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Abstract
We prove that the Shimizu–Morioka system has a Lorenz attractor for an 
open set of parameter values. For the proof we employ a criterion proposed 
by Shilnikov, which allows to conclude the existence of the attractor by 
examination of the behaviour of only one orbit. The needed properties of the 
orbit are established by using computer assisted numerics. Our result is also 
applied to the study of local bifurcations of triply degenerate periodic points 
of three-dimensional maps. It provides a formal proof of the birth of discrete 
Lorenz attractors at various global bifurcations.
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1.  Introduction and main results

In this paper we provide a solution to a long-standing open problem. We prove, by employ-
ing rigorous numerics, that Shimizu–Morioka system has a Lorenz attractor for an open set 
of parameter values. The fact itself is well-known, see [1–3]; however its rigorous proof was 
missing which created a formal obstacle to some further developments in the mathematical 
theory of homoclinic bifurcations (see remarks in section 1.4). Here, we report a computer 
assisted proof which closes this problem. Note that the use of computer assistance is suffi-
ciently mild here, since we employ a Shilnikov criterion that allows us to conclude the exis-
tence of the Lorenz attractor in our system by examination of the behavior of only a single 
orbit of the system (see sections 1.3 and 1.5).

The Shimizu–Morioka system




ẋ = y,
ẏ = (1 − z)x − λy,
ż = −αz + x2,

� (1)

where (x, y, z) are coordinates in R3 and α > 0, λ > 0 are parameters, was introduced by 
Shimizu and Morioka in [4] and extensively studied numerically by Shilnikov in [1, 2]. One 
of the main findings was that there is a large open region in the (α,λ)-plane where this sys-
tem has a strange attractor very similar to the classical attractor of the Lorenz model (5), 
see figure 1. This is more than just the similarity in shape: as one can infer from the pic-
tures numerically obtained in [1], the Poincaré map on a 2D cross-section is hyperbolic (very 
strongly contracting in one direction and expanding in the other direction), so the attractor in 
the Shimizu–Morioka system can be described by the Afraimovich–Bykov–Shilnikov geo-
metric Lorenz model [5, 6], i.e. it is a Lorenz attractor.

We will describe the geometric Lorenz model and give the corresponding definition of the 
Lorenz attractors in a moment. However, we first want to stress that Shimizu–Morioka model 
is special (and maybe more important than the classical Lorenz model). The reason is that 
system (1) is a truncated normal form for certain codimension-3 bifurcations of equilibria and 
periodic orbits [3, 7]. Because Lorenz or Lorenz-like attractors persist at small perturbations, 
our result on the existence of the Lorenz attractor in the normal form system (1) implies that 
Lorenz-like attractors exist for any small perturbation of (1). This proves the emergence of the 
Lorenz attractor (or its discrete analogue) in the corresponding class of codimension-3 bifur-
cations. In particular, in this paper, using theorem 3, we prove the existence of discrete Lorenz 
attractors in a class of 3D polynomial maps (3D Hénon maps, see theorem 4).

1.1.  Pseudohyperbolicity

In order to talk about Lorenz attractors, we need a proper definition of them. Classical defi-
nitions go back to the Guckenheimer–Williams [8–11] and Afraimovich–Bykov–Shilnikov 
[5, 6] geometric models; modern generalisations can be found in [12]. Here we use the 
Afraimovich–Bykov–Shilnikov model for Lorenz attractors, which we describe using the 
notion of pseudo-hyperbolicity introduced in [13, 14]. A system (a smooth flow or a dif-
feomorphism) in Rn is called pseudo-hyperbolic in a strictly forward-invariant domain 
D ⊆ Rn if:

	(1)	�there are directions in which the dynamical system (a flow or a diffeomorphism) is 
strongly contracting (‘strongly’ means that any possible contraction in transverse direc-
tions is always strictly weaker); 
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	(2)	�transverse to the contracting directions the system is volume-expanding (i.e. the volume 
is stretched exponentially).

In precise terms, condition 1 reads as follows. For each point of D, we assume that there 
exists a pair of transversal subspaces N1 and N2 (with dim(N2) = k � 1 and dim(N1) = n − k), 
continuously depending on the point, such that the families of these subspaces are invariant 
with respect to the derivative DXt of the time-t map Xt of the system, i.e. DXtN1(x) = N1(Xt(x)) 
and DXtN2(x) = N2(Xt(x)) for all t � 0 (in the case of a diffeomorphism, t runs all positive 
integer values). We also assume that there exist constants C  >  0, α > 0 and β > 0 such that 
for each x ∈ D and all t � 0

‖DXt(x)|N2‖ � Ce−αt� (2)

and

‖DXt(x)|N2‖ · ‖(DXt(x)|N1)
−1‖ � Ce−βt.� (3)

The volume-expansion condition 2 reads as follows: there exist constants C  >  0 and σ > 0 
such that for each x ∈ D and all t � 0

det(DXt(x)|N1) � Ceσt.� (4)

Inequality (3) (the so-called cone condition) ensures that the invariant families of sub-
spaces N1 and N2 continuously persist for all C1-small perturbations of the system, so the 
pseudohyperbolic structure is a robust property of the system. Inequality (4) guarantees that 
for every orbit in D its maximal Lyapunov exponent is positive. Therefore, the existence of 
the pseudohyperbolic structure in a bounded domain D ensures chaotic dynamics in D, which 
cannot be destroyed by small smooth perturbations.

Conditions (2) and (3) imply also the existence of a strong-stable invariant foliation N ss in 
D, whose field of tangents is the family N2. For every two points in the same leaf of N ss the 
distance between their forward orbits tends to zero exponentially, i.e. the forward dynamics of 
all points in the same leaf are the same.

1.2.  Lorenz attractor

The Lorenz attractor of the Afraimovich–Bykov–Shilnikov model is the attractor of a pseudo-
hyperbolic system of differential equations with dim(N1) = 2. Specifically, consider a system 
X of differential equations with a saddle equilibrium state O. Assume that O has a 1D unstable 
manifold Wu(O) and an (n − 1)-dimensional stable manifold Ws(O), i.e. if λ1, . . . ,λn are the 
eigenvalues of the linearized system at O, then λ1 > 0 and Re λj < 0 for j � 2. Assume that

Figure 1.  Two kinds of Lorenz attractors in the Shimizu–Morioka system: standard (for 
α = 0.45, λ = 0.9) on the left, and with a lacuna (for α = 0.5, λ = 0.85) on the right.
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λ2 > Re λj for j � 3

and

λ1 + λ2 > 0.

This means that the pseudohyperbolicity conditions (2)–(4) are fulfilled at the point O, with 
N1 being the 2D eigenspace corresponding to the eigenvalues λ1 and λ2 and N2 being the 
eigenspace corresponding to the rest of eigenvalues. We assume that the pseudohyperbolicity 
property also holds in a sufficiently large, bounded neighborhood D of O. We assume that D 
is strictly forward-invariant, i.e. there exists T  >  0 such that the image of the closure of D by 
the time-T map lies strictly inside D.

Moreover, we assume that in D there exists an (n − 1)-dimensional cross-section Π to the 
flow, such that for every point in D its forward orbit either tends to O (i.e. it lies in Ws(O)) or 
hits Π at some moment of time. We assume that Π is divided by a smooth (n − 2)-dimensional 
surface Π0 into 2 halves, Π+ and Π−, such that the orbits starting in Π+ and Π− return to Π 
again, while the orbits starting in Π0 tend to O as t → +∞, i.e. Π0 ⊂ Ws(O) ∩Π. Thus, the 
orbits of X define the Poincaré map T : Π+ ∪Π− → Π.

This map is smooth outside the discontinuity surface Π0. The orbits starting close to Π0 
pass near O, so the return time tends to infinity as the initial point M tends to Π0; note that TM 
tends to one of the two points, M+ and M−, where Wu(O) intersects Π. The unstable manifold 
Wu(O) is 1D, so Wu(O)\O consists of exactly two orbits, Γ+ and Γ−, called separatrices, and 
the points M+ and M− are the first points where the Γ+ and Γ− intersect Π. We take the con-
vention that limM→Π0 T(M) equals to M+ if the initial point M approaches Π0 from Π+ and 
M− if M approaches Π0 from Π−.

