 
bas been extensively studied both in its classical and quantized formulation. Numerous 
applications lead to the study of sucb a model problem. First, there exist direct mecbanical 
realizations of this model. For example, the motion of N rigid d-dimensional spberes in 
a d-dimensional box may be reduced to a billiard problem, possibly in higher dimensions 
[31, 32, 9, 17]. See also [2, 8] for the inelastic case. Second, it serves as an idealized 
model for the motion of charged particles in a potential, a model which enables the 
examination of the relation between classical and quantized systems, see [18, 34] and 
references therein. Finally, and most importantly, this model bas been suggested [31] as 
a first step for substantiating the basic assumption of statistical mechanics-the ergodic 
bypothesis of Boltzmann (see especially the discussion and references in [32, 35]). 

In all the applications of this model, in particular that mentioned above, of special 
interest are so-<:alled scattering billiards, i.e. billiards in a complement to the union of a 
finite number of convex regions, see figure 1. For example, the two-dimensional idealization 
of the Lorenz gas in the form of a lattice of rigid disks produces a scattering billiard ('the 
Sinai billiard'). The motion in a scattering billiard is highly unstable and thus produces 
strong mixing in the phase space. More precisely, it has been shown [31, 13, 3] that the 
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(b) 

Figure 1. Tangent traj_ries in scattering billiards. (a) Singular (1mIgent) periodic trajectory. 
(b) - - - - Non-singular periodic trajectory, - tangent homoclinic trajectory to the periodic 
orbit. 

corresponding dynamical system is (non-uniformly) hyperbolic, it is ergodic with respect 
to the natural invariant measure and it possesses the K -property. Based on this theory, 
statistical properties of various scattering systems have been analysed (see [7, 6]). 

Do small perturbations ruin the ergodicity property of a scattering billiard? Here we 
consider the perturbation caused by smoothening of the billiard flow. The influence of such 
smoothening is a non-trivial question, since the dynamical system associated with the billiard 
we consider (in the simplest setting, this is a two-<limensional area-preserving mapping [31]) 
is singular. In particular, as explained more precisely in section 2.1, singularities appear near 
trajectories which are tangent to the billiard's boundary-like the ones shown in figure 1. 
Thus, even though the scattering billiard is hyperbolic almost everywhere, the singular set 
(e.g. singular periodic orbits) might produce stability islands under small perturbation. While 
such a phenomenon seems to be quite common, a general theory does not exist. Indeed, 
it is clear that the results are not straightforward-namely, it is not true that all smooth 
systems approaching a singular hyperbolic and mixing system have stable periodic orbits, 
nor is the converse-that they have the same ergodic properties as the singular system. (As 
an example, consider an analogous problem for one-<limensional maps; for a family of tent 
maps of an interval which is known to be ergodic and mixing, the ergodicity property may 
be easily destruyed in an arbitrarily close smooth family: if the maximum of the interval 
image produces a periodic orbit, it is clearly stable. However, the smooth on.,.dimensional 
map does not always possess stable periodic orbits: there may be a positive measure set of 
parameter values for which the smooth maps are ergodic and mixing [20]). 

In this paper we prove (theorems 1 and 2) that, indeed, a perturbation of a scattering 
billiard to a smooth Hamiltonian flow may create stability islands near singular periodic and 
homoclinic orbits of the billiard. 

More precisely, we consider smooth Hamiltouian flows which converge to the singular 
billiard flow, smoothly where the billiard flow is smooth and continuously where it is 
continuous (see section 2). For such approximations, we propose two mechanisms for the 
appearance of elliptic islands which destroy the ergodic properties of scattering billiards; one 
mechanism is controlled by the existence, in the billiard flow, of a singular periodic orbit 
and another mechanism is controlled by the existence of a singular homocliuic orbit. First, 
we stody the phase-space structure of the local Poincare map near such orbits, showing that 
locally these create a 'sharp' horseshoe. Embedding the billiard in a one-parameter family 
of billiards in which the boundary of the billiard table slightly moves with the parameter 
y near the tangent point, we show that the horseshoe unravels as y varies (see figure 6). 
Then, considering a two-parameter family of smooth Hanilltouian flows h, (f; y) which 
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approaches the family of billiards as E 4 0, we establish that for sufficiently small E there 
exist a series of bifurcations associated with the disappearance of a Smale's horseshoe. It 
is well established that generically elliptic islands are created in such a process. Thus, it 
follows that for each sufficiently small E there exist intervals of y values for which elliptic 
islands exist. 

We expect that singular homoclinic and periodic orbits are, in fact, unavoidable in 
scattering billiarda; we conjeclore that systems possessing such orbits are dense among all 
scattering billiards. We provide a numerical example which supports such a conjecture 
regarding the density ofbilliarda with singular homoclinic orbits. A proof of this conjecture 
combined with the results presented here would imply that for any given scattering billiard 
on a plane, there exists a close smooth Hamiltonian flow possessing elliptic islands. 

Furthermore, we establish sufficient conditions on the potentials of natural Hamiltonian 
systems so that their corresponding flows indeed converge to the billiard flows as assumed 
above. Surprisingly, the connection between the billiard model and the smooth Hamiltonian 
flows with steep potentials was not previously formalized. However, by our current results, 
the problem of relating the statistics manifested by the billiard dynamical systems to acloal 
physical applications must inevitably include the study of the smoothening of the billiard 
potential. In many works, this coonection has been implicitly assumed, see [19] and 
references therein. Nevertheless, our analysis reveals non-trivial requirements on smooth 
potentials approaching the step-function (billiard) potential, which are essential for the 
dynamics of the corresponding Hamiltonian system to follow the dynamics of the billiard 
flow. 

In [27] a more general question of the behaviour of the symplectic strocture when a 
family of smooth Hamiltonians approaches a singular limit is stodied and related to the 
general study of distributions on manifolds. In this setting, it is shown that some properties 
of the smooth Hamiltonians are preserved by the singular one. For example, it is proved 
that if a family of Hamiltonians is uniformly mixing, then the mixing property carries to the 
singular system as well. Here we investigate the other direction of the above result: given 
a singular system which is mixing-what can be said on families of smooth Hamiltonian 
which appropriately approach this limiting system? 

Finite-range potentials supported on a finite number of disks were extensively stodied, 
see for example [30, 24, 25, 1,23, 10] aud references therein. In these works, the form of 
the potentials on each disk is taken to be radially axisynunetric, thus locally integrable. 
In such systems, the effect of the potential is to produce a finite-length travel !J.9(41) 
along the scattering disk, thus the study of such systems elegantly reduces to the study 
of the 'generalized Sinai billiard' with the reflection law 41 4 -41, s 4 S + !J.9(41) (mod 
2,..), where (41, s) correspond to the incidence angle and position on the disk boundary 
respectively. In [30, 24, 25, I, II] such potentials producing ergodic systems were sought. 
In [I, 23] non-ergodic behaviour was proved and stodied for step-function potentials (where 
!J.9'(41) = constant < 2). However, the billiard limit has not been stodied in these works. 
In [10] it has been shown that for certain types of potentials, !J.9 (41) produces focusing shifts 
near tangent trajectories and thus, that for any given energy level (high energies correspond, 
roughly, to the billiard limit) there exists an arrangement of the disks for which elliptic 
islands exist (see in particular theorems 5.3 and 5.4 of [10]). More closely related, in [19], 
it has been noted that the diamaguetic Kepler problem near singular homoclinic OIbits of the 
four-disk billiard system (which has similar spatial structure) may produce elliptic islanda 
by homoclinic tangencies. 

Here, a completely different approach is taken, which in particular, does not assume 
any specific geometry of the scatterers nor that the potential is of a finite-range or locally 
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axisymmetric. Most importantly, in the limit , -> 0, our Hamiltonian flows do approach 
the billiard flow, a necessary property for establishing meaningful asymptotic results. 

