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Abstract

The phenomenon of the generic coexistence of infinitely many periodic

orbits with different numbers of positive Lyapunov exponents is analysed.

Bifurcations of periodic orbits near a homoclinic tangency are studied. Criteria

for the coexistence of infinitely many stable periodic orbits and for the

coexistence of infinitely many stable invariant tori are given.

Mathematics Subject Classification: 37G25, 37D45, 37G15, 37C70

Introduction

Homoclinic tangency is a tangency between stable and unstable invariant manifolds of a saddle

periodic orbitL. If the stable and unstablemanifolds ofL are tangent at some point, the orbit of

such a point belongs to both themanifolds, so it is homoclinic toL, and at each point of this orbit

the stable and unstable manifolds of L have a tangency. Typically, the tangency is quadratic.

This is a codimension-1 bifurcation: in a generic one-parameter unfolding, the quadratic

tangency of the stable and unstable invariant manifolds at a given point is either removed

or transformed into a pair of transverse intersections. Still, as discovered by Newhouse [1,2],

there exist open regions in the space of dynamical systems where systems with homoclinic

tangencies are dense (in the Cr -topology with any r > 2); moreover these regions exist in any

neighbourhood of any two-dimensional diffeomorphismwith a homoclinic tangency. If σ 6= 1

(the saddle value σ is the absolute value of the product of the multipliers of L), the Newhouse

regions exist in any one-parameter family of diffeomorphisms which unfolds the quadratic

homoclinic tangency generically [2]. These results were extended to the multidimensional

case in [3–5] (a conservative version is proven in [6, 7]).

Since Newhouse regions exist near any system with a homoclinic tangency, they can be

found in the space of parameters of virtually any dynamical model demonstrating chaotic

behaviour in the absence of uniform hyperbolicity, in particular in popular examples such as
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the Hénon map, Chua circuit and Lorenz model (outside the region of existence of the Lorenz

attractor, see [8]). Moreover, as numerics shows (see, e.g., [9]), Newhouse regions can be

quite large.

The basic feature of chaotic dynamics of systems from these regions is its extreme richness.

Indeed, systems having homoclinic tangencies of arbitrarily high orders—in fact, infinitely

many coexisting homoclinic tangencies of all possible orders, are dense in the Newhouse

regions, as well as systems having arbitrarily degenerate periodic orbits [10–13]. This

means [14,15] that any attempt to give a complete description of the dynamics and bifurcations

in theNewhouse regionswill fail. Here, one has to restrict the analysis to someparticular details

or some most general features only.

As the most important such general property of systems in the Newhouse regions, we

select the coexistence of many periodic orbits of different stability types (i.e. with different

numbers of positive/negative Lyapunov exponents). Thus, it has been known since [16] that

coexisting stable and saddle periodic orbits are born at the bifurcations of two-dimensional

maps with a quadratic homoclinic tangency to a saddle periodic orbit with σ < 1. In fact, in the

case σ < 1, a generic map from the Newhouse region has infinitely many stable periodic orbits

whose closure may include a non-trivial hyperbolic set with infinitely many saddle periodic

orbits within [17].

These stable periodic orbits are born at the saddle-node bifurcations which occur in any

generic one-parameter unfolding of a quadratic homoclinic tangency [16]. If σ > 1, there

can be no stable periodic orbits near the homoclinic tangency, and the saddle-nodes of [16]

disintegrate into one saddle and one completely unstable periodic orbit. In this case, the

Newhouse construction gives infinitely many coexisting unstable periodic orbits (periodic

repellers). In [18] we considered two-dimensional maps having a non-transverse heteroclinic

cycle with two saddles and showed that if σ < 1 at one saddle and σ > 1 at the other

saddle, then, in the correspondingNewhouse intervals, a genericmap simultaneously possesses

infinitely many periodic attractors and infinitely many periodic repellers, and the closures of

the set of attractors and the set of repellers intersect along a non-trivial hyperbolic set.

The goal of this paper is to investigate the problem of coexistence of different types of

periodic orbits near homoclinic tangencies in the multidimensional case as well as to study

main bifurcations here. We show that the cases of a saddle and a saddle-focus are pretty much

different. A saddle periodic orbit is called simply a saddle when both its stable and unstable

leading multipliers (i.e. those nearest to the unit circle) are real, but it is called a saddle-focus if

there is a pair of complex conjugate numbers among the leading multipliers3. Generically, i.e.

for the so-called simple homoclinic tangencies (see section 1.1), bifurcations near a homoclinic

tangency to a multidimensional saddle follow the same pattern as in the two-dimensional case.

However, we have here additional (non-leading) stable and unstable directions. Therefore,

instead of bifurcations of saddle-node periodic orbits, there may occur bifurcations of saddle-

saddles which give rise to a pair of saddle periodic orbits with different dimensions of unstable

manifolds. Thus, in the multidimensional case, there may exist Newhouse regions where

systems have neither stable nor completely unstable periodic orbits, but systems with infinitely

many coexisting saddles with different dimensions of unstable manifolds are dense there.

This phenomenon, also discussed in [5, 19], was used in the construction of a wild spiral

attractor in [20].

In the case of a saddle-focus we show that there can be more complicated bifurcations

than saddle-nodes and period-doublings. Indeed, in this case periodic orbits can be born with

more than one multiplier on the unit circle (theorem 1).

3 We use the term saddle periodic orbit when we do not distinguish between a saddle and a saddle-focus.
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Based on this, we show (theorem 3) that even when there are no non-leading directions

there may exist Newhouse regions where systems with infinitely many coexisting periodic

orbits with more than two different indices of instability are dense. For example, consider

a four-dimensional diffeomorphism with a homoclinic tangency to a fixed point for which

all the multipliers are complex (we call this point a saddle-focus (2, 2)). Then, under

certain conditions on the multipliers, in the corresponding Newhouse regions, maps with

infinitelymany coexisting sinks and saddleswith one-dimensional, two-dimensional and three-

dimensional unstable manifolds are dense.

In fact, theorem 3 describes all possible types of hyperbolic periodic orbits which may

exist in systems close to a system with a simple homoclinic tangency. Here, as in [19], we

compute the so-called effective dimension of the problem, de, which is determined by the

relations between the leading multipliers. It may take values 1, 2 or 3. We show that in

the corresponding Newhouse regions a generic system has infinitely many coexisting periodic

orbits with (de + 1) different indices of instability.

We pay special attention to the birth of stable periodic orbits. Namely, we prove

(theorem 5) that if there are no unstable non-leading multipliers and the absolute value J

of the product of all the leading multipliers is less than 1, then generic systems from the

corresponding Newhouse regions have infinitely many coexisting sinks (for partial results, see

[4, 17, 21–23]). Note that if the conditions of theorem 5 are violated, namely, if J > 1 or if

there exist unstable non-leading multipliers, then no stable periodic orbits can be born at the

bifurcations of the corresponding simple homoclinic tangency at all, as follows from results

of [19] on uniform partial hyperbolicity near non-transverse heteroclinic/homoclinic cycles

(see theorem 4).

We also give conditions for the coexistence of infinitely many non-trivial attractors for

multidimensional maps from the Newhouse regions. In the case of a homoclinic tangency to a

saddle-focus with de > 2, theorem 1 gives us periodic orbits with two or three multipliers on

the unit circle. Analysis of bifurcations of these periodic orbits allowed us to show (theorem 6)

that if de > 2, then under conditions of theorem 5 in the corresponding Newhouse regions

generic maps have infinitely many stable invariant closed curves.

Also note that in the case de = 3, e.g. in the above four-dimensional example with a

saddle-focus (2, 2), bifurcations of triplets of unit multipliers can lead to the birth of spiral

and Lorenz-like attractors [24–28], so one may expect here infinitely many coexisting chaotic

attractors also.

We stress the fact thatwe are speaking aboutNewhouse regions in finite-parameter families

of diffeomorphisms. The number of parameters that we need equals de (theorem 1 gives

periodic orbits with de unit multipliers, so the number of bifurcation parameters must not

be less than that). The first parameter, µ, controls the splitting of the stable and unstable

manifolds near a point of the homoclinic tangency. Other parameters are the arguments

ϕ and ψ of complex leading multipliers at the saddle-focus. Our choice of ϕ and ψ as

additional governing parameters is dictated by the fact [13, 29, 30] that they are invariants of

the local Ä-conjugacy4 (the so-called Ä-moduli) for the systems with a homoclinic tangency

to a saddle-focus. Moreover, even when the homoclinic tangency is not split, any change in the

values of these Ä-moduli leads to changes in the structure of the set of single-round periodic

orbits [29, 30], so choosing the Ä-moduli as bifurcation parameters is only natural.

Periodic orbits which lie in a neighbourhoodU of a homoclinic orbitŴ to a saddle periodic

orbit L are called single-round if they leave a small neighbourhood U0 of L only once; after

4 Topological conjugacy on the set of non-wandering orbits lying entirely in a small neighbourhood of the given

homoclinic tangency.
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that they follow U\U0, return to U0 and close up. The corresponding Poincaré map is called

a first-return map; fixed points of first-return maps correspond to single-round periodic orbits.

Note that there is an infinite sequence of the first-return maps Tk defined near the homoclinic

orbit Ŵ. Here, the integer k runs over all sufficiently large values, and it is equal to the number

of iterations that the orbit makes within the small neighbourhood of L before it makes an

excursion along Ŵ. Obviously, large k correspond to the starting points close to the stable

manifold of L.

In the rescaling lemmas of section 1.4 we show that one can rescale the coordinates and

parameters in such a way that the first-return maps near an orbit of homoclinic tangency take

a particular form which is asymptotically, as k → +∞, Cr -close to a certain special quadratic

map. Essentially, lemmas 1–3 say that when the absolute value J of the product of the

leading multipliers is less than 1, the dynamics near single-round periodic orbits is described

by iterations of one of the maps below5

(i) parabola map ȳ = M − y2—in the case de = 1;

(iia) Hénon map x̄ = y, ȳ = M − Bx − y2 or

(iib) generalized Hénon map x̄ = y, ȳ = M −Bx −y2 +Qkxy—in the case where de = 2 and

the stable leading multipliers form a complex-conjugate pair while the unstable leading

multiplier is real and single;

(iii) Mira map x̄ = y, ȳ = M − Cy − x2—when de = 2 and L is a saddle-focus with a

complex-conjugate pair of unstable leading multipliers;

(iv) a three-dimensional Hénon map x̄ = y, ȳ = z, z̄ = M − Bx − Cz − y2—when de = 3

and both the stable and unstable leading multipliers are complex.

Essentially,M is the rescaled splitting parameterµ, whileB andC are rescaled deviations

of the governing parameters ϕ and ψ from their initial values. The rescaling factors tend to

infinity as k → +∞; therefore, arbitrarily small changes in µ, ϕ and ψ cause variations ofM ,

B andC within an arbitrarily large range, provided k is large enough. The non-zero coefficient

Qk in the generalized Hénon map is small and depends only on k and on some invariants of

the homoclinic structure.

The fact that parabola map (i) appears as the rescaled first-return map near a quadratic

homoclinic tangency is known since the paper [31] where the two-dimensional case was

considered. Our lemma 4 shows that the same is true in themultidimensional case. However, if

de > 2, then in certain regions of parameter values one can make a rescaling to de-dimensional

quadratic maps (ii)–(iv).

Map (iib) (the generalized Hénon map) was constructed in [32] as the rescaled first-return

map for two-dimensional diffeomorphisms with a quadratic homoclinic tangency to a saddle

of neutral type (i.e. with σ = 1). The same map appears as the rescaled first-return map near

a non-transverse heteroclinic cycle [33,34]. It was also shown in [35–37] that maps (iia), (iib)

and (iii) emerge near a non-simple quadratic homoclinic tangency.

Most of the paper is occupied by the proof of rescaling lemmas. Other results are deduced

from them based on the analysis of bifurcations in maps (i)–(iv). We use here the fact [3] that

in the Newhouse regions under consideration parameter values are dense which correspond

to a simple homoclinic tangency to the same saddle periodic orbit L; hence bifurcations of

single-round periodic orbits near any such homoclinics are described by the same rescaledmap.

Many of the results of this paper were announced in [38], cases without non-leading

multipliers were considered in [15, 39, 40] (see, e.g., [13]). While in this paper we restrict

ourselves mostly to the phenomenon of the coexistence of periodic orbits of different

types and to their bifurcations, other interesting effects such as high order homoclinic

5 When J > 1, the inverse to the first-return map should be considered.
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tangencies, coexistence of infinitely many strange attractors (hyperbolic, Lorenz-like),

persistent heteroclinic connections between different types of periodic orbits will be considered

in forthcoming papers.

1. Setting the problem and main results

1.1. Simple homoclinic tangency

Let f be a Cr -smooth, r > 2, diffeomorphism of an (m + n)-dimensional,

m > 1, n > 1, smooth manifold. Suppose that f has a saddle periodic orbit L such

that dimW s(L) = m, dimW u(L) = n and, besides, the stable W s(L) and unstable W u(L)

invariant manifolds of L intersect non-transversely at the points of some homoclinic orbit Ŵ0.

Let λ1, . . . , λm, γ1, . . . , γn be the multipliers of L ordered so that |γn| > · · · > |γ1| >

1 > |λ1| > · · · > |λm|. The multipliers inside the unit circle (i.e. λi) are called stable and

those outside the unit circle (i.e. γj ) are called unstable. Denote λ = |λ1|, γ = |γ1|. Those
multipliers which are equal in absolute value to λ or γ are called leading multipliers, and

the rest are called non-leading. Denote as ns and nu the numbers of the leading stable and,

respectively, unstable multipliers and assign the type (ns, nu) to L. Suppose that the following

condition holds.

A. The leading multipliers of L are simple, and L is of one of the four following types:

(1, 1) λ1 and γ1 are real, and λ >| λ2 |, γ <| γ2 |;
(2, 1) λ1,2 = λe±iϕ(ϕ 6= 0, π), γ1 is real and λ >| λ3 |, γ <| γ2 |;
(1, 2) λ1 is real, γ1,2 = γ e±iψ (ψ 6= 0, π) and λ >| λ2 |, γ <| γ3 |;
(2, 2) λ1,2 = λe±iϕ, γ1,2 = γ e±iψ (ϕ, ψ 6= 0, π) and λ >| λ3 |, γ <| γ3 |.

L is called a saddle in the first case and a saddle-focus in the other cases.

Define J = λns γ nu , i.e. J is the absolute value of the product of the leading multipliers.

A system in the general position satisfies either of the two conditions:

B. J < 1, and λγ 6= 1 in case (2, 1) or λγ 2 6= 1 in case (2, 2) or

B′. J > 1, and λγ 6= 1 in case (1, 2) or λ2γ 6= 1 in case (2, 2).

In fact, by considering diffeomorphism f −1 instead of f , condition B is transformed to B′ and
vice versa. Therefore, it suffices to consider only the case where B holds.

The meaning of the quantity J is quite simple: if L has no non-leading multipliers, then

J is the Jacobian of the Poincaré map at L, so the volumes are contracted near L if J < 1 and

expanded if J > 1.

We will need more information about the volume-contraction properties near L. Assume

condition B holds and introduce an ‘effective dimension’ de [19]:

de = 1—in case (1, 1) and in case (2, 1) at λγ < 1;

de = 2—in case (2, 1) at λγ > 1, in case (1, 2), and in case (2, 2) at λγ 2 < 1;

de = 3—in case (2, 2) at λγ 2 > 1.

By construction, since we assume J < 1, it follows that if L has no non-leading multipliers,

then (de + 1)-dimensional volumes are exponentially contracted near L while de-dimensional

volumes may be expanded by the iterations of f .

Letp be a period ofL, i.e.L is a set ofp points {O, f (O), . . . , f p−1(O)} andf p(O) = O.

Denote as T0 the restriction of the Poincarè map f p onto a small neighbourhood U0 ofO. We
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call T0 the local map;O is its fixed point of T0. By putting the origin of the coordinate system

to O, the map T0 takes the following form

x̄ = A1x + · · · , ū = A2u + · · · , ȳ = B1y + · · · , v̄ = B2v + · · · , (1.1)

where x ∈ Rns , y ∈ Rnu , u ∈ Rm−ns , v ∈ Rn−nu ; the dots stand for nonlinear terms;

the eigenvalues of A1 and B1 are, respectively, the stable and unstable leading multipliers

of O; the eigenvalues of A2 and B2 are, respectively, the stable and unstable non-leading

multipliers of O. Accordingly, we will say that x and y are the leading (stable and unstable,

respectively) coordinates and u and v are the non-leading ones. Note that if λ1 is real, then

A1 = λ1 and x is a scalar; if λ1 is complex, then λ1 = λ̄2 = λe±iϕ , x = (x1, x2) and

A1 = λ
(

cosφ − sin ϕ
sin φ cosϕ

)

. Analogously, if γ1 is real, then B1 = γ1 and y is a scalar; if γ1 is

complex, then γ1 = γ̄2 = γ e±iψ , y = (y1, y2) and B1 = γ
(

cosψ − sinψ
sinψ cosψ

)

.

The intersection points of the homoclinic orbit Ŵ0 with U0 belong toW s
loc and toW u

loc and

converge to O at the forward or, respectively, backward iterations of T0. Let M
+ ∈ W s

loc and

M− ∈ W u
loc be two points of Ŵ0. Since these are points of the same orbit, there exists a positive

integer k0 such that M
+ = f k0(M−). Let 5+ and 5− be some small neighborhoods of M+

andM−, respectively. We will call the map T1 ≡ f k0 : 5− → 5+ the global map.

Byassumption, then-dimensional surfaceT1(W
u
loc) is tangent to them-dimensional surface

W s
loc at the pointM

+. We suppose that the tangency is simple in the sense that conditions C, D

and E are fulfilled. We formulate these conditions following [3,38]; in essence, they represent

a version of conditions of quasi-transversal intersection from [41]. Denote as TMW the tangent

space to a manifoldW at the pointM . We assume that

C. The surfaces T1(W
u
loc) andW s

loc have, at the pointM
+, a unique common tangent vector, i.e.

dim(TM+W s ∩ TM+(T1W
u
loc)) = 1.

D. The tangency of T1W
u
loc andW s

loc at the pointM
+ is quadratic.

These conditions mean (see [41]) that one can introduce coordinates (z1 ∈ R1, z2 ∈ R1,

w1 ∈ Rn−1, w2 ∈ Rm−1) with the origin at M+, such that the equation of W s
loc will become

(z1 = 0, w1 = 0) and the equation of T1W
u
loc will be (z1 = 9(z2), w2 = 0) where 9(0) = 0,

9 ′(0) = 0,9 ′′(0) 6= 0. Note that the coordinates in which the manifoldsW s
loc and T1W

u
loc have

such a form near M+ can be introduced for any close system also; moreover the conditions

9 ′(0) = 0, 9 ′′(0) 6= 0 will hold. Then, the tangency ofW s
loc and T1W

u
loc is split if and only if

the splitting parameter µ ≡ 9(0) 6= 0.

In the cases where the pointO has no non-leading multipliers, conditions C and D are the

only conditions for a homoclinic tangency to be simple. However, ifO does have non-leading

multipliers, we need one more assumption. Recall that if O has stable and unstable non-

leadingmultipliers, then the manifoldsW s
loc andW u

loc contain strong-stable and strong-unstable

invariant Cr -smooth submanifolds:W ss
loc ⊂ W s

loc andW uu
loc ⊂ W u

loc, where dimW ss
loc = m − ns ,

dimW uu
loc = n−nu. When the map T0 is in form (1.1),W

u(O) andW s(O) are tangent atO to

the coordinate spaces (y, v) and (x, u), respectively; the manifold W ss
loc is tangent at O to the

space u = 0 andW uu
loc is tangent atO to the space v = 0. It is also well known (see, e.g., [42])

that onW u
loc there exists an invariant C

r -smooth foliation consisting of (n − nu)-dimensional

leaves transverse to the y-subspace. This strong-unstable foliation, which we denote as F uu,

is defined uniquely (by the condition of transversality to the y-subspace). Note that the leaf

of F uu that contains O is exactly W uu
loc . Analogously, on W s

loc there exists a uniquely defined

Cr -smooth strong-stable invariant foliation F ss consisting of (m − ns)-dimensional leaves

transverse to the x-subspace; W ss
loc is the leaf of F ss which contains O. Another fact we use

(see, for example, [19, 41, 42, 44]) is that W u(O) is a part of the so-called extended unstable

manifold W ue. It is an invariant (n + ns)-dimensional smooth (at least C
1) manifold which



Multidimensional diffeomorphisms from Newhouse regions 929

is tangent, at O, to the (x, y, v)-space. Although the manifold W ue is not defined uniquely,

any two such manifolds contain W u
loc and are tangent to each other at the points of W u

loc.

Analogously, W s
loc(O) lies in an (m + nu)-dimensional extended stable manifold W se, which

is tangent to the (x, y, u)-space at O. Again, such a manifold is not unique, but all of them

are tangent to each other at the points ofW s
loc. Thus, at the homoclinic pointsM+ andM− the

tangent spaces Hu = TM+(W ue
loc) and Hs = TM−(W se

loc) are defined uniquely. We suppose that

E1. T1(Hu) is transverse to the leaf l
ss of F ss which passes throughM+ and

E2. T −1
1 (Hs) is transverse to the leaf l

uu of F uu which passes throughM−.

Counting dimensions shows that these conditions are well posed. Since the manifolds and

foliations involved are invariant, conditions E1 and E2 are independent of the choice of the

homoclinic pointsM+ andM− (as well as conditions C and D).

1.2. Bifurcation parameters. Newhouse regions

Let f be a diffeomorphism with a homoclinic tangency, satisfying conditions A–E.

Diffeomorphisms which are close to f and have a non-transverse homoclinic orbit close to Ŵ

form, in the space ofCr -diffeomorphisms, a smooth bifurcational surfaceH of codimension 1.