The invariant foliation N ss of the system X also corresponds to a codimension-1 strong-
stable invariant foliation N ss

Π  for the map T: the leaves of N ss
Π  are obtained as intersections 

with Π of the orbits of the leaves of N ss by the flow. The foliation is contracting, i.e. the itera-
tions by T of any two points in the same leaf of N ss

Π  converge exponentially to each other. 
However, the dynamics transverse to the strong-stable foliation are chaotic. The expansion of 
areas by the flow transverse to N ss implies that the Poincaré map T is uniformly expanding in 
the direction transverse to N ss

Π .
In other words, the pseudohyperbolicity of the flow in D implies that the Poincaré map T 

is locally uniformly hyperbolic. However, one cannot directly apply the theory of uniform 
hyperbolicity to this map, as it has a singularity (at Π0). Nevertheless, the (singular) hyper-
bolicity of the Poincaré map T makes a comprehensive analysis of the structure of the Lorenz 
attractor in the above described Afraimovich–Bykov–Shilnikov model possible, as it was done 
in [6]. The results of these papers can be summarized as follows [15]:

Theorem 1 ([6]).  Under conditions above, the set of non-wandering orbits of the system in 
D consists of a uniquely defined, 2D closed invariant set A ⊂ D (which is called the Lorenz 
attractor) and a (possibly empty) 1D closed invariant set Σ (which may intersect A but is not 
a subset of A) such that

	(1)	�the separatrices Γ+ and Γ− and the saddle O lie in A; 
	(2)	�A is transitive, and saddle periodic orbits are dense in A; 
	(3)	�A is the limit of a nested sequence of hyperbolic, transitive, compact invariant sets each 

of which is equivalent to a suspension over a finite Markov chain with positive topological 
entropy; 

	(4)	�A is structurally unstable: arbitrarily small smooth perturbations of the system lead to 
the creation of homoclinic loops to O and to the subsequent birth and/or disappearance 
of saddle periodic orbits within A; 
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	(5)	�when Σ = ∅, the set A is the maximal attractor in D; 
	(6)	�when the set Σ is non-empty, it is a hyperbolic set equivalent to a suspension over a finite 

Markov chain (it may have zero entropy, e.g. be a single saddle periodic orbit); 
	(7)	�every forward orbit in D tends to A ∪ Σ as t → +∞; 
	(8)	�when Σ �= ∅, the maximal attractor in D is cl(Wu(Σ)) = A ∪ Wu(Σ); 
	(9)	�A attracts all orbits from its neighbourhood when A ∩ Σ = ∅.

In [6] the pseudohyperbolicity conditions were expressed in a different (equivalent) form, 
as explicitly verifiable conditions that ensure the hyperbolicity of the Poincaré map T. Similar 
hyperbolicity conditions were checked for the classical Lorenz model

ẋ = −10(x − y), ẏ = x(28 − z)− y, ż = −8
3

z + xy
�

(5)

by Tucker, with the use of rigorous numerics. In this way, in [16, 17], a computer assisted 
proof of the existence of the Lorenz attractor in system (5) was done.

1.3.  Shilnikov criterion

In our approach to the proof of the existence of the Lorenz attractor in the Shimizu–Morioka 
system we also rely on the computer assistance, however we need much less computations. 
We use a criterion proposed by Shilnikov in [18, pp 240–1] that allows to show the existence 
of the Lorenz attractor by examination of the behavior of only one orbit (a separatrix) of 
the system of differential equations, instead of the direct check of the hyperbolicity of the 
Poincaré map T which would require a high precision computation of a huge number of orbits.

In [18, pp 240–1], several criteria for the birth of the Lorenz attractor were proposed. We 
use the following one. Consider a system X of differential equations in Rn, which have a sad-
dle equilibrium state O with 1D unstable manifold. Namely, let λ1, . . . ,λn are the eigenvalues 
of the linearized system at O. We assume that

λ1 > 0 > λ2 > Re λj for j � 3.

Let the system be symmetric with respect to a certain involution R and that O is a symmetric 
equilibrium, i.e. RO = O. The eigenvectors e1 and e2 corresponding to the eigenvalues λ1 and 
λ2 must be R-invariant. We assume that Re1 = −e1 and Re2 = e2. This, in particular, implies 
that the two unstable separatrices Γ+ and Γ−, which are tangent at O to e1, are symmetric to 
each other, Γ+ = RΓ−.

Let the system satisfy the following three conditions:

	 1.	�Assume that both separatrices Γ+ and Γ− return to O as t → +∞ and are tangent to the 
vector e2 when entering O (it follows from the symmetry that they form a ‘homoclinic 
butterfly’, i.e. they enter O from the same direction).

	 2.	�Assume that the so-called saddle value σ = λ1 + λ2 is zero.
	 3.	�Assume that the so-called separatrix value A satisfies the condition

0 < |A| < 2.� (6)

The definition of the separatrix value for our case is given in section 1.5, see (15). One can 
describe |A| as the maximal extent, to which infinitesimal 2D areas can be expanded by the 
system along the homoclinic loop (the sign of A determines whether the orientation of the 
areas for which this maximal expansion is achieved is changed during the propagation along 
the loop); more about the definition of A can be seen in [19–21].
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According to [18, pp 240–1], bifurcations of systems satisfying the above described con-
ditions lead to the birth of a Lorenz attractor. To make this statement precise, we note that 
conditions 1 and 2 describe a codimension-2 bifurcation in the class of R-symmetric systems. 
Suppose the system is embedded into a two-parameter family of systems Xµ,ε such that by 
changing the parameters μ and ε we can independently vary the saddle value σ near zero and 
split the homoclinic loop Γ+ (by the symmetry, the homoclinic loop Γ− will be split as well). 
Then we have

Theorem 2 ([18, pp 240–1]).  If condition (6) holds at the bifurcation moment (when the 
system Xµ,ε has a homoclinic butterfly with a zero saddle value), then there exists an open 
region in the plane of parameters µ, ε, for which system Xµ,ε has a Lorenz attractor of the 
Afraimovich–Bykov–Shilnikov model.

A proof of this result was given by Robinson in [19, 20] under certain additional assump-
tions on the eigenvalues λ; in full generality this theorem was proven in [15].

We show in theorems 5 and 6 that Shimizu–Morioka system (1) satisfies conditions 1–3 
for some value of parameters (α,λ) and that the homoclinic loops can be split and the saddle 
value can be varied independently when α and λ vary. This, as explained, implies our main 
result:

Theorem 3.  There exists an open set in the plane of parameters (α,λ) for which the Shimi-
zu–Morioka system has a Lorenz attractor.

1.4.  Discrete Lorenz attractor in local and global bifurcations

The main theorem can be applied to the study of local bifurcations of triply degenerate peri-
odic points of 3D maps. For example, consider a 3D Hénon-like map (x, y, z) �→ (x̄, ȳ, z̄)

x̄ = y, ȳ = z, z̄ = M1 + Bx + M2y − z2,� (7)

where M1, M2 and B are parameters and (x, y, z) ∈ R3. Pictures numerically obtained in [22] 
show that this map has a strange attractor which looks very similar to the Lorenz attractor, 
even though this is a discrete dynamical system and not a system of differential equations. The 
explanation to this fact (the emergence of a discrete analogue of a Lorenz attractor) can be 
obtained based on the following observation.

At M1  =  −1/4, M2  =  1, B  =  1 this map has a fixed point at x  =  y  =  z  =  1/2, and this point 
has all three multipliers (the eigenvalues of the linearization matrix at this point) on the unit 
circle: (−1,−1, 1). This is a codimension-3 bifurcation and, as shown in [22], the flow normal 
form for this bifurcation in this map is given by the Shimizu–Morioka system. More precisely, 
at (M1, M2, B) close to (−1/4, 1, 1) and (B + M1 − 1)2 + 4M1 > 0 we can shift the coordi-
nate origin to the fixed point x = y = z = x∗ = (B + M2 − 1 +

√
(B + M2 − 1)2 + 4M1)/2. 