The general scheme of the paper is as follows. In 2.1 we introduce the billiard 
flow in a general domain, and describe its natore near regular and tangent collision 
points and its relation to the standard billiard map. In 2.2, we define the smooth 
Hamiltonian approximation of the billiard flow and state some immediate consequences 
of this definition. In section 3 we prove the existence of elliptic islands in Hamiltonian 
flows which approximate scattering (Sinai) billiards. In section 4 the appearance of 
persistent singular homoclinics and singular (tangent) periodic orbits for scattering billiards 
is conjectored and the former is numerically demonstrated. Section 5 is devoted to a 
discussion on the implication of these results. In the appendix we formulate conditions on 
smooth Hamiltonians and prove these are sufficient to insure that the Hamiltonians flows 
approximate properly the corresponding billiard flows. 

2. Billiards and their smooth Hamlltonian approximations 

2.1. Billiard flow 

Consider an open bounded region D on a plane with a piecewise smooth (C+', r ;;. 2) 
boundary S. On S there is a finite set C of so-called comer points c" C2, ••• such that 
the arc of the boundary that connects two neighbouring comer points is C+'-smooth. Let 
us call these arcs the boundary arcs and denote them by S" S2, . . .. The set C includes 
all the points where the boundary loses smoothness and all the points where the curvatore 
of the boundary vanishes. Thus, the curvatore has a constant sign on each of the arcs Si. 
Being eqnipped with the field of inward normals, the arc is called convex if its curvatore is 
negative (with respect to the chosen eqnipment) and it is called concave if its curvatore is 
positive (see fignre 2). 

Consider the billiard flow on jj. The phase space of the flow is co-ordinatized by 
q == (x, y, p" Py) where (x, y) is the position of the particle in jj and (p" Py) is the 
(non-zero) velocity vector: 

i =Px y = p,. (2.1) 

Henceforth, we reserve the term 'orbit' for the orbits in the phase space and the term 
'trajectory' for the projection of an orbit to the (x, y)-plane. The velocity vector (p" Py) 
is constant in the interior, and at the boundary it changes by the elastic reflection rule so 
p; + p; = constant and the angle of reflection equals the angle of incidence with the 
opposite sign. Taking the point of reflection as the origin of the coordinate frame and the 
boundary's normal at that point as the y-axis, the reflection rule is simply 

Px -+ Px. (2.2) 

namely, the angle of incidence '" is arctanpy/ P.. This law is well defined ouly when 
the normal can be well defined: it is invalid at the comers (including inflection points). 
Generally, the incidence angle'" belongs to [-~, n where '" = ±~, which corresponds to 
a trajectory tangent to S (fignre 2) may be attained ouly when the boundary arc is concave. 

Denote the time t map of the billiard flow as b, : qo(xo, Yo, P.o, Pyo) r+ 

q,(x" y" P.r, Py,). By writing q, = b,qo, we mean, in particular, that the piece of trajectory 
that connects (xo, Yo) and (x" y,) is on a finite distance of the comer set C, though it may 
have one or more points of tangency with concave components of S. 

A point q in the phase space is called an inner point if (x, y) ¢ S, and a collision 
point if (x, y) E (S\C). Obviously, if qo and q, = b,qo are inner points, then q, depends 
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(a) 

(b) 

Figure 2. Billiard trajectories. (a) • standard comer points, D in:8ection corner points, Sl,),5 

concave boundary arcs, S2,4,6,7 - convex arcs. - Regular re:6ection, - - - - tangent trajectory. 
(b) - . - Tangent trajectory terminated at an inflection point. 

continuously on qo and t. Otherwise, if q. is a (non-tangent) collision point, the velocity 
vector undergoes a jump; denoting by q.-o = b.-oqo and q.+o = bt+oqo the points just before 
and just after the collision, it follows that (Pxt+o, Pyt+o) and (Px.-o, py.-o) are related by the 
elastic reflection law. To avoid ambiguity we assume that at a collision point the velocity 
vector is oriented inside D; thus, we put ht == bt+o. 

Further, if q. is an inner point and if the piece of trajectory that connects (xo, Yo) and 
(x" y,) does not bave tangencies with the boundary, then q. depends C' -smoothly on qo and 
t. However [31], the map b. loses smoothness at any point qo whose trajectory is tangent 
to the boundary at least once on the interval [0, t]. Indeed, choosing coordinates so that 
the origin is a point on a concave boundary arc S" the y-axis is the normal to S, and the 
x-axis is tangent to S" the arc is locally given by the equation 

y =_x2 + .... 
It follows that for sma1l6 > 0 the time t = 6 map of the slanted line (xo = -6j2+ayo, PxO = 
1, PyO = 0) has a square-root singularity in the limit Yo -> -0 which corresponds to the 
tangent trajectory (see figure 3; a oF 0 for graphical purposes): 

(X8, Y8, Px8, Py') = (!6 + ayo, Yo, 1,0) at Yo ;;, 0 

= (!6 + ayo + O(6yo), 2./-yo6 

+O(6yo), I + O(yo), 2./-yo + O(yo» at Yo';; 0 

If qo and q. = b.qo are inner points, then for two arbitrary small cross sections in the 
phase space, one through qo and the other through q .. the local Poincare map is defined by 
the orbits of the billiard flow. If no tangency to the boundary arcs is encountered between 
qo and q .. then the Poincare map is locally a C' -diffeomorphism. 

One can easily prove that the same remains valid if qo, qt, or both are collision points, 
provided the corresponding cross sections are composed of the nearby collision points. In 
fact, the collision set (the surface (x, y) E S in the phase space) provides a global cross 
section for the billiard flow. The corresponding Poincare map relating consecutive collision 
points is called the billiard map. A point on the surface is determined by the position s 
on the boundary S and by the reflection angle t/> which yields the direction of the outgoing 
velocity vector (the absolute value of the velocity does not matter). The initial conditions, 
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Figure 3. Singularity near a tangent trajectory. 

corresponding to a trajectory directed to a comer or tangent to a boundary arc at the moment 
of the next collision, form the singular set on the (s, '" )-surface. Generically, the singularity 
set is a collection of smooth curves which may be glued at some points. The billiard map is 
a C' -<liffeomorphism outside the singular set; it may be discontinuous at the singular points. 
Near a singular point corresponding to the tangent trajectory the continuity of the map can 
be restored locally by taking two iterations of the map on half of the neighbourhood of the 
singular point (see figure 3). The obtained map will, nevertheless, be non-smooth at the 
singular point, having the square-root singularity described above. 

If a trajectury has exactly one tangency to the billiard boundary and does not approach 
the comer points it is called a simple singular trajectory (and its corresponding orbit simple 
singular orbit). For periodic orbits, the same defiuition applies per period 

2.2. Smooth Hamiltonian approximation 

Formally, the billiard flow may be considered as a Haruiltonian system of the form 

2 2 

H. = ~ + i + V.(x, y) (2.3) 

where, 

V.(x, y) = {O 
+00 

(x,y) E D 

(x, y) rt D. 
(2.4) 

Clearly, this is an approximate model of the motion of a pointwise particle in a smooth 
potential which stays nearly constant in the interior region and grows very fast near the 
boundary. However, it is not obvious immediately when (and in which sense) this motion 
is indeed close to the billiard motion. We say that a faruily of C' smooth Hamiltonian flows 
h,«) r-converges to the billiard flow if the following assumption holds. 

Ar . if qo and q, = b,qo are inner phase points, and if the billianJ trajectory of qo has 
no tangenoies to the boundary for the time interval [0, tl, then, as < -> 0, the time t map 
h, «) of the smooth Hamiltonian flow limits to the map b, in the C' -topology in a small 
neighbourhood of qo. However, if a tangency occurs, then h, «) -> b, in the CO sense. 