In this paper we consider bifurcations in parametric families fε which are transverse to H at

ε = 0. The number of parameters we need is equal to the effective dimension de. The first

parameter is the so-called splitting parameter µ which measures the distance between W s
loc

and the fold in T1W
u
loc near the pointM

+. Formally speaking, µ is a smooth functional defined

for any diffeomorphism close to f , and the bifurcational surface H is given by the equation

µ = 0. The family fε is transverse toH if and only if ∂
∂ε

(µ(fε)) 6= 0 at ε = 0. This condition

allows us simply to take ε = µ in the case de = 1 or, if the number of parameters is greater

than 1, to take µ as the first component of the vector of parameters ε.

It is known since [16] in the two-dimensional case and [21] in the multidimensional case

that near a simple homoclinic tangency to a saddle (1, 1) as well as to a saddle-focus (2, 1)with

λγ < 1, single-round periodic orbits can undergo only the simplest saddle-node and period-

doubling bifurcations. One parameter is enough to analyse these bifurcations, and we indeed

consider only one-parameter families fµ in this case. In the remaining cases, it is necessary

to consider at least two- or three-parameter families fε, because single-round periodic orbits

with two or three unit multipliers can appear (see theorem 1). This is connected with the

existence of theÄ-moduli: if two systems onH areÄ-conjugate, then the values ofÄ-moduli

must coincide for both systems. In the case of a saddle-focus, the angular arguments ϕ and

ψ of the leading multipliers λ1 and, respectively, γ1 are such Ä-moduli. By definition, any

change in the value of anÄ-modulus causes bifurcations in the non-wandering set. Moreover,

as shown in [15, 29, 30], any change in the values of the moduli ϕ or ψ leads to a change in

the structure of (i.e. to the bifurcations in) the set of single-round periodic orbits6. Therefore,

in addition to the transversality to H, we require the family fε to be transverse, at ε = 0, to

the surface ϕ = const in cases (2, 1) with λγ > 1 and (2, 2) with λγ 2 > 1 and to the surface

ψ = const in cases (1, 2) and (2, 2). We will call the families that satisfy these transversality

conditions proper.

6 When we consider double- or triple-round periodic orbits, an analogous situation occurs in cases (1, 1) and (2, 1)

with λγ < 1 also. Here, any change in the value of the modulus θ = − ln λ/ ln γ leads to bifurcations of such

orbits [13, 45, 46]. We cannot have here more than one multiplier on the unit circle (because de = 1), but there may

appear an additional degeneracy in the nonlinear terms. Thus, cusp bifurcations of triple-round periodic orbits were

found in [47].
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The transversality conditions allow one to choose µ, ϕ − ϕ0 and ψ − ψ0 as bifurcation

parameters (where ϕ0 and ψ0 are the values of ϕ and ψ at ε = 0). In other words, one may set

(1) ε = µ in the case (1, 1), and in the case of saddle-focus (2, 1) with λγ < 1;

(2) ε = (µ, ϕ − ϕ0) in the case of saddle-focus (2, 1) with λγ > 1;

(3) ε = (µ, ψ − ψ0) in the case of saddle-focus (1, 2), as well as in the case of saddle-focus

(2, 2) with λγ 2 < 1;

(4) ε = (µ, ϕ − ϕ0, ψ − ψ0) in the case of saddle-focus (2, 2) with λγ 2 > 1.

One of the general results on the proper families fε is the existence of Newhouse regions

in their parameter space. Recall the following result from [3].

Theorem on Newhouse intervals. Let fµ be a one-parameter family of Cr -smooth (r > 2)

diffeomorphisms, transverse to the bifurcational surface H of diffeomorphisms satisfying

conditions A–E7. Then, in any neighbourhood of the point µ = 0 there exist Newhouse

intervals such that (1) in these intervals values of µ are dense which correspond to the existence

of a simple homoclinic tangency to O; (2) the family fµ is transverse to the corresponding

bifurcational surfaces.

Note that the Newhouse intervals that are constructed in this theorem depend continuously

on the family fµ. Also note that in item 1 we do not speak about all homoclinic tangencies

to O and select only those which are quadratic and for which the transversality property of

item 2 holds (while other homoclinic tangencies can also be encountered [10, 48], we ignore

them). Moreover, the transversality to the bifurcational surfaces that correspond to the selected

tangencies holds uniformly for every one-parameter family close to the given family fµ. Thus,

since every finite-parameter family fε transverse to H is foliated by one-parameter families

transverse to H, we obtain the following result.

Newhouse regions in finite-parameter families. In the space of parameters ε there exists a

sequence of open regions δj , converging to ε = 0, such that in δj values of ε are dense which

correspond to the existence of an orbit of simple homoclinic tangency to O. Moreover, the

family fε is transverse to the corresponding bifurcational surfaces.

1.3. Main results

Our first result about the dynamics in the Newhouse regions δj is concernedwith possible types

of non-hyperbolic periodic orbits. We call a set of non-zero complex numbers admissible if for

any number ν from this set its complex-conjugate ν∗ also belongs to it. The set of multipliers
of any periodic orbit of a real map is always admissible.

Theorem 1. In the Newhouse regions δj , parameter values are dense for which fε has a

periodic orbit with de multipliers on the unit circle. Moreover, given any admissible set of de

numbers {ν1, . . . , νde
}, values of ε are dense in δj , for each of which a periodic orbit exists

having {ν1, . . . , νde
} among its multipliers.

Here, de is the effective dimension. Thus, theorem 1 says, in particular, that in the case

de = 3 (a saddle-focus (2, 2) with λγ 2 > 1), for any triplet (ν1, ν2, ν3) from the set {(1, 1, 1),
(−1, −1, −1), (−1, 1, 1), (−1, −1, 1), (1, eiω, e−iω), (−1, eiω, e−iω)} (with any ω ∈ (0, π))

diffeomorphisms with periodic orbits having (ν1, ν2, ν3) among the multipliers are dense in the

Newhouse regions δj . In the case de = 2 (a saddle-focus (2, 1) with λγ < 1, a saddle-focus

7 In fact, instead of condition B, we need only λγ 6= 1 (see [3]). Note that our condition B always includes this

requirement.
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(1, 2), a saddle-focus (2, 2) with λγ 2 < 1), the unit multipliers (ν1, ν2) may form any pair

from the set {(1, 1), (−1, −1), (−1, 1), (eiω, e−iω)}, while in the case de = 1 (a saddle (1, 1)

and a saddle-focus (2, 1) with λγ < 1), the non-hyperbolic periodic orbits may have either a

multiplier equal to +1 or a multiplier equal to −1.
In [19], estimates were obtained for the number of unit multipliers for periodic orbits

born at homoclinic bifurcations. These estimates imply that diffeomorphisms close to a

diffeomorphism with a simple homoclinic tangency cannot have periodic orbits with more

than de multipliers on the unit circle (see remark after theorem 3). Thus, theorem 1 shows that

the estimates of [19] are sharp in our case.

Note that when conditions B and E of the simplicity of the tangency are violated, periodic

orbits with a greater number of unit multipliers may appear. For example, in the class of

two-dimensional diffeomorphisms with J 6= 1 there can be no periodic orbits having two unit

multipliers, because we have either contraction (at J < 1) or expansion (at J > 1) of areas.

However, in the codimension-2 case where J = 1 at the moment of homoclinic tangency,

periodic orbits with two unit multipliers are born [32,49,50]. The same phenomenon occurs in

three-dimensional diffeomorphisms of type (1, 1) when condition E is violated at the moment

of tangency [35, 36, 37].

Theorem 1 is a consequence of the following theorem.

Theorem 2. For any admissible set of complex numbers ν1, . . . , νde
there exists a sequence of

parameters εk → 0 such that the map fε has, at ε = εk , a single-round periodic orbit with

(n − nu) multipliers outside the unit circle, (m + nu − de) multipliers inside the unit circle and

de multipliers equal exactly to ν1, . . . , νde
.

The proof is based on the rescaling lemmas 1 and 2 of section 1.4. We complete the proof

of theorem 2 in section 1.5. Theorem 1 is deduced from theorem 2 as follows.

Proof of theorem 1. Arbitrarily close to any ε from the Newhouse regions δj there are values

which correspond to homoclinic tangencies to O that satisfy conditions A–E. By theorem 2,

perturbation of any of these tangencies (within the same family fε) creates a periodic orbit

with any of the sets of multipliers claimed by theorem 1. ¤

Another implication of theorem 2 is the following theorem.

Theorem 3. In the Newhouse regions δj there exists a dense (residual) subset of values of

ε such that for each ε from this subset the corresponding diffeomorphism fε has, for any

d = 0, . . . , de, infinitely many hyperbolic periodic orbits with an (m + nu − d)-dimensional

stable manifold.

Proof. Arbitrarily close to any parameter value from δj we have a value of ε for which the

map fε has a homoclinic tangency to O satisfying conditions A–E. Arbitrarily close to this

value, for any d = 0, . . . , de, by putting (in theorem 2) d of the multipliers ν1, . . . , νde
outside

the unit circle and the rest of them inside, we find a parameter value for which the system has

a periodic orbit with exactly (m + nu − d) multipliers inside the unit circle and (n − nu + d)

multipliers outside the unit circle. It is a hyperbolic periodic orbit, so it exists in some region in

the parameter space around the found parameter value. Repeating the arguments, we may find

inside this region a smaller region which corresponds to the existence of another hyperbolic

periodic orbit with (m + nu − d)multipliers inside the unit circle, with the same d or with any

other d from the range 0, . . . , de, etc. After repeating this procedure infinitely many times for

every d = 0, . . . , de, we obtain a nested sequence of open regions such that the values of ε in

the intersection of these regions correspond to the coexistence of infinitely many hyperbolic
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periodic orbits with the dimension of the stable manifold equal to (m + nu − d), for all d from

0 to de. By construction, the set of such obtained values of ε is an intersection of a countable

number of open and dense sets. ¤

It was shown in [19] that conditions A, B and E impose some a priori restrictions on

possible types of hyperbolic periodic orbits which can be born at the bifurcation of the

homoclinic tangency. In short, the arguments of [19] are as follows. Conditions A and E

imply that Ŵ ∪ O (i.e. the closure of the homoclinic orbit) is a uniformly partially hyperbolic

set, i.e. every point of this set has a strongly stable leaf and a strongly unstable leaf, the leaves

depend continuously on the point, both the set of strongly stable leaves and the set of strongly

unstable leaves are invariant, the map is expanding along the strongly unstable leaves and

contracting along the strongly stable leaves and the contraction or expansion in the directions

transverse to the leaves is essentially weaker than in the directions tangential to the leaves.

In our case the strong-stable and strong-unstable leaves are, respectively, the leaves of the

foliations F ss and F uu. The uniform partial hyperbolicity is inherited by the set of orbits lying

(entirely) in a small neighbourhood U of Ŵ ∪ O and it holds for all close maps. Therefore,

every orbit which stays in U has strong-stable and strong-unstable leaves also, of the same

dimension as the leaves of Ŵ ∪ O, i.e. the dimension of the strongly unstable leaf is (n − nu)

and the dimension of the strongly stable leaf is (m−ns). It follows that for the map itself, and

for every C1-close map, for any periodic orbit L from U the following estimates must hold:

dimW s(L) > m − ns , dimW u(L) > n − nu. Now, condition B implies that in the directions

transverse to the strongly stable and strongly unstable leaves the (de +1)-dimensional volumes

are contracted, so we cannot have more than de expanding directions other than directions

tangential to the strongly unstable leaf. This gives us, finally, the following estimate [19]:

n − nu 6 dimW u(L) 6 n − nu + de. (1.2)

Thus, theorem 3 shows that hyperbolic periodic orbits of every possible type allowed by the

a priori restriction (1.2) can indeed be born at the bifurcation of a simple homoclinic tangency;

moreover, all of them can coexist8.

In what follows we deal with the problem of the existence of stable periodic orbits and

other attractors in the vicinity of a homoclinic tangency. Let us, first, formulate the following

criterion of the absence of stable periodic orbits.

Theorem 4. Suppose a diffeomorphism f satisfies A, C, D and E, and one of the following

conditions holds: (1) n > nu, i.e. O has non-leading unstable multipliers; or (2) J > 1. Then,

any diffeomorphism that is C1-close to f has no stable periodic orbits in a small neighbourhood

U of Ŵ ∪ O.

Proof. As follows from (1.2), for every map C1-close to f , if n > nu, then dimW u > 0 for

every periodic orbit that lies in U , which obviously prevents stability. In case J > 1 volumes

are expanded in the directions transverse to the strongly stable leaves, which implies at least

one positive Lyapunov exponent for every orbit in U . ¤

Thus, in theorems 5 and 6 we deal with the situation where the conditions of theorem 4

do not hold.

Theorem 5. Let f have an orbit of simple homoclinic tangency to a saddle periodic orbit

O with J < 1 (i.e. it satisfies conditions A–E). Assume that O has no unstable non-leading

multipliers (i.e. n = nu). Then, in the Newhouse regions δj the values of ε are dense (and form

a residual set) for which fε has infinitely many coexisting stable periodic orbits.

8 Recall that we assume condition B here, i.e. J = λns γ nu < 1. If J > 1, then in order to determine possible types

of coexisting hyperbolic periodic orbits one should apply theorem 3 to the map f −1
ε .
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Being a particular case of theorem 3, theorem 5 follows from theorem 2 in the sameway as

theorem 3 does. One should just put all the multipliers ν1, . . . , νde
in theorem 2 inside the unit

circle and see that given any diffeomorphism f0 with a simple homoclinic tangency to a saddle

periodic orbit O with no unstable non-leading multipliers and with J < 1, in the de-parameter

family fε there exists a sequence of regions in the parameter space which accumulate at ε = 0

and in each of which the system has a stable single-round periodic orbit.

Note that if de = 1 (i.e. in the case of a saddle (1,1) or a saddle-focus (2,1) with λγ < 1),

this statement gives us intervals of the existence of stable single-round periodic orbits in any

one-parameter family transverse to the bifurcational surface H. This result is known as the

existence of ‘a cascade of periodic sinks’ [4,16,17,21]. Note that one can show (see section 3.7)

that if the following condition of the general position holds:M+ 6∈ W ss
loc,M

− 6∈ W uu
loc , then the

intervals of the existence of stable single-round periodic orbits do not intersect and accumulate

on µ = 0 monotonically: from one side if γ1 > 0 and from both sides if γ1 < 0. Thus, the

situation is completely analogous to the two-dimensional case [16]9.

In the case de > 2, such cascades are not typical for one-parameter families fµ: it is

important to have more bifurcational parameters in order to surely detect stable periodic

orbits. Indeed, single-round stable periodic orbits of large period k correspond to (stable)

fixed points of first-return maps which are given by lemma 1 in the next section. As one can

see from formulae (1.4)–(1.6), the fixed points may be stable only for bounded values of the

coefficients B and C. This corresponds to cos(kϕ) and, respectively, cos(kψ) tending to a

certain finite limit exponentially as k → +∞ (see (1.7)). The values of ϕ0 and ψ0 for which

such exponentially good approximations are possible form a zero measure set. Therefore, the

existence of a cascade of single-round stable periodic orbits in the one-parameter perturbations

of a system with a simple homoclinic tangency is a ‘probability zero’ event in the case de > 2,

while it is a generic phenomenon for the de-parameter perturbations.

Theorem5 is obtained by the analysis of stable periodic points of the first-returnmaps. The

following result about the coexistence of an infinite number of more complicated attractors

in the Newhouse regions is obtained by the analysis of bifurcations of periodic points, see

section 3.7.

Theorem 6. Let the hypothesis of theorem 5 hold, and let de > 2. Then, in the Newhouse

regions δj the values of parameters are dense (and form a residual set) for which fε has

infinitely many coexisting stable closed invariant curves.

Remarks.

(1) When conditions B (B′) or E are violated, closed invariant curves can be born in case (1, 1)

also. Thus, bifurcations leading to closed invariant curves were studied in [32,49,50] for

the case of a homoclinic tangency with J = 1 and in [35–37] for the case of violation of

condition E.

(2) In the case of two-dimensional diffeomorphisms, bifurcations of homoclinic tangencies

with J 6= 1 cannot lead to closed invariant curves. However, if there is a heteroclinic cycle

containing at least two saddles, one with J < 1 and another with J > 1, both stable and

completely unstable closed invariant curves can be born. Moreover, near systems with

such heteroclinic cycles there exist Newhouse regions where diffeomorphisms that have

9 Note that cascades of periodic sinks exist in generic one-parameter families of two-dimensional diffeomorphisms

with non-transverse heteroclinic cycles [18, 51]. However, the intervals of the existence of stable single-round

periodic orbits can, in this case, intersect, and, moreover, infinitely many of them can contain point µ = 0, i.e.

a diffeomorphism with a non-transverse heteroclinic cycle can possess infinitely many stable single-round periodic

orbits simultaneously [51].
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simultaneously infinitely many of both stable and completely unstable closed invariant

curves are dense [13, 18, 33, 34].

(3) Birth of invariant tori from heteroclinic cycles with two saddle equilibria was studied

in [19, 52, 53].

1.4. Rescaling lemmas

The proof of the above theorems is based on the study of bifurcations of single-round periodic

orbits near an orbit of a simple homoclinic tangency. Such an orbit intersects the small

neighbourhood 5+ of the homoclinic pointM+ at a single point which is a fixed point of the

first-return map T (k) = T1T
k
0 for some sufficiently large k. Recall that T0 is a local Poincaré

map in the small neighbourhood U0 of the periodic pointO and T1 is a global map defined by

the orbits close to the piece of the homoclinic orbit Ŵ which lies outside U0. The global map

is defined in the small neighbourhood5− of the homoclinic pointM−. Therefore, the domain
of definition of the map T (k) on5+ is σ 0k = 5+ ∩ T −k

0 5−. These domains are non-empty for
all sufficiently large k, and they accumulate atW s

loc ∩ 5+ as k → +∞ (see section 2).

The following lemmas show that the first-return maps T (k) can be brought, for all large k,

to a certain standard form.

Lemma 1. Let f0 be a Cr -diffeomorphism (r > 2) satisfying conditions A–E, embedded into

a proper de-parameter family fε. Assume that the saddle point O has no unstable non-leading

multipliers (i.e. n = nu). Then, in the space of parameters there is a sequence of regions

1k , accumulating at ε = 0, such that at ε ∈ 1k there exists a Cr -smooth transformation of

coordinates on σ 0k which brings the first-return map T (k) : (x, u, y) 7→ (x̄, ū, ȳ) to one of the

following forms:

(i) in the case (1,1) and in the case (2,1) with λγ < 1—

ȳ = M − y2 + o(1), (x̄, ū) = o(1); (1.3)

(ii) in the case (2,1) with λγ > 1—

x̄1 = y,

ȳ = M − y2 − Bx1 + o(1), (x̄2, ū) = o(1)
(1.4)

(iii) in the case (1,2) and in the case (2,2) with λγ 2 < 1—

ȳ1 = y2,

ȳ2 = M − Cy2 − y21 + o(1), (x̄, ū) = o(1);
(1.5)

(iv) in the case (2,2) with λγ 2 > 1—

x̄1 = y1, ȳ1 = y2,

ȳ2 = M − Cy2 − Bx1 − y21 + o(1), (x̄2, ū) = o(1),
(1.6)

where the o(1)-terms tend to zero, as k → ∞, along with all the derivatives up to the

order r with respect to the coordinates and up to the order (r − 2) with respect to the

rescaled parameters M , B, C, uniformly on any bounded set of (x, y, u, M, B, C). Here,

x ∈ Rns , y ∈ Rnu , u ∈ Rm−ns ; the domain of definition of the map T (k) in these coordinates

is an asymptotically large region which, as k → +∞, covers all finite values of (x, y, u). The

rescaled parameters M, B, C are functions of ε (i.e. of (µ, ϕ, ψ)):

M ∼ γ 2nuk(µ +O(γ −k + λk)), B ∼ (λns−1γ nu)k cos(kϕ + αk(ε)),

C ∼ γ k cos(kψ + βk(ε)), (1.7)
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where αk , βk are Cr−2-functions of ε, tending to a finite limit as k → +∞, uniformly with all

the derivatives. When ε varies within the region 1k , the parameters M , B and C run over

asymptotically large regions which, as k → +∞, cover all finite values.

In the general case, whenO does have unstable non-leadingmultipliers (i.e. whenn > nu),

we have the following result.

Lemma 2. In the space of parameters there is a sequence of regions 1k , accumulating at

ε = 0, such that the map T (k) has, at ε ∈ 1k , a repelling (m + nu)-dimensional invariant

Cr -smooth manifold Mu
k ⊂ σ 0k , and the restriction of T (k) onto Mu

k is written, in appropriately

chosen coordinates (x, y, u), in the form given by (1.3)–(1.6).

Recall that we formulate these lemmas for the case J ≡ λns γ nu < 1; in the case J > 1

the same results hold true for the inverse maps (T (k))−1. The lemmas were announced in [38];
the proof occupies section 3 of this paper. Case (1, 1) was considered in many papers, see e.g.

[3–5, 31]; for cases (2, 1), (1, 2) and (2, 2)without non-leadingmultipliers, see [13,15,39,40].

For a proof of theorem 6, we need a more accurate account of the asymptotically small

terms in map (1.4), which leads us to the following result (section 3.3).

Lemma 3. In case (2,1) with λγ > 1, when ε ∈ 1k and when the corresponding value

of B is bounded away from zero, the map T (k) (if n > nu—the map T (k)|Mu
k
) has a two-

dimensional attracting invariant Cr -smooth manifold Ms
k ⊂ σ 0k . In the rescaled coordinates

of lemma 1, the manifold Ms
k is the graph of a function (x2, u) versus (x1, y) such that

(x2, u) = o(1) as k → ∞.