Then the map will take the form

x̄ = y, ȳ = z, z̄ = Bx + M2y − 2x∗z − z2.� (8)

Introduce small parameters ε1 = 1 − B, ε2 = 1 − M2, ε3 = 2x∗ − 1. It was shown in [22] 
that in the region ε1 > 0, ε1 + ε3 > ε2, the second iteration of (8) near the origin is O(s2)-
close, in appropriately chosen rescaled coordinates, to the time-s shift by the flow of a sys-
tem, which is O(s)-close to the Shimizu–Morioka system (1) with α = (ε1 + ε2 + ε3)/(4s), 
λ = (ε1 − ε3)/(2s), s =

√
(ε1 − ε2 + ε3)/2 . This means that if we make N iterations of map 

(8), such that N is even and of order s−1, the result will be O(s)-close to the time-1 map of the 
Shimizu–Morioka system.
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In other words, the Nth iteration of map (8) is the time-1 map for a certain small, time-
periodic perturbation of the Shimizu–Morioka system:




ẋ = y + f1(x, y, z, t),
ẏ = (1 − z)x − λy + f2(x, y, z, t),
ż = −αz + x2 + f3(x, y, z, t),

� (9)

where f1,2,3 are C1-small functions, 1-periodic in time t. According to [14], the pseudohy-
perbolicity persists at small time-periodic perturbations. Therefore, as by theorem 3 the 
Shimizu–Morioka system has a pseudohyperbolic attractor for an open set of (α,λ) values, 
the same holds true for the map (8) for the corresponding set of values of ε1,2,3. This attrac-
tor is called a discrete Lorenz attractor because it shape is similar to the Lorenz attractor in 
the Shimizu–Morioka system. However, its structure is much more complicated than that of 
the Lorenz attractor described in section 1.2. In particular, the discrete Lorenz attractor may 
contain homoclinic tangencies [14] and heterodimensional cycles involving saddle periodic 
orbits with different dimensions of the unstable manifold [23] (more discussions can be found 
in [24]). This makes a complete description of the dynamics of the discrete Lorenz attractor 
impossible but, anyway, its pseudohyperbolicity allows to conclude that every orbit in this 
attractor is unstable and this property persists for all small perturbations.

Since the map (8) is obtained from (7) just by a change of coordinates, we have the following

Theorem 4.  There exists an open set in the space of parameters (M1, M2, B) for which the 
3D Hénon map (7) has a pseudohyperbolic discrete Lorenz attractor.

Note that the same conclusion holds for larger classes of 3D maps. It was shown in [24] that 
the normal form for the bifurcations of the zero fixed point of any map of the type

x̄ = y,
ȳ = z,

z̄ = (1 − ε1)x + (1 − ε2)y − (1 + ε3)z + ay2 + byz + cz2 + O(‖x, y, z‖3),

is the Shimizu–Morioka system, provided the condition

(c − a)(a − b + c) > 0� (10)

is fulfilled. Therefore, by the same arguments as for the map (8), theorem 3 provides a formal 
justification for the claim of [24] (see lemma 3.1 there) about the existence of pseudohyper-
bolic attractors for an open set of parameters ε1,2,3 in maps (10) whose coefficients satisfy 
condition (10).

Map (8) is particularly important for the theory of global bifurcations because it appears as 
a normal form for the first-return maps near many types of homoclinic tangencies and hetero-
clinic cycles with tangencies in 3D and higher-dimensional maps [25]. Given a homoclinic or 
heteroclinic cycle, one can estimate its effective dimension—the maximal possible number of 
zero Lyapunov exponents that periodic orbits born at bifurcations of such cycle can have [26]. 
Several different classes of maps with effectively 3D homoclinic or heteroclinic cycles were 
considered in [27–32]. It was shown in these papers that the corresponding bifurcations should 
produce pseudohyperbolic (discrete Lorenz) attractors. Namely, it was shown that a generic 
three-parameter unfolding of each of these bifurcations creates regions in the phase space where 
the first-return map is closely (as close as one wants) approximated, in appropriately chosen 
coordinates, by the 3D-Hénon map (8). Therefore, by the robustness of the pseudohyperbolicity 
property, the birth of the pseudohyperbolic Lorenz-like attractors at each of these bifurcations is 
established once the existence of a pseudohyperbolic attractor is shown in map (8).
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As we mentioned, the first numerical evidence for the existence of such attractor in map (8) 
was obtained in [22]. Theorem 4 makes it a rigorous result. Thus, now we have a full formal 
proof to the results of [27–32] about the emergence of pseudohyperbolic attractors at bifurca-
tions of effectively 3D homoclinic and heteroclinic cycles, including the birth of infinitely 
many coexisting pseudohyperbolic attractors in some situations, see [28, 29].

1.5.  Main results of the rigorous numerics

We establish theorem 3 in the following steps. First, we find good bounds for the values of 
parameters (α,λ) for which Shimizu–Morioka system (1) satisfies conditions 1 and 2 of sec-
tion 1.3 (the existence of a homoclinic butterfly with zero saddle value σ). It is easy to check 
that condition σ = 0 reads as

λ =
1
α
− α.� (11)

We will study how the separatrices Γ± move as α varies while λ is given by (11); the moment 
a separatrix forms a homoclinic loop corresponds to the parameter values we are looking for.

It is convenient to scale time t → t/α = T  and variables x → x/
√
α = X, 

y → y/(α
√
α) = Y . Then the system takes the form

Ẋ = Y ,

Ẏ = (a + 1) (1 − Z)X − aY ,

Ż = −Z + X2,

�

(12)

where

a =
1
α2 − 1 = λ/α.

The eigenvalues of the linearization matrix at (0, 0, 0) are (−1, 1,−(1 + a)) with corre
sponding eigenvectors given by (0, 0, 1), (1, 1, 0) and (−(1  +  a)−1,1,0), respectively. We will 
investigate (12) for a ≈ 1.72, so the hyperbolic equilibrium state (0, 0, 0) has a one dimen-
sional unstable manifold, and a two dimensional stable manifold. When the manifolds inter-
sect, we have a solution that tends to zero both as t → +∞ and t → −∞, i.e. a homoclinic 
loop to the equilibrium state.

Theorem 5.  There exists a = a0 ∈ [al, ar], where

al = 1.724 323 291 515 41 − 10−13,

ar = 1.724 323 291 515 41 + 10−13,

for which (12) has a homoclinic orbit X0 (t) , Y0 (t) , Z0 (t) to the equilibrium state (0, 0, 0). As 
a changes between al and ar, the loop splits. Taking

ξ = 1 − 10−4, c = 3.5, T = 26,

we have the bound:

|X0 (T + t)| , |Y0 (T + t)| , |Z0 (T + t)| � ce−ξt ‖(X0 (T) , Y0 (T) , Z0 (T))‖ ,

for t � 0, and for t � 0 we have:
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|X0 (t)| , |Y0 (t)| , |Z0 (t)| � ce−ξ|t| ‖(X0 (0) , Y0 (0) , Z0 (0))‖ .

The proof of the above theorem is obtained with a computer assistance and is given in 
section 3.2. The mere existence of a homoclinic loop in system (12) can be obtained purely 
analytically [33]. However, we need good estimates on a0 and the corresponding homoclinic 
solution, which the methods of [33] do not provide. Crucially, these estimates are used in the 
next theorem where the separatrix value A is estimated.

The separatrix value can be defined as follows (see [19, 20, 33]). Let a system of three 
differential equations have a homoclinic solution (X0(t), Y0(t), Z0(t)) to a hyperbolic equilib-
rium state at zero, so (X0(t), Y0(t), Z0(t)) → 0 as t → ±∞. Let

d
dt




x
y
z


 = B(t)




x
y
z


� (13)

be the linearization of the system along the loop. In particular, in the case of system (12) we 
have

B =




0 1 0
(a0 + 1)(1 − Z0(t)) −a0 −(a0 + 1)X0(t)

2X0(t) 0 −1


 .

Let ξ1, ξ2 be any two vectors and let η = ξ1 × ξ2 be their vector product. If the evolution of ξ1 
and ξ2 is defined by (13), then the evolution of η is governed by

dη
dt

= −(B� − tr(B)I)η,� (14)

where I is the (3 × 3) identity matrix. This equation describes the evolution of infinitesimal 
2D areas near the homoclinic loop.

Since (X0(t), Y0(t), Z0(t)) tends to zero exponentially, the asymptotic behavior of solutions 
of (14) as t → ±∞ is determined by the limit matrix

B̂ = −(B�
∞ − tr(B∞)I)

where B∞ = limt→±∞ B(t), which is the linearization of the original system at the hyperbolic 
equilibrium at zero. If λ1 > 0 > λ2 > λ3 are the eigenvalues of B∞, then the eigenvalues of 
B̂ are

σ1 = λ1 + λ2, σ2 = λ1 + λ3, σ3 = λ2 + λ3.

We are interested here in the case of zero saddle value, i.e. λ1 + λ2 = 0. Then the eigenvalues 
of B̂ are 0, σ2 < 0 and σ3 < 0, so every solution of (14) tends, as t → +∞ to a constant times 
the eigenvector of B̂ that corresponds to the zero eigenvalue (this is the vector v0, which is the 
vector product of the eigenvectors of B∞ that correspond to the eigenvalues λ1 and λ2). It also 
follows that only one solution of (14) tends to v0 in backward time, as t → −∞. We take this 
particular solution η0(t) and denote

lim
t→+∞

η0(t) = Av0.� (15)

The coefficient A is the sought separatrix value. From the definition of A one can see that

|A| = sup lim
t→+∞

‖η(t)‖
‖η(−t)‖

,
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where the supremum is taken over all the solutions of (14). Thus, A determines the maximal 
expansion of infinitesimal areas along the homoclinic loop.

