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Abstract
We consider a Hamiltonian system which has an elliptic–hyperbolic equilibrium
with a homoclinic loop. We identify the set of orbits which are homoclinic 
to the center manifold of the equilibrium via a Lyapunov–Schmidt reduction
procedure. This leads to the study of a singularity which inherits a certain 
structure from the Hamiltonian nature of the system. Under non-degeneracy 
assumptions, we classify the possible Morse indices of this singularity, 
permitting a local description of the set of homoclinic orbits. We also consider 
the case of time-reversible Hamiltonian systems.
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1. Introduction

1.1.  Outline

In this article we investigate the intersection of center-stable and center-unstable manifolds of 
a nonhyperbolic equilibrium of a Hamiltonian system near a homoclinic loop. Orbits lying in 
this intersection converge to orbits in the center manifold in both positive and negative time. In 
other terminology, we investigate the question of the structure of the set of bounded solutions 
which are uniformly close to a given localized (decaying to zero) solution of a Hamiltonian 
system of ordinary differential equations.
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We locate the intersections of the center-stable and center-unstable manifolds (corresp
onding to these bounded solutions) by deriving a real valued function whose zeros correspond 
to the points of intersection. This function has a critical point at the origin, and in order to 
apply basic singularity theory to analyse the zero set close to the critical point, we study 
the eigenvalues of the Hessian matrix at this point. This matrix inherits structure from the 
Hamiltonian character of the system, meaning that the spectrum of its eigenvalues is not arbi-
trary. The structure of the spectrum is investigated using the ‘scattering matrix’ of the linearised 
variational equation along the homoclinic to the equilibrium, an approach also employed in  
[25, 26]. A similar object appeared originally in [13, 15].

The example of lowest dimension for an elliptic–hyperbolic equilibrium is the saddle-
center in a two degree of freedom system. Here a neighbourhood of the equilibium in the 
center manifold is filled with a Lyapunov family of periodic orbits, parameterised by the 
value of the Hamiltonian. Lerman [15] proved the generic existence of 4 transverse homo-
clinics to each periodic orbit sufficiently close to the equilibrium (see also Grotta-Ragazzo 
[8], Yagasaki [25]), implying the existence of complex dynamics in each of these energy 
levels. This result was generalised for systems with any number of hyperbolic degrees of 
freedom in [13]. Multi-round homoclinics are also found to emerge as the system is per-
turbed [3, 12, 18]. For higher dimensions of center manifolds, homoclinics to invariant tori 
in small perturbations of completely integrable Hamiltonian systems have been found in 
[14] and [5].

In the completely integrable case, the existence of many conserved quantities usually 
forces intersections of invariant manifolds to be of higher dimension than in the general case. 
The most commonly employed method to measure the splitting of these intersections under 
perturbation is the so-called Melnikov method (for an account in the near-integrable case, see 
the book [23] and references therein). In integrable Hamiltonian systems the search for inter-
sections of the manifolds can be reduced to the study of critical points of a single function, 
referred to as the Melnikov potential [6, 22].

However, the Melnikov approach does not require such additional geometric struc-
ture, and can be applied in general systems. The method in this paper is also a variant 
of Melnikov’s. Since we make no assumption of near-integrability, the geometry of the
problem is less restricted—the Lyapunov–Schmidt approach to Melnikov theory employed
in this paper has most in common with the papers by Gruendler [9] who studied loops to 
hyperbolic equilibria in general systems, Palmer [20] who considered periodic forcing (see 
also [1]), and latterly Yagasaki [24], who studied periodic perturbations of Hamiltonian 
systems with elliptic–hyperbolic equilibria, whose invariant manifolds may intersect in a
degenerate manner.

In [26], Yagasaki derived the same quadratic form studied here for the case of one hyper-
bolic degree of freedom, under additional hypotheses on the homoclinic loop, by another 
variant of the Melnikov method. The focus in [26] is on the existence of heteroclinic chains 
between invariant tori in the center manifold. The results in our paper provide less detailed 
information about dynamical behaviour than some of those mentioned in this introduction, but 
they may provide a first step towards a more systematic approach; the knowledge of the pos-
sible structure present in our reduced function at the linear level could be extended to develop 
normal forms for problems of this type.

The organisation of this paper is as follows. In the remainder of section 1 we describe the 
set up and our assumptions, and outline the Lyapunov–Schmidt reduction. Section 2 establishes
the necessary results for the reduction, and begins the study of the Hessian matrix. In section 3 
we introduce the scattering matrix, and derive the formula for the Hessian matrix featuring in 
theorem 1. We also prove the first part of theorem 2, which states that the Hessian matrix cannot 
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be positive- or negative- definite. We then prove in section 4, that any symplectic matrix which 
is sufficiently close to the identity can be realised as the scattering matrix of a system which 
satisfies our assumptions and use this result in section 5 to demonstrate that the Hessian matrix 
can have any indefinite signature, using a theorem from [19]. We then consider in section 6 the 
case in which the system is time-reversible, as is common in examples coming from classical 
mechanics.

1.2.  Problem setting

The system is defined by the ordinary differential equations

u X u˙ H( )= (1)

on R n2 . The right hand side of (1) is the Hamiltonian vector field associated with the
Hamiltonian function →R RH : n2 , which we require to be at least C3. Defining the standard
symplectic matrix

J ⎜ ⎟
⎛
⎝

⎞
⎠=

−
I

I
0

0
,

we can write ( ) ( )J= ∇X u H uH . We also use J to define the standard symplectic form

( ) Jω ⋅ ⋅ = ⋅ ⋅, ,

and observe that ( ( ) ) ( )( )ω ⋅ = ⋅X u H u, dH .
We assume that the origin is an elliptic–hyperbolic equlibrium of system (1), that is;

Assumption 1.  The spectrum of the linearisation ( )DX 0H  consists of 2l distinct eigenval-
ues with zero real part, ω±i j, { }∈j l1, ..., , and 2(n  −  l) eigenvalues λi, whose real parts are
bounded away from zero; { ( )}α λ< < | | ∈ −n l0 Re , i 1, .., 2i .

The equilibrium possesses (n  −  l )-dimensional stable and unstable manifolds W s and W u, 
which are assumed to intersect along a homoclinic loop ( )γ t , namely;

Assumption 2.  There exists an orbit { ( ) }RγΓ = ∈t t:  such that ⊂Γ ∩W Ws u.

We denote by ( ( ))E DX 0u
H , ( ( ))E DX 0s

H  the unstable and stable eigenspaces of the linearisa-
tion at the origin. The centre subspace, corresponding to the purely imaginary eigenvalues, 
which is symplectic, will be denoted ( ( ))E DX 0c

H , or simply Ec when the context is clear. 
Under these assumptions, the equilibrium possesses a 2l-dimensional center manifold, which 
is symplectic. The center manifold may not be unique, but any center manifold will be tangent 
at the origin to ( ( ))E DX 0c

H , yielding the same linearisation, and the same result in our context.
The restriction of H to the center manifold defines a Hamiltonian system with l degrees of 
freedom and an elliptic critical point at the origin. Writing the tangent space at the equilibrium 
according to the symplectic splitting (see [17]);

( )R = ⊕ ⊕E E En2 c u s

we have

J J
J

⎛
⎝
⎜

⎞
⎠
⎟=

0
0

.1

2
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Choosing a symplectic basis on Ec such that J ⎜ ⎟
⎛
⎝

⎞
⎠=

−
I

I
0

01 , since ( )J |D H 0 E1
2

c has distinct 

purely imaginary eigenvalues, we can (and do) make a symplectic change of coordinates in Ec 
which brings ( )|D H 0 E

2
c to the form

( ) ( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

ω

ω
ω

ω

ω ω ω ω| = =

�

�

D H 0 : diag , ..., , , ... .E
l

l

l l
2

1

1
1 1c

The origin also possesses (n  +  l )-dimensional center-stable and center-unstable manifolds 
W cs and W cu. The orbits we seek, which converge to the center manifold in forward and back-
ward time, are contained in the intersection ∩W Wcs cu.We make the following assumption on 
the invariant manifolds;

Assumption 3.  ( ) ( )( ) ( ) ( ) ( )∩ = ∩ =γ γ γ γT W T W T W T Wdim dim 10
cu

0
s

0
cs

0
u .

Of course, the existence of the homoclinic ( )γ t  which is contained in the intersection of W u

and W s implies that the dimension of the intersection in assumption 3 is at least one, so this 
assumption means that this dimension is minimal: there is no further degeneracy leading to a 
higher-dimensional intersection.

1.3.  Statement of results

Theorem 1.  Under the assumptions 1–3, homoclinic orbits to the center manifold of the 
origin correspond to zeros of a function →g R R: l2 , which has the property that ( )g∇ =0 0,
and its Hessian is given by

( ) ( )g σ σ= | − |D D H D H0 0T
E E

2 2 2
c c

where σ is the symplectic scattering matrix3 determined by the flow linearized about the  
homoclinic loop Γ.