Obviously, one needs to show that the above definition is not vacuous. 

Lemma 2.1. For any billianJ domain D there exist families of Hamiltonian flows satisfYing 
assumption Ar . 



Elliptic islands appearing in near-ergodic flows 581 

Indeed, in the appendix we consider the family of Hamiltonian systems associated with 

p2 p2 
H = ~ + --" + Vex Y' f) 2 2 •• (2.5) 

where the potential vex, y; f) tends to zero inside the region D as f -> 0 and it tends to 
infinity outside. We prove that there exists a large class of smooth (COO) potentials for which 
assumption Ar holds for any finite r. For example, the potentials which are of the following 
form near the boundary (where Q denotes, roughly, the distaoce from the boundary): 

~P' (I-QP)l, fe-<I<, fllnQI P, fln ... llnQI, (J >0 (2.6) 

produce Hamiltonian flows which satisfy Ar for all finite r. 
Moreover, it is proved that adding any C' smooth functioo H.(x, y, Px. py; <) which 

is uniformly small in iJ as f -> 0 still produces a family of flows satisfying Ar • 

Lemma 2.2. For any billiard domain D there exist families of Hamiltonian jlows in general 
position which satisfY Ar • 

Assumption Ar implies that the Poincare maps defined by the billiard and Hamiltonian 
flows are close. Let qo and q, = b,qo be inner phase points. The local Poincare sections 
through q, and qo are three dimensional, and are foliated by eqni-energy two-dimensional 
surfaces. For sufficiently small f, similar foliation exists for the smooth Hamiltonian flow, 
thus a reduced two-dimensional Poincare map is well defined 

Corollary 2.1. Provided the billiard trajectory between qo and q, does not have tangenoies 
to the boundary of the billiard domain, os < -> 0 the reduced Poincare map of the smooth 
Hamiltonian flow satisfYing Ar converges, in C' -topology, to a Poincare map of the billiard 
flow as does the flight time. If the tangency does occur, the convergence is only Co. 

Corollary 2.1 allows us to utilize persistence theorems regarding two-dimensiooal area­
preserving diffeomorphisms (e.g. see [16, 21]) in order to establish relations between 
periodic orbits of the billiard flow and of the Hamiltonian flows under consideration. For 
a non-singular periodic orbit, and a cross section through an inner point 00 it, the reduced 
Poincare map of the billiard flow is locally a diffeomorphism, and the intersection of the 
periodic orbit with the cross section in the phase space is a fixed point of the diffeomorphism. 
Generally, the fixed point is either hyperbolic or elliptic (for the scattering billiards it is 
hyperbolic). Fixed points of both types are preserved under amall smooth pertorbations in 
the class of area-preserving diffeomorphisms. 

Corollary 2.2 (persistence of periodic orbits). If a non-singular periodic orbit Lo of the 
billiarrijlow is hyperbolic or elliptic, then at < sufficiently small the Hamiltonianflow h,«) 
satisfYing Ar with r ;;. I has a unique continuous family of hyperbolic or, respectively, elliptic 
periodic orbits L, in the fixed energy level of Lo which limit to Lo as f -> O. 

If Lo is hyperbolic, the local stable (W..,(L,)) and unstable (W~(L,)) manifolds of 
L, depend continuously on f (as smooth manifolds) and limit to W,:"(Lo) and W,:"(Lo) 
respectively. The global stable and unstable manifolds -W"(L,) and W'(L,)---are obtained 
as the continuation of W~,(L,) and W~(L,) by the orbits of the flow. Note that for the 
billiard flow, by applying the continuation process, taogencies to the boundary and comer 
points are bound to be encountered by some points belonging to the manifolds. Using local 
cross sections as above, it is easy to see that the following result holds. 
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Corollary 2.3 (Extensions of stable and unstable manifolds). Under the same assump­
tions as corollary 2.2, and assuming Lo is hyperbolic, any piece Ko ofW"(Lo) or W'(Lo) 
obtained as a time t > 0 shift of some region in Wl~(Lo) (respectively, a time t < 0 shift of 
some region in WI~c(Lo)) is a Co, or ifno tangencies to the boundary are encountered in the 
continuation process, C' -limit of a family of surfaces K, C W"(L,) (resp. K, C W' (L,»). 

The above persistence results apply ouly to non-singular periodic orbits; near lhe singular 
periodic orbits, which are stodied next, lhe billiard flow is non-smoolh and lhe standard 
lheory is not valid. 

3. Elliptic islands 

Hereafter, consider lhe case of lhe so-called scattering billiards. Scattering billiards are 
billiards composed of concave arcs wilh lhe curvature bounded away from zero, and non­
zero angles between lhe arcs at lhe comer points. Then, lhe billiard flow is hyperbolic 
whence all non-singular periodic orbits are hyperbolic. We, never1heless, show iliat lhe 
simple singular periodic orbits give rise to stable ( elliptic) periodic orbits in lhe Hamiltonian 
systems limiting to lhe scattering billiards. 

3.1. Structure near singular periodic orbits 

The hyperbolic structure of lhe phase space of lhe scattering billiards plays a crucial role in 
lhe understanding of lhe behaviour near a singular periodic orbit. For lhe billiard map B, 
lhe presence of hyperbolic structure implies lhat for almost every point P (8, </J) in lhe phase 
space lhere exist stable and unstable directions E~ and E~, depending continuously on P. 
The system of stable and unstable directions is invariant wilh respect to lhe linearized map: 
dpB E>Cu) = E~~), which is uniformly expanding along lhe unstable direction and uniformly 
contracting along lhe stable direction: if vEE" (v E E'), lhen IldpBvl1 ~ o'-'llvll (resp. 
IldpBvl1 .;;; e-ATllvlD in a snitable norm; here, ' is lhe flight time from P to BP, lhe 
uniformily means iliat lhe value J,. > 0 is independent of P (see details in [5]). 

Eqnivalently, lhere is an invariant family of stable and unstable cones: lhe unstable 
cone at a point P is taken by lhe linearized map dpB into lhe unstable cone at lhe point 
B P; lhe image is stretched in lhe unstable direction and shrinks in lhe stable direction. 
Similar behaviour appears for lhe stable cone under backward iterations. There is an explicit 
geometrical description of lhese cones for scattering billiards [36]. Consider a point (8, </J) 
in lhe phase space and a small curve passing 1hrough this point. Taking two points on this 
curve defines two inward directed rays emanating from lhe billiard boundary near 8 (see 
figure 4). lflhese rays intersect, lhen lhe tangent direction to this curve belongs to lhe stable 
cone of (8, </J); olherwise, it belongs to lhe unstable cone (in olher words, lhe unstable cones 
are given by ds . d</J > 0 and lhe stable cones by ds . d</J < 0). Moreover, it can also be 
shown iliat if lhe intersection of lhe rays wilh each olher occurs before lhe first intersection 
of lhe rays wilh lhe billiard boundary, lhen lhe tangent direction to lhe forward image of 
lhe small curve under consideration belongs to lhe unstable cone of lhe image of (8, </J). 

It follows iliat lhe tangent to a line of singularily (lhe line composed oflhe points whose 
trajectories are tangent to lhe billiard boundary) at any point lies in lhe stable cone, and lhe 
tangent to any iteration of lhe singularily line by lhe billiard map lies in lhe corresponding 
unstable cone. In particular, lhe intersections of lhe singularily lines wilh lheir images are 
always transverse. 

Utilizing lhese observations, we find lhe normal form of lhe first retom map of lhe 
billiard map near a simple singular periodic orbit. Consider a periodic orbit L wilh lhe 



Elliptic islands appearing in near-ergodic flows 583 

(b) 

con • 

• 
Figure 4. Hyperbolic structure-the stable and unstable cones. (a) Geometrical interpretation 
of stable!unstable directions. (b) Phase space structure. 

corresponding sequence of collision points P,(s, , "',) (i = 0, ... , n - I): PHI = BP, 
where p. = Po. Let P == Po belong to the singular set (so 1"'11 = rr /2). Take a small 
neighbourhood U of P and denote as E the line of singular points in U. 