In the case of system (12) system (14) becomes

η′ (t) =



− (a0 + 1) − (a0 + 1) (1 − Z0 (t)) −2X0 (t)

−1 −1 0
0 (a0 + 1)X0 (t) −a0


 η (t) .� (16)

This equation, in the limit t → ±∞ becomes

η′ (t) = B̂η (t) =



−(a0 + 1) −(a0 + 1) 0

−1 −1 0
0 0 −a0


 η (t) .� (17)

The eigenvalues are 0,−(a + 2),−a with corresponding eigenvectors v0 = (1,−1, 0), 
v−(a+2) = (1 + a, 1, 0) and v−a(0, 0, 1), respectively.

Theorem 6.  There exists an orbit η (t) of (16), for which

lim
t→−∞

η (t) ∈ [0.999 843 362 107 66, 1.000 156 637 8923] v0,

lim
t→+∞

η (t) ∈ [0.626 068 122 647 91, 0.626 633 928 480 44]v0,

meaning that

lim
t→+∞

‖η (t)‖
‖η (−t)‖

∈ [0.625 970 072 015 16, 0.626 732 098 4754] .� (18)

The proof of the above theorem is obtained with computer assistance and is given in sec-
tion 4.3. By definition (15) of the separatrix value, estimate (18) gives the following bounds 
for the separatrix value of the homoclinic loop in system (12):

A ∈ [0.625 970 072 015 16, 0.626 732 098 4754] .

Importantly 0  <  A  <  1. So, by applying Shilnikov criterion we obtain our main result, theo-
rem 3, see section 1.3.

The plot of the homoclinic trajectory from theorem 5 can be seen on the left plot in figure 6 
on page 19. The plot of the heteroclinic orbit from theorem 6 is given in figure 12 on page 29.

Remark 7.  The techniques we use for the proofs of theorems 5 and 6 could also be used 
for the study of traveling waves and their stability in problems coming from PDEs on the line 
[34–37]. This is because proving their existence requires establishing the existence of hetero-
clinic/homoclinic connecting orbits. Investigating their stability requires studying additionally 
some linearized equations. We develop tools for such problems in sections 3 and 4.

2.  Some notations

In the subsequent sections we present a methodology for establishing homoclinic orbits and 
for the computation of the separatrix value. First we introduce the following notations.

We will write Bk(R) for ball in Rk of radius R, centered at zero. For a matrix A we define 
the logarithmic norm of A as (see [38] and literature cited there)
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l (A) = lim
h→0+

‖I + Ah‖ − ‖I‖
h

.

We will also use the notation

m (A) =

{
1

‖A‖−1 detA �= 0,

0 otherwise,

ml (A) = −l (−A) .

The m(A) is a number with the property that ‖Av‖ � m (A) ‖v‖ . The ml (A) can be interpreted 
as a ‘bound from below’ of the logarithmic norm.

Let u, s ∈ N. For a function f : Ru × Rs → Ru × Rs, we will use the notations 
(x, y) ∈ Ru × Rs, where x ∈ Ru and y ∈ Rs. The x will play the role of an ‘unstable’ coordi-
nate and y will be the ‘stable’ coordinate, hence the choice of the notation u, s. We will also 
write fx, and fy for the projections of f onto Ru and Rs, respectively. For a set D ⊂ Ru × Rs 
we define

[
∂fx
∂x

(D)

]
:=

{
A = (aij) ∈ Ru×u : ai,j ∈

[
inf
p∈D

∂fxi

∂xj
( p) , sup

p∈D

∂fxi

∂xj
( p)

]}
,

[
∂fx
∂y

(D)

]
:=

{
A = (aij) ∈ Ru×s : ai,j ∈

[
inf
p∈D

∂fxi

∂yj
( p) , sup

p∈D

∂fxi

∂yj
( p)

]}
.

We also define

m
(
∂fx
∂x

(D)

)
:= inf

A∈[ ∂fx
∂x (D)]

m (A) ,

ml

(
∂fx
∂x

(D)

)
:= inf

A∈[ ∂fx
∂x (D)]

ml (A) ,

∥∥∥∥
∂fx
∂y

(D)

∥∥∥∥ := sup
A∈[ ∂fx

∂y (D)]
‖A‖ .

We will use the notation int(D), D  and ∂D for the interior, closure and boundary of a set 
D, respectively.

3.  Establishing homoclinics

In this section we give an overview of the method for establishing the existence of homoclinic 
orbits to fixed points. The method is written for the case where we consider a parameter 
dependent ODE with the vector field f : R3 × R → R3,

p′ = f ( p, a)� (19)

and a ∈ A is a parameter, with A = [al, ar] ⊂ R. We assume that for each a ∈ A (19) has a 
hyperbolic fixed point p∗

a, with one dimensional unstable manifold and two dimensional stable 
manifolds. (If dimensions are the other way around we can change the sign of the vector field.)

Let Φt( p, a) be the flow induced by (19). Let Bu (R) = [−R, R] ⊂ R, Bs (R) ⊂ R2 and let

D = Bu (R)× Bs (R) ⊂ R3,
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be a neighborhood of the smooth family of fixed points, meaning that we assume p∗
a ∈ intD 

for any a ∈ A.
We denote by Wu

a  the local unstable manifold of p∗
a in D and by Ws

a the local stable mani-
fold of p∗

a in D, i.e.

Wu
a =

{
p ∈ D : Φt ( p, a) ∈ D for t � 0 and lim

t→−∞
Φt ( p, a) = p∗a

}
,� (20)

Ws
a =

{
p ∈ D : Φt ( p, a) ∈ D for t � 0 and lim

t→+∞
Φt ( p, a) = p∗

a

}
.� (21)

We assume that Wu
a  and Ws

a are graphs of C1 functions

wu
a : Bu (R) → Bs (R) ,

ws
a : Bs (R) → Bu (R) ,

meaning that (see figure 2)

Wu
a =

{
(x, wu

a (x)) : x ∈ Bu (R)
}

,

Ws
a =

{
(ws

a (y) , y) : y ∈ Bs (R)
}

.
� (22)

Let

pu
a := (R, wu

a (R)) ∈ R3.� (23)

Consider T  >  0 and assume that for all a ∈ A, ΦT ( pu
a, a) ∈ D. Let us define

h : A → R,

as

h (a) = πxΦT ( pu
a, a)− ws

a(πyΦT ( pu
a, a)).� (24)

We now state a natural result, that h (a) = 0 implies an intersection of the stable and unsta-
ble manifolds of p∗

a. (See figure 3.)

Theorem 8 ([39]).  If

h(al) < 0 and h(ar) > 0� (25)

then there exists a ψ ∈ A for which we have a homoclinic orbit to p∗
ψ.

Figure 2.  The local unstable manifold Wu
a  in red, and the local stable manifold Ws

a in 
green.
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3.1.  Computer assisted bounds for unstable manifolds of fixed points of ODEs

In order to apply theorem 8, we need to be able to establish bounds for h defined in (24). Using 
a rigorous, interval arithmetic based integrator8, it is possible to obtain rigorous enclosures for 
ΦT . In this section we discuss how to obtain bounds on parameterizations ws

a, wu
a of stable and 

unstable manifolds of fixed points. For simplicity, we will skip the parameter a and consider 
an ODE

p′ = f ( p).� (26)

When combined with theorem 8, we can apply below results for (19) with fixed a.
Let D ⊂ Ru × Rs,

D = Bu (R)× Bs (R) .

In this section we do not need to assume that u  =  1 and d  =  2. The result works for arbitrary 
dimensions.

We define

−→µ = sup
z∈D

{
l
(
∂fy
∂y

(z)
)
+

1
L

∥∥∥∥
∂fy
∂x

(z)
∥∥∥∥
}

,� (27)

−→
ξ = ml

(
∂fx
∂x

(D)

)
− L

∥∥∥∥
∂fx
∂y

(D)

∥∥∥∥ .� (28)

Definition 9.  We say that the vector field f satisfies rate conditions if

−→µ < 0 <
−→
ξ .� (29)

Definition 10.  We say that D = Bu (R)× Bs (R) is an isolating block for (26) if

	 (i)	�For any q ∈ ∂Bu (R)× Bs (R),

(πx f (q)|πxq) > 0.