The zeros of the function g correspond to intersections of W cs and W cu. These manifolds are 
foliated by the strong-stable and, resp., strong-unstable leaves of the points in W c: if a forward 
orbit of a point ∈M W c stays in a small neighbourhood of the equilibrium at the origin, then 
its strong-stable leaf ( )l Mss  consists of all points whose forward orbits tend to the forward
orbit of M exponentially with a rate at least α−e t, the same for the strong-unstable leaf ( )l Muu

and backward orbits. We prove in theorem 1 that ( )g =M 0 if and only if there exists a point
¯ ∈M W c such that ( )l Muu  has a point of intersection with ( ¯ )l Mss , and the orbit of this intersec-

tion point is close to the homoclinic loop Γ when it goes from a small neighbourhood of M to 
a small neighbourhood of M̄. This orbit is homoclinic to W c (and corresponds to a solution of
system (1) which is bounded and uniformly close to ( )γ t  for all t) if both the backward orbit
of M and the forward orbit of M̄ are bounded and stay close to the origin.

Note that an equivalent quadratic form is derived in [26] in the case of one hyperbolic 
degree of freedom (i.e. n  =  l  +  1 in our notation), under additional, and quite strong assump-
tion that the homoclinic loop is contained in a normally elliptic invariant manifold. There, 

3 See the definition of the scattering matrix in section 3.
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under the extra (mild) hypotheses necessary for KAM type results to yield the existence of a 
family of invariant tori in the center manifold, Yagasaki proves that when expressed in polar 
coordinates, a zero of the quadratic form at which the radial derivatives are nonzero corre-
sponds to a transversal intersection of invariant manifolds of two invariant KAM-tori. The 
existence of chains of heteroclinic orbits shadowed by real ‘diffusing’ orbits is then shown for
some examples. It would seem that the methods from the current paper combined with those 
from [26] allow one to prove the existence of chains and accompanying diffusion behaviour in 
a much larger class of far-from-integrable Hamiltonian systems.

By Morse lemma, if the quadratic part of g is non-degenerate, the structure of the zero set of 
g is determined by the signature of gD2 . The following theorem, the main result of this paper, 
describes the possible signatures of gD2  compatible with the Hamiltonian structure of the system.

Theorem 2.  Under assumptions 1–3,

(i)	 gD2  can be neither positive nor negative definite.

	(ii)	�All indefinite signatures for gD2  can be realised by systems satisfying the assumptions. 
Furthermore, they can be realised in systems which are a small perturbation of a com-
pletely integrable system.

The first part of the theorem says that as long as the critical point of g is Morse, the homo-
clinic ( )γ t  is never an isolated intersection point of the center stable and center unstable man-
ifolds—a situation which in the general (non-Hamiltonian) case could arise. In the case l  =  1, 
we find agreement with a result from [13]; the existence of one positive and one negative 
eigenvalue leads to a degenerate hyperpola (a ‘cross’) for the zero set of g, which intersects
each sufficiently small periodic orbit surrounding the origin in 4 places, leading to 4 homoclin-
ics. The rest of the theorem says that in general there is no further restriction on the singularity.

In section 6 we will consider also the case in which the vector field is reversible;

Assumption 4.  Letting R be a linear involution which acts antisymplectically, that is 
R2  =  I and J J= −R R,

(i)	XH is R-reversible: ( ) ( )= −X Ru RX u .H H

(ii)	�The homoclinic ( )γ t  is R  −  symmetric: writing { ( ) }RγΓ = ∈t t: , we have Γ = ΓR .

In this case we find;

Theorem 3.  Under assumptions 1–4, if the critical point at the origin is nondegenerate, 
then the signature of gD2  is (l, l).

1.4. The Lyapunov–Schmidt reduction

Returning now to system (1), that is,

( )=u X u˙ H

with the homoclinic orbit ( )γ t , we seek homoclinic orbits ˜( )γ t  as perturbations of ( )γ t , by first
writing

˜( ) ( ) ( )γ γ= +t t x t .

Substituting this into (1) and rearranging for x(t) brings us to the equation

( ) ( ( ) ( )) ( ( ))γ γ= + −x t X t x t X t˙ H H (2)

W Giles et alNonlinearity 29 (2016) 3148
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We then define an operator F by

( ) ( ) ( ( ) ( )) ( ( ))γ γ= − + −F x x t X t x t X t: ˙ H H

so that zeros of F correspond to solutions of (2).
For convenience, we will modify XH outside a small neighbourhood of the homoclinic loop 

Γ so that it will be identically zero outside some larger (still small) neighbourhood of Γ (this is 
achieved by multiplying the Hamiltonian to a smooth cut-off function, equal to 1 everywhere 
near Γ and zero everywhere outside a small neighbourhood of Γ). Then, all zeros of (the modi-
fied) operator F which are uniformly close to zero will correspond to solutions of the original 
system which are uniformly close to ( )γ t .

By choosing an appropriate domain X  and target space Y for F, we can search for solutions 
x(t) which satisfy prescribed conditions on their asymptotic behaviour, which corresponds to 
finding homoclinic solutions with desired features. Clearly, F(0)  =  0. Taking a Frechet deriva-
tive of F at 0 leads us to the operator

( ) ( ) ( ) ( ) ( ( )) ( )γ= = −DF x t Lx t x t DX t x t0 : ˙ H

so that zeros of L are solutions of the variational equation

( ) ( ( )) ( )γ=x t DX t x t˙ .H (3)

Note that one solution (which, since ( )γ t  lies in the intersection of the stable and unstable
manifolds of the equilibrium, decays exponentially fast in both forward and backward time) 
of (3) is given by ( )γ t˙ . A crucial point, discussed in more detail in the following section,
is that L is a Fredholm operator. This means by definition that ( )⊂XLker  is finite-dimen-
sional, and the range ( )⊂R YL  is of finite codimension. The index of L is then the integer
ind ( ) ( )  ( ( ))= − RL L Ldim ker codim . This will allow us to perform a Lyapunov–Schmidt
reduction of the map F at zero. The procedure is as follows; we decompose X  and Y in the 
following way

( )
( )

= ⊕
= ⊕

X M

Y N R

L

L

ker

and now look for solutions of the following equivalent system, where the variable x  =  k  +  w 
is split according to the decomposition of X  and P is the projection onto ( )R L  in Y with

( ) = NPker ;

⎧
⎨
⎩

PF k w
I P F k w

0
0.

+ =
− + =

( )
( ) ( ) (4)

The advantage of this construction is that the derivative in the first component of the system 
with repect to w, ( ) ( )|D PF vw 0 , is invertible, and so we can use the implicit function theo-
rem to locally solve this first equation. This allows us to write ∈Xv  as k  +  w(k), where 

( ) →Mw L: ker  is such that

( ) ⇔ ( )σ σ+ = =PF k w k0

in a neighbourhood of x  =  0. We note also that Dk w(0)  =  0; differentiating the top component 
of (4) with respect to k at zero leads to

( ( )) =L D w 0 0,k

and since ( )∈MD w 0k , we can invert L, yielding Dk w(0)  =  0. We are then only required to
find zeros of the map defined by

W Giles et alNonlinearity 29 (2016) 3148
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( ) ( ( )) ( ) →− + NI P F k w k L: ker ,

which we denote by ( )G k . Zeros of G then correspond to zeros of the full system. Furthermore,
G has a critical point at the origin:

( ) ( ) ( )( ( ))= − | ==GD I P DF k D w k0 0.k k 0

So, as long as this singularity is nondegenerate (i.e. the Hessian matrix is invertible) we can 
locally describe the zero set of G by classifying the critical point at the origin and appealing to 
the Morse lemma, which gives us a normal form for the quadratic part of G.

2. Weighted function spaces and Fredholm properties

For Rβ∈ , we define the Banach space

( ) { →     ∥ ( )∥ ∥ ( )∥ }R R R R
R R

= <∞ <∞β
β β

∈

| |

∈

| |C x x t x t, : with sup e , sup e ˙ .n n

t

t

t

t1 2 2

We will require the following result;

Lemma 2.1.  There exists a ( )β α∈ 0,  such that a solution x(t) of the equation F(x)  =  0 gives
rise to an orbit ˜( ) ( ) ( )γ γ= +t t x t  which remains in a tubular neighbourhood of ( )γ t  and is

homoclinic to the centre manifold of the origin if and only if ( ) ( )R R∈ β−x t C , n1 2 , and x(t) is
uniformly small for all t.

Proof.  If ˜( ) ( ) ( )γ ∈ ∩t W W0 0cu cs , then it approaches an orbit ( )η t  in the center manifold;

∥ ˜( ) ( )∥ →     →γ η− ∞t t t0 as

but since ( ) →γ t 0 exponentially fast, we have

∥ ( ) ( )∥ →     →η− ∞x t t t0 as (5)

Since ( )η t  is contained in the center manifold, ( )R Rη∈ β−C , n1 2  for any ( )β α∈ 0, , and hence we
can use (5) to conclude that ( )R R∈ β−x C , n1 2 . Moreover, if ˜( )γ t  lies in a small tubular neigh-
bourhood of ( )γ t  then the norm of x(t) is necessarily small.