When r > 3, the map T (k)|Ms
k

is written in the form

x̄1 = y, ȳ = M − y2 − Bx1 − 2J1

B
(λ2γ )k(x1y + o(1)), (1.8)

where J1 6= 0 is some constant (J1 is the Jacobian of the map T1|W se
loc∩W ue

loc
at the homoclinic

point M− at ε = 0, see (3.21)).

In the case r = 2 the map T (k)|Ms
k

is written in the form

x̄1 = y, ȳ = M − y2 − Bx1 + ϑk(y) − 2J1

B
(λ2γ )k(x1y + o(1)), (1.9)

where ϑk(y) = o(y2) and tends to zero as k → ∞.

The maps of the form (1.8) are called generalized Hénon maps. They were introduced in

[32,49] where it was shown, in particular, that they undergo a non-degenerate Andronov–Hopf

bifurcation and have a stable closed invariant curve for the values of parameters (M, B) from

some open regions (see section 3.7).

Another rescaling result (cf [3, 5]) stresses the special role of the parabola map.

Lemma 4. Let f0 be a Cr -diffeomorphism (r > 2) satisfying conditions A, C, D, E, embedded

into a one-parameter family fµ transverse to the bifurcational surface H of diffeomorphisms

with a homoclinic tangency. Assume that λγ < 1 at µ = 0. Then, there exist a sequence

kj → ∞ and a sequence of intervals Ikj
, accumulating at µ = 0, such that at µ ∈ Ikj

the

map T (kj ) has a repelling (m + 1)-dimensional invariant Cr -smooth manifold Wu
kj

⊂ σ 0kj
, and

the restriction of T (kj ) onto Wu
kj

is written, in appropriately chosen coordinates (y, z), where

y ∈ R1, z ∈ Rm+1, in the form

ȳ = M − y2 + ok→∞(1), z̄ = ok→∞(1), (1.10)

where

M ∼ γ 2k(µ +O(γ −k)). (1.11)
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Thus, the parabola map appears in one-parameter unfoldings of a simple homoclinic

tangency in all four cases: (1, 1), (2, 1), (1, 2) and (2, 2). This was used in [3–5] in order to

extend the two-dimensional Newhouse result [2] to the multidimensional case. Note that we

do not require condition B, but the condition λγ < 1 is crucial in lemma 4. However, this

excludes the case of symplectic maps, as λγ = 1 for such maps automatically. The case where

λγ = 1 at µ = 0 is also interesting by itself, without a connection to symplectic dynamics

(see [13, 32, 49, 50]). As the following lemma shows (cf [7, 32, 33, 54] for two-dimensional

maps and [55] for three-dimensional flows), the role of the parabola map is played by the

Hénon map here.

Lemma 5. Let f0 be a Cr -diffeomorphism (r > 2) satisfying conditions A, C, D, E, embedded

into a one-parameter family fµ transverse to the bifurcational surface H of diffeomorphisms

with a homoclinic tangency. Assume that λγ = 1 at µ = 0. Then, there exist a sequence

kj → ∞ and a sequence of intervals Ikj
, accumulating at µ = 0, such that at µ ∈ Ikj

the

map T (kj ) has a two-dimensional Cr -smooth invariant ‘centre’ manifold Wc
kj

⊂ σ 0kj
, and the

restriction of T (kj ) onto Wc
kj

is written, in appropriately chosen coordinates (x, y), in the form

x̄ = y + ok→∞(1), ȳ = M − y2 − Bkx + ok→∞(1), (1.12)

where M is given by (1.11), and the coefficient Bk , bounded away from zero and infinity, is

given by (3.44), (3.48), (3.53) and (3.55).

The proof of lemmas 4 and 5 is given in section 3.6.

1.5. Proof of theorem 2

Theorem 2 is an almost immediate consequence of lemma 2. Indeed, a single-round periodic

orbit corresponds to fixed points of the first-return map T (k) = T1T
k
0 . When O has non-

leading unstable multipliers, the map T (k) is expanding in directions transverse to the invariant

manifold Mu
k . Hence a single-round periodic orbit starting on Mu

k has (n − nu) multipliers

outside the unit circle. The rest of the multipliers are found by the linear analysis near the

fixed point of the corresponding map (1.3)–(1.6). Such an analysis is quite straightforward.

Thus, for any of these maps, for any admissible set ν1, . . . , νde
(where de = 1 for map (1.3),

de = 2 for maps (1.4) and (1.5) and de = 3 for map (1.6)) there exist values of parameters

M = Mk, B = Bk, C = Ck bounded by a constant independent of k, such that for all

sufficiently large k the map has, at the given parameter values, a fixed point with multipliers

ν1, . . . , νde
and the rest of the multipliers are o(1) (see exact formulae in section 3.7).

According to (1.7), bounded values of parameterM correspond to µ → 0, as k → +∞.
Any bounded values of B and C can be obtained by arbitrarily small changes in ϕ and ψ .

Thus, theorem 2 indeed follows. ¤

2. Local and global maps

In order to study the properties of the first-return maps T (k) = T1T
k
0 , we need appropriate

formulae for the maps T1 and T0. We give such formulae in the lemmas below.

One can always consider such Cr -coordinates in U0 that the fixed point Oε of the local

map T0 is at the origin for all small ε. Moreover, we write T0(ε) in the form (1.1), i.e. the linear

part has a block-diagonal form with the blocksA1, B1 andA2, B2 corresponding to the leading

and non-leading coordinates. Note that in lemmas 6 and 7 we do not assume condition A,

e.g. we do not require that the leading multipliers are simple. Indeed, we prove these lemmas

under the assumption that A1 is an (m1 × m1)-matrix whose eigenvalues, at ε = 0, are all
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equal to some λ ∈ (0, 1) in absolute value and B1 is an (n1 × n1)-matrix the absolute values

of the eigenvalues of which are, at ε = 0, all equal to some γ > 1. The absolute values of the

eigenvalues of the (m−m1)× (m−m1)-matrix A2 and the (n−n1)× (n−n1)-matrix B2 are

assumed to be strictly less than λ and, respectively, strictly greater than γ . Here 1 6 m1 6 m,

1 6 n1 6 n, and x ∈ Rm1 , u ∈ Rm−m1 , y ∈ Rn1 , v ∈ Rn−n1 in (1.1).

By a Cr -transformation of coordinates, one can straighten the local stable and

unstable manifolds of Oε, so that they acquire equations W s
loc : {y = 0, v = 0} and

W u
loc : {x = 0, u = 0}. After that, the map T0 takes, locally, the form

x̄ = A1(ε)x + p1(x, u, y, v, ε), ū = A2(ε)u + p2(x, u, y, v, ε),

ȳ = B1(ε)y + q1(x, u, y, v, ε), v̄ = B2(ε)v + q2(x, u, y, v, ε),
(2.1)

where the nonlinearities p1,2 and q1,2 vanish at the origin along with their first derivatives, and

for all small (x, u, y, v, ε) we have

p(0, 0, y, v, ε) ≡ 0, q(x, u, 0, 0, ε) ≡ 0. (2.2)

Bringing the local map to the form (2.1) is not enough for our purposes because the

iterations T k
0 can deviate too much from those of the linearized map. Essentially, this means

that the right-hand side of (2.1) contains ‘toomany’ non-resonant terms. Fortunately, infinitely

many of the non-resonant terms can be eliminated by means of some additional smooth

transformation of coordinates, as the following lemma shows.

Lemma 6. At all sufficiently small ε, there exists a local Cr -transformation of coordinates

after which the map T0(ε) keeps its form (2.1) and (2.2) while the functions p and q now

satisfy additional identities

p1(x, u, 0, 0, ε) ≡ 0, q1(0, 0, y, v, ε) ≡ 0, (2.3)

∂p

∂x
(0, 0, y, v, ε) ≡ 0,

∂q

∂y
(x, u, 0, 0, ε) ≡ 0. (2.4)

Proof. See the appendix. ¤

Remarks.

(1) At finite r , the coordinate transformation is onlyCr−2 with respect to ε; more precisely, its

second derivative with respect to (x, y, u, v) is Cr−2 with respect to (x, y, u, v, ε). When

r = +∞ or r = ω, we can guarantee, in general, only arbitrarily large finite smoothness

with respect to ε. However, if the absolute values of the eigenvalues of the matrix A1(ε)

stay, at all small ε, equal to each other and the same holds true for the matrix B1(ε) (this

is always true when condition A is fulfilled), then the transformation is C∞ with respect

to the parameters.

(2) When identities (2.3) are fulfilled the non-leading manifolds are straightened: W ss
loc :

{(y, v) = 0, x = 0}, W uu
loc : {(x, u) = 0, y = 0}. The invariant foliations F ss on W s

loc

and F uu on W u
loc are also straightened and have the form {x = const, (y, v) = 0} and

{y = const, (x, u) = 0}, respectively. Concerning the extended stable and unstable
manifolds W se and W ue (see condition E), note that the tangents to W se

loc at the points of

W s
loc form an invariant (with respect to the derivative of the map T0) continuous family

of (n − n2)-dimensional spaces which is a unique such family transverse to W uu
loc at O.

One can easily see that the second of the identities (2.4) implies that the space {v = 0}
is invariant with respect to the derivative of the map (2.1) at any point of W s

loc. By

uniqueness, it follows that the spaces {v = 0} form the family of tangents to W se
loc. In
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particular, Hs = TM+W se = {v = 0}. Analogously, Hu = TM−W ue = {u = 0} due to the
first of the identities (2.4) (see [19, 42]).

When the map T0(ε) is written in the form (2.1) with p, q satisfying identities (2.2), (2.3)

and (2.4), wewill say that it is in the main normal form. It occurs that when T0 is brought to this

normal form, the iterations T k
0 : U0 → U0 of the local map do not differ essentially from the

iterations of the linearized map at all large k. Namely, let (xk, uk, yk, vk) = T k
0 (x0, u0, y0, v0).

It has been known since [57] (see also [58, 59]) that (xk, uk, y0, v0) are uniquely defined

functions of (x0, u0, yk, vk) for any k > 0.

Lemma 7. When the local map T0 is brought to the main normal form, the following relations

hold for all small ε and all large k:

xk − Ak
1(ε)x0 = λ̂kξk(x0, u0, yk, vk, ε), uk = λ̂k ξ̂k(x0, u0, yk, vk, ε),

y0 − B−k
1 (ε)yk = γ̂ −kηk(x0, u0, yk, vk, ε), v0 = γ̂ −kη̂k(x0, u0, yk, vk, ε),

(2.5)

where λ̂ and γ̂ are some constants such that 0 < λ̂ < λ, γ̂ > γ , and the functions ξk, ηk, ξ̂k, η̂k

are uniformly bounded for all k, along with the derivatives up to the order (r − 2). For the

derivatives of order (r − 1) the following estimates hold as k → +∞:
∥

∥

∥

∥

∂r−1(xk − A1(ε)
kx0, uk)

∂(x0, u0, yk, vk, ε)r−1

∥

∥

∥

∥

= o(‖A1(ε)‖k),

∥

∥

∥

∥

∂r−1(y0 − B1(ε)
−kyk, v0)

∂(x0, u0, yk, vk, ε)r−1

∥

∥

∥

∥

= o(‖B−1
1 (ε)‖k),

(2.6)

while the derivatives of order r are estimated as follows:

‖xk, uk, y0, v0‖Cr = o(1)k→∞; (2.7)

these estimates do not include derivatives with more than (r − 2) differentiations with respect

to ε (such may not exist, see remark 1 to lemma 6).

See the proof in appendix. Lemmas 6 and 7 strengthen similar results in [23, 42, 43, 46,

56, 60]; in particular, we achieve maximal possible smoothness here.

Concerning the global map T1(ε), in the local coordinates of lemma 6, we may also find

a convenient form for it, using conditions A, C, D, E. Also recall that the transversality of the

family fε to the bifurcational surfaceHmeans that among the parameters ε we can distinguish

the parameter µ which measures the splitting of the invariant manifolds of O near the chosen

homoclinic pointM+.

Lemma 8. The homoclinic points M+, M− and the system of coordinates in U for which

the local map T0 is kept in the main normal form can be chosen in such a way that at all

small ε, in cases (1,1) and (2,1) (i.e. at y ∈ R1), the v-coordinates of any point M from a

small neighbourhood of M− are uniquely defined by the (x, u, y)-coordinates of M and by the

v-coordinates of the point M̄(x̄, ū, ȳ, v̄) = T1M . Moreover,

∂x̄

∂y
6= 0,

∂ȳ

∂x
6= 0,

∂2ȳ

∂y2
6= 0, (2.8)

and there exists such y−(ε), tending to the y-coordinate of the homoclinic point M− as µ → 0,

that at the point (x = 0, u = 0, y = y−(ε), v̄ = 0) we have

∂ȳ

∂y
= 0, ȳ = µ, and, in case (2, 1),

∂x̄2

∂y
= 0 (2.9)

(recall that µ is the splitting parameter, and x = (x1, x2) ∈ R2 in case (2,1)).
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In cases (1,2) and (2,2) (here y ∈ R2) the (y2, v)-coordinates of M are uniquely defined

by the (x, u, y1)-coordinates and by the (y2, v)-coordinates of M̄ . Moreover,

∂x̄

∂y1
6= 0,

∂ȳ1

∂x
6= 0,

∂2ȳ1

∂y21
6= 0, (2.10)

and, for an appropriately chosen y−
1 (ε), at (x, u, ȳ2, v̄) = 0, y1 = y−

1 (ε), we have

∂ȳ1

∂y1
= 0,

∂ȳ1

∂ȳ2
= 0, ȳ1 = µ, and, in case (2, 2),

∂x̄2

∂y1
= 0. (2.11)

This lemma says that we can write the map T1 : (x, u, y, v) 7→ (x̄, ȳ, ū, v̄) in the

cross form, i.e. as the correspondence (x, u, y, v̄) 7→ (x̄, ū, ȳ, v) in the case y ∈ R1 and

(x, u, y1, ȳ2, v̄) 7→ (x̄, ū, ȳ1, y2, v) in the case y ∈ R2. Moreover, we have the following.

Corollary 1. The Taylor expansion for the cross form of T1 at (x = 0, u = 0, y = y−(ε), v̄ =
0) or, respectively, at (x = 0, u = 0, y1 = y−

1 (ε), ȳ2, v̄ = 0) is as follows:

Case (1,1)

x̄ − x+ = ax + b0(y − y−) + α1u + β1v̄ + · · · ,
ȳ = µ + cx +D0(y − y−)2 + ν1u + ρ1v̄ + · · · ,
v − v− = c̃x + d̃(y − y−) + ν2u + ρ2v̄ + · · · ,
ū − u+ = ãx + b̃(y − y−) + α2u + β2v̄ + · · · ;

(2.12)

Case (2,1)

x̄ − x+ = ax +

(

b0

0

)

(y − y−) + α1u + β1v̄ + · · · ,

ȳ = µ + c1x1 + c2x2 +D0(y − y−)2 + ν1u + ρ1v̄ + · · · ,
v − v− = c̃x + d̃(y − y−) + ν2u + ρ2v̄ + · · · ,
ū − u+ = ãx + b̃(y − y−) + α2u + β2v̄ + · · ·

(2.13)

(here x = (x1, x2) ∈ R2);

Case (1,2)

x̄ − x+ = ax + b0(y1 − y−
1 ) + b1ȳ2 + α1u + β1v̄ + · · · ,

ȳ1 = µ + c0x +D0(y1 − y−
1 )2 + ν11u + ρ11v̄ + · · ·

y2 − y−
2 = d1(y1 − y−

1 ) + d2ȳ2 + c1x + ν12u + ρ12v̄ + · · · ,
v − v− = c̃x + d̃1(y1 − y−

1 ) + d̃2ȳ2 + ν2u + ρ2v̄ + · · · ,
ū − u+ = ãx + b̃1(y1 − y−

1 ) + b̃2ȳ2 + α2u + β2v̄ + · · · ;

(2.14)

Case (2,2)

x̄ − x+ = ax +

(

b0

0

)

(y1 − y−
1 ) + b1ȳ2 + α1u + β1v̄ + · · · ,

ȳ1 = µ + c01x1 + c02x2 +D0(y1 − y−
1 )2 + ν11u + ρ11v̄ + · · · ,

y2 − y−
2 = d1(y1 − y−

1 ) + d2ȳ2 + c1x + ν12u + ρ12v̄ + · · · ,
v − v− = c̃x + d̃1(y1 − y−

1 ) + d̃2ȳ2 + ν2u + ρ2v̄ + · · · ,
ū − u+ = ãx + b̃1(y1 − y−

1 ) + b̃2ȳ2 + α2u + β2v̄ + · · · ;

(2.15)
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where b0 6= 0, c0 6= 0, D0 6= 0, d2 6= 0 and detρ2 6= 0. All the coefficients in (2.12)–(2.15)

depend on ε (at least Cr−2-smoothly).

Proof of lemma 8. Let M+ ∈ W s
loc and M− ∈ W u

loc be a pair of homoclinic

points at µ = 0. In the coordinates of lemma 6 the manifolds W s
loc and W u

loc are

straightened, so the (y, v)-coordinates of M+ and the (x, u)-coordinates of M− are zero.
Let M+ = M+(x+, u+, 0, 0) and M− = M−(0, 0, y−, v−). Since T1M

− = M+ at ε = 0, the

map T1(ε) may be written in the following form at small ε:

x̄ − x+(ε) = â1x + α̂1u + b̂1(y − y−) + β̂1(v − v−) + · · · ,
ū − u+(ε) = â2x + α̂2u + b̂2(y − y−) + β̂2(v − v−) + · · · ,
ȳ = y+(ε) + ĉ1x + ν̂1u + d̂1(y − y−) + ρ̂1(v − v−) + · · · ,
v̄ = v+(ε) + ĉ2x + ν̂2u + d̂2(y − y−) + ρ̂2(v − v−) + · · · ,

(2.16)

where the dots stand for nonlinear terms, all the coefficients depend on ε and

y+(0) = 0, v+(0) = 0.

By condition E2, the space T −1
1 (Hs) is transverse to luu at the pointM−. The leaf luu of

the foliation F uu through the point M− is given by equations {x = 0, u = 0, y = y−}, and
the tangent plane Hs to the extended stable manifold W se at M+ is v̄ = 0 (see remark 2 to

lemma 6). Hence, the condition of transversality of T −1
1 (Hs) and F uu reads as det ρ̂2 6= 0. It

follows that the last equation of (2.16) can be resolvedwith respect to (v−v−), i.e. (v−v−) can

be understood as a function of (x, u, y − y−, v̄). Thus, (2.16) may be recast in the cross form:

x̄ − x+ = ax + α1u + b(y − y−) + β1v̄ + · · · ,
ȳ = y+ + cx + ν1u + d(y − y−) + ρ1v̄ + · · · ,
v − v− = c̃x + ν2u + d̃(y − y−) + ρ2v̄ + · · · ,
ū − u+ = ãx + α2u + b̃(y − y−) + β2v̄ + · · ·

(2.17)

with some new ε-dependent coefficients x+, u+, y+, v−, a, b, . . ..

By condition E.1 (see remark 2 to lemma 6), the following manifolds are transverse at

ε = 0: the leaf lss = {x̄ = x+, ȳ = 0, v̄ = 0} of the strong-stable foliation F ss through the

pointM+ and the image T1(Hu) of the space u = 0 (the tangent space toW ue at the pointM−).
This transversality condition means that

det

(

a b

c d

)

6= 0. (2.18)

Now, according to condition C, the manifold T1W
u
loc has, at the point M+, exactly one

common tangent vector with W s
loc at ε = 0. Since W u

loc and W s
loc are, respectively, given by

the equations (x = 0, u = 0) and (ȳ = 0, v̄ = 0), it follows from (2.17) that the intersection

of the tangent spaces to T1W
u
loc andW s

loc atM
+ is one-dimensional if and only if the equation

d(y − y−) = 0 has a one-parameter family of solutions at ε = 0. Hence, in cases (1,1) and

(2,1) where y ∈ R1 and d is a scalar, we have

d = 0 at ε = 0. (2.19)

Note that (2.18) and (2.19) imply b 6= 0 and c 6= 0.

In cases (1,2) and (2,2), y ∈ R2 and d is a (2× 2)-matrix, so condition C reads as
det d = 0 and rank d = 1 at ε = 0. (2.20)
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Let us now focus on the case y ∈ R1. By (2.19), the second equation in (2.17) may be

written in the following form at ε = 0:

ȳ = cx + ν1u + ρ1v̄ +D0(y − y−)2 + · · · . (2.21)

Condition D of the quadraticity of the homoclinic tangency simply means that

D0 ≡ ∂2ȳ

∂y2

∣

∣

∣

∣

(x=0,u=0,y=y−,v̄=0,ε=0)
6= 0. (2.22)

Indeed, wemust show (see comments after conditionD) that one can introduce such coordinates

(z1, z2, w1, w2) near the point M
+ that, at ε = 0, the manifold W s

loc would have the equation

(z1 = 0, w1 = 0) and the piece of the unstable manifold T1W
u
loc would acquire the equation

(z1 = 9(z2), w2 = 0) with a function 9 such that 9(0) = 0, 9 ′(0) = 0 and that 9 ′′(0) 6= 0

if and only ifD0 6= 0. Let us check this. By (2.17) and (2.21) the equation of T1W
u
loc is given,

at ε = 0, by

x̄ − x+ = b(y − y−) + β1v̄ + · · · ,
ȳ = ρ1v̄ +D0(y − y−)2 + · · · ,
ū − u+ = b̃(y − y−) + β2v̄ + · · · .