	(ii)	�For any q ∈ Bu (R)× ∂Bs (R),

(πy f (q)|πyq) < 0.

Figure 3.  We have the 1D unstable manifold of p∗
a in red, and the 2D local stable 

manifold Ws
a in D in green. The h (a) is the signed distance along the x coordinate 

between Ws
a and ΦT ( pu

a, a); this is the distance along the dotted line on the plot.

8 In our application we use the CAPD package: http://capd.ii.uj.edu.pl/
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Definition 11.  We define the unstable set in D as

Wu = {z : Φt(z) ∈ D for all t < 0}.

Below theorem is a simplified (adapted to fixed points) version of the results from [38, 
theorem 30]. The paper [38] is in the setting of normally hyperbolic invariant manifolds, 
hence the theorem 30 from that paper is more involved than below result.

Theorem 12 ([38, theorem 30]).  Let k � 1. Assume that f is C1 and satisfies the rate con-
ditions. Assume also that D = Bu (R)× Bs (R) is an isolating block for f. Then the set Wu is a 
manifold, which is a graph over Bu (R). To be more precise, there exists a C1 function

wu : Bu(R) → Bs(R),

such that

Wu =
{
(x, wu(x)) : x ∈ Bu(R)

}
.� (30)

Moreover, wu is Lipschitz with constant L.

Proof.  The proof is given in appendix A.1. It is a modification of the argument from [38]. 
The main difference is that the results from [38] are for the setting in which in addition to the 
hyperbolic coordinates x, y we have a centre coordinate. Due to this the Lipschitz bound from 
theorem 12 is sharper compared with [38]. In the proof we focus on this issue.� □ 

We will now discuss the contraction rate along the stable manifold Wu from theorem 12. 
First we shall need an auxiliary result. Consider a flow Φt (z), for Φ : R× Ru × Rs → Ru × Rs,

Φt (x, y) = (πxΦt (x, y) ,πyΦt (x, y)) ,

and define the following constants

µ (h) = sup
z∈D

{∥∥∥∥
∂πyΦ

∂y
(h, z)

∥∥∥∥+
1
L

∥∥∥∥
∂πyΦ

∂x
(h, z)

∥∥∥∥
}

,� (31)

ξ (h) = m
[
∂πxΦ

∂x
(h, D)

]
− L sup

z∈D

∥∥∥∥
∂πxΦ

∂y
(h, z)

∥∥∥∥ .� (32)

Theorem 13 ([38, theorem 31]).  Let 
−→
ξ  and −→µ  be the constants defined in (27) and (28). 

If Φt  is the flow induced by (26), then for h  >  0

µ (h) = 1 + h−→µ + O
(
h2) ,

ξ (h) = 1 + h
−→
ξ + O

(
h2) .

Theorem 14.  Let Wu be the manifold established in theorem 12. Then for any p1, p2 ∈ Wu

‖Φ−t ( p1)− Φ−t ( p2)‖ � ce−
−→
ξ t ‖πx ( p1 − p2)‖ for all t � 0,

for c = 2
√

1 + L2.

Proof.  Let p1, p2 ∈ Wu. Since wu is Lipschitz with constant L,

‖πy [ p1 − p2]‖ � L ‖πx [ p1 − p2]‖ .� (33)
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Let q1, q2 ∈ Wu. If Φt(q1),Φt(q2) ∈ D for t ∈ (0, T], then for 0 < h � T  holds

‖πx(Φh(q1)− Φh(q2))‖ � ξ(h)‖πx(q1 − q2)‖

= (1 + h
−→
ξ + O(h2))‖πx(q1 − q2)‖.

If we take h = T
N , then

‖πx(ΦT(q1)− ΦT(q2))‖ � (1 + h
−→
ξ + O(h2))N‖πx(q1 − q2)‖

→ eT
−→
ξ ‖πx(q1 − q2)‖, N → ∞.

Observe that from the above it follows that (we set pi = Φ−T(qi))

‖πx( p1 − p2)‖ � eT
−→
ξ ‖πx(Φ−T( p1)− Φ−Tp2)‖� (34)

for any T  >  0.
Using (33) in the third line and (34) in the last line,

‖Φ−T ( p1)− Φ−T ( p2)‖2

= ‖πx [Φ−T ( p1)− Φ−T ( p2)]‖2
+ ‖πy [Φ−T ( p1)− Φ−T ( p2)]‖2

�
(
1 + L2) ‖πx [Φ−T ( p1)− Φ−T ( p2)]‖2

�
(
1 + L2) e−2T

−→
ξ ‖πx [ p1 − p2]‖2 ,

which concludes the proof.� □ 

Remark 15.  Theorems 12 and 14 can also be applied to establish bounds on the stable 
manifold. In order to do so, it is enough to consider p′ = −f ( p) instead of (26), and to swap 
the roles of the coordinates x, y. The unstable manifold for the vector field  −f is the stable 
manifold for f.

3.2.  Computer assisted proof of homoclinic intersection

In this section we give an overview of the computer assisted proof of theorem 5.
To apply the method from sections 3 and 3.1 to conduct a computer assisted proof we fol-

low the steps, as outlined in [39]:

Algorithm 1.

	 (i)	�In local coordinates around zero, using theorem 12, establish the bounds on the unstable 
manifolds for the family of vector fields.

	(ii)	�By changing sign of the vector field, using the same procedure as in step 3.2, establish 
bounds on the stable manifolds.

	(iii)	�Propagate the bounds on the unstable manifold along the flow, and establish the homo-
clinic intersection using theorem 8.

To obtain bounds for the stable/unstable manifolds, we use the local coordinates (x, y1, y2),

(X, Y , Z) = C (x, y1, y2) ,� (35)
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with,

C =




1 −0.367 063 631 219 68 0
1 1 0
0 0 1


 .

Note that ‖C‖ ≈ 1.527 8 and 
∥∥C−1

∥∥ ≈ 1.117 5.
Coordinates x, y1, y2 align the system (12) so that x is the (rough) unstable direction, 

and y1, y2 are (roughly) stable. Note that we use the same local coordinates for all the 
parameters a.

To obtain the bound on Wu we choose

D = Bu (R)× Bs (R) ,

with R  =  10−5, and use theorem 12 to obtain an enclosure of the unstable manifold Wu. In our 
computer assisted proof, we have a Lipschitz bound L = 4 · 10−5 for the slope of the manifold 
for all parameters a ∈ A. See figure 4. (Note the scale on the axes. The enclosure is in fact 
quite sharp.) Applying theorem 14 we obtain

ξ1 = 0.999 999 999 678 13,

c = 2
√

1 + L2.

For any trajectory (X(t), Y(t), Z(t)) starting from a point p = C (x, wu(x)) , for t � 0, holds

|X (t)| , |Y (t)| , |Z (t)| � c ‖C‖
∥∥C−1

∥∥ e−ξ1|t| ‖ p‖ < 3.5e−ξ|t| ‖ p‖ .

To establish the bounds for the two dimensional stable manifold Ws, we consider the vector 
field (12) with reversed sign (this means that we also swap the roles of the coordinates x, y1, 
y2), and apply theorem 12 once again. We use the same Lipschitz bound L. We consider all the 
parameters a ∈ A. We do so by subdividing A into several intervals, and performing the inter-
val arithmetic enclosure of Ws; we use the interval enclosure of the map f with the intervals on 
a. In figure 5 we see the bound on the enclosure. From theorem 14 we obtain

ξ2 = 0.999 980 453 746 88.

Thus, for any trajectory (X(t), Y(t), Z(t)) starting from a point p = C (ws(y1, y2), y1, y2) holds

Figure 4.  The projection onto x, y1 coordinates of the bounds on Wu
a .
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|X (t)| , |Y (t)| , |Z (t)| � c ‖C‖
∥∥C−1

∥∥ e−ξ2t ‖ p‖ < 3.5e−ξt ‖ p‖ for t � 0.

We now take T  =  26. The two rectangles in figure 5 are the ΦT (Cpu
a, a) for a  =  al and 

a  =  ar (see (23) for the definition of pu
u). Note that figure 5 corresponds to the sketch from 

figure 3. In figure 5 we have the projection onto x,y1 coordinates of what happens inside of 
the set D, without plotting the trajectory along the unstable manifold. Figure 6 presents the 
bounds, plotted in the original coordinates of the system.

We use the rigorous estimates for ΦT
(
Cpu

al
, al

)
 and ΦT

(
Cpu

ar
, ar

)
 to compute the following 

bounds (see (24) for the definition of the function h,)

h (al) ∈ [1.509 378 786 3274 × 10−09, 3.965 344 382 7625 × 10−09],

h (ar) ∈ [−3.957 029 228 5809 × 10−09,−1.517 775 864 47 × 10−09].