Conversely, assume that x(t) is uniformly small in norm, and F(x)  =  0. Then 
˜( ) ( ) ( )γ γ= +t x t t  defines a trajectory of system which stays in a small tubular neighbourhood
of ( )γ t . In particular it stays in a small neighbourhood of zero for all sufficiently large values
of | |t . Therefore, just by the definition of the center-stable and center-unstable manifolds ˜( )γ t
stays in W cs for all large t  >  0, hence it must tend to a bounded orbit in W c as →+∞t , and,
as →−∞t , it stays in W cu, which implies that it tends to a bounded orbit in W c as →−∞t  as
well (see e.g. [21] for more detail).� □

This result justifies the use of an exponentially weighted norm on the domain of F to 
capture all of the solutions which do not grow faster than a given exponential factor. Letting 

( ) ( )R Rφ ∈t C ,1  be such that

⎧

⎨
⎪⎪

⎩
⎪⎪

t t t

t t

t t

for , 1 1,

sup 1

0 for ,

t 1,1

φ
φ

φ

= | | ∈ −∞ − ∪ ∞
| −| ||

> ∈

∈ − �

R

( )     ( ] [ )
( )

( )    

[ ]

W Giles et alNonlinearity 29 (2016) 3148
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we now consider the weighted inner product

⟨ ⟩ ⟨ ( ) ( )⟩( )
R∫=δ

δφ−u v u t v t t, e , dt2

which is defined for any ( )R R∈ β−u v C, , n1 2  with β δ< <0 . We are hence free to choose β, δ
satisfying the following condition.

Condition 1.  The constants satisfy β δ α< < <0 , and δ α β δ− < − , where α is as defined 
in assumption 1.

We calculate an expression for the adjoint L* with respect to the weighted inner product as 
follows;

∫
∫

γ

γ

= −

= −

δ
δφ

δφ δφ

−

− −

R

R

( ) ( ( )) ( ) ( )

( ) ( ) ( ( )) ( ) ( )

( )

( ) ( )

Lu v u t DX t u t v t t

u t v t DX t u t v t t

, e ˙ , d

˙ , e e , d

t

t t

2
H

2 2
H

u t
t

v t u t DX t v t t

u t
t
v t t v t u t DX t v t t

,
d

d
e e , d

e ,
d

d
2 ˙ e , d ,

t t

t t

2 2
H

2 2
H

∫

∫

γ

δφ γ

= − −

= − − −

δφ δφ

δφ δφ

− − ∗

− − ∗

R

R

( ) ( ( )) 〈 ( ) ( ( )) ( )〉

( ) ( ) ( ) ( ) 〈 ( ) ( ( )) ( )〉

( ) ( )

( ) ( )

We conclude from this line that

( ) ( ( ))δφ γ= − + −∗ ∗L
t

t DX t
d

d
2 ˙

H

we refer to L*u  =  0 as the adjoint variational equation.

Lemma 2.2.  ( ) ( ) → ( )R R R R= β β− −DF L C C0, 0 : : , ,n n1 2 0 2  is a Fredholm operator of index

2l. Furthermore, ( ) ( )∈Ry t L  if and only if

∫ ψ ψ ψ= ∈ =δφ
β

−
−

∗

R
( ) ( )          ( ) y t t t for every C solving Le , d 0, 0.t2 1

To prove lemma 2.2 we will make use of a conjugacy beetween L and a ‘shifted’ version of L

on a differently weighted function space. We observe that ( ) →= β β− −L DF C C0, 0 : 1 0  is con-
jugate to the shifted operator →δ δ β δ β− −L C C: 1 0  given by

( ) ( ) ( ) ( ( )) ( )˜δφ γ= − −δL u t
u

t
t u t DX t u t

d

d
˙ ,H

The conjugacy is given by the isomorphism ( ) ( )( )δφ−�v t v te t  which maps from β−C1  into

δ β−C1 , which is endowed with the unweighted inner product. The utility of this conjugacy
stems from the fact that the limits

( ( ) ( ( )))
→

δφ γ+
±∞

t I DX tlim ˙
t

H (6)

are now hyperbolic, since the imaginary eigenvalues of ( )DX 0H  are now shifted, to the right of
the imaginary axis in negative time and to the left in positive time (see figure 1). We will make 
use of the following theorem:

W Giles et alNonlinearity 29 (2016) 3148
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Palmer theorem [20] Let A(t) be an ×n n matrix function bounded and continuous 
on R and such that

A t A A t Alim , lim
t t

= =
−∞

−∞
∞

∞( ) ( )
→ →

exist and are hyperbolic. Then

= −
R R R R( ) → ( )

( ) ( ) ( )
B C C

Bx x t A t x t
: , ,

˙

n n1 2 0 2

is Fredholm, and ( )∈Ry B  if and only if

( ) ( )             ( ) ( ) ( )
R∫ ψ ψ ψ ψ= = − ∗y t t t t A t t, d 0, for every bounded solving ˙ .

Furthermore, if −∞A , ∞A  have a− and a+ unstable eigenvalues respectively, then

( ) = −− +L a aind .

Proof of lemma 2.2.  We first consider our shifted operator defined on the larger function 
space ( )R RC , n1 2  of bounded continuous functions, as in the statement of Palmer’s theorem.
Call this operator ˆδL . Applying Palmer’s theorem to ˆδL  tells us that the index of ˆ =δL l2 .
Firstly this means that ( ˆ )<∞δLker . This remains true for δL , since ( ˆ ) ( )=δ δL Lker ker : any
bounded solutions decay at a rate of at least δ α−e  in negative time and ( )α δ− +e  in positive time 
(as can be seen by looking at the spectrum of the limit matrices in (6)), and so, in particular, 
faster than β δ−e  in both time directions, as a consequence of condition 1. Hence, these solu-

tions lie in δ β−C1 .
The application of Palmer theorem also gives ( ˆ ) ( ˆ )=δ δ

∗ ⊥R L Lker . We find that 
( ˆ ) ( )=δ δ
∗ ∗L Lker ker  for the same reasons as in the previous paragraph, and so

( ) ( ˆ ) ( )= ∩ =δ δ δ β δ
∗ ⊥

−R RL L C Lker 0

is it clear from these considerations that ( ˆ ) ( )=δ δL Lind ind .
Finally, applying the inverse of the conjugacy brings us back to the original operator L, 

preserving the required properties.� □

We note that assumption 3 implies that ( )γ t˙  is the only solution (up to a scalar multiple) of
the variational equation which decays at an exponential rate (in fact, ( ) ( )R Rγ ∈ αt C˙ , n1 2 ). This

Figure 1.  Eigenvalues cross the imaginary axis from right to left, as time progresses, 
inducing a positive Fredholm index.
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also implies that the only (again, up to a scalar multiple) exponentially decaying solution of 
the adjoint variational equation  (with respect to the unweighted inner product) is given by 

( ) ( ( ))Jγ γ= −∇t H t˙ .

Lemma 2.3.  ( ) { ( ( ))}( ) γ= ∇δφ∗L H tker span e t2 .

Proof.  If L*u  =  0 with ( ) ( )R R∈ β−u t C , n1 2 , then

( ) ( ) ( ( ) ) ( )

( ( )) ( ( ) ) ( )

( )

( ) ( ) ˜ ( )

( ) ˜ ( )

δφ γ

γ

= =

= − + −

= − −

δφ

δφ δφ δφ

δφ δφ

∗ − ∗

− − ∗ −

− ∗ −

L u L u
u

t
t u t DX t u t

t
u t DX t u t

0 e

e
d

d
2 ˙ e , 0 e

d

d
e , 0 e

t

t t
H

t

t
H

t

2

2 2 2

2 2

The expression on the right hand side here is the adjoint variational equation with respect to 
the unweighted inner product. Now, ( )( )δφ− u te t2  is an exponentially decaying solution of the
unweighted adjoint variational equation, and hence ( ) { ( ( ))}( ) γ∈ ∇δφ− u t H te spant2 , meaning
that ( ) { ( ( ))}( ) γ∈ ∇δφu t H tspan e t2 .