(2.23)

It follows from (2.18) and (2.19) that b 6= 0 here. If x = (x1, x2) is a vector, then at

least one component of the vector b must be non-zero, so we assume that it is the first

component, b0. Then, if we denote z2 = x̄ − x+ in the case x ∈ R1 and z2 = x̄1 − x+1
in the case x ∈ R2, (y − y−) can be expressed by the first equation of (2.23), as a function

of z2 and v̄: y − y− = z2/b0 − β1/b0v̄ + . . .. Now, the second equation of (2.23) takes

the form ȳ = ρ1v̄ + D0z
2
1/b

2
0 + · · ·, so one can see that we may indeed introduce a variable

z1 = ȳ − ρ1v̄ + · · · such that T1W u
loc nearM

+ would take the form z1 = 9(z2) with9(0) = 0,

9 ′(0) = 0. Here, 9 ′′(0) = D0/b
2
0, so the quadraticity of the tangency of T1W

u
loc with W s

loc is

given by (2.22) indeed.

By (2.22), we may choose y− = y−(ε) in such a way that ∂ȳ/∂y = 0 at

(x = 0, u = 0, y = y−(ε), v̄ = 0) at all small ε. Then, at small ε the third equation of (2.17)

may be written in the form ȳ = y+(ε) + cx + ν1u + ρ1v̄ +D0(y − y−(ε))2 + · · ·. Thus, y+(ε)
indeed is equal to the splitting parameter µ.

We have almost proved the lemma in the case y ∈ R1. The only remaining claim is that in

case (2,1) the coordinate system can be chosen such that the second component of the vector

b in (2.17) will be zero. It is obvious that this can indeed be achieved by a linear rotation of

the coordinates (x1, x2) and that such rotations keep the local map T0 in the main normal form

and do not change the form of the second equation in (2.13).

It remains to prove the lemma in the case y ∈ R2 (i.e. cases (1, 2) and (2, 2)). Equations

for ȳ in (2.17) are written as follows:

ȳ1 = y+1 (ε) + c0x + d11(y1 − y−
1 ) + d12(y2 − y−

2 ) + ν11u + ρ11v̄ + · · · ,
ȳ2 = y+2 (ε) + c1x + d21(y1 − y−

1 ) + d22(y2 − y−
2 ) + ν12u + ρ12v̄ + · · · .

(2.24)

Note that rotations of the (y1, y2)-coordinates do not change the form of equations (2.24). At

ε = 0, since det d = 0, one can make a rotation of the y-coordinates so that

d11 = 0, d12 = 0. (2.25)

Since rank d = 1, it follows then that at least one of the coefficients d21 or d22 must be

non-zero. If d22 = 0, we consider another homoclinic point, T −1
0 (M−), as a new point

M−. For the new global map (T1new = T1T0) the matrix d will have the following form (see

lemma 6): dnew = d ·
(

cosϕ − sin ϕ
sin ϕ cosϕ

)

. By (2.25), dnew =
(

0 0
d21 cosϕ + d22 sin ϕ −d21 sin ϕ + d22 cosϕ

)

.
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Thus, if d22 = 0, then d22new 6= 0 (since d21 6= 0 and sin ϕ > 0). Hence, we may always

assume d22 6= 0.

Taking into account quadratic terms, we write the first equation of (2.24) as

ȳ1 = c1x + ν11u + ρ11v̄ +D1(y1 − y−
1 )2 +D2(y1 − y−

1 )(y2 − y−
2 ) + D3(y2 − y−

2 )2 + · · ·
(2.26)

at ε = 0. Since d22 6= 0, the second equation in (2.24) can be written as

y2 − y−
2 = 1

d22
ȳ2 − d21

d22
(y1 − y−

1 ) + c2x + ν12u + ρ12v̄ + · · · , (2.27)

with some new coefficients y−
2 , c2, ν12, ρ12. Plugging (2.27) into (2.26), we obtain

ȳ1 = c1x + ν11u + ρ11v̄ +D0(y1 − y−
1 )2 + D̃2(y1 − y−

1 )ȳ2 + D̃3ȳ
2
2 + · · · (2.28)

at ε = 0, where D0 ≡ D1 − D2
d21
d22
+D3

d221
d222
. Absolutely analogously to the case y ∈ R1, one

can now check that condition D reads as D0 6= 0. It follows from these conditions that one

may always choose y−
1 (ε) and make an additional rotation of the y-coordinates on the angle of

order ε, so that the coefficients d11(ε) and d12(ε) in the equation for ȳ1 will vanish identically

at all small ε. Then, again as we did in the case y ∈ R1, one can check that the value y+(ε) of

ȳ1 at (x = 0, u = 0, y1 = y−
1 (ε), ȳ2 = 0, v̄ = 0) is the splitting parameter µ.

Plugging (2.27) into (2.17), we arrive, after an obvious adaptation of notation, at the

desired equations (2.14) and (2.15); to obtain formulae (2.15) one also needs an additional

rotation of the x-coordinates as was done above for case (2,1). ¤

3. Rescaled first-return maps. Proof of lemmas 1–5

In this section we study the first-return maps T (k)(ε) ≡ T1T
k
0 at sufficiently large k,

k = k̄, k̄ + 1, . . . , and small ε. The domain of the map T (k) is the strip σ 0k = T −k
0 (5−) ∩ 5+.

Denote (xk, uk, yk, vk) = T k
0 (x0, u0, y0, v0) and take (x0, u0, yk, vk) as the new coordinates on

σ 0k—this can indeed be done, according to lemma 7. The relation between these coordinates

and the standard coordinates (x0, u0, y0, v0) is given by (2.5). If the neighborhoods 5− and
5+ are chosen as the boxes ‖x − x+, u−u+, y, v‖ 6 ǫ0 and ‖x, u, y − y−, v − v−‖ 6 ǫ1 with

sufficiently small positive ǫ0 and ǫ1, then in the coordinates (x0, u0, yk, vk) the strip σk is the

box ‖x0 − x+, u0 − u+‖ 6 ǫ0, ‖yk − y−, vk − v−‖ 6 ǫ1.

3.1. First-return maps in case (1,1)

Here the leading coordinates x and y are one-dimensional and, respectively, A1 = λ1,

B1 = γ1. By plugging (2.5) into (2.12), we obtain the following formula for the first-return

map T (k) ≡ T1T
k
0 : (x0, u0, yk, vk) 7→ (x̄0, ū0, ȳk, v̄k):

x̄0 − x+ = a(λk
1x0 + λ̂kξk(x0, u0, yk, vk, ε)) + b0(yk − y−) +O((yk − y−)2)

+α1λ̂
k ξ̂k(x0, u0, yk, vk, ε) + β1γ̂

−kη̂k(x̄0, ū0, ȳk, v̄k, ε) +O((λk|x0|
+ λ̂k‖ξk, ξ̂k‖ + γ̂ −k‖η̂k‖)|yk − y−| + λ2kx20 + λ̂2k‖ξk, ξ̂k‖2 + γ̂ −2k‖η̂k‖2),

γ −k
1 ȳk = −γ̂ −kηk(x̄0, ū0, ȳk, v̄k, ε) + µ + c(x0λ

k
1 + λ̂kξk(x0, u0, yk, vk, ε))

+D0(yk − y−)2 + o((yk − y−)2) + ν1λ̂
k ξ̂k(x0, u0, yk, vk, ε)

+ ρ1γ̂
−kη̂k(x̄0, ū0, ȳk, v̄k, ε) +O((λk|x0| + λ̂k‖ξk, ξ̂k‖ + γ̂ −k‖η̂k‖)|yk − y−|

+ λ2kx20 + λ̂2k‖ξk, ξ̂k‖2 + γ̂ −2k‖η̂k‖2),
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vk − v− = λk
1c̃x0 + d̃(yk − y−) + O((yk − y−)2 + λk|x0| |yk − y−|

+ λ2kx20 + λ̂k‖ξk, ξ̂k‖ + γ̂ −k‖η̂k‖),

ū0 − u+ = λk
1ãx0 + b̃(yk − y−) +O((yk − y−)2 + λk|x0||yk − y−|

+ λ2kx20 + λ̂k‖ξk, ξ̂k‖ + γ̂ −k‖η̂k‖). (3.1)

Note that the right-hand sides of (3.1) are also functions of (x0, u0, yk, vk) and

(x̄0, ū0, ȳk, v̄k). They are of class Cr with respect to the variables and Cr−2 with respect
to the parameters (see remark 1 to lemma 6). Below, in order to simplify notation, we denote

asO1 unspecified, uniformly bounded terms, linear with respect to (x, u, y, v, x̄, ū, ȳ, v̄), and

O2+ will denote terms of the second order and higher with respect to (x, u, y, v, x̄, ū, ȳ, v̄),

uniformly bounded along with all derivatives.

Recall that λγ < 1 according to condition B (recall that λ = |λ1|, γ = |γ1|). Therefore,
we may assume λγ̂ < 1 also; hence

λ̂k ≪ λk ≪ γ̂ −k ≪ γ −k (3.2)

at large k. Now, one can rewrite (3.1) as

x̄0 − x+ = b0(yk − y−) +O((yk − y−)2) +O(γ̂ −k),

γ −k
1 ȳk = µ +D0(yk − y−)2 + o((yk − y−)2) +O(γ̂ −k),

vk − v− = d̃(yk − y−) +O((yk − y−)2) +O(γ̂ −k),

ū0 − u+ = b̃(yk − y−) +O((yk − y−)2) +O(γ̂ −k).

(3.3)

The terms denoted here as O(γ̂ −k) include functions ξk, ηk, ξ̂k, η̂k . Therefore, while their

Cr−2-norms are of order γ̂ −k , the norms of the derivatives of the order (r − 1) and r are

estimated as o(γ −k) and o(1), respectively, see lemma 7.

Shift the origin:

x = x0 − x+(ε) + · · · , y = yk − y−(ε) + · · · ,
u = u0 − u+(ε) + · · · , v = vk − v−(ε) + · · · ,

(3.4)

in order to nullify the constant terms (i.e. terms depending only on parameters) in the first,

third and fourth equations of (3.3) and the linear in y term in the second equation. It is easy to

see that this indeed can be done, with small corrections to (x+, u+, y−, v−) (that are denoted

by the dots in (3.4)) being of order O(γ̂ −k). As a result, system (3.3) is recast as

(x̄, ū, v) = O(y) + o(γ −k)O1 + o
k→∞(1)O2+,

ȳ = γ k
1M1 +D0γ

k
1 y2 + γ ko(y2) + γ k · (o(γ −k)O1 + o

k→∞(1)O2+),
(3.5)

where

M1 = µ − γ −k
1 y−(1 + · · ·) + cλk

1x
+(1 + · · ·). (3.6)

Let us now introduce rescaled coordinates (X, U, Y, V ) by the rule

x = γ −kX/δk, y = − 1

D0

γ −k
1 Y, u = γ −kU/δk, v = γ −kV/δk, (3.7)

where δk tends sufficiently slowly to zero as k → ∞. System (3.5) takes the form
(X̄, Ū , V ) = o(1), Ȳ = M − Y 2 + o(1), (3.8)

whereM = −D0γ
2k
1 M1 = −D0γ

2k
1 [µ − γ −k

1 y−(1 + · · ·) + cλk
1x
+(1 + · · ·)].

Recall that, by our construction, the ok→∞(1)-terms in (3.8) are functions of

(X, U, Y, V, X̄, Ȳ , Ū , V̄ , ε). It is obvious, however, that for any bounded region of values
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of M one can resolve (3.8) so that the resulting expressions for (X̄, Ȳ , Ū , V ) as functions of

(X, Y, U, V̄ , M) will still be given by equations of exactly the form (3.8).

Note that for any bounded region of values of M and on any finite size ball in the

(X, U, Y, V )-space, the first-return map T (k) which we have brought to the form (3.8) is

strongly expanding in V for all sufficiently large k. Obviously, one can continue the map onto

the whole Rn+m without losing this property. More precisely, given any R, one can modify

the right-hand sides of (3.8) in the region ‖X, U, Y, V̄ ‖ > R in such a way that formula (3.8)

would, for every (X, U, Y, V̄ ), define a smooth correspondence (X, U, Y, V̄ ) 7→ (X̄, Ū , Ȳ , V )

such that ∂V

∂(X,U,Y,V̄ )
tends uniformly to zero as k → +∞ and ∂(X̄,Ū ,Ȳ )

∂(X,U,Y,V̄ )
is uniformly bounded.

This means that at all sufficiently large k, conditions of theorem 4.4 of [42] hold for the inverse

of the map T (k). Thus, applying that theorem, we obtain the existence of a normally hyperbolic

repelling invariant smooth manifold Mu
k of the form V = φk(X, U, Y ) where φk = o(1) in

the Cr -norm (and in the Cr−2-norm with respect to the parameters). By (3.8), the map T (k) on

this manifold has the form (1.3), which proves lemmas 1 and 2 in case (1,1).

3.2. The first-return maps in case (2,1)

Here, the leading coordinates are x = (x1, x2) ∈ R2 and y ∈ R1 and, respectively,

A1 ≡ λ
(

cosϕ − sin ϕ
sin ϕ cosϕ

)

, B1 ≡ γ1. By virtue of (2.5) and (2.13) the first-return map T (k) ≡ T1T
k
0

can be written in the following form for all sufficiently large k and all small ε:

x̄01 − x+1 = λkA11(kϕ)x01 + λkA12(kϕ)x02 + b0(yk − y−)

+O((yk − y−)2 + λk‖x0‖|yk − y−| + λ̂k(‖ξk, ξ̂k‖ + ‖x0‖2) + γ̂ −k‖η̂k‖),

x̄02 − x+2 = λkA21(kϕ)x01 + λkA22(kϕ)x02

+O((yk − y−)2 + λk‖x0‖|yk − y−| + λ̂k(‖ξk, ξ̂k‖ + ‖x0‖2) + γ̂ −k‖η̂k‖),

γ −k ȳk = µ + λk[(c1 cos kϕ + c2 sin kϕ)x01 + (c2 cos kϕ − c1 sin kϕ)x02] +D0(yk − y−)2

+ o((yk − y−)2) +O(λk‖x0‖|yk − y−| + λ̂k(‖ξk, ξ̂k‖ + ‖x0‖2) + γ̂ −k‖ηk, η̂k‖),

vk − v− = d̃(yk − y−) +O((yk − y−)2 + λk|x0| + λ̂k‖ξk, ξ̂k‖ + γ̂ −k‖η̂k‖),

ū0 − u+ = b̃(yk − y−) +O((yk − y−)2 + λk‖x0‖ + λ̂k‖ξk, ξ̂k‖ + γ̂ −k‖η̂k‖), (3.9)

where

A11(kϕ) = a11 cos kϕ − a12 sin kϕ, A12(kϕ) = a12 cos kϕ + a11 sin kϕ,

A21(kϕ) = a21 cos kϕ + a22 sin kϕ, A22(kϕ) = a22 cos kϕ − a21 sin kϕ.
(3.10)

If λγ < 1, then λ̂k ≪ λk ≪ γ̂ −k ≪ γ −k at large k. Then, (3.9) is recast as

x̄0 − x+ =
(

b0

0

)

· (yk − y−) +O((yk − y−)2) +O(γ̂ −k),

γ −k
1 ȳk = µ +D0(yk − y−)2 + o((yk − y−)2) +O(γ̂ −k),

vk − v− = d̃(yk − y−) +O((yk − y−)2) +O(γ̂ −k),

ū0 − u+ = b̃(yk − y−) +O((yk − y−)2) +O(γ̂ −k).

(3.11)

This system is completely analogous to (3.3), so bringing it to the form (1.3) is done in this

case in the same way as in case (1,1). This completes the proof of lemmas 1 and 2 for the case

(2,1) with λγ < 1.
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Consider now the case λγ > 1. We have here γ̂ −k ≪ γ −k ≪ λ̂k ≪ λk at large k. In the

third equation of (3.9), replace the arguments x̄, ū of the functions ηk, η̂k and the argument v

of ξk, ξ̂k by their expressions in terms of x, u, y, ȳ, v̄ which are obtained from the first, second

and fourth equations. After that, we shift the origin:

x1 = x01 − x+1 (ε) +O(λk), x2 = x02 − x+2 (ε) +O(λk), y =y1 − y−(ε) +O(λk),

u = u0 − u+(ε) +O(λk), v = v1 − v−(ε) +O(λk),

in order to nullify the linear in y term in the third equation of (3.9) and all constant (independent

of the coordinates) terms in the other equations.

System (3.9) takes the following form:

x̄1 = λkA11(kϕ)x1 + λkA12(kϕ)x2 + b0y +O(λky) + o(λk)O1 +O2+,

x̄2 = λkA21(kϕ)x1 + λkA22(kϕ)x2 +O(λky) + o(λk)O1 +O2+,

ȳ + sk1ȳ + sk2v̄ = γ k
1M1 +D0γ

k
1 y2 + γ ko(y2) + λkγ k

1 [x1(c1 cos kϕ + c2 sin kϕ)

+ x2(c2 cos kϕ − c1 cos kϕ) + sk3x + sk4u)] + λkγ k
O2+,

v − d̃y = λk
O1 +O2+, ū = b̃y + λk

O1 +O2+, (3.12)

where

M1 = µ − γ −k
1 y−(1 + · · ·) + λk(cos(kϕ)(c1x

+
1 + c2x

+
2 ) + sin(kϕ)(c2x

+
1 − c1x

+
2 ) + · · ·).

(3.13)

Here, the coefficients ski in (3.12) tend to zero as k → ∞ (the corresponding terms came from

linearization of the functions ηk, η̂k, ξk, ξ̂k).

Introduce new coordinates unew = u − b̃
b0

x1, vnew = v − d̃y. Map (3.12) takes the

following form:

x̄1 = λkA11(kϕ)x1 + λkA12(kϕ)x2 + b0y +O(λky) + o(λk)O1 +O2+,

x̄2 = λkA21(kϕ)x1 + λkA22(kϕ)x2 +O(λky) + o(λk)O1 +O2+,

ȳ + ŝk1ȳ + sk2v̄ = γ k
1M1 +D0γ

k
1 y2 + γ ko(y2) + λkγ k

1 [x1(c1 cos kϕ + c2 sin kϕ + ŝk31)

+ x2(c2 cos kϕ − c1 cos kϕ + ŝk32) + sk4u)] + λkγ k
O2+,

v = λk
O1 +O2+, ū = λk

O1 +O2+. (3.14)

As λ2γ < 1, we may choose a positive ρ such that λ2γ (1 + ρ) < 1. Recall that λγ > 1

here; hence γ −k ≪ λk ≪ (1 + ρ)−k at large k. Rescale coordinates as follows:

x1 = −b0D
−1
0 γ −k

1 X1, x2 = −b0D
−1
0 γ −k

1 λk(1 + ρ)kX2, y = −D−1
0 γ −k

1 Y,

u = γ −kλk(1 + ρ)kU, v = γ −kV. (3.15)

In the rescaled coordinates, map (3.14) is written as

X̄1=Y +O(λk), X̄2=(1+ρ)−kA21(kϕ)X1+o((1+ρ)−k),

Ȳ +o
k→∞(1)V̄ =M−Y 2+ϑk(Y )+b0λ

kγ k
1 [X1(c1coskϕ+c2sinkϕ+o

k→∞(1))

+λk(1+ρ)kX2(c2coskϕ−c1coskϕ+o
k→∞(1))+o(λk(1+ρ)k)U)]+O(λk),

V =O(λk), Ū =O((1+ρ)−k), (3.16)
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where ϑk(y)=o(y2) and tends to zero as k→∞; and M =−D0γ
2kM1. By (3.13), the

rescaled parameter M can take arbitrary finite values when µ varies near µk =γ −k
1 y−−

λk(cos(kϕ)(c1x
+
1 +c2x

+
2 )+sin(kϕ)(c2x

+
1 −c1x

+
2 )). Denote

B =−b0λ
kγ k
1 (c1coskϕ+c2sinkϕ+o

k→∞(1)) (3.17)

(the coefficient of X1 in (3.16)). It is not small (since λγ >1) and may assume arbitrary finite

values (for large k) when ϕ varies near those values at which c1coskϕ+c2sinkϕ=0, i.e. near
ϕ=− 1

k
arctan c1

c2
+π

j

k
, j ∈Z (recall that c21+c22 6=0 by lemma 8). Obviously, these values of

the angle ϕ fill densely in the interval (0,π).

For any bounded region of values ofM andB and on any finite size ball in the (X,U,Y,V )-

space, map (3.16) is strongly expanding in V for all sufficiently large k: ∂V

∂(X,U,Y,V̄ )
=O(λk)

tends uniformly to zero as k→+∞ and ∂(X̄,Ū ,Ȳ )

∂(X,U,Y,V̄ )
is uniformly bounded. Like in case (1,1),

by virtue of theorem 4.4 of [42], this implies, for all sufficiently large k, the existence of a

normally hyperbolic repelling invariant smooth manifoldMu
k of the form V =λkφk(X,U,Y )

where φk is uniformly bounded with all the derivatives. On this manifold, map (3.16) takes

the form

X̄1=Y +O(λk), X̄2=(1+ρ)−kA21(kϕ)X1+o((1+ρ)−k), Ū =O((1+ρ)−k),

Ȳ =M−Y 2+ϑk(Y )−BX1+b0λ
2kγ k

1 (1+ρ)k[X2(c2coskϕ−c1coskϕ+o
k→∞(1))

+o
k→∞(1)U ]+O(λk). (3.18)

This map has form (1.4), i.e. we have proved lemmas 1 and 2 in case (2,1) with λγ >1.

3.3. Proof of lemma 3

Let us suppose that B 6=0 in (3.18). Since λ2kγ k
1 (1+ρ)k →0 as k→∞, one can introduce a

new variable

X1new=X1−
1

B
{b0λ2kγ k

1 (1+ρ)k[X2(c2coskϕ−c1coskϕ+o
k→∞(1))+o

k→∞(1)U ]}.

