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Abstract
We prove that heterodimensional cycles can be created by unfolding a 
pair of homoclinic tangencies in a certain class of Cr-diffeomorphisms 
(r = 3, . . . ,∞,ω). This implies the existence of a C2-open domain in the 
space of dynamical systems with a certain type of symmetry where systems 
with heterodimensional cycles are dense in Cr. In particular, we describe a 
class of three-dimensional flows with a Lorenz-like attractor such that an 
arbitrarily small time-periodic perturbation of any such flow can belong to 
this domain—in this case the corresponding heterodimensional cycles belong 
to a chain-transitive attractor of the perturbed flow.

Keywords: heterodimensional cycle, homoclinic bifurcation, homoclinic 
tangency, chaotic dynamics, Lorenz attractor
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1. Introduction

1.1. Main results

A heterodimensional cycle is formed by intersections between invariant manifolds of hyper-
bolic periodic orbits of different indices (dimensions of unstable manifolds). By this defini-
tion, they only appear in dimension three or more for diffeomorphisms, or dimension four 
or higher if we consider systems of autonomous differential equations. Heterodimensional 
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cycles in such dynamical systems create a basic mechanism that causes non-hyperbolicity 
and breaks structural stability. Early examples involving heterodimensional cycles were intro-
duced by Abraham and Smale [1] and Shub [46]. Later on, a systematic study was carried out 
by Diaz and his collaborators in [6, 10–12]. In [7], Bonatti and Diaz built a comprehensive 
theory of C1 diffeomorphisms having heterodimensional cycles of co-index one (i.e. when 
the difference between the indices is one). They also showed the C1-robustness of heterodi-
mensional cycles—a C1-small perturbation of a system with a heterodimensional cycle can 
always be constructed such that the perturbed system gets into a C1-open domain in the space 
of dynamical systems where systems with heterodimensional cycles are dense (in C∞ or Cω 
sense). A general higher smoothness version of this result is missing and a Cr theory (with 
r  >  1) of perturbations of heterodimensional cycles is much less developed (see, however, [4, 
5, 10–12, 26]).

The aim of this work is to provide more examples where heterodimensional cycles appear 
naturally in multidimensional systems. In particular, we show that heterodimensional cycles 
can be born out of a certain type of homoclinic tangencies (after a Cr-small perturbation, for 
an arbitrarily large r, including the case of perturbations small in the real-analytic sense). 
Since homoclinic tangencies persist in the so-called Newhouse domains (C2-open regions in 
the space of dynamical systems where systems with homoclinic tangencies are Cr-dense for 
every r � 2 [20, 36]), this gives us the persistence of heterodimensional cycles in the corre-
sponding type of the Newhouse domain.

We apply the result to periodically perturbed Lorenz-like systems, which is the main motiv-
ation of this work. We give a detailed discussion on this matter in section 1.2.

Denote by Diffr(M) the space of Cr-diffeomorphisms on a D-dimensional manifold M, 
where r = 3, . . . ,∞,ω and D � 3. Let F ∈ Diffr(M) satisfy the following conditions.

 (C1)  F has a saddle periodic point O with multipliers γ , λ, λ1, . . . ,λD−2 such that λ and γ  are 
real,

|λD−2| < · · · < |λ1| < |λ| < 1 < |γ| (1)

and

|λγ| > 1. (2)

 (C2)  There exist two orbits Γ and Γ̃ of quadratic homoclinic tangency between the unstable 
and stable manifolds of O.

In order to formulate the next condition, recall some definitions. Denote by WuE(O) a two-
dimensional invariant manifold tangent to the eigenspace corresponding to λ and γ—the 
unstable and weak stable multipliers of O, and call it the extended unstable manifold of O. 
This manifold is not unique, but it contains Wu(O) and any two of these manifolds are tangent 
to each other at every point of Wu(O). Recall also that for any diffeomorphism satisfying (C1) 
there is a unique strong-stable Cr-foliation F0 in the stable manifold Ws(O) which includes, as 
a leaf, the strong-stable manifold Wss(O) (tangent at O to the eigenspace corresponding to the 
multipliers smaller than λ in the absolute value). Detailed discussion can be found in Chapter 
13 of [45] or in [49].

Assume the diffeomorphism F satisfies the following non-degeneracy assumption.

 (C3)  The homoclinic orbits Γ and Γ̃ do not lie in Wss(O), and the manifold WuE(O) is trans-
verse to the strong-stable foliation F0 at the points of Γ and Γ̃ (in particular, WuE(O) is 
transverse to the stable manifold Ws(O) at the points of Γ and Γ̃).
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Observe that if we add any C2-small perturbation to F without destroying the homoclinic 
tangencies, the tangencies will remain quadratic and also condition (C3) will remain fulfilled.

Note that conditions (C1) and (C3) imply that the set consisting of the saddle O, and the 
two homoclinic orbits Γ and Γ̃ is partially hyperbolic. Therefore, the foliation F0 can be 
smoothly extended to a neighbourhood of O ∪ Γ ∪ Γ̃, see [49].

It should be noticed that a single homoclinic tangency is not enough for creating heterodi-
mensional cycles in diffeomorphisms of the type considered in this paper, i.e. those having 
a saddle with real multipliers being closest to the imaginary axis. It is shown in [22] that 
periodic orbits of different indices can be obtained by unfolding a single orbit of homoclinic 
tangency. However, these points and O cannot form heterodimensional cycles since they 
all lie in a certain two-dimensional invariant manifold (see [49]) while heterodimensional 
cycles require at least 3-dimensional ambient space. Therefore, we must consider an interplay 
between two orbits of homoclinic tangency. This is similar to the results of [27, 28] where we 
obtained heterodimensional cycles by perturbations of a pair of homoclinic loops to a saddle-
focus equilibrium state.

A way to make homoclinic tangencies come in pairs is to assume a symmetry in the system. 
Note that Lorenz-like systems that motivate this work do possess symmetry, so when such 
system has a homoclinic loop it also has a second one. When we add a periodic perturbation 
that keeps the symmetry, the pair of homoclinic loops can transform to a symmetric pair of 
homoclinic tangencies of the type we consider here.

The diffeomorphism F is Z2-symmetric if there exists a Cr-diffeomorphism R such that 
R2 = id and R ◦ F = F ◦ R. In order to describe our assumptions on the involution R, con-
sider a small neighbourhood V  of the point O. We assume that the point O is symmetric with 
respect to R, so RO = O. It is well-known that one can choose coordinates in V , with O at 
the origin, such that R will be linear in these coordinates (a nonlinear involution v �→ R(v) 
becomes linear: vnew �→ R0vnew, after the coordinate transformation vnew = (v +R0R(v))/2, 
where R0 is the derivative of R at zero). Choose such coordinates v. Let τ  be the period of 
the point O. As the linear map R commutes with the derivative DFτ at O, the invariant sub-
spaces of DFτ |O are invariant with respect to R too. Denote v = (x, y, z) where the x-, y -, and 
z- spaces are the eigenspaces of DFτ |O corresponding to λ, γ , and the rest of the multipliers 
λi, respectively. As we mentioned, the x-, y - and z-spaces are invariant under R. We assume 
that R : (x, y, z) �→ (x̄, ȳ, z̄) in V  acts in the following way:

x̄ = x, ȳ = −y, z̄ = Sz, (3)

where S  is a linear involution that changes the signs of some of z-coordinates.
Denote by Diffr

s(M) the subspace of Diffr(M) consisting of R-symmetric diffeomor-
phisms. Maps that are close to F in Diffr(M) (in particular, the maps that are close to F in 
Diffr

s(M)) have a saddle periodic point, a hyperbolic continuation of O, that continuously 
depends on the map; its stable and unstable manifolds also depend on the map continuously. 
Those of these maps that have orbits of homoclinic tangency close to Γ form a codimension-1 
surface H in Diffr(M). For the maps that belong to the surface H ∩ Diffr

s(M) we also have 
a symmetric to Γ orbit Γ̃ of homoclinic tangency to O; conditions (C1)–(C3) are fulfilled for 
every map in this surface. One can define a functional µ in a neighbourhood of F in Diffr(M) 
such that dµ(Fε)/dε �= 0 for any one-parameter family Fε of maps in Diffr(M), which is 
transverse to the surface H, and |µ(Fε)| measures the distance between the unstable and stable 
manifolds of O near a certain point of Γ. Thus, the surface H is given by the equation µ = 0. 
Another functional we need is θ = − ln |λ|/ ln |γ| (it is a modulus of topological conjugacy 
[33, 35] and is known to play an important role in bifurcations of homoclinic tangencies 
[13, 16–19, 21, 22]). We consider any two-parameter family Fε1,ε2 of diffeomorphisms from 
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Diffr
s(M) (so all diffeomorphisms in the family are symmetric) such that Fε∗1 ,ε∗2  equals to the 

map F, and assume that

det
∂(µ(Fε1,ε2), θ(Fε1,ε2))

∂(ε1, ε2)
�= 0.

This condition means that we can consider µ(ε1, ε2) and θ(ε1, ε2) as new parameters, so we 
further use the notation Fµ,θ for the chosen family. Let θ∗ be the value of θ for the original 
diffeomorphism F, so F = F0,θ∗.

We also need one more (C1-open) condition on the multipliers of O:

 (C4)  |λ1| < λ2 and |λ||γ| 1
2 < 1.

We do not know if theorem 1 below holds without this condition, but our proof uses it in 
an essential way.

We can now state the main result of the paper.

Theorem 1. Let {Fµ,θ} be the two-parameter family of diffeomorphisms in Diffr
s(M) such 

that F0,θ∗ satisfies conditions (C1)–(C4). Then, there exists a sequence {(µj, θj)} accumulating 
on (0, θ∗) such that for any sufficiently large j  the diffeomorphism Fµj,θj has a symmetric pair 
of heterodimensional cycles, each of which includes the index-1 saddle periodic point O and 
some index-2 saddle periodic point.

Let us sketch the proof of this theorem. First, by changing µ, we destroy the original homo-
clinic tangency and obtain a new one, Γ̂, such that transverse homoclinics to O will exist near 
Γ̂ and also some additional properties are satisfied by Γ̂ (see lemma 3). It is known (see [16]) 
that by changing θ one can create a saddle orbit Q of index 2 near Γ̂ (condition |λγ| > 1 is cru-
cial here, as it implies expansion of areas transverse to the strongly contracting directions). By 
using the existence of transverse homoclinics to O, we prove that for any index-2 saddle peri-
odic point near Γ̂, its unstable manifold will intersect Ws(O) (see lemma 11). Finally, we show 
that, by changing µ and θ together, the index-2 saddle periodic point Q can be found such that 
that Ws(Q) intersects the piece of the unstable manifold of O near the orbit of homoclinic tan-
gency which is symmetric to Γ̂ (see lemma 12). In order to be able to do this, we need to have 
Ws(Q) sufficiently ‘straight’, which we achieve using condition (C4). The obtained existence 
of both intersections of Ws(Q) with Wu(O) and Wu(Q) with Ws(O) means the existence of the 
heterodimensional cycle involving O and Q (see figure 1).

Figure 1. A heterodimensional cycle can be obtained by splitting the homoclinic 
tangencies while changing θ.
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Recall that the Newhouse region in Diffr(M) is an open set comprised by diffeomorphisms 
having the so-called wild-hyperbolic set [32]. Systems with homoclinic tangencies are dense 
in the Newhouse region. Moreover, any family of diffeomorphisms which is transverse to a 
codimension-1 surface filled by diffeomorphisms which have a saddle periodic point O with 
a qudratic homoclinic tangency which satisfies the non-degeneracy conditions described in 
(C3) intersects the Newhouse region over an open set of parameter values, so parameter values 
corresponding to the existence of quadratic homoclinic tangencies to the hyperbolic continu-
ation of O are dense in these regions and the non-degeneracy conditions (C3) are fulfilled 
for these tangencies [20]. Since our family Fµ,θ is transverse to the codimension-1 surface 
H ∩ Diffr(M), it follows that we have open regions in the (µ, θ) plane where the parameter 
values are dense for which the map Fµ,θ has a symmetric pair of homoclinic tangencies sat-
isfying conditions (C1)–(C4). Thus, theorem 1 implies the following result on the Newhouse 
region in Diffr

s(M):

Corollary 1. There exist open sets in the plane of parameters (µ, θ) where parameter values 
corresponding to the existence of a pair of symmetric homoclinic tangencies to O are dense, 
and parameter values corresponding to the existence of heterodimensional cycles involving O 
and an index-2 saddle periodic point are dense in these sets.

Let us now consider the case without symmetry. Then, the simultaneous existence of two 
homoclinic tangencies given by condition (C2) is a codimension-2 phenomenon. Each of 
these homoclinic tangencies can be split independently, so we can introduce two splitting 
parameters, µ1 and µ2, which measure the distance between the stable and unstable manifolds 
near a point of Γ and, respectively, a point of Γ̃. As we have more parameters which we can 
perturb independently, the result analogous to theorem 1 becomes easier to obtain. In par-
ticular, we do not make assumption (C4) in the non-symmetric case. However, we need one 
more condition, without which the birth of heterodimensional cycle from the pair of homo-
clinic tangencies satisfying (C1)–(C3) will be impossible.

Recall that a uniquely defined smooth strong-stable foliation F0 exists in the stable mani-
fold of O. The homoclinic orbits Γ and Γ̃ lie in Ws(O), so for each point of these orbits there 
is a uniquely defined leaf of F0 which passes through this point. Assume that the following 
‘coincidence condition’ holds:

(C5) There is a leaf of F0 which contains, simultaneously, a point of Γ and a point of Γ̃.

Note that if condition (C5) is not satisfied, then both orbits of homoclinic tangency will 
be contained in the same three-dimensional invariant manifold [49] and, therefore, no heter-
odimensional cycles can be born near them. So, condition (C5) is necessary for the creation 
of heterodimensional cycles. This condition is automatically fulfilled in the symmetric case 
(when the involution R near O preserves the orientation in the weak stable direction x, as 
given by (3)). However, in the general case this is an additional equality-type condition, which 
makes the bifurcation under consideration a bifurcation of codimension 3. In principle, when 
we consider perturbations of systems satisfying conditions (C1)–(C3) and (C5), we may con-
sider the distance between the nearest leaves of the foliation F0 passing through the points of 
Γ and Γ̃ as an independent bifurcation parameter. We, however, do not need this and consider 
an arbitrary 2-parameter unfolding Fε, with ε = (ε1, ε2), of the map F satisfying (C1)–(C3) 
and (C5), for which we require only that

det
∂(µ1(Fε),µ2(Fε))

∂(ε1, ε2)
�= 0.
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Thus, we can choose (µ1,µ2) as new parameters.
The same strategy we use for the proof of theorem 1 gives us the following

Theorem 2. Let {Fµ1,µ2} be a two-parameter family of diffeomorphisms in Diffr(M) such 
that F0,0 satisfies conditions (C1)–(C3) and (C5). Then, there exists a sequence (µ1

j ,µ2
j ) → 0 

such that for every sufficiently large j  the diffeomorphism Fµ1
j ,µ2

j
 has a heterodimensional cycle 

including a hyperbolic continuation of the index-1 saddle periodic point O and an index-2 
saddle periodic point.

1.2. Periodically perturbed Lorenz-like attractors

Our main application is the problem of a periodic perturbation of Lorenz-like attractors. 
There are several approaches to Lorenz attractors, the classical ‘geometric models’ by 
Guckenheimer–Williams [24] and Afraimovich–Bykov–Shilnikov [2, 3], and their modern 
generalisations (see e.g. [30]). The differences between the Guckenheimer–Williams (GW) 
and Afraimovich–Bykov–Shilnikov (ABS) models are not large: it is easy to check that the 
open set in the space of dynamical systems which is described by the GW model is a subset 
of the open set described by the ABS model. For the purposes of this paper, we understand 
the Lorenz attractor (or Lorenz-like attractor) as an object described by the ABS (we provide 
more details later). Importantly, the corresponding conditions for a system to have a Lorenz-
like attractor are formulated in [2, 3] in an explicit form (they are a sort of cone conditions for 
the Poincare map on a certain cross-section), which make it possible to verify them numer-
ically or analytically. Indeed, in [47, 48], it was checked with the use of rigorous numerics that 
the classical Lorenz system [29] does have a Lorenz attractor in this sense. The same is true 
for an open set of parameter values in the Morioka–Shimizu model [39] (as was checked by 
rigorous numerics in [8]) and for the so-called extended Lorenz model [34] (the latter result 
was obtained analytically, based on a Shilnikov criterion for the existence of a Lorenz-like 
attractor, which was proposed in [41] and later proven for several cases in [31, 34, 38]).