Similarly, if ( ) { ( ( ))}γ∈ ∇v t H tspan , then v(t) solves

( ) ( ( ) ) ( )˜ γ− − =∗

t
v t DX t v t

d

d
, 0 0H

while ( ) ( )( ) R R∈δφ
β−v t Ce ,t n2 1 2  and

δφ γ

δφ δφ γ

− + −

= − − + −

= =

δφ δφ δφ

δφ δφ δφ δφ

δφ

∗

∗

∗

( ) ( ) ( ) ( ( ) ) ( )

( ) ( ) ( ) ( ) ( ) ( ( ) ) ( )

( ( ( )))

( ) ( ) ( ) ( ) ˜

( ) ( ) ( ) ( ) ˜

( )

t
t v t DX t v t

t v t
t
v t t v t DX t v t

L v t

d

d
e 2 ˙ e e , 0

2 ˙ e e
d

d
2 ˙ e e , 0

e 0

t v t t t
H

t t t t
H

t

2 2 2

2 2 2 2

2
�

□

Hence ( )⊥R L  is one-dimensional, and so = +( ( ))Ldim ker 1 ind(L)  =  2l  +  1.
As a check, we observe that if ( ) ( )R Rψ ∈ β−t C , n1 2  is a solution of the adjoint variational

equation, and ( )∈Rf L , that is, ( ) ( ) ( ( ) ) ( )γ= −f t x t DX t x t˙ , 0H  for some ( ) ( )R R∈ β−x t C , n1 2

then

∫

∫

∫

∫

∫

ψ ψ γ

ψ γ ψ

ψ ψ δφ ψ

ψ δφ ψ

ψ

ψ

= −

= −

= + −

= −

=

= =

δ
δφ

δφ

δφ

δφ

δφ

δφ

−

− ∗

−

−

−

−
−∞
∞

R

R

R

R

R

( ) ( ) ( ) ( ) ( )( ( ) ) ( )

( ) ( ) ( ( ) ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ( ) ( ) )

[ ( ) ( ) ]

( )

( )

( )

( )

( )

( )

⎜ ⎟
⎛
⎝

⎞
⎠

t f t t x t DX t t x t t

t x t DX t t x t t

t x t t t t x t t

t
t x t t t x t t

t
t x t t

t x t

, e , ˙ , 0 d

e , ˙ , 0 , d

e , ˙ ˙ 2 ˙ , d

e
d

d
, 2 ˙ , d

d

d
e , d

e , 0

t

t

t

t

t

t

2
H

2
H

2

2

2

2
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When we construct a reduced map by Lyapunov–Schmidt reduction, we project onto
( )∗Lker  by taking the weighted inner product with this unique exponentially decaying solu-

tion. The exponential factors in the weight and the solution will then cancel, leaving us with 
an expression which involves an unweighted inner product.

The results from this section facilitate a Lyapunov–Schmidt reduction of the map F at zero
according to a decomposition of the following form;

( ) ( )R R = ⊕β− MC L, kern1 2

( ) ( ) ( )R R = ⊕β−
∗ RC L L, kern0 2

Performing the reduction as described in section 1.4 leads to the reduced map

( ) ( ) ( ( )) ( ) → ( )= − + ∗G k I P F k w k L L: : ker ker

so G maps from a (2l  +  1)-dimensional space into a 1-dimensional space, as a consequence of 
the positive Fredholm index of L, and G has a critical point at the origin. This proves the first 
part of theorem 1.

2.1. The Hessian matrix

We now study this critical point of the reduced map ( )G k  by investigating the Hessian matrix.
For the calculations, we now let ki, { }∈ +i l1, ..., 2 1  be a chosen basis of ( )Lker , with ( )γ=k t˙1 ,
and we write ( ) ( )g β β β β=+ + +G k k, ..., : , ...,l l l1 2 1 1 1 2 1 2 1 , so that

H t t k t

w t X t k t w t t

e e , ˙ ˙

˙ d

t t
i i i

i i i

2 2

H

∫β γ γ β

β γ β β

= ∇ +Σ

+ − +Σ +

δφ δφ−

R
g( ) ( ( )) ( ) ( )

( )( ) ( ( ) ( ) ( )( ))

( ) ( )

The following lemma provides a formula for the derivatives of ( )g 0 . The proof is the same
in essence as the one in [9] (theorem 5), in which a homoclinic orbit to a hyperbolic equilib-
rium is studied. We include the proof here for completeness.

Lemma 2.4. 

( )g

β
∂
∂

=0 0
i

(7a)

( ) ( ) ( ( ))( ( ) ( )g

R∫β β
γ γ

∂
∂ ∂

= t D H t k t k t t0 ˙ , , d
i j

x i j

2
3

� (7b)

Proof.  The first equation simply states that the reduced map has a singularity at the origin, 
which is true for any map produced in this way via the Lyapunov–Schmidt reduction, as dis-
cussed in section 1.4. As for the second, differentiating g twice and evaluating at β = 0 gives:

( ( )) ( ) ( ( )) ( )

( ( )) ( ( ))( ( ) ( ))

g

R

R

∫

∫
β β

γ
β β

γ
β β

γ γ

∂
∂ ∂

= ∇
∂
∂ ∂

−
∂
∂ ∂

− ∇

H t
w

DX t
w

t

H t D X t k t k t t

,
˙ 0 0

d

, , d

i j i j i j

i j

2 2

H

2

2
H
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and the first term is zero for each (i, j), since ( ( ))( ) ( )γ−
β β β β
∂
∂ ∂

∂
∂ ∂

DX tw w˙ 0
H

0

i j i j

2 2

 lies in the range of L. 

The final step is to recall that XH can be written as J∇H, and that ( ) ( ( ))Jγ γ= ∇t H t˙ . Applying 
the isometry J in both sides of the inner product and using these facts yields (7b).� □

In fact, we can restrict our attention to finding zeros of g with its first argument (the coef-
ficient of ( )γ t˙ ) fixed at zero. Considering the direct sum decomposition

( ) ( )R R = ⊕β− MC L, ker ,n1 2

we can choose M to be ( )⊥Lker , the orthogonal complement with respect to the weighted
inner product δu v, , which can be constructed due to the finite dimensionality of ( )Lker . This
being done, and having chosen an orthogonal basis { ( ) ( ) ( )}γ −t k t k t˙ , , ..., l2 2 1  for ( )Lker , we have
that k  +  w(k) satisfies

⟨ ( ) ( ( ))( )⟩ ⇔ { ( ) ( )}( )
R∫ γ + = ∈δφ−

−t k w k t t k k t k te ˙ , d 0 span , ...,t
l

2
2 2 1

since ( ) → ( )⊥w L L: ker ker . We now show that all geometrically distinct homoclinics can be
found by considering g with the coefficient of ( )γ t˙  fixed at zero. We do this by proving:

Proposition 2.5.  Every solution

˜( ) ( ) ( ( ))( )γ γ= + +t t k w k t

with k sufficiently small, can also be expressed as

˜( ) ( ) ( ( ))( )γ γ ξ ξ= + + + +∗ ∗t t k w k t (8)

with { ( ) ( )}∈∗ −k k t k tspan , ..., l2 2 1 .

In other words, the homoclinics obtained with nonzero coefficients of ( )γ t˙  are only time
translations of those obtained with the coefficient of ( )γ t˙  set to zero. The following proof uses
ideas from [11].

Proof.  We apply the implicit function theorem to the functional

→ ( ) ⟨ ( ) ( ) ( )⟩( )R R
R∫ξ γ ξ γ ξ× = − + +β

δφ ξ
−

− +P C P x x t t t t: , , : e , ˙ d .t1 2

We observe that

1.	 ( )γ =P , 0 0.

2.	 ( ) ⟨ ( ) ( )⟩( )
( )

R∫ξ γ γ| = − ≠ξ γ
δφ−D P x t t t, e ˙ , ˙ d 0.t

,0
2

So we can apply the IFT and write

( ) ⇔ ( )ξ ξ ξ= = ∗P x x, 0

for ( )ξx,  in a neighbourhood of ( )γ, 0 . Now, since in the expression of our homoclinic ˜( )γ t ,
k is sufficiently small, we have that γ̃ is close to γ, and so we can write

P t t t t

t t t t

0 , e , ˙ d

e , ˙ d

t

t

2

2

∫
∫

γ ξ γ γ γ ξ γ γ ξ γ

γ ξ γ γ γ

= = − + +

= − −

δφ ξ γ

δφ

∗ − + ∗ ∗

− ∗

∗

R

R

( ˜ ( ˜)) 〈 ˜( ) ( ( ˜)) ( ( ˜))〉

〈 ˜( ( ˜)) ( ) ( )〉

( ( ˜))

( ) (9)
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So, the term ( ) ˜( ( ˜)) ( )γ ξ γ γ= − −∗ ∗z t t t  is small, and

˜( ) ( ( ˜)) ( ( ˜))γ γ ξ γ ξ γ= + + +∗ ∗ ∗t t z t

so that ( )= +∗ ∗ ∗z k w k , and by (9) we have { ( ) ( )}∈∗ −k k t k tspan , ... l2 2 1 . Hence, we have found
the k* from equation (8), so the claim is proved.� □

Lemma 2.6.  For { }∈ +i j l, 2, ..., 2 1 , we have

( ) ( ( ))( ( ) ( )

( ) ( ( ))( )

g

R

R

∫

∫

γ γ

γ

∂
∂ ∂

=

=

k k
t d H t k t k t t

t
k t d H t k t

˙ , , d

d

d
, d

i j
x i j

i x j

2
3

2

Proof.  We observe that the integrand here can be written as

( ) ( ( ))( ( ) ( )) ( ) ( ( ))( )γ γ γ=t d H t k t k t
t

k t d H t k˙ , ,
d

d
,x i j i x j

3 2

( ) ( ( ))( ( )) ( ) ( ( ))( ( ))γ γ− −k t d H t k t k t d H t k t˙ , , ˙
i x j i x j

2 2

But two of the terms on the right hand side here cancel out;

( ) ( ( ))( ( )) ( ( ))( ( )) ( ( ))( ( ))

( ( ( ))( ( )) ( ( ))( ( )))

Jγ γ γ

ω γ γ

= −

=

k t d H t k t d H t k t d H t k t

d H t k t d H t k t

˙ , ,

,

i x j x i x j

x i x j

2 2 2

2 2

and, since ( ( ))γd H tx
2  is symmetric,

( ) ( ( ))( ( )) ( ) ( ( ))( ( ))

( ( ( ))( ( )) ( ( ))( ( )))

( ( ( ))( ( )) ( ( ))( ( )))

γ γ

ω γ γ

ω γ γ

=

=

= −

k t d H t k t k t d H t k t

d H t k t d H t k t

d H t k t d H t k t

, ˙ ˙ ,

,

,

i x j j x i

x j x i

x i x j

2 2

2 2

2 2

since the symplectic form is skew-symmetric. Note that when i  =  j, both terms are zero.� □

Remark 2.7.  See also [2], where similar calculations are performed in a different bifurca-
tion scenario.