We also make sure that ΦT (Cpu
a, a) ∈ D for all a ∈ A. We see that assumption (25) of theo-

rem 8 is satisfied, which means that we have a homoclinic connection for at least one of the 
parameters a ∈ A.

We have thus established a homoclinic orbit

(X0(t), Y0(t), Z0(t)) = Φt
(
Cpu

a0
, a0

)
,

for some a0 ∈ A.
The computer assisted proof has been done entirely by using the CAPD9 package and took 

under a second on a single core 3Ghz Intel i7 processor.

4.  Computation of the separatrix value

In this section we will show how we prove theorem 6. First we will describe the method. We 
shall investigate the following ODE

γ′ (t) = (A + B (t)) γ (t) ,� (36)

Figure 5.  The bound on Ws
a, for all parameters a. On the left we have a non-rigorous 

plot, to illustrate the shape of our bound in three dimensions. In the middle and on the 
right, we have a projection onto the x,y1 coordinates of the rigorous, computer assisted 
enclosure. The two rectangles depicted on the right hand side plots are ΦT

(
pu

al
, al

)
 (on 

the left, in red) and ΦT
(

pu
ar

, ar
)
 (on the right, in blue). All these plots are in the local 

coordinates.

9 Computer assisted proofs in dynamics: http://capd.ii.uj.edu.pl/
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and assume that a22, a33 > 0 and that

A =




0 0 0
0 −a22 0
0 0 −a33


 , B (t) =




b11 (t) b12 (t) b13 (t)
b21 (t) b22 (t) b23 (t)
b31 (t) b32 (t) b33 (t)


 .

We assume also that there exist constants cb,λ > 0 for which

|bij(t)| � cbe−λ|t|.� (37)

Remark 16.  In section 4.3, where we will apply the method to the Shimizu–Marioka sys-
tem (12), the constant cb from (37) will be associated with the constant c from theorem 5, with 
the size of the neighborhood of zero in which we investigate the rate of convergence along the 
homoclinic, and also on some coordinate changes.

Remark 17.  Equation (36) can be seen as (16) considered in appropriate local coordi-
nates. This will be our approach when applying the results from this section for the proof 
of theorem 6.

In the sequel in our investigations of the problem (36) we will use the variables (x, y1, y2) 
and quite often we will also write y = (y1, y2), so that our coordinates will be (x, y), where 
x ∈ R and y ∈ R2.

Our objective will be to obtain a proof of an orbit γ∗ (t) of (36) for which

lim
t→−∞

γ∗ (t) = (x∗−, 0, 0),� (38)

lim
t→+∞

γ∗ (t) = (x∗+, 0, 0),� (39)

and also to obtain explicit bounds on the fraction x∗+
x∗−

.

Figure 6.  The bound on Wu
a , for all parameters a ∈ [al, ar] on the left (in black). On the 

right, we have the bound on Wu
a  in black, valid for all a ∈ [al, ar]. A trajectory along 

Wu
a , which leaves the neighbourhood by the top right corner, returns through the lower 

edge of the plot. In red, we have the Wu
al

, as it returns to the neighbourhood, and in blue 
we have Wu

ar
. In green is the bound on Ws

a, for all parameters a ∈ [al, ar]. The bound 
on Ws

a in local coordinates is in fact is much tighter than on this plot. It is a strip that 
passes through the intersections of the green rectangles. The plots are in the original 
coordinates of the system, projected onto the X, Y coordinates.
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To understand the behavior of (36) for large |t|, we treat the line {(x, 0, 0), x ∈ R} as the 
normally hyperbolic manifold, with two stable directions (y1 and y2). This is clearly visible 
in (36) with B ≡ 0, but for |t| large B is just a small perturbation so the normally hyperbolic 
behavior will survive. A bit problematic in this picture is the fact that we have here an non-
autonomous system, so the above scenario needs some adjustments. This is the idea, which 
underlines our approach.

Definition 18.  Let Z ⊂ R× R2 and J ⊂ R. Let V : Z → R be a C1 function. We say that V  
is a Lyapunov function on J × Z  for (36) if for any solution z : J → R× R2 of (36), V(z(t)) 
is decreasing ( d

dt V(z(t)) < 0) for z(t) ∈ Z and t ∈ J .

We have

d
dt

V(z(t)) = ((A + B(t))z(t)|∇V(z(t))).� (40)

We start with two technical lemmas:

Lemma 19.  Let D =
{
‖y‖2 � x2

}
\ {0} (see figure 7). Let J ⊂ R be a set of all t ∈ R, for 

which the following condition holds

6cbe−λ|t| < min (a22, a33) .� (41)

Then

V : R× R2 → R,

V (x, y) = ‖y‖2 − x2

is a Lyapunov function for (36) on J × D.

Proof.  For p = (x, y1, y2) we compute (skipping the dependence of bij(t) on t to simplify 
the notation):

(
(A + B (t)) p|1

2
∇V ( p)

)

= −x2b11 + y2
1 (b22 − a22) + y2

2 (b33 − a33)

+ xy1 (b21 − b12) + xy2 (b31 − b13) + y1y2 (b23 + b32)

� ‖y‖2 |b11|+
(
y2

1 + y2
2

)
(max (|b22| , |b33|) + max (−a22,−a33))

+
1
2
(
x2 + y2

1

)
(|b21|+ |b12|) +

1
2
(
x2 + y2

2

)
(|b31|+ |b13|)

+
1
2
(
y2

1 + y2
2

)
(|b23|+ |b32|)

�
[
2cbe−λ|t| +max (−a22,−a33)

]
‖y‖2

+ cbe−λ|t| ((x2 + y2
1

)
+

(
x2 + y2

2

)
+

(
y2

1 + y2
2

))

�
[
2cbe−λ|t| +max (−a22,−a33)

]
‖y‖2

+ cbe−λ|t|
(

4 ‖y‖2
)

=
[
6cbe−λ|t| −min (a22, a33)

]
‖y‖2

< 0,

which concludes the proof.� □ 
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Lemma 20.  Let x0, ρ, r > 0 and let

D = [x0 − 2ρ, x0 + 2ρ]× {‖y‖ � r} ⊂ R× R2.

Let J be a set of t ∈ R, such that

2cbe−λ|t|
(

1 +
x0 + 2ρ

r

)
< min (a22, a33) ,� (42)

then

V : R× R2 → R,

V (x, y) = ‖y‖2

is a Lyapunov function for (36) on the set J × D.

Proof.  Let p = (x, y1, y2) and let R2 = y2
1 + y2

2 � r. Note that ±y1y2 � 1
2 R2 and 

|y1| , |y2| � R. We can compute (skipping the dependence of bij(t) on t to simplify the notation)
(
(A + B (t)) p|1

2
∇V ( p)

)

= (−a22 + b22) y2
1 + (−a33 + b33) y2

2

+ (b23 + b32) y1y2 + b21xy1 + b31xy2

� max (−a22 + b22,−a33 + b33)R2

+
1
2
(|b23|+ |b32|)R2 + |b21| |x|R + |b31| |x|R

�
(
max (−a22,−a33) + 2cbe−λ|t|

)
R2 + 2cbe−λ|t| (x0 + 2ρ)R

�

[
max (−a22,−a33) + 2cbe−λ|t|

(
1 +

x0 + 2ρ
r

)]
R2

< 0,

as required.� □ 

Figure 7.  The set D from lemma 19 is the vertical cone. The curved lines are the level 
sets of V . The arrows indicate the vector field of (36).
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Let γ (t) be the solution of (36) with initial condition γ (t0) = p. We shall define

φt0,t ( p) := γ (t0 + t) .

Note that

d
dt
φt0,t ( p) = (A + B (t0 + t))φt0,t ( p) .� (43)

Definition 21.  Let r  >  0, a � 0 and x ∈ R we define sets Ux,a, U+
x,a, U−

x,a ⊂ R× R2 by (see 
figure 9)

Ux,a = [x − a, x + a]× B(0, r),

U+
x,a = [x − a, x + a]× ∂B(0, r),

U−
x,a = ∂ [x − a, x + a]× B(0, r).

4.1.  Behavior for t → −∞

Below lemma allows us to obtain a bound on x∗− from (38). The idea is to choose some x∗ ∈ R 
and an initial condition in Ux∗,0 at an initial time t∗ < 0. If t∗ is small enough, then the influ-
ence of the matrix B (t) on (36) will be small.