The Morioka–Shimizu model and the extended Lorenz model are, probably, even more 
important then the classical Lorenz model because they serve as normal forms for several 
codimension-3 bifurcations of equilibrium states which have three Lyapunov exponents simul-
taneously equal to zero, in systems with certain types of Z2-symmetry [37, 43]. Therefore, the 
existence of a Lorenz-like attractor in these normal forms also implies that the Lorenz-like 
attractor is born at the unfolding of such ‘triple instability’ bifurcations in an arbitrary system 
of differential equations.

More importantly (see [43]), the same systems serve as normal forms for some codimen-
sion-3 bifurcations of periodic orbits (with 4 zero Lyapunov exponents—one Lyapunov expo-
nent is always zero for a periodic orbit, so having 3 more zero Lyapunov exponents is a 
codimension-3 bifurcation). This means that some iteration of the Poincaré map near any 
periodic orbit undergoing such triple instability bifurcation is close (in appropriately chosen 
coordinates) to the time-1 map of the flow of the corresponding normal form. It is the same 
as to say that some iteration of the Poincare map is the period map of some time-periodic 
perturbation of this normal form. Since these particular normal forms, as we mentioned, have 
a Lorenz-like attractor for a certian region of parameter values, these bifurcations give rise to 
attractors obtained by applying a small time-periodic perturbation to a Lorenz-like attractor. 
Multidimensional systems of differential equations can have an unbounded number of peri-
odic orbits, any of which can undergo the ‘triple instability’ bifurcations which we discuss 
here, provided there are at least three bifurcation parameters and the flow does not contract 
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three-dimensional volumes (so there is no effective reduction to a low-dimensional case). 
Different scenarios where these bifurcations happen and the system acquires one or several 
periodically perturbed Lorenz-like attractors are presented in [14, 15, 21–23].

The question of a time-periodic perturbation of the Lorenz-like attractors is also interest-
ing in its own right. To be precise, we define the term ‘time-periodic perturbation’ as follows.
Definition. Let ẋ = f (x) be an autonomous ODE and g(x, t) be a function satisfying 
g(x, t) = g(x, t + τ) for some τ > 0. Then, we call

ẋ = f (x) + δg(x, t)

a time-periodic perturbation of the original system, if δ is sufficiently small.
A general theory proposed in [50] asserts that after any sufficiently small time-periodic per-

turbation is applied to a system with a Lorenz-like attractor the period map will have a unique 
chain-transitive attractor A. The equilibrium state of the non-perturbed system becomes the 
saddle fixed point of the period map, and this fixed point, along with its unstable manifold, 
belongs to A. The unstable manifold may have homoclinic tangencies to the stable manifold. In 
this paper, we give conditions, under which an arbitrarily small perturbation of such tangencies 
can create a heterodimensional cycle that involves the fixed point (with the  one-dimensional 
unstable manifold) and another saddle periodic orbit with a two-dimensional unstable mani-
fold. It follows from the results of [50], that when the heterodimensional cycle containing the 
fixed point exists, it lies in A, and the entire unstable manifolds of both its periodic points also 
lie in A. This underscores very non-trivial dynamics in the attractor. In particular, since the 
attractor A contains saddles with different numbers of positive Lyapunov exponents (1 and 2), 
the relevance of Lyapunov exponents computations for the understanding of chaos represented 
by such attractors is questionable (e.g. the shadowing property could be violated [9]).

Let us now describe the ABS model in more detail. Consider a smooth system of differ-
ential equations having a saddle equilibrium state O with a one-dimensional unstable mani-
fold Wu(O). Assume also that the nearest to the imaginary axis characteristic exponent (an 
eigenvalue of the linearisation matrix) at O is real and negative. Take a compact cross-section 
Π (of codimension 1) transverse to a piece of the stable manifold Ws(O), and let the two 
unstable separatrices Γ1 and Γ2 of Wu(O) intersect Π at some points M1 and M2, respectively. 

Figure 2. The Afraimovich–Bykov–Shilnikov model.
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Denote by Π0 the intersection of Π with Ws
loc(O), and by Π1 and Π2 the two parts separated by 

Π0 so that we have Π = Π0 ∪Π1 ∪Π2. Then, consider the Poincaré map T on Π induced by 
the orbits of the system—we assume that every orbit starting from Π\Π0 returns to Π, so the 
Poincare map is defined everywhere on Π\Π0 (the orbits that start on Π0 tend to O as t → +∞ 
and do not return to Π). Let (u, v) be the coordinates on Π such that {u = 0}, {u > 0} and 
{u  <  0} correspond to Π0,Π1 and Π2, respectively (see figure 2). The map T is smooth outside 
Π0, and for a point M = (u, v) we have

lim
u→0+

T(M) = M1 and lim
u→0−

T(M) = M2.

We assume that the image T(Π) lies strictly in the inner part of Π, so a small neighbour-
hood D of the set formed by forward orbits starting from Π is strictly forward-invariant, hence 
there is an attractor inside D (the Lorenz-like attractor). By the assumption on the character-
istic exponents at O, the map T near Π0 is expanding in the u-direction and contracting in the 
v-direction. In [2, 3], explicit conditions for extending the hyperbolicity property to the whole 
of Π are given. Under these conditions, there exists a smooth stable invariant foliation F  on 
Π, which includes Π0 as one of its leaves [42]. Furthermore, the quotient map of T obtained 
by taking quotient along the leaves of F  is expansive. This allows for a detailed study of the 
structure of the attractor in D.

We call the system Lorenz-like if it satisfies the above described properties of the ABS 
model. It is symmetric if the Poincare map is symmetric with respect to an involution that 
changes the sign of the expanding variable u. As mentioned before, examples of such systems 
are the classical Lorenz model [29]




ẋ = σ(y − x),
ẏ = x(ρ− z)− y,
ż = xy − βz,

 (4)

and the Morioka–Shimizu model [39]



ẋ = y,
ẏ = x(1 − z)− λy,
ż = −αz + x2.

 (5)

A computer-assisted proof for the existence of the Lorenz attractor (in the sense of the ABS 
model) in system (4) for the values of parameters (σ, ρ,β) close to σ = 10, ρ = 28,β = 8/3 was 
given in [47, 48] and, in [8], for system (5) for an open set of (α,λ) near α = 0.606,λ = 1.045.

Note that the equilibrium state O is a saddle fixed point for the time-t map of the system 
for any t. If we add a small τ -periodic perturbation to a Lorenz-like system, then O would 
continue as a saddle fixed point of the time-τ  map. Theorem 7 in [50] states that for all 
small time-periodic perturbations of a Lorenz-like system the period map has a unique 
chain-transitive attractor A ⊂ D which coincides with the set of all points attainable from O 
by ε-orbits for all ε > 0. In particular, the attractor A contains O and its unstable manifold. 
Therefore, when O is a part of the heterodimensional cycle, this heterodimensional cycle 
is in A.

Recall that systems with homoclinic loops to O are C∞-dense among Lorenz-like systems 
[2, 50]; systems with a symmetric pair of homoclinic loops to O are C∞-dense among sym-
metric Lorenz-like systems. For the time-τ  map of the system (without a periodic perturba-
tion), the homoclinic loop corresponds to a continuous family of orbits homoclinic to the 
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fixed point O, i.e. to a non-transverse intersection of its stable and unstable manifolds. Thus, 
given any symmetric Lorenz-like system, we can add an arbitrarily small time-independent 
perturbation (without destroying the symmetry) such that conditions (C1) and (C2) will be 
satisfied. The strong-stable invariant foliation in the Lorenz-like systems [2, 3] also persists at 
small time-periodic perturbations [50], which implies that the non-degeneracy condition (C3) 
will hold automatically.

Thus, in order to apply theorem 1, it remains to check condition (C4). The multipliers of O 
for the time-1 map of an autonomous flow are the exponents of the eigenvalues of the lineari-
sation matrix of the system at O. Therefore, condition (C4) will be fulfilled by the time-τ  map 
of a Lorenz-like flow (and, hence, by any sufficiently small perturbation of it) if

 (C4′)  Re ν1 < 2ν0 and ν0 +
1
2ν < 0,

where νj and ν  are the characteristic exponents of O such that

· · · � Re ν2 � Re ν1 < ν0 < 0 < ν.

Now, by theorem 1, we have the following

Theorem 3. Let the equilibrium state of a symmetric Lorenz-like system satisfy condition 
( C4′). Then, there exists an arbitrarily small time-periodic perturbation (which keeps the 
symmetry of the system) such that the attractor A of the period map of the perturbed system 
contains a symmetric pair of heterodimensional cycles, each of which involves O and an 
index-2 saddle periodic point. Moreover, in an open neighbourhood of this map in Diffr

s(D), 
these heterodimensional cycles are a part of the attractor A for a Cr-dense subset of this 
neighbourhood (for any r � ∞).

Note that the Cω case is not included here because we do not know whether the perturba-
tion for a Lorenz-like system to have a pair of homoclinic loops can be made analytic (it 
should be possible, but we are not aware of a proof of such result). If condition (C4′) is not 
fulfilled, then a weaker statement follows from theorem 2.

Theorem 4. For any symmetric Lorenz-like system, there exists an arbitrarily small (in 
Cr, for any r � ∞) time-periodic perturbation such that the attractor A of the period map of 
the perturbed system contains a heterodimensional cycle involving O and an index-2 saddle 
periodic point.

Note that the Lorenz system (4) does not satisfy condition (C4′) at classical parameter 
values, while the Morioka–Shimizu system (5) fulfils this condition for the set of parameter 
values for which a proof of the existence of Lorenz attractor is obtained in [8]. Therefore, 
theorem 4 is applicable to time-periodic perturbations of the Lorenz attractor in the Lorenz 
system, and the stronger theorem 3 is applicable to the periodic perturbation of the Lorenz 
attractor in the Morioka–Shimizu system.

The rest of this paper is organised as follows. In section 2 we describe the dynamics near O 
and define the first return map. In section 3 we make perturbations which give us a homoclinic 
tangency with some special properties required to create heterodimensional cycles. Next, we 
give in section 5 the condition for having a periodic point of index 2. A formula for leaves of 
the strong-stable foliation F s is derived in section 4. Finally, with all the preparation, we prove 
theorems 1 and 2 in section 6.
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2. The first return map

Let a Cr-diffeomorphism F fulfil conditions (C1)–(C3). We embed it into a parametric family 
Fε such that F = Fε∗, where ε is the set of parameters defined in the previous section. Observe 
that this family is transverse to the surface of diffeomorphisms satisfying (C1)–(C3).

Let V  be a small neighbourhood of O, and take two points M+, M− ∈ Γ ∩ V  such that 
M+ ∈ Ws

loc(O), M− ∈ Wu
loc(O), F−τ (M+) /∈ V  and Fτ (M−) /∈ V , where τ  is the period of 

the point O. Let Π0,Π1 ⊂ V  be two small open sets containing M+ and M−, respectively. In 
what follows we consider the local map T0 ≡ Fτ

ε |V : V → M and the global map T1 ≡ Fl
ε|Π1 : 

Π1 → M where l is the positive integer such that Fl(M−) = M+ (it exists, because M+ and 
M− belong to the same orbit Γ).

Let Cr-coordinates (x, y, z) ∈ RD  be introduced in V  such that the map T0 takes the form

x̄ = λ(ε)x + f1(x, y, z, ε),
ȳ = γ(ε)y + f2(x, y, z, ε),
z̄ = A(ε)z + f3(x, y, z, ε),
 (6)

where the eigenvalues of the (D − 2)× (D − 2) matrix A are the multipliers λ1 . . . λD−2; the 
functions f i (i = 1, 2, 3) and their first derivatives vanish at the origin, and, furthermore,

f1,3(0, y, 0, ε) = 0, f2(x, 0, z, ε) = 0, f1(x, 0, z, ε) = 0, f2(0, y, 0, ε) = 0,
∂f1,3
∂(x,y) (0, y, 0, ε) = 0, ∂f2

∂y (x, 0, z, ε) = 0 (7)

for all sufficiently small x, y  and z. The existence of such coordinate transformation is shown 
in [22]. In the appendix we show that in the symmetric case (i.e. when F ∈ Diffr

s ) this trans-
formation can be done in such a way that the involution R is still locally linear and satisfies 
(3) in the new coordinates. Note that this coordinate transformation, and its first and second 
derivatives with respect to (x, y, z), are Cr−2-smooth functions of both the parameters ε and 
(x, y, z) [22]. Therefore, λ, γ , and A in (6) are Cr−2-smooth functions of ε, and the functions 
f 1,2,3, as well as the derivatives of f 1,2,3 with respect to (x, y, z) up to order 2, are Cr−2-smooth 
functions of (x, y, z, ε).

The first two identities in (7) mean that the local manifolds Ws
loc(O) and Wu

loc(O) are 
straightened, i.e. we have Ws

loc(O) = {y = 0} and Wu
loc(O) = {x = 0, z = 0}. The third 

identity implies that the leaves of the strong-stable foliation F0 in Ws
loc(O) have the form 

{x = c, y = 0} and the quotient map on Ws
loc(O) obtained by factorising over the leaves 

of F0 is linear. The forth identity corresponds to the linearisation of the map restricted to 
Wu

loc(O) : {x = 0, z = 0}.
In order to obtain necessary formulas for the first return map to Π0, we need, first, to con-

sider iterates of T0. Take any point (x0, y0, z0) ∈ V , and let (xk, yk, zk) = Tk
0(x0, y0, z0). The 

triple (xk, y0, zk) is a uniquely defined function of x0, yk  and z0 on a small neighbourhood of 
(x+, y−, z+) for any k � 0 (see e.g. [18, 40]). It follows from lemma 7 of [22] that if the map 
T0 satisfies conditions (7), then the following relations hold for all sufficiently large k:

xk = λ(ε)kx0 + φk(x0, yk, z0, ε),
y0 = γ(ε)−kyk + ψk(x0, yk, z0, ε),
zk = φ̂k(x0, yk, z0, ε),
 (8)

where φk,ψk, ψ̂k are smooth functions such that

‖φk, φ̂k‖2 = o(|λ(ε)|k), ‖ψk‖2 = o(|γ(ε)|−k), (9)
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and also

‖φ̂k‖1 = o(λ̂k) (10)

where λ̂ is any number such that max{λ2, |λ1|} < λ̂ < |λ|. We use the following notation in 
formulas (9) and (10): ‖ · ‖1 stands for the maximum of the C0-norms of the function and its 
first derivative with respect to (x0, yk, z0), while ‖ · ‖2 denotes the maximum of the C0-norms 
of the function, its first derivative with respect to (x0, yk, zk, ε), and all its second derivatives 
except for the second derivative with respect to ε alone.

In the case where condition (C4) is fulfilled, we obtain stronger estimates. In appendix 
A.3 we show that when |λ1| < λ2 and |λγ| > 1 there exists a C2-smooth extended unstable 
invariant manifold WuE

loc(O) which contains the local unstable manifold Wu
loc(O) and is tangent 

to z  =  0 at the points of Wu
loc(O), i.e. WuE

loc(O) is given by the equation  z = η(x, y, ε) where 

η(0, y, ε) ≡ 0, ∂
∂xη(0, y, ε) ≡ 0. Furthermore, in WuE

loc(O) there is an invariant foliation FuE  
with the leaves of the form h(x, y, ε) = const  where h(x, 0, ε) ≡ x and h(0, y, ε) ≡ 0. The 
functions η and h are C2, but if the coordinates are introduced where the map T0 gets into the 
form (6) and (7), the second derivative with respect to ε alone may not exist. It is also shown 
in the Appendix that in the symmetric case the manifold WuE

loc(O) and the invariant foliation 
FuE  on it are invariant with respect to the involution R, i.e. η(x,−y, ε) ≡ Sη(x, y, ε) and 
h(x,−y, ε) ≡ h(x, y, ε). From now on, we will omit ε in all expressions for simplicity.