3. The scattering matrix

In order to evaluate the integrals from lemma 2.6 which define the elements of the Hessian 
matrix, we introduce the scattering matrix. This is a linear map defined on the centre sub-
space of the equilibrium which maps asymptotic initial conditions of the linearised variational 
equation from this sympectic subspace at negative infinity to their resting places in the same 
subspace at positive infinity, while accounting for the effects of the asymptotic motion in the 
center subspace. Since this map is defined using the (linear) Hamiltonian flow, and the space 
on which it is defined is symplectic, it is represented by a symplectic matrix. It is referred to 
as the scattering matrix, and we call it σ. See also [13, 25, 26].
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Each ( ) { }∈ +k t k kspan , ..., l2 2 1  approaches the orbit of a point in the center subspace as
t ±∞→ ;

( ) ( )    
→

= Ψ ∈
±∞

±∞ ±∞k t t k k Elim with
t

c

with ( )Ψ ⋅  denoting the fundamental matrix of the linear system on the center subspace
( ) ( )J= |u D H u t˙ 0 E

2
C . There is thus a family of 2l-dimensional symplectic subspaces 

( ) ( )R⊂ γY t T t
n2  R∈t  spanned by the initial conditions kt such that ( )Φ s t k, t lies asymptotically

in the center subspace Ec at the equilibrium as s ±∞→ . Let ( ) ( ) → ( )Φ t s Y t Y s, :c , R∈s t,
denote the restriction of the solution operator for the variational equation to these subspaces. 
Observing then that we can relate −∞k  to +∞k  via

( )( ) ( ) ( ) ( )
→ →

⎛
⎝
⎜

⎞
⎠
⎟= Ψ − Φ Ψ − Φ+∞

∞ −∞

−

−∞k t t t t klim , 0 lim , 0
t t

1

we note that each of the limits in this definition exist:

Proposition 3.1.  The limits

( ) ( )
→

Ψ − Φ
±∞

t tlim , 0
t

c

exist and are nonsingular.

Proof.  We write

( ) ( ) ( ( ( )) ( ) ) ( )
( ) ( ) ( ) ( )

( )γ= | + | − |

= | +

y DX y t DX t DX y t

DX y t M t y t

˙ 0 0

: 0
E Y t E

E

H H H

H

cc c

c

noting that ( ) ( )= λ−M t O e t  for λ α< <0  (with α being the minimum of the real parts of the
hyperbolic eigenvalues of the linearisation at the origin) as a consequence of the exponential 

convergence of the homoclinic orbit ( )γ t  to the origin. We find solutions ˜ ( )φ tj  such that

˜ ( )
→
φ =λ

∞

−t plim e
t

j
t

j
j

where ( ) λ| =DX p p0 E j j jH c  for each pj. The ˜ ( )φ tj  are found as fixed points of an operator ∗Tt j,

mapping from the space of bounded continuous functions on the interval [ )∞∗t , , ([ ) )R∞∗C t , , l2

with the supremum norm |⋅|∞, into itself. We show that for t* sufficiently large, each ∗Tt j,  is a
contraction. The ∗Tt j,  are defined by

( ( )) ( ) ( )( ) ( )∫φ φ= −λ
∗

∞
| −T t p M s s se e dt j

t
j

t

DX t s
,

0j EH c

We have:

T t T t t t C s

t t CC

e e d

e

t j t j
t

DX t s s

t

, 1 , 2 1 2
0

1 2 1

EH c∫φ φ φ φ

φ φ
λ

− | − |

| − |

λ

λ

∞

∞
| − −

∞

−

∗ ∗

∗

∥ ( ) ( )∥ ⩽ ( ) ( ) ∥ ∥

⩽ ( ) ( )

( ) ( )

so this is a contraction for t* large enough, for each { }∈j l1, ..., 2 . Using this approach for
each j, we can build a fundamental matrix φ φΦ = | |˜ ( ) ( ˜ ( ) ˜ ( ))t t t... l1 2  (that is, using the ˜ ( )φ tj  as
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columns), so that

Φ = | |
∞

| |˜ ( ) ( )
→

( ) ( )t p plim e ... e
t

tDX tDX
l

0
1

0
2

E EH c H c

which implies

( ) ˜ ( )
→
Ψ − Φ =

∞
t t Plim ,

t

where ( )≠Pdet 0. Now we can return to our original fundamental via ( ) ˜ ( ) ˜Φ = Φt t P, 0  for a
nonsingular matrix P̃. We conclude

( ) ( ) ˜
→
Ψ − Φ =

∞
t t PPlim , 0

t

which is nonsingular. A similar argument holds in negative time.� □
We then define the scattering matrix →σ E E: c c by

( ) ( ) ( )
→

σ = Ψ − Φ − Ψ −
∞

t t t t: lim , .
t

c
(10)

Thus, since ( )Ψ t  is orthogonal and commutes with D2H(0), we have

( ( )) ( ) ( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

→ →
γ γ−

= Ψ Ψ − Ψ Ψ

= −

+∞ −∞

+∞ +∞ −∞ −∞

+∞ +∞ −∞ −∞

D H t k t k t D H t k t k t

D H t k t k D H t k t k

D H k k D H k k

lim , lim ,

0 , 0 ,

0 , 0 ,

t
i j

t
i j

i j i j

i j i j

2 2

2
, ,

2
, ,

2
, ,

2
, ,

which, together with the expression (7b) leads to the following representation of the Hessian, 
concluding the proof of theorem 1:

( ) ( )g σ σ= | − |D D H D H0 0 .T
E E

2 2 2
c c (11)

3.1.  Indefiniteness of the Hessian

In this section we prove part (i) of theorem 2. The argument uses the classical minimax prin-
ciple (see [4]), which states that given a symmetric ( )×n n  matrix A with the eigenvalues λi

ordered so that ⩽λ λ +i i 1, = … −i n1, , 1,

⟨ ⟩
∥ ∥

λ=
= ∈R R

v Avmin max ,
v v

k
1,

where R runs all (n  +  1  −  k)-dimensional linear subspaces. Combining it with the lin-
ear nonsqueezing theorem [16], we show that the most negative and most positive eigen-
values of ( )σ σ|D H 0T

E
2

c  cannot be closer to zero than those of ( )|D H 0 E
2

c, which implies 
that gD2  must be indefinite. Hence, if it is invertible, it can’t have the signature (0, 2l) or
(2l, 0). Recall, we assume (without loss of generality) that the matrix ( )|D H 0 E

2
c takes the form 

( ) ( )ω ω ω ω| =D H 0 diag , ..., , , ...,E l l
2

1 1c .

Proof of theorem 2.  (i). Seeking a contradiction, we assume that g=G D2  is positive 
definite. This implies that the eigenvalues λi of the symmetric matrix ( )σ σD H 0T 2  (ordered in
increasing size) are larger than those of D2H(0). That is, they satisfy4

4 This fact itself can also be proved using the minimax principle.
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⎧
⎨
⎪

⎩⎪

λ λ ω

λ λ ω

>

>−

,
...
...

,l l l

1 2 1

2 1 2

We now consider the minimax principle for the first eigenvalue λ1 of ( )σ σD H 0T 2 , which states;

D H v v v

v U U U

min max 0 , 1,
, subspace with dim 1 .

1 1
2ω λ σ σ< = | =

∈ =
{ ( ) ∥ ∥

    ( ) } (12)

The 2dimensional symplectic eigenspace of D2H(0) associated with ω1 is { }=ωE q pspan ,j j1  

for some { }∈j l1, ..., . Consider now the symplectic subspace ( )σ ω
− E1

1 . By the linear version

of Gromov’s nonsqueezing theorem (see e.g. [16]), the unit ball in R l2  cannot be mapped

into the cylinder ( ) {( ) ⩽ }= | +C q p q p q p r, ,r j j j j
2 2 2  for r2  <  1, so either v 1σ =∥ ∥  for all

σ∈ | =ω
−{ ( ) ∥ ∥ }v E v 11

1 , or there exist σ∈ | =ω+ −
−{ ( ) ∥ ∥ }v v E v, 11

1  such that

∥ ∥ ∥ ∥σ σ> <+ −v v1, 1.