Proposition 3.1. Given a simple singular periodic orbit L as above, the local return map 
near Po may be reduced to the form, 

{ : : ;(v - Jmax(v, 0)) _ u + ... (3.1) 

where v = 0 gives the singularity line, U = 0 is its image, and I~ I > 2. 

Proof. Consider the local structure in U, near the singularity line E. The line E divides 
U into two parts, U, and U,; the orbits starting on U, (e.g. P; in figure 5) do not hit 
the boundary near SI and approach it near the point S2, the orbits starting on U, (e.g. P~ 
in figure 5) have a nearly tangent collision with the boundary in a neighbourhood of SI. 

Without loss of generality we assume that E is 10caIly a straight line (s-so)+k(",-",o) = 0, 
where k > 0 because E must lie in the stable cone (s - so)('" - "'0) < 0, and that U, is 
given by (s - so) + k(", - "'0) < 0 and U, by (s - so) + k(", - ¢OJ ;;. O. 

Consider the first return map iJ defined on U. The map iJ equals B._I ... B2B1Bo 
on U, and B._I ... B2BO on U, where B, is a restriction of the billiard map on a small 
neighbourhood of P,. According to section 2.1.1, iJ is a continuous map which loses 
its smoothness on E. Namely, the restriction Bo, of Bo on U, exhibits the square-root 
singularity described in section 2.1.1 whereas the map B I u, is regular and it can be continued 
onto the whole U as a smooth map Bo,: erasing a small piece of the boundary containing 
the tangency point Sl, B., will simply be the billiard map from U to a small neighbourhood 
of P2 (see the action of Bo, on P~ in figure 5). Obviously, B.,E = B1B .. E, therefore 
the first return map iJ is continuous. One may represent the map iJ as a superposition of 
regular and singular maps: 

iJ = BC') . BC') 

where 

and 

C) 
{ 

id 
HI = 

Bo,tBIB .. 
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(b) .' • 

Figure 5. Structure near singular periodic orbit. (a) Phase-space structure near singular periodic 
orbit: 1234 is mapped onto 1'2'3'4'. (b) Action of billiard map near a singular segment of 
trajectory. 

The singular part B C') : U ~ U may be obtained by inverted reflection near the tangency 
point SI (see the action of BC') on p~ in figure 5), It is not too difficult to calculate that 
BC') is given by 

{ 
s' = S + kJmax(S + k<l>, 0) + .. . 
<1>' = <I> - Jmax(S + k<l>, 0) + .. . 

where S = S - So, <I> = '" - "'0 are coordinates in U, and the dots stand for the quantities 
infinitely small in comparison with S, <I> or ,Jmax(S + k<l>, 0) as S, <I> ~ O. 

The regular part BC') is, by definition, the first return map for the auxiliary billiard 
obtained by pusbing the boundary near the tangency point SI sligbtly aside from the trajectory 
of L. The point P is a fixed point for BC') (as well as for the map B). Since the auxiliary 
billiard is still scattering, the point P is a hyperbolic fixed point for BC'). Moreover, the 
unstable cone S . <I> ;;, 0 must be mapped inside itself by the linearization of B C,) at P. 

If (:~: :~) is the corresponding linearization matrix, the last condition is equivalent 

to the requirement that all bij are of the same sign. Recall that BC') is an area-preserving 
diffeomorphism, so 

Superposition of BC') and BC') gives, to leading order in S, <I> and ,Jmax(S + k<l>, 0), 
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the following formula for the map B: 

{ 
S = buS + b'2~ - (b'2 - buk)/max(S + k~, 0) + .. . 
'" = b2,S + b22~ - (b22 - b2,k)/max(S + k~, 0) + ... . 

(3.2) 

Provided inequalities (3.3) are satisfied, as proved in the lemma below, the normal form 
(3.1) is obtained from the above expression by changing to the new coordinates u, v where 
u is aligned with the singularity line (v ex S + k~) and v is aligned with its image. From the 
calculation, it follows that the quantity ~ is (bu +b22), i.e. it is the trace of the linearization 
matrix of the first return map Be,) of the auxiliary billiard about the periodic orbit. Since the 
auxiliary billiard is scattering, its regnlar periodic orbits are hyperbolic, hence I~ I > 2. 0 

Lemma 3.1. The coefficients bij in (3.2) obey the inequalities, 

(b'2 - bu k)(b22 - b2,k) > 0, Ib121 < Ibulk, Ib22 1 < Ib2lik. (3.3) 

Proof. Since the image BE of the singularity line S + k~ = 0 must lie in the unstable 
cone S . '" > 0, (3.2) implies the first inequality in (3.3). 

For a small piece I of a straight line through P which lies in the unstable cone, i.e. for 
which the increase of s is followed with the increase of", (see figure 5-imagine a line 
going through P~', Po, P~) the image of In U, by Bo aod the image of In U, by B,Bo both 
lie to one side of the point P2 (or the point S2 when projected to the confignration plaoe). 
Namely, these images both belong to the same half of the unstable cone of P2 corresponding 
to a definite sign of (s - S2). Since the linearization of each of the maps Bi preserves the 
decomposition into the stable aod unstable cones, it follows that the image of I by B is a 
folded line with the vertex at P which divides BI into two parts both belonging to the same 
half of the unstable cone of P; i.e. S aod '" have the same sign on B(lnU,) aod B(lnU,). 
By (3.2), it is equivalent to the condition that the sign of (b'2 - buk) is opposite to the sign 
of b12 aod bu aod the sign of (b22 - b2,k) is opposite to the sign of b22 aod b2, (recall that 
all bij have the same sign). Thus, the second and third inequalities in (3.3) hold. 0 

Now, embed the billiard in a one-parameter fiunily of scattering billiards b,(·; y) for 
which all arcs depend smoothly on the parameter y, while the comer points are held fixed; 
suppose the billiard with the simple singular periodic orbit L is realized at y = O. The 
regnlar part Be,) of the first return map of U depends smoothly on y, hence its hyperbolic 
fixed point p:,) is also a smooth function of y. The same is valid for the position of 
the singularity line E y. For a generic fiunily of billiards, the parametrization by y may 
be chosen so that the distaoce between p?) aod Ey is proportional to y (it is true if, for 
instaoce, one changes the billiard boundary locally, near the taogency point s, only: such a 
perturbation moves the singularity line but the map Be,) aod the position of its fixed point 
remain unchaoged). Assume, with no loss of generality, that p~') E U, for y > 0 aod that 
p~,) E U, for y < O. Therefore, by the defiuition of Be,), its fixed point is a fixed point of 

B for y > 0, aod its fixed point is imaginary when y < O. 
For such a fiunily of billiards, the normal form (3.1) of the first return map B is rewritten 

as 

{ : : :(y + v - /max(v, 0)) - u + .... (3.4) 

This map looks similar to the Henon map (though it has a singular nonlinearity). 
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Proposition 3.2. Consider the map (3.4). For a smalljixed neighbourhood U of the origin, 
let Qy be the set of all orbits of By which never leave U. Then there exist small y± values 
such that Qy = 0 for y = y- < 0, and if y = y+ > 0, then Qy is in one-to-one 
correspondence with the set of all sequences composed of two symbols (r, s): 'r' corresponds 
to entering Ur and's' corresponds to entering Us. 