Lemma 22.  Let us fix x∗ > 0, ρ > 0, r  >  0 and t∗ < 0, such that conditions (41) and (42) 
hold true for x0 = x∗. If

1
λ

cbe−λ|t∗| (x∗ + 2ρ+ 2r) < ρ,� (44)

then there exists a unique point p∗ ∈ Ux∗,0 such that φt∗,t ( p∗) is convergent as t → −∞. 
Moreover,

lim
t→−∞

φt∗,t ( p∗) =
(
x∗−, 0, 0

)
∈ Ux∗,ρ.

Proof.  Since (42) holds for t∗, by lemma 20 we see that U+
x∗,2ρ is an ‘entry set’ for the set 

Ux∗,2ρ (see figures 8 and 9). What we mean by this statement is that for p ∈ Ux∗,2ρ and any 
t0 < t∗ the trajectory φt0,s( p) can not leave the set Ux∗,2ρ by passing through U+

x∗,2ρ going for-
wards in time for s ∈ [0, t∗ − t0]. The only way it can exit is by passing through U−

x∗,2ρ.
We will now show that for p ∈ Ux∗,ρ and any t0 < t∗, the trajectory φt0,s( p) will never leave 

Ux∗,2ρ for s ∈ [0, t∗ − t0]. Since we can not exit through U+
x∗,2ρ, we need to take care so that for 

s ∈ [0, t∗ − t0] the φt0,s( p) does not reach U−
x∗,2ρ. Let us use the notation

φt0,s ( p) = (x (s) , y1 (s) , y2 (s)) .

As long as |πxφt0,t ( p)− x∗| � 2ρ for t ∈ [0, s], we have the following bound (using (44) in 
the last inequality)
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|πxφt0,s ( p)− x∗|

� |πxp − x∗|+
∣∣∣∣
∫ s

0
b11 (t0 + t) x (t) + b12 (t0 + t) y1 (t) + b13 (t0 + t) y2 (t) dt

∣∣∣∣

� ρ+

∫ t∗−t0

−∞
cbeλ(t0+t) (x∗ + 2ρ+ 2r) dt

= ρ+
1
λ

cbeλt∗ (x∗ + 2ρ+ 2r)

< ĉ2ρ,
�

(45)

Figure 8.  The set D from lemma 20 is represented by the two shaded rectangular strips. 
The horizontal lines are the level sets of V . The arrows indicate the vector field of (36).

Figure 9.  The sets Ux,a, U+
x,a and U−

x,a.
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for a fixed ĉ ∈
( 1

2 , 1
)
, which does not depend on s.

∀t0 � t∗, ∀s ∈ [0, t∗ − t0], ‖πxφt0,s( p)− x∗‖ � 2ρ.

This shows that φt0,s will not leave Ux∗,2ρ. Since trajectories from Ux∗,ρ do not leave Ux∗,2ρ 

and can not touch U+
x∗,2ρ, we have established that

∀t0 < t∗, ∀s ∈ (0, t∗ − t0], φt0,s(Ux∗,ρ) ⊂ intUx∗,2ρ.� (46)

Mirror estimates to (45) together with (44) lead to

|πxφt0,s( p)− πxp| � 1
λ

cbeλt∗(x∗ + 2ρ+ 2r) < ρ,

hence we proved that

|πxφt0,s( p)− πxp| < ρ, ∀t0 < t∗ ∀p ∈ Ux∗,ρ ∀s ∈ [0, t∗ − t0].� (47)

In particular we obtain for any y ∈ B(0, r), for all t0 � t∗ and s ∈ [0, t∗ − t0]

πxφt0,s(x∗ − ρ, y) < x∗, πxφt0,s(x∗ + ρ, y) > x∗.� (48)

From (46) and (48), due to the topological alignment (see figure  10) of the sets 
φt0,s (Ux∗,ρ) and Ux∗,0, it follows that for any t0 < t∗ there exist points q = q (t0) ∈ Ux∗,ρ and 
p = p (t0) ∈ Ux∗,0, such that φt0,t∗−t0 (q) = p and φt0,s (q) ∈ Ux∗,2ρ for s ∈ [0, t∗ − t0]. This 
implies that

φt∗,t0−t∗ ( p) ∈ Ux∗,ρ,
φt∗,s ( p) ∈ Ux∗,2ρ for s ∈ [t0 − t∗, 0].

� (49)

Let pn = p (−n) (by taking t0  =  −n).

Since Ux∗,0 is compact, we can pass to a convergent subsequence pnk → p∗ ∈ Ux∗,0, and 
obtain a point for which

Figure 10.  The set Ux∗,ρ in light grey and φt0,s (Ux∗,ρ) in dark grey. The set Ux∗,0 is 
represented by the dashed vertical line.
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φt∗,s ( p∗) ∈ Ux∗,2ρ for s ∈ (−∞, 0].� (50)

We now need to show that φt∗,s ( p∗) is convergent as s → −∞.
We first focus on the x coordinate. We will show that for any ε, there exists an S  <  0, 

such that for any s1, s2 < S  holds (the Cauchy condition for the function s �→ πxφt∗,s1 ( p∗) for 
s → −∞)

‖πxφt∗,s1 ( p∗)− πxφt∗,s2 ( p∗)‖ � ε.� (51)

Assume that s1 < s2 and that u = s1 − s2. Then, by estimates analogous to (45),

‖πxφt∗,s1 ( p∗)− πxφt∗,s2 ( p∗)‖
= ‖πxφt∗,s2+u ( p∗)− πxφt∗,s2 ( p∗)‖

�
1
λ

cbes2 (x∗ + 2ρ+ 2r) .

We see that by choosing negative s2, with |s2| sufficiently large, we obtain (51). This implies 
the existence of lims→−∞ πxφt∗,s1 ( p∗) .

We will now show that

lim
s→−∞

πyφt∗,s ( p∗) = 0.� (52)

Suppose that this is not the case. Thus, there would exist a δ and a sequence si → −∞ such 
that

|πyφt∗,si ( p∗)| > δ.

Let us choose si negative enough so that the V (x, y) = ‖y‖2 would be a Lyapunov function on 
J × D with J = (−∞, si] and

D = [x∗ − 2ρ, x∗ + 2ρ]×
{
‖y‖ �

δ

2

}
.

This is possible, since we can apply lemma 20 provided that condition (42) is satisfied. The 

(42) will hold for r = δ
2, provided that t  <  T, for T negative enough. Since V  is a Lyapunov 

function, by going backward in time, for s  <  si  <  T, φt∗,s will exit Ux∗,2ρ. This contradicts 
(50), hence

lim
s→−∞

πyφt∗,s ( p∗) = 0.

We have shown that φt∗,s ( p∗) is convergent as s → −∞, and that the limit lies in Ux∗,2ρ. The 
fact that the limit is in fact in Ux∗,ρ follows from (47).

We will now show that the point p∗ is unique. Suppose that we have a second point 
p∗∗ ∈ Ux∗,0 for which lims→−∞ φt∗,s ( p∗∗) exists. Consider the following time dependent 
change of coordinates (t∗ + t, ξ = (t∗ + t, x, y)− φt∗,t ( p∗)), which means that we just con-
tinuously change the location of the origin, by subtracting some solution. Our equation  is 
linear, hence in new coordinates the equation is the same, ξ′ = (A + B(t))ξ .

Let us take an initial condition ξ (t∗) = p∗∗ − p∗. If p∗∗ �= p∗, since by construction 

p∗∗, p∗ ∈ Ux∗,0, we see that ξ (t∗) ∈ D =
{
‖y‖2

> |x|
}

. Since we assumed that for t∗ condi-
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tion (41) holds, it also holds for all t < t∗. By lemma 19, this means that for s < 0, ξ (t∗ + s) 
stays inside D. Moreover, since V(x, y) = ‖y‖2 − x is a Lyapunov function, ξ (t∗ + s) must 
tend to infinity as s → −∞. Since ξ (t∗ + s) = φt∗,s ( p∗∗)− φt∗,s ( p∗), this means that we 
can not have both p∗∗ �= p∗ and φt∗,s ( p∗∗) convergent. We have thus shown that p∗ is the only 
point in Ux∗,0 for which the limit exists.� □ 

Corollary 23.  If we consider t∗ = 0, x∗ = 1, r = ρ, and when

0 < λ− 4cb,
0 < min (a22, a33)− 6cb,

r > max

(
cb

λ− 4cb
,

2cb

min (a22, a33)− 6cb

)
,

then assumptions of lemma 22 are satisfied.