We can now choose new coordinates znew = z − η(x, y) and xnew = h(x, y). It is easy to see 
that the map keeps its form (6) and (7) in the new coordinates, and estimates (8)–(10) hold. In 
the symmetric case, we also have that formula (3) for the involution R remains unchanged.

In the new coordinates the invariant manifold WuE
loc(O) and foliation FuE  get straightened: 

WuE
loc(O) is given by {z  =  0} and the leaves of FuE  are {x = const, z = 0}. This implies that 

in the new coordinates

f3(x, y, 0) = 0, f1(x, y, 0) = 0 (11)

(the first equation follows from the invariance of WuE
loc(O); the invariance of FuE  implies that 

f1(x, y, 0) = f1(x, 0, 0), which gives the second equation of (11) by virtue of the third equa-
tion of (7)).

Lemma 1. Once identities (7) and (11) are fulfilled, one can find positive constant λ0 < λ2 
such that, for all k � 0,

∥∥∥∥
∂xk

∂z0

∥∥∥∥ � λk
0,

∥∥∥∥
∂zk

∂z0

∥∥∥∥ � λk
0. (12)

Proof. We can rewrite formula (6) for T0 as

x̄ = λx + f1(x, y, z),
y = γ−1ȳ − γ−1f2(x, y, z),
z̄ = Az + f3(x, y, z),

from which one deduces the following relation between (x0, yk, z0) and its j th iterate (xj, yj, zj) 
(1 � j � k):

xj = λ jx0 +
j∑

s=1
λs−1f1(xj−s, yj−s, zj−s),

yj = γ j−kyk −
k∑

s=j+1
γ−s+jf2(xk−s+j, yk−s+j, zk−s+j),

zj = A jz0 +
j∑

s=1
As−1f3(xj−s, yj−s, zj−s).

 (13)
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By formulas A.18, A.20 and A.34 in [22], we have

‖yj‖ � C|yk| · |γ| j−k,
∥∥∥∥
∂yj

∂z0

∥∥∥∥ � C|γ| j−k (14)

for some constant C. Since f 3 vanishes at z  =  0 (see (11)), and its derivative vanishes at the 
origin, it follows that

‖f3‖ � δ‖z‖

where δ can be made as small as we need by taking the neighbourhood V  of the otigin suf-
ficiently small. Therefore,

‖z̄‖ � (‖A‖+ δ)‖z‖ � λ0‖z‖

(we can always choose such λ0 satisfying λ0 < λ2 because |λ1| < λ2 by the assumption of 
this lemma). This gives

‖zj‖ � ‖z0‖λ j
0. (15)

Now assume that the inequalities
∥∥∥∥
∂(xs, zs)

∂z0

∥∥∥∥ � λs
0 (16)

hold for all s = 0, . . . , j − 1 (they are, obviously true for s  =  0) and prove that they remain true 
for s  =  j . By induction, this will prove the lemma.

By differentiating equation (13), we find

∂xj

∂z0
=

∑ j
s=1 λ

s−1
(

∂f1
∂x

∂xj−s

∂z0
+ ∂f1

∂y
∂yj−s

∂z0
+ ∂f1

∂z
∂zj−s

∂z0

)
,

∂zj

∂z0
= A j +

∑ j
s=1 As−1

(
∂f3
∂x

∂xj−s

∂z0
+ ∂f3

∂y
∂yj−s

∂z0
+ ∂f3

∂z
∂zj−s

∂z0

)
.

 (17)

Recall that the C2 function f 1 vanishes both at z  =  0 and y   =  0 while the C2 function f 3 van-
ishes at z  =  0 (see (7),(11)) and its derivative is zero at the origin. Therefore,

∥∥∥∥
∂f1

∂(x, z)

∥∥∥∥ � K‖y‖,
∥∥∥∥
∂f1
∂y

∥∥∥∥ � K‖z‖,

∥∥∥∥
∂f3

∂(x, y)

∥∥∥∥ � K‖z‖,
∥∥∥∥
∂f3
∂z

∥∥∥∥ � δ,

where K and δ are some constants and δ can be chosen as small as we want (by choosing the 
neighbourhood V  small enough). By plugging these inequalities into (17), we obtain
∥∥∥ ∂xj

∂z0

∥∥∥ � K
∑ j

s=1 |λ|s−1
(
‖yj−s‖ ·

∥∥∥∂(xj−s,zj−s)
∂z0

∥∥∥+ ‖zj−s‖ ·
∥∥∥∂yj−s

∂z0

∥∥∥
)

,∥∥∥ ∂zj

∂z0

∥∥∥ � ‖A‖ j +
∑ j

s=1 ‖A‖s−1
(

K‖zj−s‖ ·
∥∥∥∂xj−s

∂z0

∥∥∥+ K‖zj−s‖ ·
∥∥∥∂yj−s

∂z0

∥∥∥+ δ
∥∥∥∂zj−s

∂z0

∥∥∥
)

.

Now, using estimates (14) and (15) (where one should replace j  by ( j − s)) and (16) (where 
one should change s to ( j − s)), we obtain
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∥∥∥ ∂xj

∂z0

∥∥∥ � K
∑ j

s=1 |λ|s−1
(

C|yk| · |γ| j−s−k · λ j−s
0 + ‖z0‖λ j−s

0 · C|γ| j−s−k‖
)
�

� KC
|λ| (|yk|+ |z0|) λ j

0
∑ j

s=1

(
|λ|

|γ|λ0

)s
,

∥∥∥ ∂zj

∂z0

∥∥∥ � ‖A‖ j +
∑ j

s=1 ‖A‖s−1
(

K‖z0‖λ j−s
0 · λ j−s

0 + K‖z0‖λ j−s
0 · C|γ| j−s−k + δλ j−s

0

)
�

� λ j
0 +

K‖z0‖(C+1)+δ
‖A‖ λ j

0
∑ j

s=1

(
‖A‖
λ0

)s
.

 

(18)

Recall that we assume |λγ| > 1. Hence, if λ0 < λ2 is chosen close enough to λ2, we have 
|λ|

|γ|λ0
< 1. Also, since |λ1| < λ2, where λ1 is the largest, in the absolute value, eigenvalue 

of A, we have that λ0 < λ2 can be chosen such that ‖A‖
λ0

< 1. This means that the sums ∑ j
s=1

(
|λ|

|γ|λ0

)
s and 

∑ j
s=1

(
‖A‖
λ0

)
s in (18) are uniformly bounded for all j . Therefore, since 

|y k|, ‖z0‖ and δ can be taken as small as we need by choosing the neighbourhood V  small 
enough, the estimates (18) imply that the inequalities (16) hold for s  =  j . Therefore, by induc-
tion, they hold for all s. At s  =  k we obtain the lemma. □ 

We now proceed to obtain necessary formulas for the global map T1. Let us write its Taylor 
expansion near the point M−. At ε = ε∗, the point M− is homoclinic, so its image M+ = T1M− 
belongs to the local stable manifold, and the curve T1Wu

loc has a quadratic tangency to Ws
loc. In 

the coordinate system where the local stable and unstable manifolds are straightened, i.e. they 
are given by the equations {y   =  0} and, respectively, {x = 0, z = 0}, we have M− = (0, y−, 0) 
and M+ = (x+, 0, z+) and the Taylor expansion for T1 : (x, y, z) �→ (x′, y′, z′) is given by

x′ − x+ = ax + b(y − y−) + a13z + h1(x, y − y−, z),
y′ = y+(ε) + cx + d(y − y−)2 + a23z + h2(x, y − y−, z),

z′ − z+ = a31x + a32(y − y−) + a33z + h3(x, y − y−, z),
 (19)

where d �= 0 and the Taylor expansions for functions h1,2,3 start with quadratic terms (the term 
d(y − y−)2 is taken out of h2, so h2 does not contain it). We will use the coordinate system 
where the map T0 is in the form (6) and the identities (7) hold.

When we vary ε, the map T1 can be kept in the form (19) where the coefficients and the 
functions h1,2,3 now depend on ε (e.g. we choose y−(ε) in such a way that there is no linear 
term in (y − y−(ε)) in the equation for y′ in (19)). We however take d independent of ε, so 
h2 is allowed to include the (y − y−(ε))2-term with the coefficient which vanishes at ε = ε∗. 
Recall that the coordinates we use are of class C2, but the second derivative with respect to ε 
alone may not exist. Thus, we have that all the coefficients, as well as the functions h1,2,3 and 
their first derivatives with respect to (x, y, z) are at least C1 functions of ε. So, we can write

h1,3 = O(x2 + (y − y−)2 + z2), h2 = O(x2 + z2 + |x| · |y − y−|+ ‖z‖ · |y − y−|) + o((y − y−)2)ε→ε∗ ,
 (20)

and

∂h1,2,3

∂ε
= o(|x|+ ‖z‖+ |y − y−|), ∂2h1,2,3

∂ε∂(x, y, z)
= o(1)(x,y−y−(ε),z)→0.

 (21)
By construction, the value of y+(ε) measures the magnitude of splitting between the curve 

T1Wu
loc and the local stable manifold. Thus, µ(Fε) = y+(ε) can be taken as the parameter gov-

erning the splitting of the homoclinic tangency at the point M+ . It is our standing condition 
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that ∂µ/∂ε �= 0, so we simply assume that µ is one of the parameters ε (see the explanation 
before theorem 1).

Note that our conditions in section 1 imply that

d �= 0, x+ �= 0 and bc �= 0 (22)

in formula (19). The first two inequalities come, respectively, from the facts that the tangency 
is quadratic and it is not in the strong-stable manifold of O. The third one follows from the 
transversality of the extended unstable manifold WuE(O) to the strong-stable foliation F0, see 
Condition (C3).

Indeed, the first identity in the second line of (7) implies that WuE
loc is tangent to the plane 

z  =  0 at the points of Wu
loc (see [22]); in particular, it is tangent to z  =  0 at the homoclinic point 

M−. So, the tangent plane to the image T1WuE
loc is given by

x′ − x+ = ax + b(y − y−), y′ = cx, z′ = a31x + a32(y − y−).

The transversality of T1WuE to F0 just means that this tangent plane intersects the strong-
stable leaf {x′ = x+, y′ = 0} at a single point (the point M+ ). This is equivalent to the require-
ment that the equation

0 = ax + b(y − y−), 0 = cx

has only one solution (x  =  0,y   =  y −), which implies bc �= 0.
We can now define the maps T1Tk

0  of the first return to Π0. We fix the choice of the neigh-
bourhoods Π0 and Π1 as follows: Π0 = {(x, y, z) | |x − x+| < δ/2, |y| < δ, ‖z − z+‖ < δ/2} 
and Π1 = {(x, y, z) | |x| < δ, |y − y−| < δ/2, ‖z‖ < δ}, where δ > 0 is small such that 
T0(Π0) ∩Π0 = ∅ and T−1

0 (Π1) ∩Π1 = ∅. Let k* be the smallest number such that 
T0(Π0) ∩Π1 �= ∅. There are two countable sequences of disjoint subsets σ0

k ⊂ Π0 and 
σ1

k := Tk
0(σ

0
k ) ⊂ Π1 such that k � k∗, and σ0

k → Ws
loc(O) and σ1

k → Wu
loc(O) as k → +∞ (see 

figure 3). Therefore, the first-return map T : Σ0 :=
⋃+∞

k0
σ0

k → Π0 is defined as

T(M) = T1 ◦ Tk
0(M) if M ∈ σ0

k . (23)

Figure 3. The projections of the countable sequences of disjoint sets σ0
k  along the 

leaves of F s onto {z  =  0}.
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For a point M ∈ Σ0 we call the corresponding k in (23) the stay number of M. The image of 
Σ0 under T may not be entirely contained in Π0. However, throughout this paper, we only 
consider points sufficiently close to M+ such that their images lie in Π0.

In the same way, a global map T̃1 and a first-return map T̃  are defined near the sec-
ond orbit of homoclinic tangency, Γ̃. In the symmetric case, i.e. when Fε ∈ Diffr

s(M), the 
maps T1 and T̃1 are related by the symmetry R. Namely, we denote by M̃+ and M̃− the 
points that are R-symmetric to M+ and M−. These two points satisfy M̃+ ∈ Ws

loc(O) ∩ Γ̃, 
M̃− ∈ Wu

loc(O) ∩ Γ̃, and have coordinates (x+, 0,Sz+) and (0, −  y −,0). We can choose the 
neighbourhood Π0 such that it will contain both points M+ and M̃+. In order to achieve this, 
note that the directions corresponding to coordinates z are strongly contracting, so we can 
just let Π0 be the set {(x, y, z) | |x − x+| < δ/2, |y| < δ, ‖z‖ < δ} and choose x+ sufficiently 
small. When δ is small, the property T0(Π0) ∩Π0 = ∅ and T−1

0 (Π1) ∩Π1 = ∅ holds. The 
neighbourhood Π̃1 is defined as Π̃1 = RΠ1 = {(x, y, z) | |x| < δ, |y + y−| < δ/2, ‖Sz‖ < δ}, 
which implies T−1

0 (Π̃1) ∩ Π̃1 = ∅.

The second global map T̃1 ≡ Fl|Π̃1
: (x, y, z) �→ (x′, y′, z′) takes the form

x′ − x+ = ax − b(y + y−) + a13Sz + h1(x,−y − y−,Sz),
y′ = −µ− cx − d(y + y−)2 − a23Sz − h2(x,−y − y−,Sz),

z′ − Sz+ = Sa31x − Sa32(y + y−) + a33z + Sh3(x,−y − y−,Sz),
 

(24)

with the same coefficients and functions h1,2,3 as in (19).
There is a countable sequence of disjoint subsets σ̃0

k ⊂ Π0 such that σ̃1
k =  

Tk
0(σ̃

0
k ) ⊂ Π̃1, where k � k∗, and σ̃0

k → Ws
loc(O) and σ̃1

k → Wu
loc(O) as k → +∞. The first 

return map T̃ : Σ̃0 =
⋃+∞

k0
σ̃0

k → Π̃0 is defined as

T̃(M) = T̃1 ◦ Tk
0(M) if M ∈ Σ̃0

k . (25)

3. An adjustment to the homoclinic tangency

In order to create a heterodimensional cycle in the small neighbourhood U of O ∪ Γ ∪ Γ̃, we 
need the homoclinic tangency to satisfy the following conditions:

 (a)  the signs of cdx+ and cx+y− are positive, where c and d are the coefficients in the global 
map (19); and

 (b)  there are two transverse homoclinic points in Wu
loc(O) close to M− such that M− lies 

between these two points.

In section 6.1, conditions (a) and (b) are used to show the existence of the non-transverse and, 
respectively, transverse intersections between the invariant manifolds of two periodic orbits of 
different indices. In this section we prove that unfolding the original homoclinic tangency pro-
duces new homoclinic tangencies satisfying the above conditions. Depending on the signs of c 
and d, the original homoclinic tangency falls into one of the four classes: (1) cdx+ < 0, dy− < 0, 
(2) cdx+ < 0, dy− > 0, (3) cdx+ > 0, dy− < 0, and (4) cdx+ > 0, dy− > 0. We start with 
showing that tangencies of classes (1), (3), and (4) can be replaced by tangencies of class (2).

Lemma 2. Take any smooth one-parameter family Fµ of diffeomorphisms, where µ is the 
splitting parameter for the homoclinic tangency Γ, and F0 fulfils conditions (C1)–(C3). Then, 
there exists a sequence {µk} accumulating on µ = 0 such that the saddle O of Fµk  has a 
class (2) homoclinic tangency and a tangency point M−

k ∈ Wu
loc(O) satisfying M−

k → M− as 
k → +∞.
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Proof. We will assume x+   >  0 and y −  >  0 throughout this section since this can be always 
achieved by changing signs of x and/or y  at the very beginning. There is nothing to prove if the 
original tangency already belongs to class (2). For the remaining three cases, we first construct 
new tangencies, and then show that some of those tangencies belong to class (2).