Proof. Take a small 8 > 0 and let the neighbourhood U be a rectangle {-8 < u < K8, -8 < 
v < K8} where K = ~(~I;I- 1) > 0 (recall that 1;1> 2). Let y+ = (~- f)8 > 0 and 

y- = -m8. Then, for sufficiently small 8, one may check that for the given choice of U 
the map (3.4) takes the horizontal boundaries of U (marked I and 3 in figure 6) on a finite 
distance of U for all y E [y-, y+]. The images of the vertical boundaries 2 and 4 which 
intersect the singularity line, fold as indicated in figure 6: the segments 2a,4a are mapped to 
2a',4a' and the segments 2b,4b are mapped to 2b',4b'. The folded lines 2',4' may intersect 
U but they lie on a finite distance of their pre-images (the boundaries 2 and 4) for all 
y E [y-, y+]. Thus, the image of U by By has a specific shape of a sharp horseshoe. 
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Changing y shifts the horseshoe along the v-axis, so at y = y+ the intersection of the 
horseshoe with U consists of two distinct connected components (figure 6(b ». On each 
component the map By is smooth and hyperbolic. The statement regarding the one-to-one 
correspondence to Bernoulli shift on two symbols follows as in the standard construction of 
the horseshoe map [33, 26]. In particular, it implies that each of the two components has a 
hyperbolic fixed point. Moreover, one of the fixed points has two positive multipliers and 
the other two negative multipliers. On the other hand, at y = y - the intersection of By U 
with U is empty (figure 6(c». 0 

Note the following three conclusions from the proof of the above proposition. First, 
that there exist y± values such that for y+ two hyperbolic fixed points exist and for y- no 
fixed points exist in the square region U near the intersection of the singularity line with 
its image. Second, that y± may be chosen arbitrarily small (by taking smaller U). Third, 
no fixed points can pass through the boundary of U as y varies from y- to y+ because the 
image of the horizontal boundaries of U never intersects the boundary of U and the image 
of the vertical boundaries U may intersect ouly the horizontal parts of the boundary. 

Now, take a two-parameter family of smooth Hamiltonian flows h,(·;., y) which 
approach, uniformly with respect to y, the family of billiard flows b,(·; y) as • -> 0, 
as in assumption A,. Note that for the billiard flow, the structure of the Poincare map of an 
arbitrary small cross section w through an inner point on the simple singular periodic orbit 
L is absolutely the same as described above (see section 2.1). Due to the CO·doseness of 
the billiard flow and the smooth Hamiltonian flow it follows that for • sufficiently small 
the corresponding Poincare map n,y for the Hamiltonian system transforms a rectangle 
U' C w (analogous to the rectangle U) to a horseshoe shape (which is now smooth because 
the Hamiltonian system is smooth at all. > 0). At y = y- the intersection n<yu' n U' is 
empty for small. whence n,y- has no fixed points in U'. Moreover, no fixed points can 
pass through the boundary of U' as y varies from y- to y+ because the fixed points of the 
first retom billiard map stay a finite distance from the boundary of U' for all y E [y-, y+]. 

The two fixed points of the Poincare map of the billiard flow which exist at y = y+ 
are hyperbolic and do not belong to the singularity line. Thus, by corollary 2.2, each of 
these hyperbolic fixed points exists for the map n,y+ at all sufficiently small " moreover 
the multipliers of one of the fixed points are negative as for the billiard. Now, fixing 
any • small enough, a fixed point of n,y+ changes continuously as y decreases, until it 
merges with some other fixed point (as we mentioned, the fixed point must disappear before 
y = y- and it cannot leave U' via crossing the boundary). Since fixed points may disappear 
ouly when their multipliers are equal to 1, it follows that the fixed point with the negative 
multipliers at y = y + must become elliptic for some interval of y values before the moment 
of disappearance. Thus we have proved the following. 

Proposition 3.3. Consider a one-parameter family of scattering billiards which has a simple 
singular periodic orbit L for the parameter value y = O. Consider a two-parameter family 
of C' , r ~ I smooth Hamiltonian flows h, (" y) satisfYing A, uniformly in y. Then, for any 
small. there exists an interval of y on which elliptic periodic orbits exist in the energy level 
of L. As. -> 0 these intervals accumulate to zero and the elliptic periodic orbits limit to 
the singular periodic orbit. 

In a generic family of sufficiently smooth (C', r ~ 5 [29]) two-degrees-of-freedorn 
Hamiltonian systems non-resonant elliptic periodic orbits are stable, and in particular they 
are surrounded by KAM tori, creating the so-called elliptic islands. 
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Theorem 1. Consider a scattering billiard which has a simple singular periodic orbit L. 
Then, there exists a one parameter family of C', r '" 5 smooth Hamiltonian flows h,(E), 
which r-converges to the billiard flow as E -> 0, and for which there exists a sequence of 
intervals of E converging to 0 where elliptic islands exist. 

Proof. Embed the billiard in a one-parameter family of scattering billiards as in the above 
proof. Consider a two-parameter family of Hamiltonian flows h,(E, y) which r-converge 
to the family of billiards as E -> 0, uniformly in y. Such families exist by lemma 2.1. By 
proposition 3.3 there exists a path (E, y(E)) which intersects regions where elliptic periodic 
orbits exist. Since, by lemma 2.2, h, (E, y) may always be put in a general position, its 
elliptic periodic orbits are generic and hence stable. 0 

In fact, it is desirable to state the above for natural Hamiltonian systems (systems of the 
form (2.5)). For that, we need to show that some coefficient in the Birkhoff normal form is 
non-zero for generic potentials. This obviously seems to be correct (otherwise non-resonant 
elliptic periodic orbits of natural systems would not be generically stable). However, we 
failed to find the corresponding reference. 

3.2. Singular homoclinic orbits 

Consider a non-singular hyperbolic periodic orbit Lo of the billiard flow. Suppose, its 
stable and unstable manifolds intersect along some orbit r. This is a homoclinic orbit; i.e. 
it asymptotes Lo exponentially as t -> ±oo. Assume that r is simple singular which means 
that its trajectory has one point of tangency with the billiard's boundsry (see figure I(b )). 

Let P(s, r/» and P(s,~) be collision points on r: P is the last before the tangency 
and P is the first after the tangency. By definition, P = B2 P where B is the billiard map. 
Consider, in the (s, r/» plane, the local segment W' of the unstable manifold of Lo to which 
P belongs. Since the tangent to W' at P belongs to the unstable cone, it must intersect 
the singularity line transversely at P. Thus, as explained in the proof of lemma 3.1, the 
image of W· in a neighbourhood of P by the billiard map folds with a sharp square root 
singularity at P, see figure 7. Now, the point P belongs to the stable manifold as well. 
Since the tangent to W' belongs to the stable cone, it follows that the folded image of W· 
lies to one side of W', so a sharp homoclinic tangency is created at P, as shown in figure 7. 

In a generic family of scattering billiards (as in section 3.1), two transverse homoclinic 
intersections appear at y > 0 and none at y < O. For the corresponding two-pararoeter 
Hamiltonian family, arguments analogous to those in the proof of proposition 3.3 show that 
generically, for any E sufficiently small there exists y' (E) for which a quadratic homoclinic 
tangency occurs. 

Recall that the occurrence of homoclinic tangencies is a well known mechanism for 
the creation of elliptic islands [28] for smooth Hamiltonian flows. Thus, using the same 
arguments as in theorem I we have established the following. 

Theorem 2. if a scattering billiard has a simple singular homoclinic orbit r, then there exists 
a one-parameter family ofC', r '" 5 smooth Hamiltonianjlows h,(f) which r-convetges to 
the billiard flow as E -> 0 and for which there exists a sequence of intervals of E values 
converging to zero for which elliptic islands exist in the energy level of r. 