Then, system (3.18) is rewritten as

X̄1=Y − b0A21(kϕ)

B
(c2coskϕ−c1sinkϕ)λ2kγ k

1X1+o(λ2kγ k),

Ȳ =M−Y 2+ϑk(Y )−BX1+O(λk), (X̄2,Ū )=O((1+ρ)−k).

(3.19)

This map is strongly contracting with respect to (X2,U), with the contraction coefficient

tending to zero as k→∞. At the same time,
∥

∥

∂(X̄1,Ȳ )

∂(X1,Y )

∥

∥

−1
remains bounded, sinceB is bounded

away from zero. Thus, by virtue of theorem 4.4 of [42], map (3.19) possesses, at every

sufficiently large k, an invariant manifoldMc
k of the form (X2,U)=(1+ρ)−kφk(X1,Y ), where

ϕk is uniformly bounded alongwith all the derivatives. OnMc
k , themap has the following form:

X̄1=Y − b0A21(kϕ)

B
(c2coskϕ−c1sinkϕ)λ2kγ k

1X1+o(λ2kγ k),

Ȳ =M−Y 2+ϑk(Y )−BX1+O(λk).

(3.20)

For bounded values of B, we have c1coskϕ+c2sinkϕ=O(λ−kγ −k) (see (3.17)). As

λγ >1, at such ϕ we have c2coskϕ−c1sinkϕ=±
√

c21+c22+O(λ−kγ −k) and A21(kϕ)≡
a21coskϕ+a22sinkϕ=± a21c2−a22c1√

c21+c
2
2

+O(λ−kγ −k). Thus, we have b0A21(kϕ)(c2coskϕ−
c1sinkϕ)=b0(a21c2−a22c1)+O(λ−kγ −k). As easily seen from (2.13), the value

J1=b0(a21c2−a22c1) (3.21)
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is the Jacobian of the globalmapT1 restricted to the leading coordinates (x1,x2,y), i.e. restricted

to the manifold W ue
loc∩W se

loc at the homoclinic point (x,u)=0,(y,v)=(y−,v−) at ε=0. By
(2.18), J1 6=0.

Denote Jk =J1λ
2kγ k

1 .Map (3.20) is written as follows:

X̄1=Y − Jk

B
X1+o(Jk), Ȳ =M−Y 2−BX1+ϑk(Y )+O(λk). (3.22)

Introduce Ynew=Y − Jk

B
X1+o(Jk)≡X̄1. Map (3.22) becomes

X̄1=Y, Ȳ =M−Y 2−BX1−
Jk

B
Y − 2Jk

B
X1Y +ϑk(Y )+o(Jk). (3.23)

By the additional shift of the coordinate Y and the parameter M: Ynew=Y + Jk

2B
+o(Jk),

Mnew=M+o(Jk), we bring map (3.23) to the form (1.9). This proves lemma 3 in case r =2.
If r >3, the term γ ko(y2) in the third equation of (3.14) is, in fact, γ kO(y3). Therefore, after

the rescaling (3.15), this term becomes O(γ −k) and is absorbed by the O(λk)-term, i.e. the

function ϑk(Y ) does not appear in (3.16) and further. Thus, map (1.9) transforms into (1.8).

This proves lemma 3 in the case r >3.

3.4. The first-return maps in the case (1,2)

Here the leading coordinates are x ∈R1 and y =(y1,y2)∈R2 and, respectively, A1≡λ1, B1≡
γ
(

cosψ −sinψ
sinψ cosψ

)

. By virtue of (2.5) and (2.14), the first-return map T (k) ≡T1T
k
0 , for every

sufficiently large k and all small ε, can be written as

x̄0−x+=aλk
1x0+b0(yk1−y−

1 )+b1γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O((yk1−y−
1 )2+|yk1−y−

1 |·(λk|x0|+γ −k‖ȳk‖))+ λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖),

γ −k(ȳk1coskψ + ȳk2sinkψ)=µ+c0λ
k
1x0+D0(yk1−y−

1 )2

+o((yk1−y−
1 )2)+O(|yk1−y−

1 |·(λk|x0|+γ −k‖ȳk‖))+λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖),

yk2−y−
2 =c1λ

k
1x0+d1(yk1−y−

1 )+d2γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O((yk1−y−
1 )2+|yk1−y−

1 |·(λk|x0|+γ −k‖ȳk‖))+ λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖),

vk −v− = c̃λk
1x0+ d̃1(yk1−y−

1 )+ d̃2γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O((yk1−y−
1 )2+|yk1−y−

1 |·(λk|x0|+γ −k‖ȳk‖)+ λ̂k‖ξk,ξ̂k‖),

ū0−u+= ãλk
1x0+ b̃1(yk1−y−

1 )+ b̃2γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O((yk1−y−
1 )2+|yk1−y−

1 |·(λk|x0|+γ −k‖ȳk‖))+(λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖).
(3.24)

We replace the arguments x̄ and ū of the functions ηk,η̂k by their expressions given by the

first and the fifth equations of (3.24). After that, we shift the origin:

x =x0−x+(ε)+O(γ −k), y1=yk1−y−
1 (ε)+O(γ −k), y2=yk2−y−

2 (ε)+O(γ −k),

u=uk −u+(ε)+O(γ −k), v=vk −v−(ε)+O(γ −k),
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in order to nullify the constant terms in the first, third, fourth and fifth equations of (3.24) and

the linear in y1 term in the second equation. System (3.24) is rewritten as

(x̄,ū)=(b0,b̃1)y1+γ −k
O1+O2+,

γ −k{(coskψ +sk1)ȳ1+(sinkψ +sk2)ȳ2+sk3v̄}=M1+c0λ
k
1x+D0y

2
1 +o(y21 )+γ −k

O2+,

y2−(d1+pk)y1=d2γ
−k{(coskψ +sk4)ȳ2−(sinkψ +sk5)ȳ1+sk6v̄}+λk

O1+O2+,

v− d̃y1=λkO(|x|+‖u‖)+γ −kO(‖y,ȳ,v̄‖)+O2+, (3.25)

where skj =ok→∞(1) and pk =O(γ −k) are certain coefficients, and

M1=µ−γ −k(y−
1 coskψ +y−

2 sinkψ +···)+cλk
1(x

++···). (3.26)

Introduce new coordinates y and v as follows:

y1new=(coskψ +sk4)y2−(sinkψ +sk5)y1+sk6v,

y2new=y2−(d1+pk)y1, vnew=v− d̃y1.
(3.27)

This coordinate transformation is non-degenerate for all large k such that s0≡s0(kψ)=
d1coskψ −sinkψ is bounded away from zero.

After the transformation, system (3.25) takes the following form:

(x̄,ū)=O(‖y‖+‖v‖)+γ −k
O1+O2+,

1

s0
{(coskψ +d1sinkψ + ŝk1)ȳ1−(1+ ŝk2)ȳ2+ ŝk3v̄}=γ kM1+c0λ

k
1γ

kx

+
D0

s20
γ ky21 +γ kO(|y1|(|y2|+‖v‖)+y22 +‖v‖2)+o(γ ky21 )+O2+,

y2=d2γ
−k ȳ1+λk

O1+O2+, v=λkO(|x|+‖u‖)+γ −kO(‖y,ȳ,v̄‖)+O2+. (3.28)

Now, we rescale the coordinates by the rule

(x,u)=γ −2k(1+ρ)k(X,U), y1=
d2s0

D0

γ −2kY1, y2=
d22 s0

D0

γ −3kY2,

v= 1

δk

γ −3kV,

where ρ is a small positive constant such that λγ 2(1+ρ)<1, and δk tends sufficiently slowly

to zero as k→∞. In the rescaled coordinates, system (3.28) is recast as
(X̄,Ū ,V )=o

k→∞(1), Y2= Ȳ1+o
k→∞(1),

γ k

d2s0
(coskψ +d1sinkψ + ŝk1)Ȳ1−Ȳ2=−M+O(λk

1γ
2k(1+ρ)k)X+Y 21 +o

k→∞(1), (3.29)

whereM =−γ 4k D0

s0d
2
2

M1 (see (3.26)).

As γ k →∞, the coefficient C(kψ)≡ γ k

d2s0
(coskψ +d1sinkψ + ŝk1) can take arbitrary finite

values (negative and positive) when coskψ +d1sinkψ is close to zero, i.e. at ψ close to
1
k
arctan(− 1

d1
)+π

j

k
, j ∈Z. Note, that at such ψ the coefficient s0 is non-zero: s20 =1+d21 .

This ensures that the coordinate transformation (3.27) is non-degenerate, as required. Note

also, that these values of ψ fill densely in (0,π). Therefore, for any finite Q>0, for every

sufficiently large k, in any neighbourhood of any point ψ0∈(0,π) there exist intervals of size

∼Qγ −k such that the coefficient C(kψ) runs over all values from [−Q,Q] when ψ varies in

any of these intervals.
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When C andM are finite, for finite values of the rescaled coordinates, possible expansion

along (X,Y,U)-directions is finite, while expansion along theV -directions is strong (‖ ∂V

∂V̄
‖→0

as k→∞). Thus, exactly like in cases (1,1) and (2,1), map (3.29) has an invariant manifold
Mu

k of the form V =φk(X,Y,U) where φk →0 (along with all derivatives) as k→∞. On this
manifold, map (3.29) takes the desired form (1.5).

3.5. The first-return maps in the case (2,2)

Here, the leading coordinates x =(x1,x2) and y =(y1,y2) are both two-dimensional and,

respectively, A1≡λ
(

cosϕ −sinϕ
sinϕ cosϕ

)

,B1≡γ
(

cosψ −sinψ
sinψ cosψ

)

. By virtue of (2.5) and (2.15), the first-

return map T (k) ≡T1T
k
0 , at every sufficiently large k and all small ε, can be written in the

following form:

x̄0−x+=λk[(a1coskϕ+a2sinkϕ)x01+(a2coskϕ−a1sinkϕ)x02]

+

(

b0

0

)

(yk1−y−
1 )+O((yk1−y−

1 )2)+b1γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O(|yk1−y−
1 |·(λk‖x0‖+γ −k‖ȳk‖))+ λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖),

γ −k(ȳk1coskψ + ȳk2sinkψ)=µ+λk[(c01coskϕ+c02sinkϕ)x01+(c02coskϕ−c01sinkϕ)x02]

+D0(yk1−y−
1 )2+o((yk1−y−

1 )2)+O(|yk1−y−
1 |·(λk‖x0‖+γ −k‖ȳk‖))

+λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖),

yk2−y−
2 =λk[(c11coskϕ+c12sinkϕ)x01+(c12coskϕ−c11sinkϕ)x02]

+d1(yk1−y−
1 )+O((yk1−y−

1 )2)+d2γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O(|yk1−y−
1 |·(λk‖x0‖+γ −k‖ȳk‖))+ λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖),

vk −v− =λk[(c̃1coskϕ+ c̃2sinkϕ)x01+(c̃2coskϕ− c̃1sinkϕ)x02]

+d̃1(yk1−y−
1 )+O((yk1−y−

1 )2)+ d̃2γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O(|yk1−y−
1 |·(λk‖x0‖+γ −k‖ȳk‖)+ λ̂k‖ξk,ξ̂k‖),

ū0−u+=λk[(ã1coskϕ+ ã2sinkϕ)x01+(ã2coskϕ− ã1sinkϕ)x02]

+b̃1(yk1−y−
1 )+O((yk1−y−

1 )2)+ b̃2γ
−k(ȳk2coskψ − ȳk1sinkψ)

+O(|yk1−y−
1 |·(λk‖x0‖+γ −k‖ȳk‖))+(λ̂k‖ξk,ξ̂k‖+ γ̂ −k‖ηk,η̂k‖). (3.30)

Recall that λγ <1 by assumption, therefore λk =o(γ −k).

Replace the arguments x̄1,2 and ū of the functions ηk,η̂k by their expressions given by the

first and the fifth equations of (3.30). After that, shift the origin:

x =x0−x+(ε)+O(γ −k), y1=yk1−y−
1 (ε)+O(γ −k), y2=yk2−y−

2 (ε)+O(γ −k),

u=uk −u+(ε)+O(γ −k), v=vk −v−(ε)+O(γ −k),



950 S V Gonchenko et al

in order to nullify the constant terms in the first, third, fourth and fifth equations of (3.24) and

the linear in y1 term in the second equation. System (3.24) is recast as

(x̄1,ū)=(b0,b̃1)y1+γ −k
O1+O2+, x̄2=γ −k

O1+O2+,

γ −k{(coskψ +sk1)ȳ1+(sinkψ +sk2)ȳ2+sk3v̄}=M1+D0y
2
1 +o(y21 )

+λk[(c01coskϕ+c02sinkϕ+qk1)x1+(c02coskϕ−c01sinkϕ+qk2)x2]+γ −k
O2+,

y2−(d1+pk)y1=d2γ
−k{(coskψ +sk4)ȳ2−(sinkψ +sk5)ȳ1+sk6v̄}+λk

O1+O2+,

v− d̃y1=λkO(|x|+‖u‖)+γ −kO(‖y,ȳ,v̄‖)+O2+, (3.31)

where skj ,qkj =ok→∞(1) and pk =O(γ −k) are certain coefficients, and

M1=µ−γ −k(y−
1 coskψ +y−

2 sinkψ +···)
+λk[(c01x

+
1 +c02x

+
2 )coskϕ+(c02x

+
1 −c01x

+
2 )sinkϕ+···]. (3.32)

Introduce new coordinates y, u and v as follows:

unew=u− b̃1

b0
x1, vnew=v− d̃y1,

y1new=(coskψ +sk4)y2−(sinkψ +sk5)y1+sk6v, y2new=y2−(d1+pk)y1.

(3.33)

This coordinate transformation is non-degenerate for all large k such that s0≡s0(kψ)=
d1coskψ −sinkψ is bounded away from zero. In the new coordinates, map (3.31) takes

the form

x̄1=b0y1+O(|y2|+‖v‖)+γ −k
O1+O2+, (x̄2,ū)=γ −k

O1+O2+,

1

s0
{(coskψ +d1sinkψ + ŝk1)ȳ1−(1+ ŝk2)ȳ2+ ŝk3v̄}=γ kM1+

D0

s20
γ ky21

+(λγ )k[(c01coskϕ+c02sinkϕ+ q̂k1)x1+(c02coskϕ−c01sinkϕ+qk2)x2]

+γ kO(|y1|(|y2|+‖v‖)+y22 +‖v‖2)+o(γ ky21 )+O2+,

y2=d2γ
−k ȳ1+λk

O1+O2+, v=λkO(|x|+‖u‖)+γ −kO(‖y,ȳ,v̄‖)+O2+. (3.34)

Rescale the coordinates

(x2,u,v)= 1

δk

γ −3k(X2,U,V ), (x1,y1)=
d2s0

D0

γ −2k(b0X1,Y1), y2=
d22 s0

D0

γ −3kY2,

(3.35)

where δk tends sufficiently slowly to zero as k→∞. Map (3.34) takes the form
X̄1=Y1+o

k→∞(1), Y2= Ȳ1+o
k→∞(1),

γ k

d2s0
(coskψ +d1sinkψ + ŝk1)Ȳ1−Ȳ2=−M+Y 21 +b0s0λ

kγ 2k(c11coskϕ+c12sinϕ+ q̂k1)X1

+O

(

1

δk

(λγ )k
)

X2+o
k→∞(1),

(X̄2,Ū ,V )=o
k→∞(1), (3.36)

whereM =−γ 4k D0

d22
M1 (see (3.32)).

Since λγ <1, the coefficient O( 1
δk

(λγ )k) of X2 in the third equation tends to zero as

k→∞. Note also that if λγ 2<1, then the coefficient of X1 in the same equation also tends
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to zero. Moreover, after an additional rescaling X1→X1(1+ρ)k with some small ρ >0 we

obtain X̄1=o(1) and system (3.36) will be recast as

Y2= Ȳ1+o
k→∞(1), (X̄1,X̄2,Ū ,V )=o

k→∞(1),

γ k

d2s0
(coskψ +d1sinkψ + ŝk1)Ȳ1−Ȳ2=−M+Y 21

+b0s0λ
kγ 2k(1+ρ)k(c11coskϕ+c12sinϕ+ q̂k1)X1+o

k→∞(1). (3.37)

Thus, when λγ 2<1, the map takes a form completely analogous to (3.29), and the rest of the

arguments go in this case exactly in the same way as in case (1,2).

It remains to consider the case λγ 2>1 (still λγ <1). Denote C = γ k

d2s0
(coskψ+

d1sinkψ + ŝk1), B =−b0s0λ
kγ 2k(c11coskϕ+c12sinϕ+ q̂k1) in (3.36). As γ k →∞ and

λkγ 2k →∞, the coefficients B and C may, for sufficiently large k, take arbitrary finite values

when ϕ and, respectively, ψ vary. As in the case (1,2), bounded values of C correspond to

non-zero s0 (where s20 =1+d21 +···), i.e. transformation (3.33) is non-degenerate, as required.
As in the other cases, for bounded values of the rescaled parameters M , B, C and the

rescaled variables (X,U,Y,V ) the first-return map T (k) in the form (3.36) has an invariant

manifold Mu
k of the form V =φk(X,Y,U), where φk tends to zero along with all derivatives

as k→∞. Obviously, on such a manifold, map (3.36) takes the form (1.6). This completes
the proof of lemmas 1 and 2.

3.6. Proof of lemmas 4 and 5

We prove lemmas 4 and 5 simultaneously. In the case λγ <1, we obviously have (λγ )k →0

as k→+∞. If λγ =1 at µ=0, then (λγ )k =(1+O(µ))k at all small µ. We will consider

only the values of µ of orderO(λk+γ −k) (that corresponds to a finite range of values ofM in

(1.12), see (1.11)), hence, in this case,

(λγ )k =1+O(kγ −k). (3.38)

Case (1,1). Let us write formula (3.1) for the first-return map T (k) in the form

x̄0−x+= b0(yk −y−)+O((yk −y−)2)+O(γ −k),

γ −k
1 ȳk = µ+D0(yk −y−)2+cx0λ

k
1+o((yk −y−)2)+o(γ −k),

vk −v− = d̃(yk −y−)+O((yk −y−)2)+O(γ −k),

ū0−u+= b̃(yk −y−)+O((yk −y−)2)+λk
1O((γ −k).

(3.39)

This is analogous to (3.3); we, however, take into account that λγ now is not necessarily strictly

less than 1; hence we have to replaceO(γ̂ −k) byO(γ −k) (by (3.38) λk =O(γ −k) in any case).

Now, shifting the origin as in (3.4), we obtain

x̄ =b0y+O(y2)+O(γ −k)O1+o
k→∞(1)O2+,

ȳ =γ k
1M1+D0γ

k
1 y2+γ k

1 o(y2)+cλk
1γ

k
1 x+γ k

1 ·[o(γ −k)O1+o
k→∞(1)O2+],

ū=O(y)+O(γ −k)O1+o
k→∞(1)O2+, v=O(y)+O(γ −k)O1+o

k→∞(1)O2+,

(3.40)

with the constant termM1 given by (3.6).

The rescaled coordinates (X,U,Y,V ) are introduced as follows:

x =− b0

D0

γ −k
1 X, y =− 1

D0

γ −k
1 Y, u=γ −kU/δk, v=γ −kV/δk, (3.41)
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where δk tends sufficiently slowly to zero as k→∞. It is quite similar to (3.7), but we have a
weaker scaling factor for x now. After the rescaling, map (3.40) is recast as

X̄=Y +o
k→∞(1),

Ȳ =M−Y 2−b0cλ
k
1γ

k
1X+o

k→∞(1), (Ū ,V )=o
k→∞(1),

(3.42)

where M is given by (1.11). At finite values of M , the expansion in the V variables is much

stronger than a possible expansion in (X,Y,U) (by (3.38) the coefficient λk
1γ

k
1 is bounded at

bounded M even if λγ =1 at µ=0). Therefore, as in the proof of lemma 2, by theorem 4.4
of [42], we obtain the existence of the invariant manifoldWu

k on which map T (k) has the form

X̄=Y +o
k→∞(1), Ū =o

k→∞(1),

Ȳ =M−Y 2−b0cλ
k
1γ

k
1X+o

k→∞(1).
(3.43)

If λγ <1, this gives lemma 4 immediately. If λγ =1 at µ=0, then, by (3.38), λ1(µ)kγ1(µ)k =
(sign λ1sign γ1)

k+o(1)k→+∞ at finiteM . Since b0c 6=0 (by lemma 8), the coefficient b0cλk
1γ

k
1

is bounded away from zero; hence the contraction in (X,Y ) variables is much weaker than

the contraction in U . Then the existence of an attracting invariant two-dimensional Cr -

manifold for map (3.43) follows immediately, and the map takes the required form (1.12)

on this manifold, with

Bk =b0c(signλ1signγ1)
k. (3.44)

Case (2,1) Like in the previous case, after a shift of the coordinate origin, we may rewrite

formula (3.9) for the first-return map T (k) in the following form:

x̄ =
(

b0

0

)

·y+O(y2)+O(γ −k)O1+o
k→∞(1)O2+,

γ −k
1 ȳ =M1+D0y

2+λk[(c1coskϕ+c2sinkϕ)x1+(c2coskϕ−c1sinkϕ)x2]

+o(y2)+[o(γ −k)O1+o
k→∞(1)O2+],

v=O(y)+O(γ −k)O1+o
k→∞(1)O2+, ū=O(y)+O(γ −k)O1+o

k→∞(1)O2+, (3.45)

where x=x0−x++O(γ −k),y=yk −y−+O(γ −k), u=u0−u++O(γ −k),v=vk −v−+O(γ −k)

and

M1=µ−γ −k
1 y−(1+···)+λk(cos(kϕ)(c1x

+
1 +c2x

+
2 )+sin(kϕ)(c2x

+
1 −c1x

+
2 )+···).