Let us create a secondary homoclinic tangency by making the curve T1 ◦ Tk
0 ◦ T1(Wu

loc(O)) 
intersect Ws

loc(O) non-transversely. By formula (19) for T1 (where one should take y+(ε) = µ), 
the image (x0, y0, z0) = T1(x, y, z) of a point (x, y, z) ∈ Π1 is given by

x0 − x+ = ax + b(y − y−) + a13z + h1(x, y − y−, z),
y0 = µ+ cx + d(y − y−)2 + a23z + h2(x, y − y−, z),

z0 − z+ = a31x + a32(y − y−) + a33z + h3(x, y − y−, z).
 

(26)

Consequently, the image T1(Wu
loc(O)) has the form

y0 = µ+
d
b2 (x0 − x+)2 + h2(0,

x0 − x+

b
, 0), (27)

z0 − z+ =
a32

b
(x0 − x+) + h3(0,

x0 − x+

b
, 0), (28)

where h2(0, (x0 − x+)/b, 0) = o((x0 − x+)2) and h3(0, (x0 − x+)/b, 0) = o(|x0 − x+|). For 
any point (x0, y0, z0) ∈ T1(Wu

loc(O)) ∩ σ0
k, we can find its kth iterate (xk, yk, zk) = Tk

0(x0, y0, z0) 
by formula (8):

xk = λkx0 + o(λk), (29)

y0 = γ−kyk + o(γ−k), (30)

zk = O(λ̂k). (31)

The point (x0, y0, z0) is a homoclinic point if T1(xk, yk, zk) = (x̄, ȳ, z̄) ∈ Ws(O), namely, the 
coordinate ȳ equals zero. From the second equation in (19), we have

ȳ = µ+ cxk + d(yk − y−)2 + a23zk + h2(xk, yk − y−, zk) = 0. (32)

By plugging (27) and (31) into (30), and plugging (29) and (31) into (32), we obtain the fol-
lowing system whose solutions correspond to homoclinic points (x0, y0, z0) ∈ T1(Wu

loc(O)):

0 = µ− γ−ky− − γ−k(yk − y−) + d
b2 (x0 − x+)2 + u1(x0, yk,µ) + u2(x0,µ),

0 = µ+ cλkx+ + cλk(x0 − x+) + d(yk − y−)2 + u3(x0, yk,µ) + u4(x0, yk,µ),
 (33)

where u1 = o(γ−k), u2 = o(x2
0), u3 = o(λk), and u4 = o(|λ|k + y2

k). After letting X = x0 − x+ 
and Y = yk − y−, system (33) recasts as

0 = µ− γ−ky− − γ−kY + d
b2 X2 + û1(X, Y ,µ) + û2(X,µ),

0 = µ+ cλkx+ + cλkX + dY2 + û3(X, Y ,µ) + û4(Y ,µ),
 (34)

where û1 = o(γ−k), û2 = o(X2), û3 = o(λk) and û4 = o(|λ|k + Y2).

A non-degenerate homoclinic tangency corresponds to a solution to system (34) with mul-
tiplicity two. This corresponds to the vanishing determinant of the Jacobian matrix. Now, by 
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letting the Jacoby matrix of system (34) have determinant zero, expressing µ as a function of 
X and Y from the first equation of (34), and plugging this expression for µ into the second one, 
we arrive at the following system:

0 = cλkγ−k + 4 d2

b2 (X + v1(X, Y))(Y + v2(X, Y)) + o(λkγ−k),
0 = cλkx+ + γ−ky− + cλkX + γ−kY + dY2 − d

b2 X2 + o(λkγ−k),
 (35)

where v1 = o(|γ|−k + |X|) and v2 = o(|λ|k + |Y|). With the further coordinate transformation

(X̂, Ŷ) = (X + v1(X, Y), Y + v2(X, Y)), (36)

we obtain

Figure 4. Creation of secondary homoclinic tangencies for x+, y− > 0. Here we 
project the iterates of Wu

loc(O) and σ0
k  onto the two-dimensional plane {z  =  0} along the 

leaves of F  (note that such projection is well-defined by the non-degeneracy condition 
(C2)), and take µ = µi

k for some i ∈ {1, 2}. The horizontal and the vertical strips are 
the projections of σ0

k  and Tk
0(σ

0
k ), and the hollowed dots denote the points in the orbit of 

the homoclinic tangency while the solid dots denote those in the transverse homoclinic 
orbits.
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0 = cλkγ−k + 4 d2

b2 X̂Ŷ + o(λkγ−k),
0 = cλkx+ + γ−ky− + cλkX̂ + γ−kŶ + dŶ2 − d

b2 X̂2 + o(|λ|k + |γ|−k).
 (37)

Quadratic tangencies of the original system correspond to non-degenerate solutions to (37), 
and the value of µ = µk corresponding to such tangency can be found from either of the equa-
tions in (34).

In what follows, we find solutions to (37). Let k be even so that λk  and γ−k  are always 
positive. Consider first class (1), where cdx+   <  0 and dy−  <  0. We do the following scaling:

(X̂, Ŷ) �→ |λ| k
2

√∣∣∣∣
cx+

d

∣∣∣∣
(
− b2γ−k

4dx+
U, V

)
.

In the new variables system (37) takes the form

1 = UV + o(1)k→+∞,
1 = V2 + o(1)k→+∞. (38)

For any sufficiently large k the above system has two non-degenerate solutions 
(1 + o(1), 1 + o(1)) and (−1 + o(1),−1 + o(1)), corresponding to two solutions to system 
(37):

(X̂1
k , Ŷ1

k ) =

(
− b2|λ|

k
2 γ−k

4dx+

√∣∣∣ cx+
d

∣∣∣+ o(|λ| k
2 γ−k), |λ| k

2

√∣∣∣ cx+
d

∣∣∣+ o(|λ| k
2 )

)
,

(X̂2
k , Ŷ2

k ) =

(
b2|λ|

k
2 γ−k

4dx+

√∣∣∣ cx+
d

∣∣∣+ o(|λ| k
2 γ−k),−|λ| k

2

√∣∣∣ cx+
d

∣∣∣+ o(|λ| k
2 )

)
.

 (39)

These two solutions give us two homoclinic tangency points M1
k , M2

k ∈ T1(Wu
loc(O) for two 

different µ values µ1
k  and µ2

k  (see figure 4(a)). From equations (28), (30) and (36), we find the 
coordinates of these tangency points as

M1
k = (X̂1 + x+ + o(γ−k), γ−k(Ŷ1 + y− + o(1)), z1) and M2

k = (X̂2 + x+, γ−k(Ŷ2 + y− + o(1)), z2),
 (40)

where we do not write the z-coordinates explicitly. Let M−
k = (0, y−k , 0) ∈ Wu

loc(O) 
be the pre-image of any of the points M1

k and M2
k . By (26) and (40), we have 

y−k − y− = (X̂i
k + o(X̂i

k) + o(γ−k))/b. This immediately shows that M−
k → M− as k → +∞. 

The first equation in (34) yields the corresponding µ values, which are µi
k = γ−ky−(1 + o(1)) 

(i = 1, 2).

Remark 1. Note that the condition dy−  <  0 has not been used in the above computation. In 
fact, we can also create new tangencies for class (2) in the same way (see figure 4(b)).

Now consider classes (3) and (4), where we have cdx+   >  0. By using the scaling

(X̂, Ŷ) �→ b|λ| k
2

√
cx+

d

(
U,− γ−k

4dx+
V
)

,
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and dividing the first and second equation of (37) to cλkγ−k  and cλkx+, respectively, we arrive 
at the following system

1 = UV + o(1)k→+∞,
1 = U2 + o(1)k→+∞. (41)

For any sufficiently large k, system (41) has non-degenerate solutions (1 + o(1), 1 + o(1)) 
and (−1 + o(1),−1 + o(1)), which lead to two solutions to system (37) as

(X̂1
k , Ŷ1

k ) =

(
b|λ| k

2

√
cx+

d + o(|λ| k
2 ),− b|λ|

k
2 γ−k

4dx+

√
cx+

d + o(|λ| k
2 γ−k)

)
,

(X̂2
k , Ŷ2

k ) =

(
−b|λ| k

2

√
cx+

d + o(|λ| k
2 ), b|λ|

k
2 γ−k

4dx+

√
cx+

d + o(|λ| k
2 γ−k)

)
.

 

(42)

For each sufficiently large k, these two solutions give us two points of homoclinic tan-
gency M1

k , M2
k ∈ T1(Wu

loc(O)) (see figures  4(c) and (d)). Similar to the discussion for 
class (1), for the pre-image M−

k  of any of the points M1
k and M2

k , we have M−
k → M− as 

k → +∞. The corresponding µ values can be found from the second equation in (34), which 
gives µi

k = −cx+λk(1 + o(1)) (i = 1, 2).
We proceed to compute the signs of the coefficients c and d corresponding to the new ho-

moclinic tangencies. We have shown that for each sufficiently large k there exist two values 
of µ = µi

k(i = 1, 2) that correspond to a homoclinic tangency. The associated global map for 
this tangency is

T̂ := T1 ◦ Tk
0 ◦ T1 : (x, y, z) �→ (x̄, ȳ, z̄).

By denoting T−1
1 (Mi

k) = (0, yi
k, 0), the coefficients ci

k and di
k  of T̂  are given by

ci
k =

∂ȳ(0, yi
k, 0)

∂x
and di

k =
1
2
∂2ȳ(0, yi

k, 0)
∂y2 , (43)

where ȳ is related to (xk, yk, zk) = Tk
0(x0, y0, z0) = Tk

0 ◦ T1(x, y, z) by (32). We note from (33)–
(35) that

Ŷ = Y + v2 = Y +
1

2d

(
∂û3

∂Y
+

∂û4

∂Y

)
=

1
2d

(
2d(yk − y−) +

∂(cxk + a23zk)

∂yk
+

∂h2

∂yk

)
=

1
2d

∂ȳ
∂yk

.

 (44)
This fact along with equations (26) and (29)–(31) yields

ci
k =

(
∂ȳ
∂xk

∂xk
∂x + ∂ȳ

∂yk

∂yk
∂x + ∂ȳ

∂zk

∂zk
∂x

) ∣∣∣(x,y,z)=(0,yi
k ,0)

= acλk + 2cdγkŶ i
k + o(Ŷ i

k) + o(λk),
 (45)

where Ŷ i
k is given by (39) or (42).

Let us now compute di
k  which is given by

di
k =

1
2
∂

∂y

(
∂ȳ
∂xk

∂xk

∂y
+

∂ȳ
∂yk

∂yk

∂y
+

∂ȳ
∂zk

∂zk

∂y

) ∣∣∣(x,y,z)=(0,yi
k ,0) . (46)

It can be easily seen from (26) and (29)–(31) that

∂

∂y

(
∂ȳ
∂xk

∂xk

∂y
+

∂ȳ
∂zk

∂zk

∂y

) ∣∣∣(x,y,z)=(0,yi
k ,0) = o(λk). (47)
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Regarding the rest of the derivatives in (46), we note from the first equation of (26) that

y − y− =
(x0 − x+)

b
+ o(x0 − x+) =

X
b
+ o(X) =

X̂ + o(γ−k)

b
(1 + o(1)),

see (35). Together with equations (26) and (30), this leads to

∂yk

∂y

∣∣∣(x,y,z)=(0,yi
k ,0) = 2dγk(yi

k − y−) + o(yi
k − y−) =

2dγk

b
(X̂i

k + o(γ−k))(1 + o(1)), (48)

where X̂i
k  is given by (39) or (42). Now, with the help of (44) and (48), we obtain

di
k = 1

2

(
∂2 ȳ
∂y2

k

(
∂yk
∂y

)2
+ ∂ȳ

∂yk

∂2yk
∂y2

) ∣∣∣(x,y,z)=(0,yi
k ,0) + o(λk)

= 4d3γ2k

b2 (X̂i
k + o(γ−k))2(1 + o(1)) + 2d2γkŶ i

k + o(λk).
 (49)

For class (1), where cdx+   <  0 and dy−  <  0, we plug the solutions (39) into the above equa-
tions and get

ci
k = (−1)(i+1)2cd|λ| k

2 γk

√∣∣∣ cx+
d

∣∣∣+ o(|λ| k
2 γk),

di
k = (−1)(i+1)2d2|λ| k

2 γk

√∣∣∣ cx+
d

∣∣∣+ o(|λ| k
2 γk),

 (50)

which implies c1
kd1

k x+ < 0 and d1
k y− > 0. Therefore, by taking µk = µ1

k  and M−
k = T−1

1 (M1
k ), 

we obtain a homoclinic tangency that belongs to class (2), as required.

Let now cdx+   >  0. With the corresponding solutions (42), equations (45) and (49) yield

ci
k = (−1)i bc|λ|

k
2

2x+

√
cx+

d (1 + o(1)) ,

di
k = 4cd2λkγ2kx+ + o(λkγ2k).

 (51)

Observe that ci
k(i = 1, 2) have different signs and di

k  always have the same sign as d. It follows 
that for class (4) where cdx+   >  0 and dy−  >  0 one can obtain the desired class (2) homoclinic 
tangency by picking i such that ci

k < 0. If the original tangency belongs to class (3) where 
cdx+   >  0 and dy−  <  0, then we can first obtain a class (1) tangency by choosing i such that 
ci

k > 0. After this, repeat what we did for class (1) tangency. □ 

We are now in the position to show that a homoclinic tangency satisfying conditions (a) and 
(b) can be recovered from any kind of the original tangency.

Lemma 3. For any smooth one-parameter family Fµ of diffeomorphisms with the diffeo-
morphism F0 satisfying conditions (C1)–(C3), there exists a sequence {µk} accumulating on 
µ = 0 such that the saddle O of Fµk  has a new homoclinic tangency point M−

k  for which 
cdx+   >  0 and cx+y− > 0, and in Wu

loc(O) ∩Π1 there exist two transverse homoclinic points 
N1

k  and N2
k  such that the y -coordinate of M−

k  lies between those of N1
k  and N2

k . The distance 
between the points N1,2

k  and M−
k  tends to zero as k → +∞.

Proof. By lemma 2, it is sufficient to prove lemma 3 only for the case where the homoclinic 
tangency of F0 belongs to class (2), namely, we may assume that cdx+   <  0 and dy−  >  0. We 
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start with showing that in this case there exist infinitely many transverse homoclinic points at 
µ = 0. Indeed, non-degenerate solutions of system (34) correspond to transverse homoclinic 
points. By using the scaling

(X, Y) �→

(
b|γ|− k

2

√
y−

d
U, |λ| k

2

√
cx+

d
V

)
,

we rewrite system (34) at µ = 0 as

1 = U2 + o(1)k→+∞,
1 = V2 + o(1)k→+∞.
 (52)

This gives four non-degenerate solutions to (34) at µ = 0

(X, Y) =

(
±b|γ|− k

2

√
y−

d
+ o(|γ|− k

2 ),±|λ| k
2

√
cx+

d
+ o(|λ| k

2 )

)
=:

(
±X̃ + o(|γ|− k

2 ),±Ỹ + o(|λ| k
2 )
)

 (53)

for any sufficiently large k. These solutions correspond to four transverse homoclinic points 
in T1(Wu

loc(O)):

N1
k =

(
x+ + X̃ + o(|γ|− k

2 ), γ−k(y− + Ỹ) + o(γ−k), z1
)

,

N2
k =

(
x+ + X̃ + o(|γ|− k

2 ), γ−k(y− − Ỹ) + o(γ−k), z2
)

,

N3
k =

(
x+ − X̃ + o(|γ|− k

2 ), γ−k(y− + Ỹ) + o(γ−k), z3
)

,

N4
k =

(
x+ − X̃ + o(|γ|− k

2 ), γ−k(y− − Ỹ) + o(γ−k), z4
)

.

 

(54)

Denote T−1
1 (Ni

k) by N̂i
k = (0, ŷi

k, 0). It follows from the first equation of (19) that ŷ1,2
k > y− 

and ŷ3,4
k < y−, which means that the tangency point M− is bounded by the four transverse 

homoclinic points N̂i
k (see figure 5). Moreover, we have from the second equation of (19) 

that ŷ1
k > ŷ2

k  and ŷ3
k > ŷ4

k . By transversality, for each fixed k, all four homoclinic intersections 
persist for all sufficiently small µ.