The period of the elliptic periodic orbits mentioned in theorem 2 goes to infinity as 
E -> O. In fact, in the two-parameter finniJy of smooth Hamiltonians elliptic periodic orbits 
of bounded period limit, as E -> 0, to singular periodic orbits corresponding to y "# O. Thus, 
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Figure 7. Bifurcation of singular homoclinic orbit (a) y = 0 near E, (b) Y = 0 near E's 
image, (e) y > 0, (d) y < 0, near E's image, • homoclinic points. 

theorems 1 and 2 are very much related. Indeed, like the appearance of stable periodic orbits 
near a homoclinic tangency is proved in smooth situations (see [14,28, 15]), one may show 
that in a generic family of scattering billiards having a sharp homoclinic tangency at y = 0 
there is a sequence of values of y accumulating at y = 0 for which singular periodic orbits 
exist. 

Now the reference to theorem 1 gives another proof of theorem 2. 

4. On the genericity of the elliptic islands creation 

I! is well known [22, 4, 5] that for scattering billiards the hyperbolic non-singular periodic 
orbits are dense in the phase space. The stable/unstable manifolds of such OIbits cover the 
phase space densely and the orbits of their homoclinic intersections also form a dense set. 

I! follows that the periodic orbits and the homoclinic orbits get arbitrarily close to 
the singularity set. I! seems thus intuitively clear that for any scattering billiard very 
small smooth pertorbations may be applied to place a specific periodic orbit or a specific 
homoclinic orbit exactly on the singularity line, so that theorem 1 and 2 may be applied. 
Proving these intuitive statements turns out to be quite a delicate issue, thus we formulate 
these as conjectures. 

Conjecture 1. Any scattering billiard may be slightly perturbed to a scattering billiard for 
which a singular (tangent) periodic orbit exists. 

Conjecture 2. Any scattering billiard may be slightly perturbed to a scattering billiard for 
which there exists a non-singular hyperbolic periodic orbit which has a singular homoclinic 
orbit. 
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Figure 8. BilliaId between four disks. 

4.1. Numerically produced singular homoclinic orbits 

To examine the appearance of singular homoclinic orbits we consider the billiard in a domain 
bounded by four symmetrical circles 

I 
(x ± _j' + y2 = R2 

Y 

where R2 = I + (I - l)2 The quantity y (which is, approximately, the curvature of 
the circles) serves as the" free parameter for unfolding the singolarity. We found explicitly 
the corresponding billiard map, and using DSTOOL package [12], we found numerically 
hyperbolic periodic orbits of this mapping and their stable and unstable manifolds. The 
billiard map is found on the fundsrnental domain of the billiard-<l triangolar region cut 
by an arc as shown in figure 8. We find the return map to the slanted side of the triangle, 
which is parametrized by s, the horizontal coordinate, and by </>, the outgoing angle to the 
normal vector (-I, -I), see figure 8. We choose an arbitrary value of y and the simplest 
hyperbolic non-singu1ar periodic orbit, as shown in the figure (the fixed point of the retum 
map to the slanted side of the reduced domain). Then, we construct the stable and unstable 
manifolds for this periodic orbit. We examine how these manifolds vary by small variation 
of y, until we find a value of y for which a singolar homoclinic orbit appears. The success 
(see figure 9 and 10) of the very crude search for such a delicate phenomena, near every 
y value we have chosen, supports conjectore 2 regarding the density of systems for which 
such orbits exist. In fact we have found, by such a search near Yi = i. 0.05, i = I, ... , 10, 
eleven sharp homoclinics to this specific periodic orbit (at y ., 0.0837, 0.10165, 0.1018, 
0.153,0.2077,0.2552,0.29245,0.3329,0.3832, 0.4143, 0.4692). 
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oin($) 

Figure 9. Numerically produced sharp homoclinics. 

5. Conclusion 

The main result of this paper is that we have established that if a scattering billiard (we 
use the particular hyperbolic structure associated with such billiards) has a singular periodic 
orbit or a singular homoclinic orbit, then arbitrarily close to it smooth Hamiltonian flows 
may possess elliptic islands, hence these are not ergodic (theorem 1 and 2). Moreover, we 
have conjectured, and have provided numerical support to these conjectures, that billiards 
with singular periodic orbits and singular homoclinic orbits are dense among scattering 
billiards (conjectures I and 2 of section 4). If these conjectures are correct, then our results 
will imply that arbitrarily close to any scattering billiard there exists a family of non-ergodic 
smooth Hamiltonian flows. 

Such statements imply that ergodicity and mixing results concerning two-dimensional 
non-smooth systems cannot be directly applied to the smooth dynamics they model. Whether 
the same holds for higher-dimensional systems, e.g. three-dimensional billiards or multi­
particle billiards, is yet to be studied. 

On the other hand, even though stability islands may appear in smooth billiard-like 
problems, the size of an individual island is expected to be very small. Thus, without 
doubt, while the smooth flow may be non-ergodic, it will 'seem' to be ergodic for a very 
long time. Statistics (e.g. correlation functions) which are based upon finite-time realizations 
may appear to behave as in the scattering billiards (e.g. fall off quasi-exponentially [7]). 
Whether longer realizations will reveal very different statistical properties, depends on the 
number of elliptic islands, the total area they cover in the phase space and in the parameter 
space, and on the 'typical' period of the islands. Thus, estimates of the islands sizes, 
their periods, and of the real potential steepness (the 'physical E ') are necessary to supply 
estimates on the time scale for which the mixing property will appear to hold. 

We may try to estimate the periodicity of the elliptic periodic orbits of smooth flows 
approaching generic scattering billiards, by very naive arguments. Indeed, since stable 
periodic orbits are generated from singular periodic orbits of the billiard, one may expect (if 
conjecture I is correct) that the least period of stable periodic orbits of a smooth Hamiltonian 
system which is E -close to the billiard is of the order of the Poincare return time to an 
E-neighbourhood of the singularity surface for the billiard flow. Note that the billiard flow 
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Figure 10. Magnilication near numerically produced 
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is a hyperbolic system; therefore, the return time in the billiard and, correspondingly, the 
typical period of the slable periodic motions in its smooth approximation must, essentially, 
be logarithmic in • and not of a power-law type. Namely, very small. values, corresponding 
to very steep potentials, may still produce slability islands which are observable on physical 
timescales. 
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Appendix A. Class of smooth Hamiltonians 

We prove the following. 

Theorem 3. Consider the Hamiltonian systems associated with, 
2 2 

H = ~ + i + V(x, y; e) + H,(x, y, p" Py; E). (A.l) 

if the potential V (x, y; e) satisfies conditions I-W slated below, and H, (x, y, Px, py; E) 
tends to zero as E -> 0 uniformly in some neighbourhood of D along with all its derivatives, 
then the Hamiltonianjlow (A.I) r-converges to the billiardj/ow in D. 

Note that, in particular, H" which is introduced for greater geoericity, may be lakeo to 
be ideotically zero. 

A.I. Conditions I-Won V(x, y; e) 

Condition I. For any compact region KeD the potential V(x, y; e) diminishes along with 
all its derivatives as e -> 0: 

(A.2) 

The growth of the poteotial to infinity across the boundary is a more delicate issue. We 
assume that V is evaluated along the level sets of some finite function near the boundary. 
Namely, suppose that in a neighbourhood of (D\C) (C is the set of comer points) there 
exists a pattern jimction Q(x, y; e) which is C+l with respect to (x, y) aod it depends 
continuously on e (in C+l-topology) at e ;;. 0 (it has, along with all derivatives, a proper 
limit as e -> 0). Assume that: 

Condition I1a. The billiard boundary is composed of level lines ofQ(x, y; 0): 

Q(x, y; e = O)I(x.Y)ES, '" Qi = constant. (A.3) 

For each boundary component S" for Q close to Qi, let us define a barrier jUnction 
W,(Q; e) which does not depend explicitly on (x, y) and assume that: 

Condition IIh. There exists a small neighbourhood N, of the arc S, in which 

V(x, y; e)kX.Y)EN, '" W,(Q(x, y; e); e) (A.4) 

and 

Condition lIe. VV does not vanish in afinite neighbourhood of the boundary arcs, thus: 

VQI(x,Y)EN, '" 0 (A.5) 

and 
d 

dQ W,(Q; e) '" O. (A.6) 

Now, the rapid growth of the potential across the boundary may be described in terms 
of the barrier functions W, alone. Choose any of the arcs Si and henceforth suppress the 
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index i. Without loss of generality assume Q = 0 on S. By (A.5), the pattern function 
Q is monotonically increasing across S and assume Q is positive inside D near S and 
negative outside (otherwise, change inequalities in (A.7) to the opposite ones). Assume the 
following. 