The rescaling (x,u,y,v)→(X,U,Y,V ) is analogous to (3.41):

x1=− b0

D0

γ −k
1 X1, x2=δkγ

−kX2, y =− 1

D0

γ −k
1 Y, u=γ −kU/δk,

v=γ −kV/δk, (3.46)

where δk tends sufficiently slowly to zero as k→∞. In the rescaled coordinates, system (3.45)
takes the following form:

X̄1=Y +o
k→∞(1),

(

X̄2,Ū ,V
)

=o
k→∞(1),

Ȳ =M−Y 2+b0(c1coskϕ+c2sinkϕ)λkγ k
1X1+o

k→∞(1).
(3.47)

This is absolutely analogous to (3.42), so lemma 4 now follows immediately, and we obtain

lemma 5 provided the sequence of values of k is chosen such that c1coskϕ+c2sinkϕ stays

bounded away from zero as k→+∞; we may always do it because ϕ∈(0,π) and c21+c22 6=0
by lemma 8. The coefficient Bk in (1.12) is

Bk =b0(c1coskϕ+c2sinkϕ)(signγ1)
k. (3.48)
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Case (1, 2). Consider the first-return map T (k) in the form (3.25) (using (3.38), one can check

that (3.25) remains valid if λγ 61 at µ=0). Introduce new u-coordinates by the rule unew=
u−(b̃1/b0)x. Then, the first equation of (3.25) is recast as (x̄,ū)=(b0,0)y1+γ −kO1+O2+.

The form of the other equations in (3.25) does not change. As in the proof of lemma 2, we

make the transformation (3.27) and bring the map to the following form (cf (3.28)):

x̄ = b0

s0
y1−

b0

s0
coskψy2+O(v)+γ −k

O1+O2+, ū=γ −k
O1+O2+,

1

s0
{(coskψ +d1sinkψ + ŝk1)ȳ1−(1+ ŝk2)ȳ2+ ŝk3v̄}=γ kM1+c0λ

k
1γ

kx

+
D0

s20
γ ky21 +γ kO(|y1|(|y2|+‖v‖)+y22 +‖v‖2)+o(γ ky21 )+O2+,

y2=d2γ
−k ȳ1+λk

O1+O2+, v=λkO(|x|+‖u‖)+γ −kO(‖y,ȳ,v̄‖)+O2+. (3.49)

Now, we rescale the coordinates in (3.49) as follows:

x =γ −kX, y1=γ −kY1, u=γ −kδkU, y2=γ −kδkY2, v=γ −kδkV,

(3.50)

where δk tends to zero sufficiently slowly. Map (3.49) takes the form

X̄= b0

s0
Y1+o

k→∞(1), (Ū ,Y2,V )=o
k→∞(1),

1

s0
(coskψ +d1sinkψ)Ȳ1=γ 2kM1+c0λ

k
1γ

kX+
D0

s20
Y 21 +o

k→∞(1),

(3.51)

where, recall, s0=d1coskψ −sinkψ (see (3.27)). Denote q0=coskψ +d1sinkψ . Choose a

sequence of values of k→∞ such that both q0 and s0 stay bounded away from zero (we can

always do it as d1 6=0, see lemma 8). For such k, we introduce

Xnew=− b0

q0D0

X, Y1new=− s0

q0D0

, (U,Y2,V )new=(U,Y2,V ). (3.52)

Then, map (3.51) is recast as

X̄=Y1+o
k→∞(1), (Ū ,Y2,V )=o

k→∞(1),

Ȳ1=M+
b0c0

q0
λk
1γ

kX−Y 21 +o
k→∞(1),

whereM =−D0γ
2kM1 andM1 is given by (3.26). This is absolutely analogous to (3.42), so

lemmas 4 and 5 follow immediately, with Bk given by

Bk = b0c0

coskψ +d1sinkψ
(signλ1)

k. (3.53)

Case (2, 2). We start with formula (3.34) for the first-returnmap T (k), where we assume, again,

that values of k→∞ are such that both q0≡coskψ +d1sinkψ and s0≡d1coskψ −sinkψ stay

bounded away from zero. We introduce rescaled coordinates (X,U,Y,V ) by the following

formulae (analogous to (3.50) and (3.52)):

x1=−γ −k b0

q0D0

X1, y1=−γ −k s0

q0D0

Y1, (x2,u,y2,v)=γ −kδk(X2,U,Y2,V ),

where δk tends to zero sufficiently slowly. After that, map (3.34) takes the form

X̄1=Y1+o
k→∞(1), (X̄2,Ū ,Y2,V )=o

k→∞(1),

Ȳ1=M+
b0

q0
(c11coskϕ+c12sinϕ)λkγ kX1−Y 21 +o

k→∞(1),
(3.54)
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whereM =−D0γ
2kM1 withM1 given by (3.32). This map is absolutely analogous to (3.42),

so lemmas 4 and 5 follow, with Bk given by

Bk =−b0(c11coskϕ+c12sinϕ)

coskψ +d1sinkψ
. (3.55)

3.7. Bifurcations in the first-return maps

According to lemmas 1–5 the first-returnmaps T (k) (when restricted to an invariant manifold, if

necessary) are close to one of the five ‘truncated’maps: parabolamap (3.56), Hénonmap (3.57),

generalized Hénon map (3.60), Mira map (3.58) or three-dimensional Hénon map (3.59). Let

us consider bifurcations in these maps.

Parabola map. Consider the following one-dimensional map

ȳ =M−y2. (3.56)

Let ν1 be the multiplier of some fixed point. The coordinate y of this fixed point satisfies

equationsM =y+y2 and 2y =−ν1. Thus, the parabolamaphas a fixed pointwith themultiplier

ν1 at M = ν21
4

− ν1
2
. In particular, M =−1/4 corresponds to the saddle-node bifurcation

and M =3/4 corresponds to period-doubling. It is well known that these bifurcations are
non-degenerate in this map (the first Lyapunov values are non-zero). Accordingly, at all

k large enough, the saddle-node bifurcation in the corresponding first-return map T (k) is

non-degenerate at r >2 and the period-doubling is non-degenerate at r >3 (see case (i) of

lemmas 1, 2 and 4).

Hénon map. Consider a Hénon map (the limit map for (1.4)):

x̄ =y, ȳ =M−Bx−y2. (3.57)

Let ν1 and ν2 be the multipliers of some fixed point (they are either both real or they comprise

a complex-conjugate pair). The coordinates x =y of the fixed point satisfy the equation

M =y(1+B)+y2. The characteristic equation is ν2+2yν+B =0. It is easy to find that
B(ν1,ν2)=ν1ν2,M(ν1,ν2)= ν1+ν2

4
(ν1+ν2−2ν1ν2−2), i.e. for every admissible ν1 and ν2 there

exist B andM for which map (3.57) has a fixed point with the multipliers ν1 and ν2.

In particular, the curve M =− 1
4
(1+B)2 corresponds to a saddle-node bifurcation (one

multiplier equal to +1), the curve M = 3
4
(B2−1) corresponds to a period-doubling (one

multiplier equal to (−1)) and the curve {B =1,M ∈(−1,3)} corresponds to a pair ofmultipliers
ν1,2=e±iω. The codimension-2 points (B =1,M =−1), (B =1,M =3) and (B =−1,M =0)
correspond to (ν1,ν2)=(1,1), (−1,−1) and (1,−1), respectively (see figure 1(a)).

The saddle-node and period-doubling bifurcations in the Hénon map are non-degenerate.

However, the bifurcations corresponding to a fixed point with two multipliers on the unit circle

(i.e. at |B|=1) are degenerate. Indeed, in the generic case, crossing the curve corresponding to
ν1,2=e±iω should lead to the birth of a closed invariant curve, but the Hénon map cannot have
closed invariant curves at |B| 6=1, as the Jacobian of the map is constant (it equals B). Similar

reasoning gives us the degeneracy of the point (B =−1,M =0) that corresponds to ν1,2=±1.

Mira map. Consider the map (limit for (1.5))

ȳ1=y2, ȳ2=M−Cy2−y21 . (3.58)

Let ν1 and ν2 be the multipliers of some fixed point (again, the multipliers are either both real

or they comprise a complex-conjugate pair). The coordinates y1=y2=y of the fixed point
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Figure 1. Bifurcation curves for fixed points of (a) the Hénon map (3.57) and (b) the Mirá map

(3.58). Bifurcation curvesL+, L− andLϕ correspond to multipliers +1,−1 and e±iω , respectively;
codimension-2 points B++, B+− and B−− correspond to pairs of multipliers (+1,+1), (+1,−1) and
(−1,−1), respectively.

satisfy the equationM =y(1+C)+y2; the characteristic equation is ν2+Cν+2y =0. One can
easily find C =−(ν1+ν2), M = ν1ν2

2
(1+C)+ (ν1ν2)

2

4
. We thus obtain three bifurcation curves

(see figure 1(b)): {M =− 1
4
(C+1)2,C 6=0,C 6=−2} corresponds to a non-degenerate saddle-

node bifurcation, {M = 1
4
(C−1)(3C+1),C 6=0,C 6=2} to a non-degenerate period-doubling

and {M = 1
4
(3+2C),|C|<2} to ν =e±iω. By [61], the latter bifurcation is non-degenerate and

the first Lyapunov value is equal to L1=− 1
4
(C+3)/(2+C). As |C|=2|cosω|<2, it follows

thatL1<0, i.e. a stable closed invariant curve is born from the fixed point when the bifurcation

curve is crossed.

Three-dimensional Hénon map. Consider the following map (limit for (1.6)):

x̄ =y1, ȳ1=y2, ȳ2=M−Bx−Cy2−y21 . (3.59)

Let ν1,ν2,ν3 be the multipliers of some fixed point (either all three of them are real or one

multiplier is real and the other two comprise a complex-conjugate pair). The coordinates

x =y1=y2 of the fixed point satisfy the equationM =x(1+B+C)+x2, and the characteristic

equation is −ν3−Cν2−2xν−B =0. It follows that B =−ν1ν2ν3, C =−(ν1+ν2+ν3),

M = 1
2
(ν1ν2+ν1ν3+ν2ν3)(1+B+C)+ 1

4
(ν1ν2+ν1ν3+ν2ν3)

2. These formulae give us the

following equations for codimension-1 bifurcation surfaces (see figure 2):M =− 1
4
(B+C+1)2

corresponds to a non-degenerate saddle-node,M = 1
4
(B+C−1)(3B+3C+1) corresponds to a

non-degenerate period-doubling, M = 1
4
(1+B(C−B))(3+2(C+B)+B(C−B)) corresponds

to a pair of multipliers e±iω (the third multiplier is equal to −B in this case). Note that map

(3.59) degenerates into Mira map (3.58) at B =0, and one can check that the first Lyapunov
value L1 for the fixed point with the multipliers e

±iω is close, at small B, to that for the Mira
map. So, L1<0 at small B. Hence, there exists an open region of parameter values for which

map (3.59) has a stable closed invariant curve.

Generalized Hénon map. As we have seen, the analysis of the Hénon map is not sufficient

for the study of bifurcations of the birth of closed invariant curves in the first-return maps T (k)
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Figure 2. Bifurcation diagrams for different values of B =const for the three-dimensional Hénon
map (3.59). The diagram for B =0 is shown in figure 1(b).

in case (2,1) with λγ >1 (case (ii) of lemmas 1 and 2). In this case, according to lemma 3,

the map T (k) (restricted to an invariant manifold) is close to the generalized Hénon map:

x̄ =y, ȳ =M−y2−Bx−Qkxy, (3.60)

where Qk ≡ 2J1
B

(λ2γ )k →0 as k→+∞. This map undergoes a non-degenerate saddle-

node bifurcation of the fixed point at M =− (1+B)2

4(1+Qk)
, and a non-degenerate period-doubling

bifurcation atM = (1+B)2(3+Qk)

4
(see [32]). The bifurcation curve that corresponds to ν1,2=e±iω

is given by (B−1−Qk)
2=Q2

k(1+M), |B−1|< |Qk |
1+Qk/2

. In contrast to the Hénon map, this

bifurcation in the generalized Hénon map is non-degenerate (at Qk 6=0): the first Lyapunov
coefficient of the fixed point with the multipliers e±iω equals

L1=− Qk

16(1−cosω)
+o(Qk) (3.61)

(see [32]). It means that a closed invariant curve is born from the fixed point when the

bifurcation curve is crossed. The invariant curve is born stable if Qk >0 and unstable if

Qk <0. The first Lyapunov coefficient is a function of the coefficients of the Taylor expansion

of the map at the fixed point up to the terms of the third order. Therefore, for every map that is

o(Qk)-close to (3.60) in C3-topology, the first Lyapunov value is still given by (3.61), i.e. it is

negative atQk <0 and positive atQk >0. It means that the corresponding bifurcation remains

non-degenerate. Thus, by lemma 3, if r >3, the first-return map T (k) has, in some region of

parameter values, a stable closed invariant curve, provided J1>0.
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In case J1<0, the existence of a stable closed invariant curve in the truncated map (3.60)

follows from the analysis of a fixed point with the pair of multipliers (−1,−1)which was done
in [32]. Applying the results of [32], one can show the existence of a stable closed invariant

curve in any map which is o(Qk)-close to (3.60) in C3-topology. Since we want to consider

the C2-case also, we will consider below another mechanism of the birth of closed invariant

curves.

Recall that if a C2-map of a plane has a parabolic periodic point, then the map in a

neighbourhood of this point can be brought to the following normal form:

x̄ =y, ȳ =−x+2y+ay2+bxy+o(x2+y2). (3.62)

The point is non-degenerate if ab 6=0. For a non-degenerate point, any generic two-parameter
unfolding of class C2 can be written in the form

x̄ =y, ȳ =ε1+(−1+ε2)x+2y+ay2+bxy+o(x2+y2),

where a,b depend continuously on the governing parameters ε1,2. If

ab>0, (3.63)

then there exists an open region in the plane of parameters (ε1,ε2) which corresponds to the

existence of a stable closed invariant curve. If ab<0, then an unstable closed invariant curve

is born.

By lemma 3, the first-return map T (k) in case (2,1) with λγ >1 has the form

x̄ =y, ȳ =M−y2−Bx+ϑk(y)−Qkxy+o(Qk), (3.64)

where Qk = 2J1
B

(λ2γ )k and ϑk =o(1)k→+∞. Map (3.64) has a non-degenerate parabolic fixed
point at B =−1+o(1)k→+∞, M =−1/4+o(1)k→+∞: the coefficients a and b are given by

a=−1+o(1)k→+∞, b=−Qk+o(Qk). Thus, if J1>0, we have the existence of a stable closed

invariant curve in the case r =2 also (see (3.63)).
In order to show the existence of stable closed invariant curves in the case J1<0, we

will study parabolic points of period three. In the Hénon map (3.57) such a point exists at

M =B =1; it is the point (0,0). The third iteration of theHénonmap atM =B =1 has the form
≡
x=1−y−(1−x−y2)2=2x−y−x2+2y2+o(x2+y2),

≡
y=x+y2−(

≡
x)2=x−4x2+4xy+o(x2+y2).

(3.65)

In order to bring this map to the normal form (3.62), we introduce the new coordinates

u=y,v=x+y2−(
≡
x)2. Map (3.65) takes the form

ū=v, v̄=−u+2v−v2+4uv−2u2+o(u2+v2).

After one more transformation z=u−u2,w=v−v2 the map takes the form

z̄=w, w̄=−z+2w+w2+o(z2+w2).

Since map (3.64) is at least C2-close to the Hénon map as k→+∞, it also has a parabolic
point of period three and the normal form is close to that of the Hénon map, i.e. the normal

form is

z̄=w, w̄=−z+2w+(1+o(1)k→+∞)w2+Rkzw+o(z2+w2), (3.66)

where Rk is a certain coefficient that tends to zero as k→+∞. Let us show that Rk =
−Qk+o(Qk). Indeed, it is easy to see that the Jacobian of the third iteration of map (3.64)

equals

J =(B+Qky)(B+Qk ȳ)(B+Qk

=
y)+o(Qk)=B3+Qk(x+o(|x|+|y|))+o(Qk). (3.67)
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Let us move the origin of the coordinate system to that point of the period three orbit which

is close to zero (recall that for the Hénon map the corresponding point is exactly (0,0)).

Obviously, the Jacobian will keep its form (3.67).

At large k, the linear part of the third iteration (T (k))3 of (3.64) at the period three point

will be close to the linear part of the third iteration of the Hénon map (see (3.65)), i.e. (T (k))3

has the form




≡
x

≡
y



=D

(

x

y

)

+o(|x|+|y|), (3.68)

where D=
(

2 −1
1 0

)

+o(1)k→+∞. Recall that the periodic point is parabolic, which means that
tr D=2 and det D=1. Therefore, by an o(1)k→+∞-close to identity linear transformation we
may bring this matrix to the form

D=
(

2 −1
1 0

)

. (3.69)

Note that this transformation does not change the form (3.67) of the Jacobian.

Nextwemake nonlinear normalizing transformations that bring themap to the form (3.66).

These are coordinate transformations with the linear part equal to identity. It is easy to see that

the derivative ∂J

∂x
+ ∂J

∂y
at (x,y)=0 is an invariant of such transformations (for maps whose

linear part is given by (3.69)). Since this derivative for the normal form (3.66) is equal to

−Rk , we immediately find from (3.67) thatRk =−Qk+o(Qk). The closed invariant curve that

is born at the perturbation of map (3.66) is stable when Rk >0 (see (3.63)). Therefore, map

(3.64) has a period-3 stable closed invariant curve at Qk <0, i.e. at J1<0. As we see, the

first-return map T (k) of the form (1.9) has a stable closed invariant curve (either of period one

or of period three) for both cases of the sign of J1.

Infinitely many coexisting stable closed invariant curves

Proof of theorem 6. As we have just shown, in all cases with de >2 (case (2,1) with λγ >1,

case (1,2) and case (2,2)) the rescaled first-return map T (k) has, in some region of parameters

(M,B), (M,C) or (M,C,B), a stable closed invariant curve. Thus, in the Newhouse regions

with de >2, the required genericity of maps with infinitely many coexisting stable invariant

curves follows exactly in the same way as in theorem 3.
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Appendix

Proof of lemma 6. First, we make coordinate transformations after which identities (2.3) will

hold. Let

xnew=x+h1(x,u,ε), ynew=y+h2(y,v,ε) (A.1)

(u and v remain unchanged). We require that h1,2(0,0,ε)=0, ∂h1
∂(x,u)

(0,0,ε)=0,
∂h2

∂(y,v)
(0,0,ε)=0, so that identities (2.2) will persist in the new coordinates. In order to make
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the first of conditions (2.3) fulfilled in the new coordinates we have to achieve x̄new=A1x
new at

(y,v)=0. This gives us (see (2.1)) 0= x̄new−A1x
new= x̄+h1(x̄,ū,ε)−A1x−A1h1(x,u,ε)=

p1(x,u,0,0,ε)+h1(x̄,ū,ε)−A1h1(x,u,ε), which leads to the following equation for h1:

h1(x̄,ū,ε)=A1(ε)h1(x,u,ε)−p1(x,u,0,0,ε), (A.2)

where

x̄ =A1(ε)x+p1(x,u,0,0,ε), ū=A2(ε)u+p2(x,u,0,0,ε) (A.3)

(this is just the restriction of T0 onto the stable manifold).

The fulfilment of the second of conditions (2.3) in the new coordinates means

ȳnew=A1y
new at (x,u)=0. This gives us the following equation for h2:

h2(ȳ,v̄,ε)=B1(ε)h2(y,v,ε)−q1(0,0,y,v,ε), (A.4)

where

ȳ =B1(ε)y+q1(0,0,y,v,ε), v̄=B2(ε)v+q2(0,0,y,v,ε) (A.5)

(the restriction of T0 onto the unstable manifold).

It is easy to see that the following functions h1, h2 solve (A.2) and, respectively (A.4):

h1(x,u,ε)=
∞

∑

j=0
A

−j−1
1 (ε)p1(xj ,uj ,0,0,ε), h2(y,v,ε)=−

∞
∑

j=1
B

j−1
1 (ε)q1(0,0,yj ,vj ,ε).

(A.6)

Here the points {(xj ,uj )} are the forward orbit of (x,u)≡(x0,u0) by map (A.3): (xj+1,uj+1)=
(T0|W s

loc
)(xj ,uj ), and the points {(yj ,vj )} are the backward orbit of (y,v)≡(y0,v0) by map

(A.5): (yj ,vj )=(T0|W u
loc

)(yj+1,vj+1). As the maps T0|W s
loc
and T −1

0 |W u
loc
are contractions, it

follows that (xj ,uj )→0, (yj ,vj )→0.