Figure 5. Transverse homoclinic points at µ = 0.
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In what follows we prove that there exists a sequence {µm} accumulating on µ = 0 such 
that for each sufficiently large m the diffeomorphism Fµm has a non-transverse homoclinic 
point M−

m ∈ Wu
loc(O) that belongs to class (4) and satisfies either M−

m → N̂2
k  or M−

m → N̂3
k  as 

m → +∞. This will complete the proof of the lemma after noting that class (4) tangencies 
satisfy condition (a), both N̂2

k  and N̂3
k  are bounded by the two transverse homoclinic points N̂1

k  
and N̂4

k , and these points all tend to M− as k → +∞.
We denote as T ′

1 the restriction of the global map T1 to a small neighbourhood of the trans-
verse homoclinic point N̂2

k = (0, ŷk, 0). We denote T ′
1(N̂

2
k ) = N2

k = (x̂+, 0, ẑ+) and write the 
Taylor expansion of T ′

1 about the point N̂2
k  as

x̄ − x̂+ = a′x + b′(y − ŷk) + a′
13z + h′1(x, y, z),

ȳ = c′x + d′(y − ŷk) + a′
23z + h′

2(x, y, z),
z̄ − ẑ+ = a′31x + a′

32(y − ŷk) + a′
33z + h′

3(x, y, z),
 

(55)

where h′
1,2,3 = O(x2 + y2 + z2). The coefficients in these formula are obtained by evaluating, 

at (0, ŷk, 0), the first derivatives of the map T1 given by (19). Obviously,

a′ = a + . . . , b′ = b + . . . , c′ = c + . . . , d′ = 2d(ŷk − y−)(1 + . . . ),
 

(56)

where the dots denote terms that tend to zero as k → +∞. We now create a homoclinic tangen-
cy by finding a point M−

m ∈ Wu
loc(O) close to N̂2

k  such that M+
m := T1 ◦ Tm

0 ◦ T ′
1(M) ∈ Ws

loc(O) 
for some m, and the curve T1 ◦ Tm

0 ◦ T ′
1(W

u
loc(O)) is tangent to Ws

loc(O) at the point M+
m  as 

shown in figure 6.
Let m be even, so that λm and γ−m are positive. The image T ′

1(W
u
loc(O)) is given by

y0 =
d′

b′
(x0 − x̂+) + o(x0 − x̂+),

z0 − ẑ+ =
a′

32

b′
(x0 − x̂+) + o(x0 − x̂+).

Figure 6. By changing µ, one can make T1 ◦ Tm
0 ◦ T ′

1(l) intersect Ws
loc(O) non-

transversely. Here l ∈ Wu
loc(O) is a small piece containing the transverse homoclinic 

point.
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For any point (x0, y0, z0) ∈ T ′
1(W

u
loc(O)) ∩ σ0

m, we can find its mth iterate 
(xm, ym, zm) = Tm

0 (x0, y0, z0) by using formula (8):

xm = λmx0 + o(λm),
y0 = γ−mym + o(γ−m),
zm = O(λ̂m),
 

(57)

The point (x, y, z) is a homoclinic point if and only if T1(xm, ym, zm) ∈ Ws(O), namely,

0 = µ+ cxm + d(ym − y−)2 + a23zm + h2(xm, ym, zm).

Then, by repeating the same procedure as was used to find equation (34), we obtain

0 = −γ−my− − γ−mY + d′

b′ X + u1(X, Y ,µ) + u2(X,µ),
0 = µ+ cλmx̂+ + cλmX + dY2 + u3(X, Y ,µ) + u4(Y ,µ),
 (58)

where X = x − x̂+, Y = ym − y−, u1 = o(γ−m), u2 = o(X), u3 = o(λm), and u4 = o(λm + Y2).
In order to have a homoclinic tangency, we need the Jacobian matrix of the right-hand side 

of (58) to have zero determinant, namely,

cλmγ−m +
2dd′

b′
(Y + v(X, Y)) + o(Y) + o(λmγ−m) = 0, (59)

where v = o(λm + |Y|). After the coordinate transformation

(X̂, Ŷ) = (X, Y + v(X, Y)), (60)

equation (58) keep their form, and equation (59) is recast as

cλmγ−m +
2dd′

b′
Ŷ + o(Ŷ) + o(λmγ−m) = 0. (61)

The quadratic tangencies correspond to non-degenerate solutions to the system consisting of 
(58) and (61). With a straightforward computation one can find the solutions as

X̂m = b′γ−my−

d′ + o(γ−m),

Ŷm = − b′cλmγ−m

2dd′ + o(λmγ−m),
µm = −cλmx̂+ + o(λm),
 (62)

where m is sufficiently large, and each solution gives a non-transverse homoclinic point 
M−

m ∈ Wu
loc(O) corresponding to a quadratic tangency at µ = µm.

The global map associated to M−
m  is T̂ := T1 ◦ Tm

0 ◦ T ′
1 : (x, y, z) �→ (x̄, ȳ, z̄), and the corre-

sponding coefficients cm and dm are given by

ĉ =
∂ȳ
∂x M−

m

and d̂ =
1
2
∂2ȳ
∂y2 |M−

m
. (63)

Similar to the computation of such coefficients in the proof of lemma 2, by applying the chain 
rule to equations (19), (55) and (57), and using the formulas (59) and (62), we have

cm = a′cλm + 2c′dγmŶm + o(λm) = cλm
(

a′d′ − b′c′

d′

)
+ o(λm), (64)
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dm = dd
′2γ2m + o(γm). (65)

Equation (65) means that dm has the same sign as d, which is positive. Equation (64) for cm 
can be recast as

cm = cλm
(

2ad(ŷk − y−)− bc + . . .

2d(ŷk − y−)(1 + . . . )

)
+ o(λm). (66)

Since ŷk − y− can be sufficiently small, the estimates in (56) imply that the sign of cm is the 
same as −b/(d(ŷk − y−)). It follows from d  >  0 and ŷk − y− > 0 that if b  <  0, then we have 
cm  >  0, and this gives us the class (4) homoclinic tangency; if b  >  0, then we just need to 
consider the point N̂3

k , for which ŷk − y− < 0, instead of N̂2
k  in (55). □ 

4. Invariant cone fields

In this section, we prove the existence of certain invariant cone fields in Π0. These cone fields 
will help in two ways. First, estimates for the strong-stable leaves are obtained from stable 
invariant cones in lemmas 7 and 8. Second, we use the cones to obtain estimates for the mul-
tipliers of periodic orbits.

Recall that σ0
k ⊂ Π0 (k � k∗) are the sets of points whose images under Tk

0  belong to Π1, 
where k* is the smallest integer such that Tk∗

0 (Π0) ∩Π1 �= ∅. Denote by Σ0 the union of all σ0
k  

with k � k∗. For any X ∈ Σ0, we have T(X) = T1 ◦ Tk
0(X) where k is such that X ∈ σ0

k .

Lemma 4. If k* is sufficiently large, then there exist constants K  >  0 and M  >  0 such that 
the cone field Ccu over Σ0 (the center unstable cone filed) defined as

Ccu(X) = {(∆x,∆y,∆z) | ‖∆z‖ � K(|∆x|+ |∆y|)} (67)

is strictly forward-invariant under the derivative DT  of the first-return map T (here, 
(∆x,∆y,∆z) are coordinates in the tangent space to Σ0). Moreover,

‖DT(X)V‖ � M|λ|k‖V‖ (68)

for any V ∈ Ccu(X).

Proof. Take any X ∈ σ0
k  and let V0 = (∆x0,∆y0,∆z0) be a vector in the tangent space at 

the point X such that

‖∆z0‖ � K(|∆x0|+ |∆y0|), (69)

where K  >  0 is some constant. Denote DTk
0(X)V0 = (∆x1,∆y1,∆z1) and 

DT1DTk
0(X)V0 = (∆x2, ∆y2,∆z2). By formula (8) and noting that the first derivatives of the 

functions φ, φ̂ and ψ in (8) are bounded, we have the following relations:

∆x1 = λk∆x0 + o(λk)(∆x0 +∆y1 +∆z0), (70)

∆y0 = γ−k∆y1 + o(γ−k)(∆x0 +∆y1 +∆z0), (71)

∆z1 = O(λ̂k)(∆x0 +∆y1 +∆z0). (72)
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Equations (70) and (71) can be recast as

∆x0 = λ−k∆x1(1 + o(1)) + o(1)(∆y1 +∆z0), (73)

∆y0 = γ−k∆y1(1 + o(1)) + o(γ−k)(∆x0 +∆z0). (74)

By plugging these two equations into (69), we obtain

‖∆z0‖ � K|λ|−k|∆x1|(1 + o(1)) + o(1)|∆y1|,

where we denote by o(1) the terms that go to zero as k → +∞. The above equation together 
with (72) and (73) implies

‖∆z1‖ � O(λ̂kλ−k)|∆x1|+ O(λ̂k)|∆y1| (75)

and

‖∆x0‖+ ‖∆y0‖ = O(λ−k)(‖∆x1‖+ ‖∆y1‖). (76)

The derivative DT1 is uniformly bounded in a small neighbourhood Π1, so we have

‖∆z2‖ � sup ‖DT1‖(|∆x1|+ |∆y1|+ ‖∆z1‖).

Hence, when k* is large enough, the above inequality together with (75) gives

‖∆z2‖ � (1 + sup ‖DT1‖)(|∆x1|+ |∆y1|). (77)

Note that by (19) we have
(
∆x2

∆y2

)
= B1

(
∆x1

∆y1

)
+ B2∆z1,

for some matrices B1 and B2, whose norm is uniformly bounded. In fact, B1 is close to 
(

a b
c 0

)
, 

so, by (22), det(B1) �= 0, i.e. B1 is invertible. Thus, we have
(
∆x1

∆y1

)
= B−1

1

(
∆x2

∆y2

)
− B−1

1 B2∆z1. (78)

By taking k* sufficiently large, equations (75) and (78) imply
∥∥∥∥
(
∆x1

∆y1

)∥∥∥∥ � 2‖B−1
1 ‖

∥∥∥∥
(
∆x2

∆y2

)∥∥∥∥ . (79)

We now combine the two inequalities (77) and (79). It follows that, by taking k* sufficiently 
large, we have

‖∆z2‖ < 4‖B−1
1 ‖(1 + sup ‖DT1‖)(|∆x2|+ |∆y2|), (80)

which implies the lemma after letting K = 4‖B−1
1 ‖(1 + sup ‖DT1‖); estimate (68) follows 

from (78) and (76). □ 

The existence of the center-unstable cone field Ccu implies that the areas of certain surfaces 
are expanded by the map T. We denote by A(S) the area of a surface S.

Lemma 5. There exists L  >  0 such that for any surface S ⊂ σ0
k  such that its tangent space 

at every point lies in the cone field Ccu, we have

A(T(S)) > L|λγ|kA(S). (81)
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Proof. Since the cone field Ccu has the same form (67) at all points, we have that, for any 
surface S whose tangent space lies in Ccu, its equation takes the form z = S(x, y) and the de-
rivatives ∂S/∂x  and ∂S/∂x  are uniformly bounded away from zero and infinity. Thus, there 
exist positive constants L1 and L2 such that

L2A(π0(S)) < A(S) < L1A(π0(S)), (82)

where π0  is the projection onto the (x, y)-plane. Since Ccu is invariant under DT , the tangent 
space of T(S) also lies in Ccu. Therefore,

A(T(S)) > L2A(π0(T(S))). (83)

Let G = π0 ◦ T|z=0 : (x, y) �→ (x̄, ȳ). We note that

A(π0(T(S))) =
∫

π0(T(S))
dxdy =

∫

π0(S)
| detDG|dudv

and

A(π0(S)) =
∫

π0(S)
dudv.

Therefore, in order to prove the lemma, it is sufficient to show that there exists L3  >  0 such 
that

|detDG| > L3|λγ|k. (84)

In what follows we prove inequality (84). By (8), the map Tk
0 |z=0 is given by

xk = λkx + φk(x, yk, 0),
y = γ−kyk + ψk(x, yk, 0),

zk = φ̂k(x, yk, 0).

By (9) and (10), this map can be rewritten as

xk = λkx + φ̃k(x, y),
yk = γky + ψ̃k(x, y),
 (85)

where

φ̃k = o(|λ|k), ∂xφ̃k = o(|λ|k), ∂yφ̃k = o(|λγ|k),
ψ̃k = o(1), ∂xψ̃k = o(1), ∂yψ̃k = o(|γ|k).
 (86)

One can also express zk as a function of xk and y k and see that this function satisfies

zk = O(λ̂k), ∂xk zk = O(λ̂kλ−k), ∂yk zk = O(λ̂k). (87)

The map G can be written as the composition of the map (85) and the map T1|Tk
0({z=0}) 

which, by (19), is given by

x̄ = x+ + axk + b(yk − y−) + a13zk + h1(xk, yk, zk),
ȳ = µ+ cxk + d(yk − y−)2 + a23zk + h2(xk, yk, zk).

The above formulas yield

∂(xk, yk)

(x, y)
=

(
λk + o(λk) o(λkγk)

o(1)k→+∞ γk + o(γk)

)
, (88)
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and

∂(x̄, ȳ)
(xk, yk)

=

(
a + O(|λ̂k|λ|−k|+ |yk − y−|) b + O(|λ|k + |yk − y−|)
c + O(|λ̂k|λ|−k|+ |yk − y−|) 2d(yk − y−) + O(|λ|k + (yk − y−)2)

)
. (89)

A straightforward computation gives

|detDG| =
∣∣∣∣det

∂(x̄, ȳ)
(xk, yk)

det
∂(xk, yk)

(x, y)

∣∣∣∣ = |bc + O(yk − y−)| |λγ|k + o(|λγ|k).

The term yk − y− is bounded by the small number δ (the size of Π0 and Π1), and bc �= 0 by 
(22). It follows that (84) holds indeed for some L3  >  0. □ 

We proceed to find a stable cone field.

Lemma 6. There exists a stable cone field Cs over Σ0 ∩ T(Σ0) which is strictly backward-
invariant under DT . The cone at the point X ∈ σ0

k ∩ T(Σ0) is given by

Cs(X) = {(∆x,∆y,∆z) | |∆x| � K1λ̂
k|λ|−k‖∆z‖, |∆y| � K2λ̂

k|γ|−k‖∆z‖},
 (90)

where K1 and K2 are some positive constants, independent of X. The restriction of DT  to Cs is 
contracting, i.e. there exists M  >  0 such that

‖DT(X)V‖ � Mλ̂k‖V‖ (91)

for any V ∈ Cs(X).

Proof. Let Y = T1 ◦ Tk
0(X) and let V2 = (∆x2,∆y2,∆z2) be a vector in the tangent space 

at Y such that

|∆x2| � S‖∆z2‖ and |∆y2| � S‖∆z2‖, (92)

where S  >  0 is a constant. Denote DT−1
1 (Y)V2 = (∆x1,∆y1,∆z1). From (19), we have

(∆x2,∆y2) = B1(∆x1,∆y1) + B2∆z1,
∆z2 = B3(∆x1,∆y1) + B4∆z1, (93)

where Bi (i = 1 . . . 4) are some matrices whose norms are uniformly bounded. Note that B1 is 

close to 
(

a b
c 0

)
 and bc �= 0 by (22), so the matrix B1 is invertible.

Now, equation (93) can be rewritten as

(∆x1,∆y1) = B−1
1 (∆x2,∆y2)− B−1

1 B2∆z1,
∆z2 = B3B−1

1 (∆x2,∆y2) + (B4 − B−1
1 B2)∆z1.

 (94)

By choosing S such that S‖B2B−1
1 ‖ < 1, we obtain

‖B3B−1
1 (∆x2,∆y2)‖ � S‖B3B−1

1 ‖ ‖∆z2‖ < Ŝ‖∆z2‖,

where Ŝ < 1 is a constant, independent of the choice of the point Y and the vector V2.
Hence, the second equation  in (94) implies ‖∆z2‖ = O(‖∆z1‖), which by (92) further 

implies
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|∆x2| = O(‖∆z1‖) and |∆y2| = O(‖∆z1‖). (95)

Finally, from the first equation in (94) we find

|∆x1|+ |∆y1| � l‖∆z1‖, (96)

where l is some positive constant, independent of the choice of Y and V2.
Denote DT−k

0 DT−1
1 (Y)V2 = (∆x0,∆y0,∆z0). By formula (8), noting that the first deriva-

tives of φ, φ̂ and ψ are bounded, we have the following relations:

∆x1 = λk∆x0 + o(λk)(∆x0 +∆y1 +∆z0), (97)

∆y0 = γ−k∆y1 + o(γ−k)(∆x0 +∆y1 +∆z0), (98)

∆z1 = O(λ̂k)(∆x0 +∆y1 +∆z0). (99)

Estimates (99) and (96) give

‖∆z1‖ = O(λ̂k)(|∆x0|+ ‖∆z0‖),

‖∆y1‖ = O(λ̂k)(|∆x0|+ ‖∆z0‖).