In either case, we arrive at a contradiction to the statement (12) of the minimax principle: in 
the former we can take any v from σ | =ω

−{ ( ) ∥ ∥ }E v 11
1  to get λ ω=1 1, and in the latter we can

take v− if ω > 01  or v+ if ω < 01  to arrive at λ ω<1 1.
If we assume instead that G is negative definite, we can consider the minimax principle for 

the largest eigenvalue λ l2 , which in this case will give

ω λ σ σ> = | =
∈ =

{ ( ) ∥ ∥
    ( ) }

D H v v v

v U U U

max min 0 , 1,
, subspace with dim 1 .

l l2
2

(13)

A similar argument to the one above then yields ⩽ω λl l2 , the required contradiction. □

In the case of the smallest eigenvalue, the ‘max’ in the minimax principle is redundant
(likewise for the ‘min’ for the largest eigenvalue). For other eigenvalues however, these ele-
ments come into play, meaning that in general the argument cannot be repeated to rule out 
other signatures.

4. Near-integrable systems, and near-identity scattering matrices

Definition 4.1.  A symplectic rotation is a real symplectic matrix [ ] ( )R= ∈θR r Sp n2 ,i j,

with ( ) Rθ θ θ= ∈, ..., n
n

1 such that for each { }∈i n1, ..., ,

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟θ θ

θ θ
=
−

+

+ + +

r r
r r

cos sin
sin cos

i i i n i

n i i n i n i

i i

i i

, ,

, ,

and ri, j  =  0 otherwise.

So θR  acts by a rotation through an angle θi in each pair of conjugate directions ( )+x x,i n i .
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Remark 4.2.  For our considerations, the scattering matrix σ is only determined up to left 
multiplication by a symplectic rotation, since

( ) ( ) ( )σ σ σ σ σ σ| = | = |θ θ θ θD H R k R k R D H k R k D H k k0 , 0 , 0 ,E l m E l m E l m
2 2 2

c c c

Hence, considering the form (11) of the Hessian of our reduced function g, we see that two scat-
tering matrices σ and σθR  are equivalent in the sense that they yield the same Hessian matrix.

It is easy to build an example of an integrable system with a homoclinic loop. Consider a 
Hamiltonian H0 of the form

H q q p p x x y y h q q p p h x x y y, ..., , , ..., , , ..., , , ..., , ..., , , ..., , ..., , , ..., ,l l n l n l c l l s n l n l0 1 1 1 1 1 1 1 1= +− − − −( ) ( ) ( )�

(14)

where the quadratic part of hc is ( )= ∑ +ω
+h q pc i

l
i i,2 1 2
2 2i , with each Rω ∈i  distinct. Let the 

(n  −  l) degree of freedom Hamiltonian vector field given by hs have a hyperbolic equilibrium 
at the origin with a nondegenerate homoclinic orbit ( )γ t0 , that is, a homoclinic along which the 
intersection of the tangent spaces to the stable and unstable manifolds is one-dimensional. The 
orbit ( )γ t0  is a homoclinic loop of the system XH0, contained in the subspace {( ) }=q p, 0 . It is 
straightforward to see from the product structure of the system and the nondegeneracy of ( )γ t0  
that the vector field XH0 satisfies the transversality assumption 3 on the invariant manifolds. 
It is also straightforward to see from the product structure of the system and the nondegen-
eracy of ( )γ t0  that the vector field XH0 satisfies the transversality assumption 3 on the invariant 
manifolds.

Note that the Hamiltonian H0 can be chosen to be completely integrable. For instance, we 
could take

h q q p p q p, ..., , , ...,
2

c l l
i

l
i

i i1 1
1

2 2∑ ω= +
=

( ) ( )� (15)

( ) ( )∑
α

= − + + −− −
=

−

h x x y y
y x x

y x, ..., , , ...,
2 2 3 2

s n l n l
i

n l
i

i i1 1
1
2

1
2

1
3

2

2 2� (16)

with Rα ∈i . This leads to a system which has a homoclinic loop in the ( )x y,1 1  plane given by 

( ) ( ( ) ( ))γ =t g t g t, ˙0 , ( ) ( )=g t sech t3

2
2

2
, R∈t , and n first integrals H0, ξ ξ, ... l1 , η η −, ... n l2  where 

( )ξ = +ω q pi i i2
2 2i  and ( )η = −α y xi i i2

2 2i . These first integrals commute with respect to the stan-

dard Poisson bracket { }( ) ( ( ) ( ))ω⋅ = ⋅ ⋅f f X X, ,f f1 2 1 2
.

Proposition 4.3.  The scattering matrix of the orbit ( )γ t0  in the system given by XH0 as 
defined above, is the identity.

Proof.  In our case the variational equation along ( )γ t0  takes the form

( ) ( )( ) ( ( ))J J⎜ ⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠ γ= = −D h D h t

q
p

q
p

x
y

x
y

˙
˙

0 ,
˙
˙ .l c n l s

2 2
0

The 2l-dimensional ( )q p,  subsystem has constant coefficients and the fundamental matrix is 
a symplectic rotation, ωRt  , where ( )ω ω ω= , ..., l1 . The ( )x y,  subsystem has only one bounded 
solution on R (as a consequence of the nondegeneracy of ( )γ t0 ); it is given by ( )γ t0̇ . For the 
scattering matrix, we find → =ω ω ω∞ − −R R R Ilimt t t t2 .� □
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In general, we do not expect that the scattering matrix of a completely integrable sys-
tem is identity. However, the integrable flow preserves the value of integrals, so the linear 
map defined by the scattering matrix on the center manifold must preserve the linearized 
actions, i.e. it has to be a symplectic rotation for an appropriate choice of coordinate sys-
tem on the tangent space to W c (use the action-angle variables for the linearized system 
on W c as the polar coordinates). Bearing in mind remark 4.2, this does not affect our 
considerations.

Now, let us consider what kind of scattering matrices can appear at a small perturbation 
of an integrable system. We, first, consider perturbations which are localised near ( )γ t0  on a 
finite time interval [−T, T], for some T  >0. We write the scattering matrix as a composition of 
symplectic matrices which represent the linear flow in the central subspace Y(t) on [ ]−∞ −T, , 
[−T, T] and [ ]∞T ,  respectively;

( ) ( ) ( ) ( ) ( )
→ →

σ = Ψ − Φ Φ − Φ − − Ψ −
+∞ +∞

� �t t T T T T t tlim , , lim , .
t

c c

t

c

We can always choose symplectic coordinates in Y(T ) and Y(−T ) such that 
( ) ( )→ Φ − − Ψ − =+∞ T t t dlim , it

c  and ( )Φ − =T T d, ic , so that

( ) ( )
→

σ = Ψ − Φ
+∞

t t Tlim , .
t

c
� (17)

When we add a perturbation localised strictly inside a neighbourhood of { ( ) [ ]}γ ∈ −t t T T, ,0 , 
this would result to a small perturbation to ( )Φ −T T,c  only. Thus, the scattering matrix for the 
perturbed system will take the form

( )σ σ= Φ −T T,c
0� (18)

where σ0 is the scattering matrix for the unperturbed system. Let us show that the localised 
perturbation can be chosen in such a way that ( )Φ −T T,c  will become any given symplectic 
matrix close to identity.

Indeed, take a small affine cross-section Σ through ( )γ −T0 , such that it would contain the 
central subspace Y(−T). Let U  be the union of all forward orbits of length 2T over all initial 
points in Σ. The set U  is foliated by the level sets of H which are smooth manifolds of codi-
mension one, invariant with respect to the flow maps ϕτ. The maps ϕτ are symplectic and pre-
serve H, which means we can always introduce symplectic C k-coordinates5 (E, t, z) in U  such 
that E is the value of the Hamiltonian H, the coordinate [ ]∈ −t T T,  equals to the time it takes 
for the point to get back to Σ, and z stays constant along the orbits, i.e. ( ) ( )ϕ=E t z E z, , , 0,t . 
One can check that the symplectic form in U  is given by E t z zd d d d∧ ∧+ J .

In these coordinates the map ϕ̄ ϕ= T2  is identity, so the map ( )Φ −T T,c  obtained by the 
restriction of the derivative of ϕ T2  at the point ( )γ −T0  to the central subspace Y(−T) is also 
an identity, as required for formula (17) to be true. Let C be a symmetric matrix, µ∈ −R n2 2 
be small, and ε run a small interval of R1 around zero. Consider a family of perturbed 
Hamiltonians ε µH C, ,  defined as follows:

( ) ( )⟨ ⟩ ( ) ( )⟨ ⟩ε
ξ η ξ η µ= + −ε µH E t E z z Cz t E z z

2
, , , ,C, ,� (19)

5 k is the smoothness of the system, so we assume here that the Hamiltonian H is at least of class Ck+1.
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where ξ is localised strictly inside the interval [−T, T], η is localized in a small neighbourhood 

of zero, η = 1 for all (z, E ) close enough to zero, and ( )∫ ξ =
−

t td 1
T

T
. At (z, E) close to zero the 

equations of motion by the perturbed Hamiltonian are given by

( )Jεξ µ= = − +t z t Cz˙ 1, ˙ .