Let us show that series (A.6) is convergent. Indeed, for any small δ>0, we can choose a

norm in the (x,u)-space such that ‖A1,2‖6λ(1+δ/2). Then ‖xj ,uj‖+‖ ∂(xj ,uj )

∂(x,u)
‖6Kλj (1+δ)j

for all small (x,u,ε) and for some constant K . Recall that all the eigenvalues of A1(0)

are equal to λ in absolute values, so ‖A−1
1 ‖6λ−1(1+δ) for the same choice of the norm

in the x-space. As p1=0, (p1)
′
x =0 and (p1)

′
u =0 at (x,u)=0, we have p1(x,u,0,0,ε)=

O(‖x‖2+‖u‖2), ∂p1
∂(x,u)

(x,u,0,0,ε)=O(‖x‖+‖u‖). Thus, ‖A−j−1
1 (ε)p1(xj ,uj ,0,0,ε)‖=

O(λj (1+δ)3j ), ‖A−j−1
1 (ε)

∂p1
∂(x,u)

(xj ,uj ,0,0,ε)
∂(xj ,uj )

∂(x,u)
‖=O(λj (1+δ)3j ); hence the first series

in (A.6) converges uniformly, alongwith the first derivativeswith respect to (x,u), i.e. it defines

a C1 function h1. Similarly, the second series defines a C1 function h2. It follows directly

from (A.6) that h and h′ vanish at zero, as required.
Let us show that h1,2 have continuous derivatives up to the order r , with a possible

exception for the rth and (r−1)th derivativeswith respect to ε. Indeed, note that the derivatives

ξ1(x,u,ε)≡ ∂h1
∂(x,u)

(x,u,ε) and ξ2(y,v,ε)≡ ∂h2
∂(y,v)

(y,v,ε) satisfy the equations

ξ1(x̄,ū)=
[

A1ξ1(x,u)− ∂p1

∂(x,u)
(x,u,0,0)

]







A1+
∂p1

∂x
(x,u,0,0)

∂p1

∂u
(x,u,0,0)

∂p2

∂x
(x,u,0,0) A2+

∂p2

∂u
(x,u,0,0)







−1

,

ξ2(ȳ,v̄)=
[

B1ξ2(y,v)− ∂q1

∂(y,v)
(0,0,y,v)

]









B1+
∂q1

∂y
(0,0,y,v)

∂q1

∂y
(0,0,y,v)

∂q2

∂y
(0,0,y,v) B2+

∂q2

∂u
(0,0,y,v)









−1

(A.7)
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(see (A.6), (A.3) and (A.5)). The first of these formulae can be read as the condition of the

invariance of the manifoldW1 : z=ξ1(x,u,ε) with respect to the map

x̄ =A1(ε)x+p1(x,u,0,0,ε), ū=A2(ε)u+p2(x,u,0,0,ε),

z̄=
[

A1(ε)z− ∂p1

∂(x,u)
(x,u,0,0,ε)

]







A1(ε)+
∂p1

∂x
(x,u,0,0,ε)

∂p1

∂x
(x,u,0,0,ε)

∂p2

∂x
(x,u,0,0,ε) A2(ε)+

∂p2

∂u
(x,u,0,0,ε)







−1

(A.8)

(z is anm1×m-matrix). The second of formulae (A.7) is the condition of the invariance of the

manifoldW2 : w=ξ2(y,v,ε) with respect to the map

ȳ =B1(ε)y+q1(0,0,y,v,ε), v̄=B2(ε)v+q2(0,0,y,v,ε),

w̄=
[

B1(ε)w− ∂q1

∂(y,v)
(0,0,y,v,ε)

]









B1(ε)+
∂q1

∂y
(0,0,y,v,ε)

∂q1

∂y
(0,0,y,v,ε)

∂q2

∂y
(0,0,y,v,ε) B2(ε)+

∂q2

∂u
(0,0,y,v,ε)









−1

(A.9)

(w is an n1×n-matrix). Thus, we may estimate the smoothness of the functions ξ1,2 (that

is the smoothness of the manifolds W1,2) by using known facts from the theory of local

invariant manifolds. Let us start with map (A.8). It has a fixed point at (z=0,x =0,u=0).
The spectrum of the linear part of the map is the union of the spectra of the following three

operators: z 7→A1z
(

A1 0
0 A2

)−1
, x 7→A1x, u 7→A2u. It iswell known from the theory ofmatrices

that the spectrum of the operator z 7→LzK consists of the products of the eigenvalues of L

to the eigenvalues of K . Hence, the spectrum of the multipliers of the fixed point (0,0,0) of

map (A.8) consists of all possible ratios of the eigenvalues of A1 to the eigenvalues of A1 and

A2, and, besides, of the eigenvalues of A1 and A2. Recall that at ε=0 all the eigenvalues of
A1 have the same absolute value λ<1, while the absolute values of the eigenvalues of A2 are

strictly less than λ. Thus, the zero fixed point has, at ε=0, m2
1 multipliers on the unit circle,

m1m2 multipliers strictly outside the unit circle and m eigenvalues strictly smaller than 1 in

absolute value (the eigenvalues of A1 and A2).

It is known (see, e.g., [44] or [42]) that such a fixed point lies in a uniquely defined

m-dimensional strong-stable invariant manifold which is tangent at the fixed point to the

eigenspace of the linear part that corresponds to the multipliers strictly inside the unit circle: in

our case it means that the strong-stable manifold is a graph of a smooth function (x,y) 7→z. By

uniqueness, it is the invariant manifoldW1. Analogously, the manifoldW2 with ξ2 satisfying

the second equation of (A.7) is the uniquely defined strong-unstable manifold (the manifold

tangent to the eigenspace that corresponds to the multipliers strictly outside the unit circle) of

the zero fixed point of (A.9).

The strong-stable and strong-unstable manifolds have the same smoothness as the map

itself. Therefore, as the right-hand sides of (A.8) and (A.9) are Cr−1, the functions ξ1,2 are

Cr−1 with respect to (x,u) or, respectively, (y,v). As ξ1≡ ∂h1
∂(x,u)

and ξ2≡ ∂h2
∂(y,v)

, this gives us

the required Cr -smoothness of h1,2.

When a map depends on parameters, the field of tangents to the strong-stable or strong-

unstable manifold has the same smoothness with respect to variables and parameters as the

first derivative of the map with respect to the phase variables [42]. Since the first derivatives of

the right-hand sides of (A.8) and (A.9) with respect to (x,u,z) and, respectively, (y,v,w) are
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Cr−2, it follows that the derivatives ∂ξ1
∂(x,u)

and ∂ξ2
∂(y,v)

are Cr−2 with respect to all variables and
ε. This gives us the required smoothness of h1,2 with respect to ε (see remark 1 to the lemma).

In cases r =∞,ω, only finite smoothness with respect to ε can be expected for the strong-

stable manifold in general [42]. More precisely, we know that given any ρ, the strong-stable

manifold isCρ with respect to ε at |ε|<ε̄(ρ)where ε̄(ρ)may tend to zero asρ →+∞. However,
this implies that at ε=0 there exist infinitelymany derivatives with respect to ε. In other words,

there exist infinitely many derivatives at any value of ε for which all the multipliers of the fixed

point which are not bounded away from the unit circle lie exactly on the unit circle or outside

it. In our case, it follows that h1 is C∞ with respect to ε if at every ε the spectrum of the

operator z 7→A1(ε)z
(

A1 0
0 A2

)−1
lies on the unit circle or outside it, i.e. for any ε for which all

the eigenvalues ofA1(ε) are equal to each other in absolute value. Analogously, h2∈C∞ with
respect to ε if all the eigenvalues of B1(ε) are equal to each other in absolute value for every

small ε.

We see that the coordinate transformation (A.1) has exactly the same smoothness as

described in remark 1. Also note that the new functions p, q enjoy the same smoothness as

the functions h do.

After the map is brought to the form in which identities (2.3) hold, wemake the coordinate

transformation:

xnew=x+g11(x,y,v,ε), unew=u+g12(x,y,v,ε),

ynew=y+g21(x,u,y,ε), vnew=v+g22(x,u,y,ε),
(A.10)

where gij vanish identically both at (x,u)=0 and at (y,v)=0. Thus, this transformation is
identical on the stable and unstable manifolds, e.g. it does not destroy identities (2.2) and

(2.3). Denote

η1j (y,v,ε)= ∂g1j

∂x
(0,y,v,ε), η2j (x,u,ε)= ∂g2j

∂y
(x,u,0,ε). (A.11)

It is easy to see that identities (2.4) will be fulfilled after transformation (A.10) if ηij satisfy

the following equations:

η1j (ȳ,v̄)=
(

Ajη1j (y,v)− ∂pj

∂x
(0,0,y,v)+

∂pj

∂u
(0,0,y,v)η12(y,v)

)

×
(

A1+
∂p1

∂x
(0,0,y,v)− ∂p1

∂u
(0,0,y,v)η12(y,v)

)−1
, (A.12)

where (y,v) 7→(ȳ,v̄) is given by (A.5), and

η2j (x̄,ū)=
(

Bjη2j (x,u)− ∂qj

∂y
(x,u,0,0)+

∂qj

∂v
(x,u,0,0)η22(x,u)

)

×
(

B1+
∂q1

∂y
(x,u,0,0)− ∂q1

∂v
(x,u,0,0)η22(x,u)

)−1
, (A.13)

where (x,u) 7→(x̄,ū) is given by (A.3).

Formula (A.12) can be viewed as the condition of the invariance of the manifold

W3 : {z1=η11(y,v,ε),z2=η12(y,v,ε)} with respect to the map

z̄j =
(

Aj (ε)zj − ∂pj

∂x
(0,0,y,v,ε)+

∂pj

∂u
(0,0,y,v,ε)z2

)

×
(

A1(ε)+
∂p1

∂x
(0,0,y,v,ε)− ∂p1

∂u
(0,0,y,v,ε)z2

)−1
(j =1,2), (A.14)

ȳ =B1(ε)y+q1(0,0,y,v,ε), v̄=B2(ε)v+q2(0,0,y,v,ε),
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with z1∈Rm1×m1 , z2∈R(m−m1)×m1 . Similarly, formula (A.13) represents the conditions of

the invariance of the manifold W4 : {w1=η21(x,u,ε),w2=η22(x,u,ε)} with respect to the
following map (here, w1∈Rn1×n1 , w2∈R(n−n1)×n1):

w̄j =
(

Bj (ε)wj − ∂qj

∂y
(x,u,0,0,ε)+

∂qj

∂v
(x,u,0,0,ε)w2

)

×
(

B1(ε)+
∂q1

∂y
(x,u,0,0,ε)− ∂q1

∂v
(x,u,0,0,ε)w2

)−1
(j =1,2), (A.15)

x̄ =A1(ε)x+p1(x,u,0,0,ε), ū=A2(ε)u+p2(x,u,0,0,ε).

Map (A.14) has a fixed point at (z1=0,z2=0,y =0,v=0). The multipliers of this point
are the eigenvalues of the linearized map

z1 7→A1(ε)z1A1(ε)
−1− ∂2p1

∂x∂(y,v)
(0,0,0,0,ε)·(y,v)A1(ε)

−1,

z2 7→A2(ε)z2A1(ε)
−1− ∂2p2

∂x∂(y,v)
(0,0,0,0,ε)·(y,v)A1(ε)

−1,

y 7→B1(ε)y, v 7→B2(ε)v.

The spectrum of this operator is the union of the spectra of the four operators z1 7→A1z1A
−1
1 ,

z2 7→A2z2A
−1
1 , y 7→B1y, v 7→B2v. Since at ε=0 all the eigenvalues of A1 have the same

absolute value λ<1, while the absolute values of the eigenvalues ofA2 are less than λ, and the

eigenvalues of B1 and B2 lie outside the unit circle, it follows that the zero fixed point of the

map (A.14) has, at ε=0,m2
1 multipliers on the unit circle,m1m2 multipliers strictly inside the

unit circle and n eigenvalues outside the unit circle. Such a fixed point lies in a uniquely defined

n-dimensional strong-unstable invariant manifold which is the manifoldW3. This proves the

existence of smooth functions η11, η12 that satisfy equations (A.12) and vanish at (y,v)=0.
Analogously, the zero fixed point of map (A.15) has a uniquely defined m-dimensional

strong-stable invariant manifoldW4. This gives us the existence of smooth functions η21, η22
that satisfy (A.13) and vanish at (x,u)=0.

The first derivatives of the right-hand sides of maps (A.14) and (A.15) with respect to

(y,v) or (x,u), respectively, are Cr−2 with respect to the variables and ε. Therefore, the

field of tangents to the strong-unstable and, respectively, strong-stable manifolds of the zero

fixed point of these maps enjoys the same smoothness [42]. Thus, we have established that

the first derivatives of the functions η11, η12 with respect to (y,v) and the first derivatives of

the functions η21, η22 with respect to (x,u) are Cr−2 with respect to (y,v,ε) and (x,u,ε),

respectively. In cases r =∞,ω, as we explained above, these functions may have any finite

smoothness with respect to ε, and if for every ε all the eigenvalues of A1(ε) are equal to each

other in absolute value and all the eigenvalues of B1(ε) are equal to each other in absolute

value, then the functions ηij are C∞ with respect to ε.

One can now take any functions gij that vanish both at (x,u)=0 and (y,v)=0 and
that satisfy (A.11). By construction, the coordinate transformation (A.10) with such defined

functions gij will bring the map T0 to the desired form (it will make identities (2.4) fulfilled,

while identities (2.3) were achieved in the previous step). As ηij are derivatives of the functions

gij , we may choose the functions gij to be Cr with respect to (x,u,y,v); the smoothness with

respect to ε remains Cr−2. ¤

Proof of lemma 7. Introduce positive constants λ0<1, γ0>1, λ̂ and γ̂ such that

‖A1(ε)‖<λ0, ‖B1(ε)−1‖<γ −1
0 , λ0>λ̂>‖A2(ε)‖, γ −1

0 >γ̂ −1>‖B2(ε)−1‖
(A.16)
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for all small ε. Since the spectra of the matrices A1(0) and A2(0), as well as of B1(0) and

B2(0), are separated, such constants always exist for an appropriate choice of bases in the x-,

u-, y- and v-spaces. We will also assume that

λ̂>λ0max(λ0,γ
−1
0 ), γ̂ <γ0min(γ0,λ

−1
0 ). (A.17)

LetMj (xj ,uj ,yi,vj ) (j =0,...,k) be a sequence of points in U0 such that T0Mj =Mj+1,

i.e these are the points of the trajectory ofM0(x0,u0,y0,v0). By (2.1), we have the following

equations for {(xj ,uj ,yj ,vj )}(j =0,...,k) (see [59]):

xj =A
j

1x0+

j−1
∑

s=0
A

j−s−1
1 p1(xs,us,ys,vs,ε), uj =A

j

2u0+

j−1
∑

s=0
A

j−s−1
2 p2(xs,us,ys,vs,ε),

yj =B
j−k

1 yk −
k−1
∑

s=j

B
j−s−1
1 q1(xs,us,ys,vs,ε), vj =B

j−k

2 vk −
k−1
∑

s=j

B
j−s−1
2 q2(xs,us,ys,vs,ε).

(A.18)

By lemma 3.1 of [59], for all sufficiently small δ>0, if max{‖x0‖,‖u0‖,‖yk‖,‖vk‖}6δ/2,

system (A.18) has a unique solution [(x∗
j ,u∗

j ,y
∗
j ,v∗

j )]
k
j=0, where ‖x∗

j ‖6δ, ‖u∗
j‖6δ,

‖y∗
j ‖6δ, ‖v∗

j ‖6δ. This follows from the fact [57, 59] that at small δ the operator

8 : [(xj ,uj ,yj ,vj )]
k
j=0 7→ [(x̄j ,ūj ,ȳj ,v̄j )]

k
j=0 defined by

x̄j =A
j

1x0+

j−1
∑

s=0
A

j−s−1
1 p1(xs,us,ys,vs,ε), ūj =A

j

2u0+

j−1
∑

s=0
A

j−s−1
2 p2(xs,us,ys,vs,ε),

ȳj =B
j−k

1 yk −
k−1
∑

s=j

B
j−s−1
1 q1(xs,us,ys,vs,ε), v̄j =B

j−k

2 vk −
k−1
∑

s=j

B
j−s−1
2 q2(xs,us,ys,vs,ε),

(A.19)

is contracting. The fixed point [(x∗
j ,u∗

j ,y
∗
j ,v∗

j )]
k
j=0 is the sought solution of (A.18).

In order to prove the lemma, we must show, first, that the functions ξk = λ̂−k(x∗
k −Ak

1x0),

ξ̂k = λ̂−ku∗
k , ηk = γ̂ k(y∗

0−B−k
1 yk) and η̂k = γ̂ kv∗

0 are uniformly bounded for all k. In fact, we

show that [(x∗
j ,u∗

j ,y
∗
j ,v∗

j )]
k
j=0 belongs to the set R̂ of the sequences [(xj ,uj ,yj ,vj )]

k
j=0 that

satisfy the inequalities

‖xj −A
j

1x0‖6δλ̂j , ‖uj‖6δλ̂j , ‖yj −B
j−k

1 yk‖6δγ̂ j−k, ‖vj‖6δγ̂ j−k.

(A.20)

Since [(x∗
j ,u∗

j ,y
∗
j ,v∗

j )]
k
j=0 is a unique fixed point of the contracting map 8, it is sufficient to

check that 8(R̂)⊆ R̂. Obviously, (A.20) implies

‖xj ,uj‖6δλ
j

0, ‖yj ,vj‖6δγ
j−k

0 , (A.21)

for every sequence [(xj ,uj ,yj ,vj )]
k
j=0∈ R̂. Also note that it follows from (2.2) that

‖pi(x,u,y,v)‖6 max
s∈[0,1]

∥

∥

∥

∥

∂pi

∂x
(sx,su,sy,sv)

∥

∥

∥

∥

·‖x‖+ max
s∈[0,1]

∥

∥

∥

∥

∂pi

∂u
(sx,su,sy,sv)

∥

∥

∥

∥

·‖u‖,

‖qi(x,u,y,v)‖6 max
s∈[0,1]

∥

∥

∥

∥

∂qi

∂y
(sx,su,sy,sv)

∥

∥

∥

∥

·‖y‖+ max
s∈[0,1]

∥

∥

∥

∥

∂qi

∂v
(sx,su,sy,sv)

∥

∥

∥

∥

·‖v‖.

(A.22)
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Since ∂(p,q)

∂(x,u,y,v)
is a smooth function vanishing at the origin,

∂(p,q)

∂(x,u,y,v)
=O(‖x‖+‖u‖+‖y‖+‖v‖). (A.23)

By (2.3), we have

∂p1

∂(x,u)
=O(‖y‖+‖v‖), ∂q1

∂(y,v)
=O(‖x‖+‖u‖), (A.24)

while it follows from (2.4) that

∂p

∂x
=O(‖x‖), ∂q

∂y
=O(‖y‖). (A.25)

By comparing (A.24) and (A.25), we find that ∂p1
∂x

=O(min{‖x‖,‖y‖+‖v‖}),
∂q1
∂y

=O(min{‖y‖,‖x‖+‖u‖}); hence, for any α∈ [0,1],
∂p1

∂x
=O(‖x‖α ·(‖y‖+‖v‖)1−α),

∂q1

∂y
=O(‖y‖α ·(‖x‖+‖u‖)1−α). (A.26)

Thus, by (A.22)–(A.26), there exists L>0 such that

‖p1‖6L(‖x‖1+α ·(‖y‖+‖v‖)1−α+‖u‖·(‖y‖+‖v‖)), ‖p2‖6L‖x‖2+Lδ‖u‖,
‖q1‖6L(‖y‖1+α ·(‖x‖+‖u‖)1−α+‖v‖·(‖x‖+‖u‖)), ‖q2‖6L‖y‖2+Lδ‖v‖. (A.27)

Hence, by (A.21), (A.16) and (A.17), we obtain

‖p1(xs,us,ys,vs,ε)‖6Lδ2(λ̂sγ s−k
0 +λ

(1+α)s
0 γ

(1−α)(s−k)
0 ), ‖p2(xs,us,ys,vs,ε)‖6Lδ2λ̂s .

(A.28)

Let us fix the choice of α∈(0,1) in the following way:

γ 1−α
0 λα

0 =1. (A.29)

We also assume further that

λ̂>λ1+α0 and γ̂ <γ 2−α
0 . (A.30)

Now, for all j =0,...,k, we have from (A.19) and (A.28)

‖x̄j −A
j

1x0‖6Lδ2λ
j−1
0 γ −k

0

j−1
∑

s=0

[(

λ̂γ0

λ0

)s

+γ αk
0

]

6Lδ2

[

λ̂jγ
j−k

0

λ̂γ0−λ0
+jλ

j−1
0 γ

−k(1−α)

0

]

,

‖uj‖6δ

(

1

2
λ̂j +L‖A2‖j−1δ

j−1
∑

s=0

(

λ̂

‖A2‖

)s)

6δλ̂j

(

1

2
+

Lδ

λ̂−‖A2‖

)

. (A.31)

Thus, x̄j ,ūj (j =0,...,k) satisfy (A.20). Analogously, one verifies that the same holds true
for ȳj ,v̄j . So, we have indeed that if [(xj ,uj ,yj ,vj )]

k
j=0 belongs to R̂, then its image by 8

belongs to R̂ also, from which the required uniform boundedness of the functions ξk,ηk,ξ̂k,η̂k

follows, as explained above.