With these estimate and (96), equation (97) yields

|∆x0| = O(λ−k)‖∆z1‖+ o(‖∆z0‖).

By plugging the above equation into (99), we obtain

|∆z1| = O(λ̂k)‖∆z0‖, (100)

which, along with (96), further implies

|∆x1|+ |∆y1| = O(λ̂k)‖∆z0‖. (101)

Finally, the above equation together with (97) and (98) leads to

|∆x0| = o(1)k→+∞‖∆z0‖,
|∆y0| = o(γ−k)‖∆z0‖.

This formula shows that the image by DT−1 of a vector satisfying (92) lies in the cone (90). 
If k* was taken sufficently large, then every vector from the cone (90) satisfies (92), i.e. we 
have proven the required invariance of the cone field (90). Estimate (91) follows from (100) 
and (101) and the uniform boundedness of DT . □ 

The strong-stable foliation F0 which exists in the stable manifold Ws(O) extends to an 
invariant foliation F s in a small neighborhood of the homoclinic cycle O ∪ Γ ∪ Γ̃ we consider 
here (see [49]). As the tangents to the leaves of the invariant foliation F s must lie in the stable 
invariant cone Cs, lemma 6 immediately implies the following formula for the leaves of F s.

Lemma 7. The leaf of the strong-stable foliation F s through a point (x∗, y∗, z∗) ∈ Σ0 with 
a stay number k takes the form
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x = x∗ + ϕ1(z; x∗, y∗, z∗),
y = y∗ + ϕ2(z; x∗, y∗, z∗), (102)

where

ϕ1 = o(1)k→+∞, ∂ϕ1
∂z = o(1)k→+∞,

ϕ2 = o(γ−k), ∂ϕ1
∂z = o(γ−k).

Note that we do not estimate the derivatives of ϕ1,2 with respect to (x∗, y∗, z∗) here.
In the proof of lemma 6, we have not used condition (C4) on the multipliers of O. Formula 

(102) will only be helpful in the non-symmetric case (theorem 2) where we have more param-
eters to do the bifurcation. When it comes to the symmetric case (theorem 1), we need a better 
estimate, which will be obtained by taking into account condition (C4).

Lemma 8. If condition (C4) is satisfied, then the strong-stable leaf through a point 
(x∗, y∗, z∗) ∈ Σ0 with a stay number k assumes the same form as in (102), but the function ϕ1 
now satisfies

ϕ1 = O(λk
0λ

−k),
∂ϕ1

∂z
= O(λk

0λ
−k), (103)

where λ0 can be taken arbitrarily close to |λ1|.

Proof. Take any point X ∈ σ0
k  and consider a vector (∆x0,∆y0,∆z0) in the tangent space, 

at X, to the leaf of the invariant foliation F s through X. We need to show that

|∆x| � Kλk
0λ

−k‖∆z‖ (104)

for some constant K, independent of X.
Let (xk, yk, zk) = Tk

0X and (∆x1,∆y1,∆z1) = DTk
0(∆x0,∆y0,∆z0). By formula (8), we 

have

∆x1 = λk(1 + . . . )∆x0 + o(λk)∆y1 +
∂xk
∂z0

∆z0,
∆z1 = ∂zk

∂z0
∆z0 + o(λk)∆x0 + o(λk)∆y1,

 (105)

where the dots denote terms that tend to zero as k → +∞. Since the vector (∆x0,∆y0,∆z0) is 
in the stable cone Cs, its image V  by D(T1Tk

0) is also in Cs. So, as we have shown in the proof 
of lemma 6, the vector (∆x1,∆y1,∆z1) = DT−1

1 V  must satisfy

|∆x1|+ |∆y1| = O(‖∆z1‖),

see (96). Plugging this into (105) gives

λk(1 + . . . )∆x0 = O(‖∂xk

∂z0
‖+ ‖∂zk

∂z0
‖)∆z0.

By lemma 1, this inequality implies (104). □ 
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5. The index-2 condition

In this section we find a condition which ensures that a period-2 point of T is a saddle of index 
2. We will start with a result describing the multipliers of a periodic point (in a more general 
case where period-n orbits are considered).

Let X ∈ Σ0 be a period-n point such that X = Tn(X) = T1 ◦ Tkn
0 ◦ T1 ◦ Tkn−1

0 ◦ · · · ◦ T1 ◦ Tk1(X), 

where k1, . . . , kn are the corresponding stay numbers. We sort the eigenvalues of DTn the mul-
tipliers of X in decreasing order by their absolute values and denote them as ν1, . . . , νD. By 
lemmas (4) and (6), the derivative DTn at X has a pair of invariant cones, which implies the 
existence of a two-dimensional invariant subspace Ecu (in the center-unstable cone) and a 
(D − 2)-dimensional invariant subspace Es in the stable cone. Estimates (68) and (91) for 
DTn restricted to Ecu and, respectively, Es immediately give the the following estimate on the 
multipliers of X.

Lemma 9. The eigenvalues of DTn|Ecu are ν1 and ν2, and the eigenvalues of DTn|Es are 
ν3, . . . , νD. Moreover, we have

|νi|−1 = O(|λ|k1+···+kn), i = 1, 2, (106)

and

|νi| = O(λ̂k1+···+kn), i = 3, 4, . . . , D. (107)

We now consider orbits of period 2, and find the condition under which such point 
is an index-2 saddle, i.e. |ν1| > 1 and |ν2| > 1. Let Q ∈ Π0 be a period-2 point of T with 
stay numbers k and m. Denote Q01 = Q = (x01, y01, z01), Q11 = Tk

0(Q) = (x11, y11, z11), 
Q02 = T1 ◦ Tk

0(Q) = (x02, y02, z02) and Q12 = Tm
0 ◦ T1 ◦ Tk

0(Q) = (x12, y12, z12).

Lemma 10. There exist functions r1,2,3,4, which depends on the integers m and k, param-
eters and the coordinates of the points Qij, such that the point Q is a saddle of index 2 if and 
only if there exists some number s ∈ (−1, 1) such that

(y11 − y− + r1)(y12 − y− + r2) = r3 + r4s. (108)

The functions r1,2,3,4 satisfy

r1 = O((y11 − y−)2 + |λ|k + |γ|−m), r2 = O((y12 − y−)2 + |λ|m + |γ|−k),
r3 = O(|λ|k|γ|−k|+ |λ|m|γ|−m + |λ|(k+m)), r4 = O(λ(k+m)).
 (109)

Proof. One can check that the condition |ν1|, |ν2| > 1 is equivalent to

|ν1ν2| > 1 and
ν1 + ν2

ν1ν2 + 1
= s, −1 < s < 1.

This can be written as

| detDT2|Ecu | > 1 and
tr DT2|Ecu

detDT2|Ecu + 1
= s, −1 < s < 1, (110)

where Ecu is the two-dimensional invariant subspace introduced before lemma 9. In what fol-
lows, we use (∆x,∆y,∆z) to denote a vector in Ecu. Note that ∆z  is a function of ∆x and ∆y. 
We, thus, need to compute the trace and the determinant of DT2|Ecu : (∆x,∆y) �→ (∆x̄,∆ȳ).
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Denote

η1 = y11 − y− and η2 = y12 − y−. (111)

Take a vector V = (∆x1,∆y1,∆z1) ∈ Ecu. Formula (8) implies that

DTk
0 |Ecu V = A1

(
∆x1

∆y1

)
=

(
λk + o(λk) o(λkγk)

o(1)k→+∞ γk + o(γk)

)(
∆x1

∆y1

)
=:

(
∆x2

∆y2

)
.

 

(112)

Note that the ∆z1 component is a bounded function of (∆x1,∆y1) and its contribution to ∆x2  
and ∆y2  goes into the small terms in A1.

After noting x11 = O(λk) and z11 = O(λ̂k) from (8), we can write the matrix DT1(Q11) as



a + O(|λ|k + |η1|) b + O(|λ|k + |η1|) a13 + O(|λ|k + |η1|)
c + O(|λ|k + |η1|) 2dη1 + O(|λ|k + η2

1) a23 + O(|λ|k + |η1|)
a31 + O(|λ|k + |η1|) a32 + O(|λ|k + |η1|) a33 + O(|λ|k + |η1|)


 . (113)

Since the vector DTk
0V1 = (∆x2,∆y2,∆z2) belongs to DTk

0Ccu, we have from equation (75) 
that

∆z1 = O(λ̂kλ−k)∆x1 + O(λ̂k)∆y1.

Along with (113), this leads to

D(T1 ◦ Tk
0)|Ecu V1 = A2

(
∆x2

∆y2

)
=

(
a + O(|λ̂kλ−k|+ |η1|) b + O(|λ|k + |η1|)
c + O(|λ̂kλ−k|+ |η1|) 2dη1 + O(|λ|k + η2

1)

)(
∆x2

∆y2

)
=:

(
∆x3

∆y3

)
,

 (114)
where the contribution of ∆z2 goes into the O(·) terms.

By repeating the same procedure, we also obtain the following formulas for DTm
0 |D(T1◦Tk

0)Ecu 
and DT1|D(Tm

0 ◦T1◦Tk
0)Ecu:

DTm
0 |D(T1◦Tk

0)Ecu = A3 =

(
λm + o(λm) o(λmγm)

o(1)m→+∞ γm + o(γm)

)
, (115)

and

DT1|D(Tm
0 ◦T1◦Tk

0)Ecu = A4 =

(
a + O(|λ̂mλ−m|+ |η2|) b + O(|λ|m + |η2|)
c + O(|λ̂mλ−m|+ |η2|) 2dη2 + O(|λ|m + η2

2)

)
.

 (116)
Now we can write the map DT2

Ecu as the product A4A3A2A1. By equations (112) and (114)–
(116), we have

A2A1 =

(
o(1)k→+∞ bγk + o(γk)

cλk + o(|λ|k + |η1|) γk(2dη1 + o(1)k→+∞η1 + O(|λ|k + η2
1))

)
,

 
(117)

A4A3 =

(
o(1)m→+∞ bγm + o(γm)

cλm + o(|λ|m + |η2|) γm(2dη2 + o(1)m→+∞η2 + O(|λ|m + η2
2))

)
,

 
(118)

which yields

tr DT2
Ecu = tr (A4A3A2A1) =

= γk+m(4d2(η1 + O(η2
1)(η2 + O(η2

2))(1 + . . . ) + η1O(|λ|m + |γ|−k) + η2O(|λ|k + |γ|−m)+

+bcλmγ−m(1 + . . . ) + bcλkγ−k(1 + . . . )),
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where the dots stand for terms that tend to zero as m, k → +∞. This equation can be rewritten 
as

tr DT2
Ecu = γk+m(1 + . . . )(4d2(η1 + O(η2

1 + |λ|k + |γ|−m))

·(η2 + O(η2
2 + |λ|m + |γ|−k) + O(|λ|m|γ|−m + |λ|k|γ|−k + |λ|k+m)). (119)

It follows immediately from (112) and (114)–(116) that

detA2A1 = −λkγk(bc + O(η1) + o(1)k→+∞),
detA4A3 = −λmγm(bc + O(η2) + o(1)m→+∞).
 (120)

Consequently, with the fact bc �= 0 by (22), we obtain

detDT2
Ecu = (λγ)k+m(bc)2(1 + O(|η1|+ |η2|) + o(1)k,m→+∞), (121)

and, since |λγ| > 1,

| detDT2
Ecu | > 1.

Therefore, by (119) and (121), condition (110) is indeed equivalent to (108) and (109). □ 

6. Proofs of theorems 1 and 2

We first prove theorem 1. It will be proved in two steps corresponding to finding the orbits 
of transverse and non-transverse heteroclinic intersections in a heterodimensional cycle. The 
proof of theorem 2 will be a modification of that of theorem 1.

6.1. Proof of theorem 1

Theorem 1 is a consequence of the following two lemmas. Recall that δ is the size of the 
neighbourhood Π1 of M−.

Lemma 11. Let F satisfy conditions (C1)–(C3). If there exists two transverse homoclinic 
points N1, N2 ∈ Wu

loc(O) of O satisfying 0 < y− − yN1
< δ/2 and 0 < yN2

− y− < δ/2, then 
we can find an integer K such that, for any index-2 periodic point Q of F whose orbit lies in ⋃+∞

K σ0
k, the intersection Wu(Q) ∩ Ws(O) is non-empty. The result also holds for all diffeo-

morphisms sufficiently C2-close to F.

Lemma 12. Consider a two-parameter family {Fµ,θ} of diffeomorphisms in Diff r
s(MD) 

where F0,θ∗ satisfies conditions (C1)–(C4). If cx+y− > 0 and cdx+   >  0, then, for any se-
quence {(kj, mj)} of pairs of even natural numbers satisfying kj, mj → +∞ and mj/kj → θ∗ 
as j → +∞, there exists a sequence {(µj, θj)} accumulating on (0, θ∗) such that, for any 
sufficiently large j , the diffeomorphism Fµj,θj has an index-2 periodic orbit Qj  satisfying 

T1 ◦ Tmj
0 ◦ T1 ◦ Tkj

0 (Qj) = Qj and Ws(Qj) ∩ Wu(O) �= ∅.

Theorem 1 follows from these lemmas.

Proof of theorem 1. Lemma 3 gives us a sequence {µi} accumulating on µ = 0 
such that Fµi,θ∗ has a new orbit Γi  of homoclinic tangency to O. This orbit Γi  has a point 
Mi = (0, yi, 0) ∈ Wu

loc(O) ∩Π1 accompanied by two transverse homoclinic points 
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N1
i = (0, y1

i , 0) and N2
i = (0, y2

i , 0) such that 0 < yi − y1
i < δ/2 and 0 < y2

i − yi < δ/2. It fol-
lows that Fµi,θ∗ has the property given by lemma 11.

Next, we fix a sufficiently large i. According to lemma 3, the global map associated to Γj  has 
cx+y− > 0 and cdx+   >  0. Obviously, Fµi,θ∗ with a sufficiently large i fulfils conditions (C1)–
(C4). Hence, lemma 12 gives a sequence {(µn

i , θn
i )}n accumulating on (µi, θ∗) such that the 

system Fµn
i ,θn

i
 has an index-2 periodic point Qn

i  satisfying T1 ◦ Tm(n,i)
0 ◦ T1 ◦ Tk(n,i)

0 (Qn
i ) = Qn

i  
and Ws(Qn

i ) ∩ Wu(O) �= ∅, where T0 and T1 are the local and global maps of Fµn
i ,θn

i
. Since 

lemma 11 holds for Fµi,θ∗ and all sufficiently C2-close diffeomorphisms, the theorem follows 

by taking (µj, θj) = (µ
nj
ij , θnj

ij ), where {nj } and {ij } are any sequences tending to positive infin-
ity as j → +∞. □ 

We proceed to prove lemmas 11 and 12.

Proof of lemma 11. We will prove this lemma by using the fact that the map T expands 
two-dimensional areas, which follows from the assumption |λγ| > 1.

Let us first define a quotient first-return map by the leaves of the invariant foliation 
F s. Recall that the first return map T : Σ0 → Π0 (where Σ0 =

⋃+∞
k∗ σ0

k ) takes the form 
T(M) = T1 ◦ Tk

0(X) for any M ∈ σ0
k  (see (23)). Let π : U0 → {z = 0} be the projection 

map along the leaves of F s. Denote by Π̂i, σ̂0
k  and Σ̂0 the intersections of Πi,σ0

k  and Σ0 with 
{z  =  0}. The foliation F s induces the quotient map from Σ̂0 to Π̂0:

T̂(M) = π ◦ T1 ◦ Tk
0(M),

for any M ∈ σ̂0
k .