Condition ill. As E ~ +0 the barrier fimction increases from zero to injinity across the 
boundary Si: 

{
+oo 

lim W(Q; E) = 
£-++0 0 

Q<O 
Q > O. 

(A.7) 

To formulate the final condition on the potential, note that by (A.6) the value of Q may 
be considered as a function of W (and E) neat the boundaty atc. At small E, a finite change 
in W corresponds to a small change in Q (by ill). Therefore, the following condition makes 
sense. 

Condition IV. As E ~ +O,joranyjinite, strictly positive W, and W2. thefonction Q(W; E) 

tends to zero uniformly on the interval [W" W2] along with all its (r + I) derivatives. 

A few rematks ate now in order. 
We study the limiting behaviour (as E ~ +0) of the smooth Hamiltonian system 

(A.I) in a neighbourhood of a given billiatd orbit, thus neat afixed non-zero energy level 
H = constant. The conservation of energy implies that all trajectories stay in the region 
W .;; H' for any E. It follows, in particulat, that the symbol +00 in (A.7) may be replaced 
by any value greater than H*. 

Clearly, if the potential V satisfies condition I, the particle moves in the interior of 
D with essentially constant velocity along a straight line until it reaches a thin layer neat 
the boundaty S where the potential runs from small to very large values (the smaller the 
value of E, the thim2er the boundaty layer). By ill, if the particle enters the layer neat 
an interior point of some boundaty ate (comer points ate not considered in this paper), it 
is either reflected, exiting the boundaty layer neat the point where it entered, or it might, 
in principle, stick into the layer, travelling along the boundaty fat away from the entrance 
point. Conditions 0 formalize the natural reqnirement that the reaction force must be 
nom2al to the boundaty, so they guarantee that the reflection will be of the right character, 
approximately preserving the tangential component (Px) of the momenlun2 and changing 
the sign of the nom2ai component (Py). However, conditions 1-01 ate insufficient for 
preventing the existence of non-reflecting trajectories; adding condition IV with r = I 
gnatantees that the travel distance along the boundaty vanishes asymptotically. 

Moreover, condition 0 gnatantees a correct reflection law ouly in the CO-topology 
and not in the C' -topology. To explain this statement, take the San2e initial conditions 
(xo, Yo, PxO, Pyo) for an orbit of the Hamiltonian system (A.I) and for a billiard orbit. 
Consider a time interval t for which the billiard orbit collides with the boundaty S ouly 
once, at some point (x" Yo) (see figure A.I). Here, the incidence angle ",in is the angle 
between the vector (xo - x" Yo - Yo) and the inward nom2ai to S at the point (x" Yo); the 
reflection angle ",out is the angle between the vector (x, - x" y, - Yo) and the nom2ai, where 
(x" y,) is the point reached by the billiard trajectory at the time t. Define the incidence 
and reflection angles for the trajectory of the Hamiltonian system in the San2e way where 
(x" yJ is set by the billiard trajectory and (X,(E), y,(E» is defioed by the Hamiltonian flow 
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(see figure A.I). We expect the trajectory of the Hamiltonian system to be close to the 
billiard trajectory; in particular, it should demonstrate a correct reflection law 

<1>"'(8) + <l>out(8) "" 0 

for sufficiently small 8. Note, however, that (<1>"'+<I>0ut) is a function of the initial conditions, 
and to satisfy assumption A, this function must be close to zero along with all the derivatives. 

Conditions I-IV are in fact quite general; for the pattern function, consider any smooth 
function Q depending on two variables (x, y). Comers are created at the singularities 
of the level sets and at the points of inflection. For the barrier function W(Q,8) many 
'classical' monotouically decreasing functions satisfy I-IV, see the list (2.6). Moreover, 
one may easily produce more examples as there is no restriction on the growth rate: given 
any potential V satisfying conditions I-IV the potential ",(V) also satisfies these conditions 
provided '" is a smooth, non-singular, strictly monotouic function of V E [0,00) such that 
",(0) = 0, "'(00) = 00. 

Proof of theorem 3. We should prove that assumption A, is satisfied for any inner point 
qo whose time t billiard trajectory does not enter the comer points. It is enough to consider 
the case where the billiard trajectory hits the boundary only once on the time interval 
under consideration. The two different cases of tangent aod non-tangent trajectories are 
considered. 

We use the term the smooth orbit of qo for the orbit of the flow defined by the 
Haruiltouian (A.I). Since the Hamiltouian flow is C' -close to the billiard flow outside 
an arbitrari1y small boundary layer (by virtoe of I), we only need to consider the behaviour 
of the smooth orbit in the boundary layer N, = IIQ(x, y; 8) - Q(x" y,; 8)1 " 6) where 
(x" y,) is the collision point for the billiard trajectory of qo. The quantity 6 slowly tends 
to zero as 8 -+ +0. 

For small 8, the smooth trajectory enters N, at some time t"'(6,8) at a point 
(x"'(6, 8), y"'(6, 8» close to (x" y,) with the velocity (p~(6, 8), p~(6, 8)) close to 
(PxO, Pyo). We denote the moment of exiting the boundary layer as t°ut(6,8) and the 
corresponding phase point is denoted as qout(6, 8). Our aim is to prove that in the limit 
lim,~o lim.~o in the C' (resp. Co) topology for the non-tangent (resp. tangent) case, 

(xout 
I yout, tout) _ (xin , yin, tin) ---* 0 

(p~)2 + (p;"t)2 _ (p~)2 _ (p~)2 -+ 0 (A.S) 

(p~ _ p~)Qy(x"', y"') - (p;ut _ p~)Qx(x"', y"') -+ 0 
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which coincides with the billiard reflection law as 6 4 O. The second line of (A.S) is 
clearly correct; since Qout = Qin, and HE 4 0 uniformly in iJ, the conservation of energy 
implies that the total momentum is asymptotically conserved. 

Move the origin of the coordinate system in D to the reflection point, so (x" yo) = (0, 0); 
without loss of generality assume Q = 0 at the origin. By condition Da, the boundary 
arc passing through the point of reflection is Q(x, y; 0) = O. Let the interior of D 
correspond to positive values of Q(x, y; 0). Let the x-axis be taogent to the level line 
Q(x, y; e) = 0 and the y-axis be inward normal to it. Thus, the partial derivatives Qx and 
Qy satisfy 

(A.9) 

By (A.I), near the boundary the equations of motion have the form, 

x = Px + 0(1) Px = -W'(Q)Qx + 0(1) 

y = py + 0(1) py = -W'(Q)Qy + 0(1) 
(A. 10) 

where the 0(1) terms correspond to the partial derivatives of H,(x, y, Px, Py; €) which are 
assumed to be uniformly small. 

Lemma A.1. There exists ~(6, €) which diminishes to zero as 6 4 0, € 4 0 such that 

tOut _ tin ~ ~ 

and/or any t E [t"', t OU
'] 

x(t) = x"' + O(~), y(t) = y"' + O(~) 

Px(t) = P: + O(~). 

p2(t) p2(t"') T + W(Q(x(t), y(t)); €) = T + W(6; €) + O(~). 