These equations immediately imply

¯ ( ) ( ( ))
¯

( ) ( )Jϕ µ ε
ϕ

ε= +
∂

∂
= −ε

εO
x

C0 1 , 0 exp .C
C

,
,� (20)

As we see, the solution z  =  0 of the unpertubed system that corresponds to the homoclinic 
loop ( )γ t0  persists in the perturbed system if µ = 0, i.e. the homoclinic loop persists. Thus, if
we denote by B the restriction of the matrix C to the center subspace Y(−T), then by (20), (18), 
we obtain the following result.

Proposition 4.4.  Given any symmetric matrix B there exists a family of perturbed Ham-
iltonian εH C,  such that ≡H HC0, 0, and for all small ε the system defined by εH C,  has a homo-
clinic loop to the elliptic–hyperbolic equilibrium O with the corresponding scattering matrix 
σε C,  equal to

( )Jσ σ ε= −ε Bexp .C, 0 (21)

Recall that any symplectic matrix which is sufficiently close to the identity can be expressed 
as ( )JBexp  with a small symmetric matrix B (see e.g. [7]). Thus, we have shown that arbitrary
symplectic perturbation of the scattering matrix can be achieved by a small perturbation of 
the Hamiltonian H0.

So far, the perturbations we considered were localised in a bounded domain, so they 
were not-analytic (of class Ck if the non-perturbed Hamiltonian is Ck+1). However, the state-
ment of proposition 4.4 carries over to the analytic case as well. To see this, if the origi-
nal Hamiltonian H0 is analytic, consider an analytic family of perturbations ˆε µH C, ,  which
is at least C4-close to the family of C4-smooth localised Hamiltonians ε µH C, ,  built above. 
By (20), the splitting of the separatrix loop in the family ε µH C, ,  is controlled by the para
meter μ. The same is true for any smooth approximation of this family (as the stable and 
unstable manifolds of O depend continuously on the system, i.e. C2-small changes in the 
Hamiltonian lead to small changes in the position of the stable and unstable manifolds), e.g. 
for the family ˆε µH C, , . This means, in particular, that we can find ( )µ ε C,  smoothly depend-
ing on C and ε such that for all ε and C under consideration the system defined by the 
Hamiltonian ˆ ˆ ( )=ε ε µ εH HC C C, , , ,  will have a homoclinic loop close to γ0, and this loop will
analytically depend on ε and C. As the family ˆεH C,  is at least C 4-close to the family εH C, ,0,
the corresponding family of scattering matrices σ̂ε C,  will be close (as a smooth family) to
the family σε C,  defined by (21). As the range of possible values for σε C,  covers all symplectic 
matrices close to σ0, the same holds true for σ̂ε C, . Thus, proposition 4.4 holds true for a fam-
ily of analytic perturbations if H0 is analytic.

As σ0 is a symplectic rotation for an integrable system, and multiplication of the scattering 
matrix to a symplectic rotation does not change the Hessian matrix g=G D2 , we obtain from 
(21) that all Hessians G that correspond to all possible near identity scattering matrices can be 
realised by a small analytic perturbation of any given integrable system with a non-degenerate 
homoclinic loop to an elliptic–hyperbolic equilibrium.
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5. All indefinite signatures are possible

In light of the previous section, we now investigate the case in which the scattering matrix 
is a near identity symplectic transformation, which can be expressed as the flow along a 
Hamiltonian vector field. This means that we can write

( ) ( )J Jσ ε ε ε= − = − +OB I Bexp 2 (22)

with ε� 1 and B an arbitrary symmetric matrix. Substituting the form (22) into the expression 
(11) yields;

( ) ( ) ( )g J J
ε β β

ε
∂
∂ ∂

= − +OB D H D H B
1

0 0
i j

2
2 2

Since the eigenvalues of a matrix depend continuously on its entries, for sufficiently small ε, 
the Hessian of g has the same signature as ( ) ( )J J−B D H D H B0 02 2 . Our goal then, is to deter-
mine the possible signatures of this matrix. As a first observation, a simple calculation tells us 
that the trace is zero, which rules out the possibility that the matrix could be sign-definite, in 
agreement with theorem 2 (i). For a deeper investigation, we begin by defining the map

χ
χ = −

× ×R R
J J

( ) → ( )
( )B B A A B

: Sym SymA
n n n n

A

2 2 2 2

Where ( )R ×Sym n n2 2  denotes the symmetric ×n n2 2  matrices with real entries. We can now
express the set of matrices that we are studying as ( )( )χ |R D H 0 W

2 c . To gain a characterisation of 
this range, we endow ( )R ×Sym n n2 2  with the inner product

( )=M M M M, tr1 2 1 2 (23)

that is, the inner product of M1 and M2 is the trace of their ordinary matrix product. This 

allows us to write ( ) ( )( ) ( )χ χ=| |
∗ ⊥R kerD H D H0 0W W

2 c 2 c
, where both the adjoint and the orthogonal 

complement are taken with respect to (23). We calculate the adjoint as follows

χ = −
= −
= −
= −

J J
J J
J J
J J

( ( ) ) (( ) )
( ) ( )
( ) ( )
( ( ))

B M B A A B M

B AM A BM
B AM BMA
B AM MA

tr tr

tr tr
tr tr
tr

A

Hence,

( ) J Jχ = −∗ M AM MAA

Recall that in our coordinates the second derivative of the Hamiltonian restricted to the 
center subspace takes the diagonal form

( ) ( )ω ω ω ω| = … …D H 0 diag , , , , ,E n n
2

1 1c

We also use the notation ( )Mdiag , for R∈ ×M n n2 2 , to denote the vector which contains the
diagonal elements of M.

Lemma 5.1.  If ω ω ω≠ ≠…≠ n1
2

2
2 2, then

(i)	 ( ) { ( ) }( ) Rχ = … … ∈∗ a a a a aker diag , , , , ,D H n n i0 1 12

(ii)	 ( ) { ( ) ( ) ( ) }( ) R Rχ = ∈ = … − … − ∈×R M M g g g g gSym diag , , , , , ,D H
n n

n n i0
2 2

1 12
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Proof. 

(i)	We use an induction argument on n. The statement is easily verified for n  =  1. Assuming 
the case n  =  i, we now consider n  =  i  +  1. We write ( )( ) ( )R∈ + × +K Sym i i2 1 2 1  as

=
… …

… …

+ +

+ + + + + +

+ +

+ + + + + +

� �

� �( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

K

k k

K K

k k k k

k k

K K

k k k k

i i

i i i i i i

i i

T

i i i i i i

1, 1
1

1, 1
2

1 2

1,1
1

1, 1
1

1,1
2

1, 1
2

1,1
2

1, 1
3

2 3

1, 1
2

1, 1
2

1,1
3

1, 1
3

		with each Kj being an ×i i matrix, with K1 and K3 symmetric, and also writing Ai for the 
matrix ( )ω ω…diag , , i1 , we arrive at

ω ω

ω ω ω ω

ω ω

ω ω ω ω

|

=

−

−
− … − …

−

−

− … …

+ + + +

+ + + + + + + +

+ + + +

+ + + + + + + +

� �

� �

J( )

( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

KD H

k k

K A K A

k k k k

k k

K A K A

k k k k

0 W

i i i i

i i

i i i i i i i i

i i i i i

i T i

i i i i i i i i

2

1 1, 1
2

1 1, 1
1

2 1

1 1,1
2

1 1, 1
2

1 1,1
1

1 1, 1
1

1 1, 1
3

1 1,
2

3 2

1 1, 1
3

1 1, 1
3

1 1, 1
2

1 1, 1
2

c

		and

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

D H K

k k

A K A K

k k k k

k k

A K A K

k k k k

0 W

i i

i T i

i i i i i i i i i i

i i

i i

i i i i i i i i i i

2

1 1,1
2

1, 1
3

2 3

1 1, 1
2

1 1, 1
2

1 1, 1
3

1 1, 1
3

1 1, 1
1

1 1, 1
2

1 2

1 1,1
1

1 1, 1
1

1 1,1
2

1 1, 1
2

c

ω ω

ω ω ω ω

ω ω

ω ω ω ω

|

=
… …

− −

− −
− … − − … −

+ +

+ + + + + + + + + +

+ +

+ + + + + + + + + +

� �

� �

J ( )

( )

		Equating these matrices, we find that the block components are equal if and only if the 
matrix

( )
( )R

⎛
⎝
⎜

⎞
⎠
⎟∈ ×K K

K K
SymT

i i
1 2

2 3
2 2

		lies in the kernel for the i-dimensional case. By the induction hypothesis, this matrix thus 
has the form given in (i). Equating the remaining components gives firstly
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ω ω

ω ω

− = ⇒ =

= ⇒ =

+ + + + + + + +

+ + + + + + + + + +

k k k

k k k k

0i i i i i i i i

i i i i i i i i i i

1 1, 1
2

1 1, 1
2

1, 1
2

1 1, 1
1

1 1, 1
3

1, 1
1

1, 1
3

		Furthermore, we obtain a collection of pairs of simultaneous linear equations, one 
example being

( ) ⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠

ω
ω ω
−

− =+

+

+

+

w k

k

0
0

i

i

i

i

1 1

1 1

1, 1
1

1, 1
3

		If ω ω− ≠+ 0i 1
2

1
2 , we thus obtain that = =+ +k k 0i i1, 1

1
1, 1
3 . Accounting for all components 

in a similar way tells us that provided ω ω≠+i k1
2 2 for { }∈ …k i1, , , we must have all other

components equal to zero. Thus the only degree of freedom is in choosing the value of 

=+ + + +k ki i i i1, 1
1

1, 1
3 , and so K itself is of the form given in (i). This concludes the induction 

step and thus the proof of (i).
(ii)	This follows easily from (i), using the characterisation ( ) ( )( ) ( )χ χ=| |

∗ ⊥R kerD H D H0 0W W
2 c 2 c

. 