Consider any surface Sk ∈ σ0
k  whose tangents lie in the center-unstable cone field Ccu. This 

surface is transverse to F s and the angle between them are uniformly bounded. Therefore, 
by the absolute continuity of F s, there exist constants q1 and q2 which do not depend on the 
surface such that

q1A(Sk) < A(π(Sk)) < q2A(Sk),

where we use A(·) to denote the area. On the other hand, lemma 5 gives

A(T(Sk)) > L|λγ|kA(Sk), (122)

where L is some positive constant. It follows that

A(π ◦ T(Sk)) > q1A(T(Sk)) > q1L|λγ|kA(Sk) > q1q−1
2 L|λγ|kA(π(Sk)).

Thus, there exists k′ such that for any k > k′ we have

A(T̂(Sk)) > qA(π(Sk)), (123)

for some q  >  1.
Let K = max(k∗, k′) and Q ∈ σ0

k0
 (k0  >  K) be any index-2 periodic point of T. Take any 

small piece Wu of the unstable manifold of Q. The tangent space of Wu lies in the cone field 
Ccu. Inequality (123) implies that A(π(Wu)) increases after every iteration by T̂ . This means 
that one can find n0 such that Tn(Wu) ∈ σ0

k0
 for all n  <  n0 and Tn0(Wu) insects one of the 

boundaries v1 = {x = x+ − δ/2}, v2 = {x = x+ + δ/2}, h1 = {y = γ−k0(y− − δ/2)} and 
h2 = {y = γ−k0(y− + δ/2)} of σ0

k0
. We claim that Tn0(Wu) intersects either h1 or h2. For 

that, we show that Tn0(Wu) cannot intersects v1 and v2. Indeed, formula (8) for the local 
map implies that x and z in (19) are of order of λk0. Hence, the main contribution to the x-
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coordinate in (19) is given by the term b(y   −  y + ), which is of order δy (recall that we let 
Π1 = {(x, y, z) | |x| < δ, |y − y−| < δy, ‖z‖ < δ}). It follows that, by taking K sufficiently 

large and δy sufficiently small, the image T1 ◦ Tk0
0 (σ0

k0
) intersects neither v1 nor v2. The claim 

is proven.
We now take a special choice of the boundaries h1 and h2. Let y   =  w1(x,z) and y   =  w2(x,z) 

be the equations of the two pieces of Ws(O) that go through the transverse homoclinic points 
N1 and N2, respectively. We replace Π1 by its subset {(x, y, z) ∈ Π1 | w1(x, z) < y < w2(x, z)}. 
Then, all the ‘horizontal’ boundaries of σ0

k  are pieces of Ws(O). Lemma 11 follows by noticing 
that h1 and h2 are such boundaries.

The above computation goes through in the coordinate system where the local map T0 
assumes the form (6) and satisfies the identities in (7). This can be achieved when F has at 
least C2-smoothness. Therefore, the above result holds for any diffeomorphism sufficiently 
C2-close to F. □ 

Proof of lemma 12. We start with finding a periodic point Q ∈ Π0 of period 2 and in-
dex 2. We are searching for a point Q such that T2(Q) = T1 ◦ Tm

0 ◦ T1 ◦ Tk
0(Q) = Q. Let 

Q01 = Q = (x01, y01, z01), Q11 = Tk
0(Q) = (x11, y11, z11), Q02 = T1 ◦ Tk

0(Q) = (x02, y02, z02) 
and Q12 = Tm

0 ◦ T1 ◦ Tk
0(Q) = (x12, y12, z12). Recall that |λγ| > 1, hence 

θ = − ln |λ|/ ln |γ| < 1. Therefore, the condition m/k → θ∗ implies k − m � 0.
By formulas (8) and (19), the point Q is a period-2 point if

x11 = λkx01 + φk,
y01 = γ−ky11 + ψk,
z11 = φ̂k,

x02 − x+ = ax11 + b(y11 − y−) + a13z11 + h1,
y02 = µ+ cx11 + d(y11 − y−)2 + a23z11 + h2(,

z02 − z+ = a31x11 + a32(y11 − y−) + a33z11 + h3,

x12 = λmx02 + φk,
y02 = γ−my12 + ψk,
z12 = φ̂k,

x01 − x+ = ax12 + b(y12 − y−) + a13z12 + h1,
y01 = µ+ cx12 + d(y12 − y−)2 + a23z12 + h2,

z01 − z+ = a31x12 + a32(y12 − y−) + a33z12 + h3,

which can be rewritten as

x01 − x+ = aλmx02 + b(y12 − y−) + o(λm) + O((y12 − y−)2),

γ−ky11 + o(γ−k) = µ+ cλmx02 + d(y12 − y−)2 + o(λm) + h2(0, y12 − y−, 0),

z01 − z+ = a31λ
mx02 + a32(y11 − y−) + o(λm) + O((y12 − y−)2),

x02 − x+ = aλkx01 + b(y11 − y−) + o(λk) + O((y11 − y−)2),

γ−my12 + o(γ−m) = µ+ cλkx01 + d(y11 − y−)2 + o(λk) + h2(0, y11 − y−, 0),

z02 − z+ = a31λ
kx01 + a32(y11 − y−) + o(λk) + O((y11 − y−)2).

 (124)

Note that it follows from the implicit function theorem that, at sufficiently large k, m, the varia-
bles x01, x02, z01 and z02 can be expressed as functions of y 11 and y 12. Consequently, we need to 
consider only the equations for y 11 and y 12. By introducing η1 = y11 − y− and η2 = y12 − y−, 
finding a period-2 point becomes equivalent to solving the following system:

γ−k(η1 + y−) + o(γ−k) = µ+ cλmx+ + bcλmη1 + dη2
2 + o(λm) + h2(0, η2, 0),

 
(125)

γ−m(η2 + y−) + o(γ−m) = µ+ cλkx+ + bcλkη2 + dη2
1 + o(λk) + h2(0, η1, 0).

 (126)
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We will look for solutions η1,2 which tend to zero as k, m → +∞. By lemma 10, the corre-
sponding periodic point is of index-2 if, for some s ∈ (−1, 1),

(η1 + O(η2
1 + λk + γ−m))(η2 + O(η2

2 + λm)) = O(λmγ−m + λk+m) (127)

(recall that we assume k − m � 0, so λk = o(λm) and γ−k = o(γ−m); condition |λγ| > 1 also 
implies that γ−m = o(λ−m)).

After expressing µ as a function of η1 and η2 from (125) and plugging the result into (126), 
we obtain

0 = cx+λm + d(η2
1 − η2

2) + o(η2
1 + η2

2) + o(λm). (128)

Let

η̂1 = η1 + O(η2
1 + λk + γ−m) and η̂2 = η2 + O(η2

2 + λm), (129)

where the O(·) terms are exactly those in the left-hand side of (127). Consequently, equa-
tions (128) and (127) become

0 = cx+λm + d(η̂2
1 − η̂2

2) + o(λm + η̂2
1 + η̂2

2), (130)

η̂1η̂2 = (Ck,m + O(|η̂1|+ |η̂2|))λk+m, (131)

where Ck,m is independent of η̂1,2 and uniformly bounded for all k and m.
After we rescale the variables as follows:

(η̂1, η̂2) = (λk+ m
2 ξ1,λ

m
2 ξ2), (132)

equations (130) and (131) transform to

0 = cx+ − dξ2
2 + . . . ,

ξ1ξ2 = Ck,m + . . . ,
 (133)

where the dots denote terms that tend to zero as k, m → +∞. By noting cdx+   >  0 from the 
assumption of the lemma, we find, for all sufficiently large k and m, two solutions

(ξ∗1 , ξ∗2 ) = ±
(

Ck,m

√
d

cx+
+ o(1)k,m→+∞,

√
cx+

d
+ o(1)k,m→+∞

)
. (134)

Then, the corresponding values of (η1, η2) can be found from (132), (129) and the corre-
sponding values of µ can be found from either of the equations (125) and (126).

We proceed to seek for the intersection Ws(Q) ∩ Wu(O). For an index-2 point, its local 
stable manifold is a leaf of F s. In particular, a formula for the leaf through Q02 is given by 
lemma 8 as

x = x02 + ϕ1(z; x02, y02, z02),
y = y02 + ϕ2(z; x02, y02, z02),

where ϕ1 = O(λm
0 λ

−m) and ϕ2 = o(γ−m). Here λ0 is a value close to |λ1| such that |λ1| < λ0.
Now let W = {(0, y, 0) | |y + y−| < ε} with ε > 0 be a small piece of Wu

loc(O) containing 
the point M̃− = (0,−y−, 0). By formula (24), the image T̃1(W) is given by

x − x+ = bt + h1(0, t, 0),
−y = µ+ dt2 + h2(0, t, 0),

S−1z − z+ = a32t + h3(0, t, 0),
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where t ∈ (−ε, ε). Hence, we can write the condition for the intersection of Wu(O) ∩ Ws(Q) 
as

bη1 + O(λm
0 λ

−m) = bt + h1(0, t, 0),

−γ−m(η2 + y−) + o(γ−m) + o(γ−m) = µ+ dt2 + h2(0, t, 0),

S−1z − z+ = a32t + h3(0, t, 0),

which can be rewritten as

−γ−m(η2 + y−) + o(γ−m) = µ+ d(η1 + O(λm
0 λ

−m))2 + h2(0, η1 + O(λm
0 λ

−m), 0). (135)

Since the x- and z-coordinates of the points in the orbit of Q can be expressed as functions of 
η1, η2 and µ, the right-hand side of the above equation is just a function of η1, η2 and µ. We 
now express µ from (135) as a function of η1 and η2, and obtain

µ+ dη2
1 + h2(0, η1, 0) = −γ−my− + O(η1λ

m
0 λ

−m) + O(λ2m
0 λ−2m) + o(γ−m),

 (136)

which, along with (126), yields

γ−my− =
c
2
λkx+ + O(η1λ

m
0 λ

−m) + O(λ2m
0 λ−2m) + o(γ−m) + o(λk). (137)

Recall that condition (C4) gives |λ| |γ| 1
2 < 1. This, together with the fact λ0 < λ2 given by 

lemma 1, implies O(λ2m
0 λ−2m) = O(λ2m) = o(γ−m). By equations (129), (132) and (134), we 

have η1 = O(λk + γ−m), which implies O(η1λ
m
0 λ

−m) = O(η1λ
m) = o(λk) + o(γ−m). With 

these observations, equation (137) can be rewritten as

γ−my− =
c
2
λkx+ + o(λk) + o(γ−m),

or

λkγm =
2y−

cx+
+ o(λkγm) + o(1). (138)

Recall the assumption 2y−/cx+ > 0; we also have taken k and m even, so both sides of equa-
tion (138) are positive. We, therefore, may take logarithm on both sides, which gives

θ = − ln |λ|
ln |γ|

=
m
k
−

C∗
k,m

k
, (139)

where C∗
k,m = ln (2y−/cx+ + o(λkγm))/ ln |γ| is uniformly bounded, for all sufficiently large 

k and m. Note that C* is a function of θ—it depends, for example, on the coefficients of the 
global and local maps, which depend on θ as a parameter. It is important for us that C* is con-
tinuous and bounded function of θ, so a value of θ that solves (139) can be found for each suf-
ficiently large (k, m). It is also obvious, that if the sequence {(kj, mj)} satisfies kj, mj → +∞ 
and mj/kj → θ∗ as j → +∞, then the values of θj we obtain from (139) accumulate on θ = θ∗. 
The corresponding µ values are obtained from (136) as µj = −γmj y− + o(γmj) and they tend 
to 0 as j → +∞. Therefore, for each sufficiently large j , the map Fµj,θj has an index-2 point 
of period 2 such that Ws(Qj) ∩ Wu(O) �= ∅. □ 
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6.2. Proof of theorem 2

In the non-symmetric case, we use a simpler construction than in theorem 1. In particular, we 
use a different version of lemma 12. Here we have two splitting parameters µ1 and µ2, which 
correspond to two different orbits Γ and Γ̃ of homoclinic tangency, respectively.

Lemma 13. Consider a two-parameter family {Fµ1,µ2} of diffeomorphisms in Diff r(M), 
where F0,0 satisfy conditions (C1)–(C3) and (C5). For every sufficiently large k there exist 
parameter values {(µ1,µ2)}, accumulating on 0 as k → +∞, such that the diffeomorphism 
Fµ1,µ2 has an index-2 periodic point Q satisfying T1 ◦ Tk

0(Q) = Q and Ws(Q) ∩ Wu(O) �= ∅.

Since lemma 11 remains true in the general case, theorem 2 follows immediately by replac-
ing lemma 12 with lemma 13 in the proof of theorem 1.

In what follows we prove lemma 13. Here we consider the local map in the form (6) for 
which only identities in (7) satisfied (as we do not have condition (C4) here, we cannot assume 
identities (11)). Therefore, without the identities in (11), we do not have lemmas 1 and 8. We 
still can use lemma 7 which gives the equation for strong-stable leaves of a pointy (x∗, y∗, z∗) 
in the form

x = x∗ + ϕ1(z; x∗, y∗, z∗),
y = y∗ + ϕ2(z; x∗, y∗, z∗), (140)

where ϕ1 = o(1)k→+∞ and ϕ2 = o(γ−k).

Proof of lemma 13. The coincidence condition (C5) implies that the small neighbour-
hoods Π̃1,Π1 and Π0, and the local and global maps associated to the two homoclinic tangency 
orbits Γ and Γ̃ can be defined in the same way as those in section 2. The local map for Γ and 
Γ̃ have the form of (8). The two global maps T1 and T̃1 are given by

x0 − x+i = aix1 + bi(y1 − y−i ) + ai
13z1 + hi

1,
y0 = µi + cix1 + di(y1 − y−i )2 + ai

23z1 + hi
2,

z0 − z+i = ai
31x1 + ai

32(y1 − y−i ) + ai
33z1 + hi

3,
 

(141)

where T1 corresponds to i  =  1 and T̃1 corresponds to i  =  2.
Let Q be a periodic point such that T1 ◦ Tk

0(Q) = Q. Denote Q0 = Q = (x0, y0, z0), 
Q1 = Tk

0(Q) = (x1, y1, z1). By formulas (8) and (141), the condition Q = T1 ◦ Tk
0(Q) is writ-

ten as

x1 = λkx0 + φk,
y0 = γ−ky1 + ψk,
z1 = φ̂k,

x0 − x+ = a1x1 + b1(y1 − y−) + a1
13z1 + h1

1,
y0 = µ+ c1x1 + d1(y1 − y−)2 + a1

23z1 + h1
2,

z0 − z+ = a1
31x1 + a1

32(y1 − y−) + a1
33z1 + h1

3.

We can express all variables here as functions of y 1, so the above equations reduce to

γ−k(η + y−) + o(γ−k) = µ1 + cλkx+ + bcλkη + dη2
2 + o(λk) + h2(0, η2, 0),

 
(142)

where we denote η = y1 − y−.
Like in the proof of lemma 10, this fixed point is a saddle of index-2 if, for some s ∈ (−1, 1),

tr D(T1 ◦ Tk
0)|Ecu

detD(T1 ◦ Tk
0)|Ecu + 1

= s, (143)

where Ecu is the two-dimensional invariant subspace given in lemma 9. By formulas (112) 
and (114),
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D(T1 ◦ Tk
0)|Ecu =

(
o(1)k→+∞ bγk + o(γk)

cλk + o(|λ|k + |η|) γk(2dη + o(1)k→+∞η + O(|λ|k + η2))

)

(see (117)). Therefore, equation (143) gives us the value of

η = O(λk). (144)

After that, we find µ from equation (142) as

µ1 = −cλkx+ + o(λk). (145)

Let us now construct the intersection Ws(Q) ∩ Wu(O). Like in the proof of theorem 1, this 
intersection is given by

x0 − x+ + o(1)k→+∞ = b2t + h2
1(0, t, 0),

−y0 + o(γ−k) = µ2 + d2t2 + h2
2(0, t, 0),

z − z+0 = a2
32t + h2

3(0, t, 0),
 (146)

which transforms into

−γ−k(η + y−1 ) + o(γ−k) = µ2 + d2η
2 + O(ηλ̂kλ−k) + O(λ̂2kλ−2k) + h2

2(0, η, 0).
 (147)

This along with (144) gives us the corresponding value of

µ2 = o(1)k→+∞. (148)

The lemma follows immediately. □ 
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Appendix

Here we show that, for the map T0 in the form (6), there exists a coordinate transformation T  
such that after this transformation the map T0 will satisfy identities (7) and (11), and also keep 
the symmetry R.