(A.ll) 

(A. 12) 

(A.l3) 

(A. 14) 

Proof. First we prove that (A.12}-{A.14) are valid for any t E [t"', t"' +~] for any ~ 
(provided ~ ;;, 0(1) terms coming from H,). Indeed, (A.12) follows since x and y are 
uniformly bounded by the energy constraint. From (A.9) and (A.12) it follows that 

Qx(x, y; e) = O(~), Qy(x, y; e) = I + O(~). (A.IS) 

at t E [t"', t"' + n Divide this time interval into two regions: 1< where IW'(Q)I < I and 
I> where IW'(Q)I ;;, I. In 1<0 the change in Px is obviously O(~). In I» since Qy # 0 
(see (A. IS)), py does not vanish, hence Px may be divided to py in (A.lO): 

dpx = Qx + 0(1). (A.16) 
dpy Qy 

By (A.15), this implies that the change in Px is O(~) times the total variation in Py. The 
latter is uniformly bounded; indeed, Py is a uniformly bounded smooth function of time, 
the time interval under consideration is finite, and the derivative py is bounded from below. 
Thus, (A.l3) is proved. The approximate conservation law (A.14) follows from (A.l3) and 
the exact conservation of energy H. 

To complete the proof, we take ~ » ./8, and prove that for sufficiently small € (for 
which (A.12}-{A.14) are satisfied), the trajectory which enters the boundary layer N, at 
t = t"' must exit it before t"' + ~. 
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Consider first the case of nearly tangent trajectory, where P~ .., O. By (A.14), since 

inside N, the value of W(Q) is bigger than Win = W(8), it follows that Ipy(t)1 = 
Ip~1 + O(~). Thus, Ipy I stays small unless the trajectory leaves N, or t - tin becomes 
large. For positive energy level, the smallness of Ip~1 implies that Ip:1 > O. By (A.l3) 
it follows that Px(t) is bounded away from zero, on the same time interval. Hence, the 
trajectory is close to a straight line parallel to the x-axis. 

We assume the curvature of the boundary arcs is non-zero; i.e. Qxx "" O. Thus, a straight 
line must exit the boundary layer I Q I .:; 8 at a distance O( J6) from the entrance point. 
Since Ipx (t) I is bounded away from zero, the time spent by the nearly tangent trajectory in 
the boundary layer is tout - tin = O( J6), i.e. it is indeed less than the chosen ~. 

Now consider the case of non-tangent trajectory, so that p~(8, 8) is bounded away from 
zero (it is negative). Since the value of Win = wout = W (Q = 8) vanishes as 8 -> +0, it 
follows from (A.14) that the normal momentum Py(t) stays bounded away from zero unless 
the potential W (Q) reaches some finite value. 

Therefore, if we take some sufficiently small v and consider the part N(!) of the 
boundary layer N, which corresponds to small values of W: W(Q; 8) .:; v, then the 
value of ~ Q (x, y) = Px Qx + Py Q y is bounded away from zero in N(!) (because Qx 

is small and Py is non-zero). Thus, the trajectory entering N(!) must approach the inner 
part N(2) : W(Q; 8) ;;. v at time which is proportional to the width of N(!) (it is 0(8». 

Moreover, if the trajectory leaves N(2) after some time, it must have positive PY' hence, 
by the same arguments, it must leave the whole boundary layer N, after an additional time 
of order 8. It follows that tout - tin = 0(8)+the time spent in N(2). The latter, in tum, 
vanishes as E -> O. Indeed, since Ipy I is bounded from above, this time must be bounded 
by constant x «minNO) W'(Q»-!) (see (A.IO». Now note that in N(2) the value of the 
potential is bounded away from zero (and it is bounded from above by the initial value of 
H) whence, according to condition IV, W'(Q)(= Q'(W)-!) -> 00 as E -> O. 

Thus, we have shown that as E -> 0, the total collision time is 0(8) in the non-tangent 
case. This completes the lemma. D 

This lemma proves the CO-version of the theorem (indeed, cf (A. ll}-(A. 14) with (A.8) 
and note that in our coordinate frame Qx -> 0 as (x, y) -> (x" yo»~. Thus, it remains to 
prove the C' -<:<>nvergence for the non-tangent case. 

As in the lemma above we divide N, into two parts N(!) : W .:; v and N(2) : W ;;. v. 
There is a freedon2 in the choice of v and we consider the limit lim,,~o limv~o Iim.~o. 

In N(1), the value of Q is non-zero. Thus, we divide the equations of motion (A.IO) to 
Q: 

dx Px + 0(1) 
dQ QxPx + Qypy 

dpx = -W'(Q) Qx +0(1) 
dQ QxPx + Qypy 

dy Py + 0(1) 
dQ QxPx + Qypy 

dpy =-W'(Q) Qy +0(1) 
dQ QxPx + Qypy 

(A. 17) 

dt I 
= + 0(1) 

dQ QxPx + Qypy 
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or, in the integral form, 

X(Q2) - X(QI) = rQ

, X dQ y(Q2) - y(QI) = rQ

, Y dQ 
}QI JQ1 

/.

W(Q,) lQ, 
Px(Q2) - Px(QI) = - Pl1 dW(Q) + P12dQ 

W(QI) Q1 

/.

W(Q,) lQ, 
Py(Q2) - Py(QI) = - P21 dW(Q) + P22dQ 

W(Ql) Ql 

(A.18) 

t(Q2) - t(QI) = rQ

, T dQ 
JQ , 

where X, Y, Pijl T denote, schematically, some functions of (x, y, PXI Px) which are 
uniformly bounded along with all derivatives (see (A.I7), the boundedness follows since 
Q == QxPx + Qypy is bounded away from zero in N(1». 

In the region under consideration, the change in W is bounded by the small v and the 
change in Q is bounded by the small~. Thus, the integrals in the right-hand side are small. 
It follows (applying, say, the successive approximation method) that as ~ ..... 0, v ..... 0, the 
Poincare map from Q = QI to Q = Q2 which is found as the solution of (A.18), limits to 
the identical map, along with all derivatives with respect to initial conditions. 

Thus, only the region N(2) gives a non-trivial contribution to the Poincare map defined 
by the Hamiltonian flow. It is convenient to evaluate the Poincare map in N(2) for the 
cross section in the phase space defined by fixing the absolute value of Py mther than the 
corresponding value of W (by (A.14), it does not make a great difference). 

In N(2), as f ..... 0, the value of the potential is bounded away from zero and infinity 
(v .;;; W .;;; H). Thus, according to condition IV, the value of the pattern function Q may 
be considered as a function of the value of the potential Q = Q(W; e) and this function is 
uniformly small along with all derivatives. 

In particnlar, W'(Q) == Q'(W)-I is bounded away from zero. Thus, we may divide the 
equations of motion (A. I 0) to ~ Py and take Py as a new time variable. We obtain 

~ = -Q'(W) Px + 0(1) dpx = Qx + 0(1). (A.19) 
dpy Qy dpy Qy 

Here Qx and Q y are known functions of x and y and the value of y is uniquely detennined 
by the values of x and Q (since Qy "" 0). The value of Q is considered as the function of 
the potential W and the value of W is found from the conservation of energy: 

(A.20) 

Thus, equations (A.19) and (A.20) are self-<:<>nsistent and define the mbit completely. 
According to condition IV, equations (A.19) have the following system as the C' -limit 
as e ..... +0: 

dx 
-=0 
dpy 

(A.21) 

The solution of this system is the C' -limit of the solution of (A.19) (because the change 
in py-i.e. the interval of integration-is finite). This, in fact, finishes the proof of the 
theorem, because the solution of (A.21) gives exact billiard reflection law: by the first 
equation, x is constant whence x°ut = xin = Xc and the same is true for y and t, and 
plugging (x, y) = (xm, ym) in the right-hand side of the second equation gives the last 
equation of (A.8). 0 
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