Since8 is a smooth contracting operator, it follows that its fixed point [(x∗
j ,u∗

j ,y
∗
j ,v∗

j )]
k
j=0

is also smooth—Cr with respect to (x0,u0,yk,vk) and Cr−2 with respect to ε. As there is a

substantial difference in the estimates for the derivatives of the orders up to (r−2) and of the
orders (r−1) and r , we will first estimate the derivatives of (x∗

j ,u∗
j ,y

∗
j ,v∗

j ) in case r =2, in
order tomake the situation clear. In this case, we need to estimate the derivativeswith respect to

(x0,u0,yk,vk) (we do not differentiate with respect to ε, as wemay guarantee only a continuous

dependence on the parameter in this case). By the contraction mapping principle, the iterations
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of the initial point [(xj ,uj ,yj ,vj )]
k
j=0=0 by the operator8 converge to the unique fixed point

alongwith the derivatives. The derivatives are iterated according to the following rule (obtained

just by differentiation of (A.19)):

D1(x̄j −A
j

1x0)=
j−1
∑

s=0
A

j−s−1
1

[

∂p1

∂xs

D1xs +
∂p1

∂us

D1us +
∂p1

∂(ys,vs)
D1(ys,vs)

]

,

D1ūj =A
j

2D1u0+

j−1
∑

s=0
A

j−s−1
2

[

∂p2

∂xs

D1xs +
∂p2

∂us

D1us +
∂p2

∂(ys,vs)
D1(ys,vs)

]

,

D1(ȳj −B
j−k

1 yk)=−
k−1
∑

s=j

B
j−s−1
1

[

∂q1

∂(xs,us)
D1(xs,us)+

∂q1

∂ys

D1ys +
∂q1

∂vs

D1vs

]

,

D1v̄j =B
j−k

2 D1vk −
k−1
∑

s=j

B
j−s−1
2

[

∂q2

∂(xs,us)
D1(xs,us)+

∂q2

∂ys

D1ys +
∂q2

∂vs

D1vs

]

, (A.32)

where we denote D1= ∂
∂(x0,u0,yk ,vk)

. By (2.2) and (2.4), we have ∂p

∂(y,v)
=o(x)+O(u). By

plugging (A.20) into this estimate and into (A.23)–(A.26), we find
∥

∥

∥

∥

∂p1

∂xs

∥

∥

∥

∥

6Lδλαs
0 γ

(1−α)(s−k)

0 ,

∥

∥

∥

∥

∂p1

∂us

∥

∥

∥

∥

6Lδγ s−k
0 ,

∥

∥

∥

∥

∂p2

∂xs

∥

∥

∥

∥

6Lδλs
0,

∥

∥

∥

∥

∂p2

∂us

∥

∥

∥

∥

6Lδ,

∥

∥

∥

∥

∂(p1,p2)

∂(ys,vs)

∥

∥

∥

∥

=Lδ ·o(‖A1‖s)

(A.33)

(similar estimates hold true for q1, q2).

Let us show that there exist functions β1,2(s), satisfying 0<β1,2(s)62 and β1,2(s)=
o(1)s→+∞, such that if

‖D1(xs −As
1x0,us)‖6β1(s)‖A1‖s, ‖D1(ys −Bs−k

1 yk,vs)‖6β2(k−s)‖(B1)−1‖k−s

(A.34)

on the right-hand side of (A.32), then the same estimates are fulfilled for (x̄j ,ūj ,ȳj ,v̄j ) on

the left-hand side, with the same functions β1 and β2. This will immediately give us the same

estimates for the derivatives of the fixed point, thus proving estimates (2.6) in the case under

consideration. Note that (A.34) implies

‖D1xs‖63‖A1‖s, ‖D1(ys,vs)‖63γ s−k
0 .

Now, by (A.32), (A.33) and (A.29) we obtain for k large enough

‖D1(x̄j −A
j

1x0)‖6

j−1
∑

s=0
‖A1‖j−s−1[3Lδλαs

0 γ
(1−α)(s−k)
0 ‖A1‖s

+Lδγ s−k
0 β1(s)‖A1‖s +Lδγ s−k

0 o(‖A1‖s)]

6Lδ‖A1‖j−1

(

3jγ
−(1−α)k

0 +γ −k
0

j−1
∑

s=0
γ s
0 [β1(s)+φ(s)]

)

,

‖D1ūj‖6‖A2‖j +

j−1
∑

s=0
‖A2‖j−s−1[3Lδλs

0‖A1‖s +Lδβ1(s)‖A1‖s +Lδγ s−k
0 o(‖A1‖s)

]

6 λ̂j +Lδλ̂j−1
j−1
∑

s=0

(‖A1‖
λ̂

)s

[β1(s)+φ(s)], (A.35)
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where the positive function φ(s)=o(1)s→+∞ is independent of the choice of β1,2(s). By

(A.35), we have that (x̄j ,ūj ) satisfies the required estimates (A.34) if

2>β1(j)>

(

λ̂

‖A1‖

)j

+
3Lδ

‖A1‖
jγ

−(1−α)j

0 +
Lδ

λ̂

j−1
∑

s=0

(

min

{

γ0,
‖A1‖

λ̂

})s−j

[β1(s)+φ(s)].

(A.36)

Since γ0>1 and ‖A1‖/λ̂>1, andLδ(λ̂)−1<1, there always exists tending to zero β1(j)which

satisfies (A.36). Thus, estimates (2.6) are proven for r =2 (the computations for (ȳj ,v̄j ) are

completely analogous, and we omit them).

For the second derivatives of (x̄j ,ūj ,ȳj ,v̄j ) we have

D2(x̄j ,ūj )=
j−1
∑

s=0
Aj−s−1

[

∂p

∂(xs,us)
D2(xs,us)+

∂p

∂(ys,vs)
D2(ys,vs)+

∂2p

∂(ys,vs)2
D1(ys,vs)

2

+
∂2p

∂(xs,us)∂(xs,us,ys,vs)
D1(xs,us)D1(xs,us,ys,vs)

]

,

D2(ȳj ,v̄j )=
k−1
∑

s=j

Bj−s−1
[

∂q

∂(ys,vs)
D2(ys,vs)+

∂q

∂(xs,us)
D2(xs,us)+

∂2q

∂(xs,us)2
D1(xs,us)

2

+
∂2q

∂(ys,vs)∂(xs,us,ys,vs)
D1(ys,vs)D1(xs,us,ys,vs)

]

, (A.37)

where D2= ∂2

∂(x0,u0,yk ,vk)2
. As we did in the estimates for the first derivatives, let us show that

there exist functions β3,4(s)=o(1)s→+∞ such that if

‖D2(xs,us)‖6β3(s), ‖D2(ys,vs)‖6β4(k−s) (A.38)

on the right-hand side of (A.37), then the same estimates are fulfilled for (x̄j ,ūj ,ȳj ,v̄j ) on the

left-hand side, with the same functions β3,4. This will give us estimates (2.7) for the derivatives

of the fixed point, thus proving the lemma in the C2 case. Note that estimates (A.34) imply

that D1(xs,us,ys,vs) are bounded uniformly for all s, and D1(xs,us)=o(1)s→+∞. Also note
that according to (2.2), all the derivatives of p(xs,us,ys,vs)with respect to (ys,vs) tend to zero

as (xs,us)→0, i.e. as s →+∞. Now, from (A.37) we find

‖D2(x̄j ,ūj )‖6

j−1
∑

s=0
‖A‖j−s−1[Lδ‖D2(xs,us)‖+φ1(s)‖D2(ys,vs)‖+φ2(s)]

6

j−1
∑

s=0
λ

j−s−1
0 [Lδβ3(s)+φ1(s)β4(k−s)+φ2(s)],

‖D2(ȳj ,v̄j )‖ 6

k−1
∑

s=j

‖B−1‖s+1−j [Lδ‖D2(ys,vs)‖+φ3(k−s)‖D2(xs,us)‖+φ4(k−s)]

6

k−1
∑

s=j

γ
j−s−1
0 [Lδβ4(k−s)+φ3(k−s)β3(s)+φ4(k−s)], (A.39)

where the functions φ(s)=o(1)s→+∞ are independent of the choice of β3,4. Since Lδ<1,

λ0<1 and γ −1
0 <1, one can show that for all k large enough there exist functions β3,4 that tend
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to zero as j →+∞ and

β3(j)=
j−1
∑

s=0
λ

j−s−1
0 [Lδβ3(s)+φ1(s)β4(k−s)+φ2(s)],

β4(k−j)=
k−1
∑

s=j

γ
j−s−1
0 [Lδβ4(k−s)+φ3(k−s)β3(s)+φ4(k−s)].

It is obvious that with such chosen β3,4 the derivative D2(x̄j ,ūj ,ȳj ,v̄j ) will satisfy (A.38)

indeed. This finishes the proof of the lemma in the case r =2.
Let us proceed to the case r >3. Denote Dl = ∂ |l|

∂(x0,u0,yk ,vk ,ε)l
, where l is a non-negative

integer multi-index. Let us prove that for all l such that |l|6r−2 the following estimates hold
(with some constantsQl >0):

‖Dlxs‖63λs
0, ‖Dlys‖63γ s−k

0 , ‖Dlus‖6Ql λ̂
s, ‖Dlvs‖6Ql γ̂

s−k,

(A.40)

for every iteration of [(xj ,uj ,yj ,vj )]
k
j=0=0 by the operator 8 given by (A.19). This will

imply that the same estimates hold true for the fixed point of this map, i.e. for the solution of

(A.18). It is enough to check that if Dl(xs,us,ys,vs) satisfies (A.40), then Dl(x̄j ,ūj ,ȳj ,v̄j )

satisfies (A.40) also with the same constants Ql (the values of (x̄j ,ūj ,ȳj ,v̄j ) are defined by

(A.19)). Note that at l=0 the fulfilment of (A.40) follows from (A.21). Thus, we may assume
that (A.40) is fulfilled for all l such that |l|<ℓ for some ℓ6r−2, and it remains to check that
(A.40) will have to be fulfilled for Dl(x̄j ,ūj ,ȳj ,v̄j ) at |l|=ℓ.

The differentiation of (A.19) gives

Dl(x̄j −A1(ε)
jx0)

=
j−1
∑

s=0

{

A1(ε)
j−s−1

[

∂p1

∂xs

Dlxs +
∂p1

∂us

Dlus +
∂p1

∂(ys,vs)
Dl(ys,vs)

]

+9[x](s,j)

}

,

Dl ūj =Dl(A2(ε)
ju0)

+

j−1
∑

s=0

{

A2(ε)
j−s−1

[

∂p2

∂xs

Dlxs +
∂p2

∂us

Dlus +
∂p2

∂(ys,vs)
Dl(ys,vs)

]

+9[u](s,j)

}

,

Dl(ȳj −B1(ε)
j−kyk)

=
k−1
∑

s=j

{

B1(ε)
j−s−1

[

∂q1

∂ys

Dlys +
∂q1

∂vs

Dlvs +
∂q1

∂(xs,us)
Dl(xs,us)

]

+9[y](s,j)

}

,

Dl v̄j =Dl(B2(ε)
j−kvk)

+

k−1
∑

s=j

{

B2(ε)
j−s−1

[

∂q2

∂ys

Dlys +
∂q2

∂vs

Dlvs +
∂q2

∂(xs,us)
Dl(xs,us)

]

+9[v](s,j)

}

.

(A.41)

Here,9[x,u,y,v] are certain expressions involving the derivativesDl′ with |l′|<ℓ=|l| only. We
describe these terms in more detail below, see (A.46). In particular, we will show that the
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assumed fulfilment of (A.40) at |l′|<ℓ implies that

9[x](s,j)=O(λ̂s)γ
(1−α)(s−k)
0 ‖A1‖j−s(j −s)l0 , 9[u](s,j)=O(λ̂s)‖A2‖j−s(j −s)l0 ,

9[y](s,j)=O(γ̂ s−k)λαs
0 ‖B−1

1 ‖s−j (s−j +1)l0 , 9[v](s,j)=O(γ̂ s−k)‖B−1
2 ‖s−j (s−j +1)l0

(A.42)

at ℓ6r−2, while at ℓ=r−1 we have

9[x]=(o(‖A1‖s)+O(λ̂s)(j −s)l0)‖A1‖j−sγ
(1−α)(s−k)
0 ,

9[u]=(o(‖A1‖s)+O(λ̂s)(j −s)l0)‖A2‖j−s,

9[y]=(o(‖B−1
1 ‖k−s)+O(γ̂ s−k)(s−j +1)l0)‖B−1

1 ‖s−jλαs
0 ,

9[v]=(o(‖B−1
1 ‖k−s)+O(γ̂ s−k)(s−j +1)l0)‖B−1

2 ‖s−j .

(A.43)

In these formulae l0 is the number of differentiations with respect to ε in Dl .

By (A.41), (A.33) and (A.42), at ℓ=|l|6r−2 we have for some L>0

‖Dl(x̄j −A1(ε)
jx0)‖6L

j−1
∑

s=0
λ

j−s−1
0

[

δλαs
0 γ

(1−α)(s−k)
0 ‖Dlxs‖

+δγ s−k
0 ‖Dlus‖+δλs

0‖Dl(ys,vs)‖+ λ̂sγ
(1−α)(s−k)
0

]

,

‖Dl ūj‖6 λ̂j +L

j−1
∑

s=0
‖A2‖j−s−1[δλs

0‖Dlxs‖+δ‖Dlus‖+δλs
0‖Dl(ys,vs)‖+ λ̂s].

Now it is easy to see that there exists a constant C such that when estimates (A.40) hold for

Dl(xs,us,ys,vs), the derivative Dl(x̄j ,ūj ) satisfies

‖Dl(x̄j −A1(ε)
jx0)‖6C(δ+Qlγ

(1−α)(j−k)(λ̂/λ0)
j )λ

j

0, ‖Dl ūj‖6C(1+Ql)λ̂
j .

Thus, for sufficiently small δ and large k, one may choose the constantsQl such thatDl(x̄j ,ūj )

will satisfy (A.40). By the symmetry of the problem, the same holds true forDl(ȳj ,v̄j ). Thus,

by induction, estimates (A.40) hold true indeed for all |l|6r−2.
Aswementioned, this fact implies the validity of estimates (A.42) and (A.43). Byplugging

(A.42), (A.43) into (A.41) we find, in the same way as we did in the case r =2, that the
derivatives Dl(xj ,uj ,yj ,vj ) of the solution of (A.18) satisfy the estimates

Dl(xj −A1(ε)
jx0)=O(λ̂jγ

(1−α)(j−k)

0 ), ‖Dluj‖=O(λ̂j ),

Dl(yj −B1(ε)
j−kyk)=O(γ̂ j−kλ

αj

0 ), ‖Dlvj‖=O(γ̂ j−k)
(A.44)

at |l|6r−2, and the estimates

Dl(xj −A1(ε)
jx0)=o(‖A1‖jγ

(1−α)(j−k)

0 ), ‖Dluj‖=o(‖A1‖j ),

Dl(yj −B1(ε)
j−kyk)=o(‖B−1

1 ‖k−jλ
αj

0 ), ‖Dlvj‖=o(‖B−1
1 ‖k−j )

(A.45)

at |l|6r−1. This gives us the estimates of the lemma for all the derivatives up to the order
(r−1)—once (A.42), (A.43) are proven.

Thus, to finish the lemma for the derivatives up to the order (r−1), it remains to prove that
(A.40) implies (A.42) and (A.43) indeed. As before, it suffices to make computations only for

9[x] and 9[u]; the estimates for 9[y] and 9[v] are obtained analogously, due to the symmetry

of the problem.
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By the chain rule, 9[x] and 9[u] in (A.41), are estimated by a constant times the sum of

various terms of the kind

‖Ai(ε)‖j−s(j −s)l0−|l3|
∥

∥

∥

∥

∂ |l1|+|l2|+|l3|pi

∂(x,u)l1∂(y,v)l2∂εl3
(xs,us,ys,vs,ε)

∥

∥

∥

∥

×‖Dt1(xs,us)‖···‖Dt|l1 |
(xs,us)‖×‖Dt|l1 |+1

(ys,vs)‖···‖Dt|l1 |+|l2 |
(ys,vs)‖,

(A.46)

where l1,2,3 run non-negative integer values such that |l1|+|l2|+|l3|6 |l|, and ts can take

all possible positive integer values such that |t1|+···+|t|l1|+|l2||=|l|; the derivative of p1
corresponds to 9[x] and the derivative of p2 corresponds to 9[u]. The factor (j −s)l0−|l3|

appears when we differentiate the matrix A
j−s−1
i in (A.19) with respect to ε (the total number

of differentiations with respect to ε in Dl equals l0).

By virtue of (A.40), we immediately arrive at the following estimate:

‖9[x]‖6const ·‖A1(ε)‖j−s(j −s)l0−|l3|

×
∑

|l1|+|l2|+|l3|6|l|

∥

∥

∥

∥

∂ |l1|+|l2|+|l3|p1
∂(x,u)l1∂(y,v)l2∂εl3

(xs,us,ys,vs,ε)

∥

∥

∥

∥

·λ|l1|s
0 γ

|l2|(s−k)

0 ,

‖9[u]‖6const ·‖A2(ε)‖j−s(j −s)l0−|l3|

×
∑

|l1|+|l2|+|l3|6|l|

∥

∥

∥

∥

∂ |l1|+|l2|+|l3|p2
∂(x,u)l1∂(y,v)l2∂εl3

(xs,us,ys,vs,ε)

∥

∥

∥

∥

·λ|l1|s
0 γ

|l2|(s−k)

0 . (A.47)

As we see, all the terms in the first line with |l1|>2 and |l2|>1 and all the terms with |l1|>2
in the second line fit (A.42) and (A.43). Let us examine the other terms. We will consider

below only estimates for9[x], as the estimates for9[u] are obtained analogously (and simpler).

Thus, we want to show that

9[x]=
{

O(λ̂s)γ
(1−α)(s−k)

0 ‖A1(ε)‖j−s(j −s)l0−|l3| at l6r−2,
(o(‖A1‖s)+(j −s)l0−|l3|O(λ̂s))γ

(1−α)(s−k)
0 ‖A1(ε)‖j−s at l6r−1

(A.48)

(compare with (A.42) and (A.43)).

We start with the terms for which |l1|>2 and l2=0, i.e. we do not differentiate p1 with

respect to (y,v). As p1 vanishes identically at (y,v)=0 (see (2.3)), we have
∂ |l1|+|l3|p1

∂(x,u)l1∂εl3
=O(‖ys‖+‖vs‖)=O(γ s−k

0 ) (A.49)

at |l1|+|l3|6r−1. Hence, all terms with |l1|>2 (both with l2=0 and with |l2|>1) in the
estimate (A.47) for 9[x] fit (A.48).

It remains to consider the terms with |l1|61. By (A.46), the terms with |l1|=1 are
estimated (modulo a constant factor times ‖A1(ε)‖j−s(j −s)l0 ) as
∥

∥

∥

∥

∂

∂x

∂ |l2|+|l3|p1
∂(y,v)l2∂εl3

∥

∥

∥

∥

·γ l2(s−k)
0 λs

0 and

∥

∥

∥

∥

∂

∂u

∂ |l2|+|l3|p1
∂(y,v)l2∂εl3

∥

∥

∥

∥

·γ l2(s−k)
0 λ̂s . (A.50)

The second term obviously gives a right contribution into (A.48) at |l2|>1, while at l2=0
it also fits (A.48) by virtue of (A.49). Thus, we are left to estimate the first term in (A.50).

Recall that ∂p1/∂x vanishes at (x,u)=0 (see (2.4)). Hence, as it is a Cr−1-function, it is
O(‖x‖+‖u‖)=O(λs

0) along with all the derivatives with respect to (y,v,ε) up to the order

(r−2). Thus, the first term in (A.50) fits (A.48) at |l2|>1. If l2=0, it takes the form
∥

∥

∂1+|l3 |p1
∂x∂εl3

∥

∥λs
0. Since ∂p1/∂x vanishes at both (x,u)=0 and (y,v)=0, the same holds true
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for ∂1+|l3 |p1
∂x∂εl3

. As this function is at least C1 (recall that |l3|6r−2 always), it follows that
∂1+|l3 |p1
∂x∂εl3

=O(min{‖x,u‖,‖y,v‖})=O(‖x,u‖α‖y,v‖1−α)=O(λαs
0 γ

(1−α)(s−k)

0 ), and we see that

(A.48) is satisfied at l2=0 too.
Let us proceed to the terms with l1=0 in (A.46). These are

‖A1(ε)‖j−s(j −s)l0−|l3|
∥

∥

∥

∥

∂ |l2|+|l3|p1
∂(y,v)l2∂εl3

∥

∥

∥

∥

·γ |l2|(s−k)

0 , (A.51)

with |l2|=|l|−l0,|l3|6 l0. Note thatp1 and ∂p1/∂x vanish at (x,u)=0. The same remains true
for all their derivatives with respect to (y,v,ε). When |l2|+|l3|6r−2, the derivative ∂ |l2 |+|l3 |p1

∂(y,v)l2 ∂εl3

is at least C2. Since it vanishes at (x,u)=0 along with its first derivative with respect to x, it

follows that

∂ |l2|+|l3|p1
∂(y,v)l2∂εl3

=O(‖x‖2+‖u‖)=O(λ̂s), (A.52)

i.e. the term (A.51) satisfies (A.48) in this case, provided |l2|>1.
Now assume that |l2|+|l3|=r−1. This is possible only if |l|=r−1 and l0=|l3| (i.e. the

factor (j −s)l0−|l3| in (A.51) disappears). Now ∂ |l2 |+|l3 |p1
∂(y,v)l2 ∂εl3

is only C1, so we have an estimate

worse than (A.52), namely, ∂ |l2 |+|l3 |p1
∂(y,v)l2 ∂εl3

=o(x)+O(u)=o(‖A1‖s). It follows that the term (A.51)

with |l1|>1 satisfies in this case the part of (A.48) that corresponds to |l|=r−1.
The last remaining case corresponds to l1=0,l2=0, i.e. to the differentiation with respect

to parameters ε only. The corresponding terms in (A.46) are given by ‖A1(ε)‖j−s(j −
s)l0−|l3|

∥

∥

∂ |l3 |p1
∂εl3

∥

∥. As the number of differentiations with respect to ε cannot exceed (r−2)
(see remark 1 to lemma 6), the derivative ∂ |l3|p1/∂εl3 is at least C2. As it vanishes at

both (y,v)=0 and (x,u)=0, along with its first derivative with respect to x, we have
∂ |l3 |p1
∂εl3

=O((‖x‖1+α+‖u‖)‖y,v‖1−α)=O(λ̂sγ
−(1−α)(k−s)
0 ). Thus, the corresponding terms in

(A.46) satisfy (A.48) also. This finally gives us the part of the lemma that is concerned with

the derivatives up to the order (r−1).
To finish the lemma, we note that the derivatives of order r are estimated in absolutely

the same way as they are in the case r =2: one shows that relations (A.38) are satisfied by the
derivatives Dr , and the rest follows without changes. ¤
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