This transformation is constructed as a composition of

 T1 which straightens the local stable and unstable manifolds of O, thus giving the first two 
identities in (7);

 T2  which linearises both the restriction T0|Wu
loc

 and the quotient of T0|Ws
loc

 by the the strong-
stable foliation—after that the third and forth identities in (7) become valid;

 T3 which gives the last two identities in (7); and
 T4 which straightens a certain local, R-symmetric extended unstable manifold WuE

loc(O) 
along with the foliation FuE  on it—this leads to identities (11).

In what follows we discuss the transformations Ti , (i = 1, 2, 3, 4) separately and show that 
they keep the system symmetric with respect to R, i.e. they commute with R.
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A.1. Transformation T1

Let (x = wux(y), z = wuz(y)) and y   =  ws(x,z) be the equations for the local unstable and stable 
invariant manifolds of O, respectively. The transformation T1 is defined as

(xnew, znew) = (x − wux(y), z − wuz(y)), ynew = y − ws(x, z). (A.1)

In the new coordinates, the manifolds Wu
loc and Ws

loc have equations  (xnew, znew) = 0 and, 
respectively ynew = 0. Thus, the first two identities in (7) follow immediately from the invari-
ance of these manifolds with respect to T0.

Let us show that the coordinate transformation given by (A.1) commutes with R. Consider 
first the transformation ψ : (x, y, z) �→ (x, y − ws(x, z), z). By uniqueness of the stable mani-
fold, (R)Ws

loc = Ws
loc. Therefore, for any x, z, the image by R of the point (x, ws(x, z), z) ∈ Ws

loc 
also lies in Ws

loc, i.e.

ws(x,Sz) = −ws(x, z). (A.2)

(see formula (3) for R). Similarly, by the uniqueness of the unstable manifold,

wux(−y) = wux(y), wuz(−y) = Swuz(y). (A.3)

Now let (x, y, z) be an arbitrary point in a neighbourhood of O. We have

R ◦ T1(x, y, z) = (x − wux(y),−y + ws(x, z),Sz − Swuz(y)),

and

T1 ◦ R(x, y, z) = (x − wux(−y),−y − ws(x,Sz),Sz − wuz(−y)).

By (A.2),(A.2), this implies that T1 commutes with R, as required.

A.2. Transformations T2 and T3

The construction of these two transformations is given in the proof of lemma 6 in [22]. Here 
we reconstruct them for our case and prove that they are R-symmetric.

The transformation T2 in sought is in the form

xnew = x + h1(x, z), ynew = y + h2(y), znew = z, (A.4)

where h1(0, 0) = 0, h2(0) = 0, ∂h1(0, 0)/∂(x, z) = 0 and ∂h2(0)/∂y = 0 (hence the first two 
identities in (7) hold in the new coordinates). To obtain the identities

f1(x, 0, z) = 0 and f2(0, y, 0) = 0,

we must have x̄new = λxnew at y   =  0, and ȳnew = γynew at (x, z) = 0, respectively. According 
to formula (6) for T0, these conditions translate to

h1(x̄, z̄) = λh1(x, z)− f (x, 0, z),
h2(ȳ) = γh2(y)− f (0, y, 0), (A.5)

where we denote here x̄ = λx + f1(x, 0, z), ȳ = γy + f2(0, y, 0), and z̄ = Az + f3(x, 0, z).
It has been shown in [22] that the above system has the following solution:

h1(x, z) =
+∞∑
j=0

λ−j−1f1(xj, 0, zj) and h2(y) = −
+∞∑
j=1

γ j−1f2(0, yj, 0), (A.6)

where {(xj, zj)} is the forward orbit of (x, z) =: (x0, z0) under the restriction of the local map 
(6) to to Ws(O), and {y j } is the backward orbit of y   =  :y 0 under the restriction of the local map 
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to Wu(O). The functions h1 and h2 given by (A.6) are obviously R-symmetric. We, therefore, 
proceed to the analysis of the transformation T3:

xnew = x + g1(x, y), ynew = y + g2(x, y, z), znew = z + g3(x, y), (A.7)

where g1,3 vanish at x  =  0 and y   =  0 while g2 equals to zero at (x, z) = 0 and at y   =  0. These 
conditions ensure that T3 keeps the identities obtained previously. We need to achieve that

∂f1
∂x

(0, y, 0) = 0,

in the new coordinates, which is equivalent to

∂(x̄new − λxnew)

∂xnew (0, ynew, 0) = 0. (A.8)

Since the first identity in (7) ensures

∂(x̄new − λxnew)

∂ynew (0, ynew, 0) = 0,

equation (A.8) holds if and only if

d(x̄new − λxnew) = 0 when (xnew, znew) = 0 and dznew = 0.

We have, from (A.7), that (x, z) = 0 at (xnew, znew) = 0, and

dznew = dz +
∂g3

∂x
(0, y)dx,

so dznew = 0 when

dz = −∂g3

∂x
(0, y)dx. (A.9)

Equations (6), (A.7) and (A.9) imply that, when (xnew, znew) = 0 and dznew = 0, we have

d(x̄new − λxnew)

= d(x̄ + g1(0, ȳ)− λx − λg1(0, y))
= d( f1(0, y, 0) + g1(0, ȳ)− λg1(0, y))
= ∂f1

∂x (0, y, 0)dx − ∂f1
∂z (0, y, 0)∂g3

∂x (0, y)dx

+∂g1
∂x (0, ȳ)

(
λdx + ∂f1

∂x (0, y, 0)dx − ∂f1
∂z (0, y, 0)∂g3

∂x (0, y)dx
)
− λ∂g1

∂x (0, y)dx.
 (A.10)

We need to find functions g1 and g3 such that the right-hand side of (A.10) vanishes identi-
cally. Denote

η1(y) =
∂g1

∂x
(0, y) and η3(y) =

∂g3

∂x
(0, y), (A.11)

and equate the right-hand side of (A.10) to zero. This gives the following condition:

η1(ȳ) =
(
λη1(y)− ∂f1

∂x (0, y, 0) + ∂f1
∂z (0, y, 0)η3(y)

)

×
(
λ+ ∂f1

∂x (0, y, 0)− ∂f1
∂z (0, y, 0)η3(y)

)−1
,

 (A.12)

where we have used the fact x̄ = 0 at (x, z) = 0, and ȳ = γy + f2(0, y, 0).
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Analogously, we will have identity

∂f3
∂z

(0, y, 0) = 0

satisfied in the new coordinates, if

η3(ȳ) =
(

Aη3(y)− ∂f3
∂x (0, y, 0) + ∂f3

∂z (0, y, 0)η3(y)
)

×
(
λ+ ∂f1

∂x (0, y, 0)− ∂f1
∂z (0, y, 0)η3(y)

)−1
,

 (A.13)

Equations (A.12) and (A.13) are solved by noticing that they can be viewed as the conditions 
for the manifold

w1 : {u1 = η1(y), u3 = η3(y)} (A.14)

to be invariant under the map

ȳ = γy + f2(0, y, 0),

ū1 =
(
λu1 − ∂f1

∂x (0, y, 0) + ∂f1
∂z (0, y, 0)u3

)(
λ+ ∂f1

∂x (0, y, 0)− ∂f1
∂z (0, y, 0)u3

)−1
,

ū3 =
(

Au3 − ∂f3
∂x (0, y, 0) + ∂f3

∂z (0, y, 0)u3

)(
λ+ ∂f1

∂x (0, y, 0)− ∂f1
∂z (0, y, 0)u3

)−1
.

 

(A.15)

Note that this map has a fixed point (0, 0, 0). The multipliers of this point are the eigenvalues 
of the linearised map, which is given by

y �→ γy, u1 �→ u1 −
∂2f1
∂x∂y

(0, 0, 0)λ−1y, u3 �→ λ−1Au3 −
∂2f3
∂x∂y

(0, 0, 0)λ−1y.

The spectrum of this map consists of the spectra of the following three operators: 
y �→ γy, u1 �→ u1, u3 �→ λ−1Au3. Therefore, the fixed point (0, 0, 0) has one multiplier on the 
unit circle, one multiplier outside the unit circle and (n − 2) multipliers inside the unit circle. 
It has been known (see e.g. [25, 44]) that such fixed point lies in a unique one-dimensional 
unstable manifold that is tangent at zero to the eigenspace corresponding to the multiplier out-
side the unit circle. It follows that such unique manifold in our case is the sought manifold w1.

The map (A.15) is symmetric with respect to (y, u1, u3) �→ (−y, u1,Su3). Indeed, this fol-
lows immediately from the relations

∂f1
∂x (0,−y, 0) = ∂f1

∂x (0, y, 0), ∂f1
∂z (0,−y, 0)S = ∂f1

∂z (0, y, 0),
∂f3
∂x (0,−y, 0) = S ∂f3

∂x (0, y, 0), ∂f3
∂z (0,−y, 0)S = S ∂f3

∂z (0, y, 0),

which are, in turn, implied by the symmetry of T0 with respect to R. By uniqueness of w1, 
it must be symmetric with respect to the transformation (y, u1, u3) �→ (−y, u1,Su3), which 
implies that η1,3 are symmetric with respect to y �→ −y. Consequently, functions g1,3(x,z) can 
be any of those that vanish at (x, z) = 0 and y   =  0 and satisfy (A.11). Due to the symmetry of 
η1,2, it is easy to show that g1,3 can be chosen symmetric with respect to (x, y, z) �→ (x,−y,Sz), 
as required.

The next identity to be satisfied in the new coordinates is

∂f2
∂y

(x, 0, z) = 0. (A.16)
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Similarly to the above, by letting

η2(x, z) =
∂g2

∂y
(x, 0, z), (A.17)

the identity (A.16) is equivalent to

η2(x̄, z̄) =
(
γη2(x, z)− ∂f2

∂y
(x, 0, z)dy

)(
γ +

∂f2
∂y

(x, 0, z)dy
)−1

. (A.18)

This is the condition for the manifold w2 : v = η2(x, z) to being invariant under the map

x̄ = λx + f1(x, 0, z), z̄ = Az + f3(x, 0, z) v̄ =

(
γv − ∂f2

∂y
(x, 0, z)dy

)(
γ +

∂f2
∂y

(x, 0, z)dy
)−1

.

This map is symmetric with respect to (x, z, v) �→ (x,Sz, v), and has a unique   
(n − 1)-dimensional stable invariant manifold. It follows that η2 exists and is symmetric with 
respect to (x, z) �→ (x,Sz). The function g2(x,y ,z) can be any of those that vanish at (x, z) = 0 
and y   =  0 and satisfy (A.17). The symmetry of η2 implies that g2 can be chosen symmetric 
with respect to (x, y, z) �→ (x,−y,Sz), so we can now conclude that T3 is R-symmetric.

A.3. Transformation T4

Recall that T4 is a transformation that straightens the extended-unstable invariant manifold 
WuE(O) of O and the foliation on it. This manifold is not unique and we choose a special one 
as follows.

We consider the following map G0:

x̄ = λx + f1(x, y, z),
ȳ = γy + f2(x, y, z),
z̄ = Az + f3(x, y, z),

ū =
((

λ+ ∂f1
∂x

)
u + ∂f1

∂y + ∂f1
∂z v

)(
γ + ∂f2

∂y + ∂f2
∂x u + ∂f2

∂z v
)−1

,

v̄ =
((

A + ∂f3
∂z

)
v + ∂f3

∂x u + ∂f3
∂y

)(
γ + ∂f2

∂y + ∂f2
∂x u + ∂f2

∂z v
)−1

,

 

(A.19)

where the first three lines give the map T0, e.g. the functions f i satisfy all the identities in (7). 
Obviously, this map is Cr−1 smooth and R-symmetric. Note that G0 is defined in V0 × R1+D, 
where V0 is the domain of T0. We now extend G0 to the whole of R2D+3 by replacing the func-
tions f i (i = 1, 2, 3) in (A.19) with fi(ξ(x, y, z)), were ξ is a Cr function such that, for two small 
numbers δ1, δ2 > 0 with δ1 < δ2, we have

ξ(x, y, z) =
{
(x, y, z) if ‖(x, y, z)‖ < δ1

0 if ‖(x, y, z)‖ > δ2
.

For simplicity we use the same notation for the new functions f i so that the extension map, 
denoted by G, assumes the same form as (A.19). One can choose the function ξ such that the 
map G will be R-symmetric.

It can be seen from (A.19) that G has a fixed point at zero, and the corresponding mul-
tipliers are λ, γ  (these correspond to variables x and y ), the eigenvalues of A (which corre-
sponds to variables z) and also λ/γ  (corresponding to the variable u) and the eigenvalues of A 
divided by γ  (corresponding to the variables v). Since |γ| > 1, it follows that the eigenvalues 
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corre sponding to the variables z, u, v are smaller in absolute value that max{λ̃,λ/γ} where 
λ̃ > 0 is a value close to |λ1|, the largest absolute value of the eigenvalues of A. Since 
|γ| > 1 > |λ| and |λ| > λ̃, we have that there is a spectrum dichotomy between x, y variables 
and z, u, v variables. The other assumption |λγ| > 1 and |λ1| < λ2 (so, λ̃ < λ2) further implies

∣∣∣∣
ln |λγ−1|
ln |λ|

∣∣∣∣ >
∣∣∣∣
lnλ2

ln |λ|

∣∣∣∣ = 2 and

∣∣∣∣∣
ln λ̃

ln |λ|

∣∣∣∣∣ >
∣∣∣∣
lnλ2

ln |λ|

∣∣∣∣ = 2. (A.20)

Thus, the spectrum gap l between (x, y) and (z, u, v) is greater than 2. It follows that there exists 
a unique invariant C2-manifold WG for the map G, and it attracts all the orbits near it (see e.g. 
section 5 of [44] and [25]). This manifold has the form

z = ηuE(x, y),
u = η1(x, y),
v = η2(x, y).
 (A.21)

We now take any surface w of the form (A.21) such that it is R-symmetric and satisfies

η2 =
∂ηuE

∂x
η1 +

∂ηuE

∂y
. (A.22)

This equation means that the line field given by (η1, 1, η2) belongs to the tangent space of the 
surface z = ηuE(x, y). Since WG is attracting, the iterates Gn(w) tend to WG as n → +∞. It is 
easy to check that each iteration will be again R-symmetric and will satisfy (A.22). Therefore, 
the limit WG is R-symmetric and satisfies (A.22). By our construction, the extended-unstable 
manifold WuE(O) is given by the C2 function z = ηuE(x, y). A C2 foliation FuE  on WuE(O) can 
be found by integrating the line field given by (η1, 1, η2). Namely, it consists of solutions to the 
system of differential equations  ẋ = η1, ẏ = 1, ż = η2.

We can now define T4 as the composition of two transformations which straighten the 
manifold WuE(O) and the leaves of FuE , respectively. The former can be obtained by the same 
way as we did for T1, and it will be C2 and R-symmetric. Regarding the latter, we explain as 
follows.

Parametrize the leaves by its intersection with {y   =  0}, which is denoted by c. Then, the leaf 
of FuE  that goes through the point (c, 0, 0) is given by (x, z) = h(y, c) =: (h1(y, c), h2(y, c)), 
where hi are C2 functions. The foliation FuE  also induces a C2 function

g : R2 → R, (x, y) �→ c,

where c satisfies x  =  h1(y ,c). In order to linearise the quotient map along the leaves of this 
foliation (i.e. to straighten the leaves), we use the following C2 transformation:

xnew = g(x, y), ynew = y, znew = z. (A.23)

Note that the foliation FuE  is R-symmetric. This implies h1(y, c) = h1(−y, c) and 
g(x, y) = g(x,−y). Consequently, the above transformation is R-symmetric. Therefore, the 
transformation T4 is C2 and R-symmetric.

Remark 2. The transformation T4 is C1-smooth in parameters. This can be seen by letting ε 
be the vector of all parameters, and then adding ε̄ = ε into system (A.19).
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