□

In this section we prove the following theorem:

Theorem 4.  The matrix given by

( ) ( )J J−D H B B D H0 02 2

and hence the Hessian matrix gD2 , can take every signature except (2l, 0) or (0, 2l).

The proof is based upon an application of a theorem from [19]. Before stating the theorem 
we introduce some notation

Definition 5.2.  For two vectors ( )…a a, , n1  and ( )…b b, , n1  in Rn, the expression

( ) ( )… …≺a a b b, , , ,n n1 1

will mean that when the elements are renumbered so that

⩾ ⩾     ⩾ ⩾… …a a b b, and ,n n1 1

then

⩽ (   )+…+ +…+ = … −a a b b k n1, 1k k1 1� (24)

+…+ = +…+a a b b .n n1 1 (25)

Mirsky theorem [19]. Let ω ω…, , n1 , …a a, , n1  be real numbers. Then

( ) ( )ω ω… …≺a a, , , ,n n1 1

is the necessary and sufficient condition for the existence of a real symmetric ×n n matrix with 
ω ω…, , n1  as its eigenvalues and …a a, , n1 , in that order, as its diagonal elements.
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We now use this criterion to prove theorem 4. The idea of the proof will be to demonstrate 
that taking the vector g given by

( ) ( )… … = … − … −+g g g g, , , , , 1, , 1, 1, , 1 ,l l l1 1 2

and any { }∈ … −m l1, , 2 1 , we can demonstrate a vector R∈b l2  with m positive and (2l  −  m)
negative elements, satisfying

( ) ( )… …≺g g b b, , , , .l l1 2 1 2

Appealing to Mirsky theorem will then provide us with a matrix in ( )R∈ ×G Sym l l2 2  whose
diagonal elements are given by g (and hence ( )( )χ∈RG D H 02 ), whose eigenvalues are …b b, , l1 2 ,
and hence G has signature (m, 2l  −m).

Proof of theorem 4.  Choose any { }∈ … −m l1, , 2 1 , and write

  ( )
( )

( )
( )

( )
( )

 
 

( ) 

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= − …
− −
−

− −
−

…
− −
−

−

� ������� �������
� ����������������� �����������������

b l m
l

l m

l

l m

l

l m
2 , 1, , 1 ,

2 1

2
,

2 1

2
, ,

2 1

2
m

l m
elements

2 elements

As explained above, the theorem will be proved if we can demonstrate that ≺g b (with g 
as defined above). Firstly, we note that the elements of g and b are already numbered in the 
appropriate nonincreasing order, and that

+…+ = +…+ =g g b b 0.l l1 2 1 2

To prove that (24) is satisfied, we consider the cases m  >  l and ⩽m l separately.

Case (1a): m  >  l, { }∈ …k l1, , . For k in this range, the inequalities in (24) take the form

− + −
⇔ − −

⩽ ( ) ( )
⩽

k l m k
l m
2 1

0 2 1

which is true since { }∈ … −m l1, , 2 1 .

Case (1b): m  >  l, { }∈ + …k l m1, ,   Here (24) becomes

⩽ ( ) ( )− − + −l k l m k2 2 1

so

⩽ ( )− − −k k m1

and since ⩽ ⩽+l k m1 , this means

⩽+ − − − −l m k m1 1 1

so we need ⩾− −l m k. But ⩽ ( )−m l2 1  so

l m l l
l
k

2 1
1

.

− − −
− −
−

⩾ ( )
⩾
⩾
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Case (1c): m  >  l, { }∈ + …k m l1, , 2  . We now have

⩽ ( ) ( ) ( )
( )

− − − −
−
−

l k l k m
l

l m
2 2 1

2 1

2

and since (2l  −  m)  >  0 this simplifies to

⩽ ( )+ −km k l m2 1 .

Assuming for contradiction that km  >  k  +  2l(m  −  1) leads to

( )− > −m
l

k
m1

2
1

but since ⩾ 1l

k

2 , this is our required contradiction.

Case (2a): ⩽m l, { }∈ …k m1, ,   This is the same as case (1a).

Case (2b): ⩽m l, { }∈ …k m l, ,  We now need to show

⩽ ( ) ( ) ( )
( )

− − −
−
−

k l k m
l

l m
2 1

2 1

2
.

This simplifies to

( ) ⩽ ( )− − −
k

l
l m l

2
4 1 2 1

and since ⩽k

l2

1

2
 and ( ) ⩽ ( )− − −l m l4 1 4 2 , this is true.

Case (2c): ⩽m l, { }∈ + …k l l1, , 2  This is the same as case (1c).� □

This result finishes the proof of item (iii) of theorem 2.

6.  Reversible Hamiltonian case

Let us now assume further that our Hamiltonian system is reversible with respect to a linear 
involution which acts antisymplectically →R RR : n n2 2 , and also that the homoclinic to the 
equilibrium ( )γ t  is symmetric, as described by assumption 4. This implies that R and ( )DX 0H  
share the same invariant subspaces, and in particular the restriction of ( )JDX 0H  to the center 
subspace Ec is reversible with the respect to the restriction of R to Ec. By a symplectic change 
of coordinates in Ec which amounts to averaging the inner product over the finite group gen-
erated by R and J, we are able to assume without loss of generality that J takes its standard 

form J
⎛
⎝
⎜

⎞
⎠
⎟=

−
I

I
0

0
l

l
 and R is orthogonal (see for instance appendix B of [10]). Since R2  =  I, 

this means that R is symmetric. In what follows we sometimes write R for the restriction of R 
to Ec, when the context is clear.

In this section we prove theorem 3. First, we assemble some properties of the scattering 
matrix and the Hessian.

Lemma 6.1.  Under assumption 4,

	 (i)	The scattering matrix σ satisfies σ σ =� �R R.

	(ii)	 ( ) ( )g gσ σ= −� � � �D R R D .T2 2
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Proof.  (i.) The scattering matrix is defined as ( ) ( ) ( )→ Ψ − Φ − Ψ −∞ t t t tlim ,t
c . As a conse-

quence of assumption 4 we have ( ) ( )Φ − = Φ −R t t t t R, ,  and since the dynamics in the centre
subspace of the equilibrium are reversible, we also have ( ) ( )Ψ − = ΨR t t R. Furthermore, the
family of subspaces ( ) ( )R⊂ γY t Tc

t
n2  satisfy ( ) ( )= −RY t Y tc c  which leads to ( ) ( )= −P t RP t Rc c

where Pc(t) is our projection onto Yc(t). Combining these relations and applying them to the 
definition of σ yields σ σ= −� �R R1  and hence the result. Regarding part (iii), we already 
have the expression ( ) ( ( ) )g σ σ− = | − |D D H D H0 0E

T
E

2 2 2
c c , so that

( ) ( ( ) ) ( ( ) )g σ σ σ σ σ− = | − |� �D R D H R D H R0 0 .E
T

E
2 2 2

c c

Since the linearisation ( )J |D H 0 E
2

c is reversible, and since R acts antisymplectically, this im-
plies that D2H(0) commutes with R. Using this fact and (i) brings us to

( ) ( ( ) ) ( ( ) )g σ σ σ− = | − |� �D R R D H R D H0 0 .E
T

E
2 2 2

c c

The claim now follows using RT  =  R and (i) again.� □

The idea in what follows is to choose a basis of ( )Lker  in which gD2  becomes σ�R  revers-
ible, thus implying a symmetry of the spectrum, which gives the (l, l) signature. Looking at 
(ii), we see that gD2  is ( )σ�R  reversible if ( )σ�R  is symmetric. Since ( )σ�R  is an involution,
this is the same as being orthogonal.

Proof of theorem 3.  Define a new inner product by

x y x y R x R y

I R R x y

,
1

2
, ,

1

2
, .T

σ σ

σ σ

= +

= +

� �

� �

[ ] ( ( ) ( ) )

( ( ) ( ))

Note that

[( ) ( ) ] [ ]σ σ =� �R x R y x y, , . (26)

Since ( ( ) ( ))σ σ+ � �I R RT1

2
 is symmetric and positive definite, it has a uniquely defined sym-

metric square root so we can write

( ( ) ( ))σ σ+ =� �I R R S S
1

2
T T

and hence

[ ] =x y Sx Sy, ,

So, the new inner product is just the old one but in the new basis given by applying S to the old 
basis. Looking at (26) tells us that in this basis, σ�R  is an isometry, and hence represented by 
an orthogonal matrix. So, in this basis we have the relation

( ) ( )g gσ σ= −� � � �D R R D2 2

which is what we wanted, and so the signature of gD2  must be (l, l), since gD2  is related to 
g−D2  by a similarity transform.� □
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