4.2.  Behavior for t → ∞

We now consider a point in Ux∗∗,0 with initial time t∗∗ > 0.

Lemma 24.  Let us fix x∗∗ > 0, ρ > 0, r  >  0 and t∗∗ > 0, such that conditions (41) and 
(42) hold true for x0 = x∗∗.

If

1
λ

cbe−λt∗∗ (x∗∗ + 2ρ+ 2r) < ρ,

then for any p∗∗ ∈ Ux∗∗,0  the φt∗∗,t ( p∗∗) is convergent as t → +∞. Moreover,

lim
t→+∞

φt∗∗,t ( p∗∗) =
(
x∗∗+ , 0, 0

)
∈ Ux∗∗,ρ.� (53)

Proof.  The proof follows analogous in steps as the proof of lemma 22. Since (42) holds for 
t∗, by lemma 20 we see that U+

x∗∗,2ρ is an ‘entry set’ for the set Ux∗∗,2ρ (see figures 8 and 9). 
By a similar derivation to (45) we can establish that trajectories from Ux∗,0 do not leave Ux∗,ρ,

φt∗∗,s(Ux∗,0) ⊂ Ux∗∗,ρ for all s > 0.

Using the same method (but taking the limit to +∞ instead of −∞) as for the proof of (51) 
we can show that we have convergence of πxφt∗∗,t ( p∗∗) as t goes to +∞ for any p∗∗ ∈ Ux∗∗,0 .

We need to show that

lim
s→+∞

πyφt∗∗,s ( p∗∗) = 0.� (54)

Suppose that this is not the case. Then there would exist a δ and a sequence si → +∞ such 
that

|πyφt∗∗,si ( p∗∗)| > δ.� (55)

M J Capiński et alNonlinearity 31 (2018) 5410



5435

Let us choose T positive enough so that V (x, y) = ‖y‖2 would be a Lyapunov function on 
[T ,+∞)× D, for

D = [x∗∗ − 2ρ, x∗∗ + 2ρ]×
{
‖y‖ �

δ

2

}
.

This is possible, since we can apply lemma 20 provided that condition (42) is satisfied. The 

(42) will hold for r = δ
2, provided that T  <  t, for T large enough. Since V  is a Lyapunov func-

tion, by going forwards in time φt∗∗,s ( p∗∗) will enter [x∗∗ − 2ρ, x∗∗ + 2ρ]×
{
‖y‖ < δ

2

}
 and 

once it enters, it will remain there. This contradicts (55), hence we have established (54).� □ 

Corollary 25.  Consider t∗∗ = 0. If

0 < min (a22, a33)− 6cb,
0 < λ− 2cb,

and

ρ <
1
2

[
r
(

1
2cb

min (a22, a33)− 1
)
− x∗∗

]
,

ρ >
cb (x∗∗ + 2r)

λ− 2cb
,

then assumptions of lemma 24 are satisfied.

Lemmas 22 and 24 lead to the following algorithm for establishing bounds for x∗− and x∗+:

Algorithm 2:

	 (i)	�Fix r, ρ > 0 and choose t∗ < 0 small enough to satisfy assumptions of lemma 22. The 
lemma 22 then ensures that

x∗− ∈ [x∗ − ρ, x∗ + ρ] .

	(ii)	�By rigorous numerical integration, evaluate the bound for φt∗,t(Ux∗,0). The t  >  0 needs to 
be chosen large enough so that t∗∗ = t∗ + t satisfies assumptions of lemma 24. The t also 
needs to be large enough so that φt∗,t(Ux∗,0) ⊂ Ux∗∗,b, for some b  >  0.

	(iii)	�By lemma 24 limt→+∞ φt∗,t ( p∗) ∈ Ux∗∗,b+ρ. This ensures that

x∗+ ∈ [x∗∗ − b − ρ, x∗∗ + b + ρ] .

		 We then have the following bound:

x∗+
x∗−

∈
[

x∗∗ − b − ρ

x∗ + ρ
,

x∗∗ + b + ρ

x∗ − ρ

]
.

4.3.  Application to the Shimizu Morioka system

In this section we prove theorem 6. We will consider a matrix P consisting of the eigenvectors 
of (17), of the form
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P =




1 a0 + 1 0
−1 1 0
0 0 1


 .� (56)

Thus, P is transition from the eigenvectors basis to the standard one. In coordinates γ  given by 
η = Pγ , the ODE (16) takes form

γ′ = (A + B (t)) γ,� (57)

for

A =




0 0 0
0 − (a0 + 2) 0
0 0 −a0


 .

B (t) =
a0 + 1
a0 + 2




−Z0 (t) Z0 (t) −2 X0(t)
a0+1

−Z0 (t) Z0 (t) −2 X0(t)
a0+1

− (a0 + 2)X0 (t) (a0 + 2)X0 (t) 0


 .

�

(58)

Since a0 ≈ 1.72 from the bound on X0 (t) , Y0 (t) , Z0(t) from theorem 5 by (58), we see that 
each coefficient bij (t) of the matrix B (t) is bounded by

|bij (t)| � (a0 + 1) 3.5e−ξ|t| ‖(X0 (0) , Y0 (0) , Z0(0))‖ for t � 0,

|bij (T + t)| � (a0 + 1) 3.5e−ξt ‖(X0 (T) , Y0 (T) , Z0(T))‖ for t � 0.

This finishes establishing the needed ingredients for algorithm 2.
Below is the bound on the set U1,ρ from lemma 22,

U1,ρ =




[0.999 843 362 107 66, 1.000 156 637 8923]
[−0.000 156 637 892 340 07, 0.000 156 637 892 340 07]
[−0.000 156 637 892 340 07, 0.000 156 637 892 340 07]


 .

By lemma 22, there is a point in U1,0, that converges to (x∗−, 0, 0) ∈ U1,ρ. We therefore take the 
set U1,0 as the initial point from which we integrate (57) forward in time. A bound on all tra-
jectories that start in U1,0 is depicted in figure 11. (We make also the same plot in coordinates 
η in figure 12.) A trajectory from such enclosure makes a loop, to finish at time T closer to the 

Figure 11.  The computer assisted bound on the heteroclinic trajectory of (57).
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origin, in a cubical enclosure Γ = Γ1 × Γ2 × Γ3 ⊂ R3. We use Γ to compute the bound on the 
set UΓ1,ρ from lemma 24, obtaining

UΓ1,ρ ⊂




[0.626 068 122 647 91, 0.626 633 928 480 44]
[−5.396 091 339 5776 × 10−05, 5.396 091 339 5776 × 10−05]

[−5.396 091 339 5776 × 10−05, 5.396 091 339 5776 × 10−05]


 .

By lemma 24, there exists a point (x∗+, 0, 0) ∈ UΓ1,ρ  and a trajectory γ(t) of (57), for with

lim
t→−∞

γ(t) = (x∗−, 0, 0),

lim
t→+∞

γ(t) = (x∗+, 0, 0).

From the fact that limt→±∞ η (t) = limt→±∞ Pγ (t), we obtain the claim of theorem 6.
The computer assisted proof has been done entirely by using the CAPD10 package and took 

under a second on a single core 3Ghz Intel i7 processor.
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Appendix

A.1.  Proof of theorem 12

Before we give the proof, we introduce some auxiliary tools.
Let

Ju (z, L) = {(x, y) ∈ Ru × Rs : ‖πyz − y‖ � L ‖πxz − y‖} .

The set Ju (z, L) defines a cone of slope L, centered at z. Below theorem establish cone align-
ment for a map φ, which satisfies certain bounds on its derivative.

Theorem A.1 ([40, theorem 27]).  Let U ⊂ Ru × Rs be a convex neighborhood of zero 
and assume that φ : U → Ru × Rs is a C1. If for M  >  0

Figure 12.  The computer assisted bound on the heteroclinic trajectory of (16).

10 Computer assisted proofs in dynamics: http://capd.ii.uj.edu.pl/
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v � sup
z∈U

{∥∥∥∥
∂φy

∂y
(z)

∥∥∥∥+
1
L

∥∥∥∥
∂φy

∂x
(z)

∥∥∥∥
}

,

ζ � m
[
∂φx

∂x
(U)

]
− L sup

z∈U

∥∥∥∥
∂φx

∂y
(z)

∥∥∥∥ ,

and

ζ

v
> 1,

then for z ∈ U

φ (Ju (z, L) ∩ U) ⊂ intJu (φ (z) , L) ∪ {φ (z)} .� (A.1)

Note that if the vector field (26) satisfies condition −→µ < 0 <
−→
ξ , then by theorem 13, for 

sufficiently small h > 0, and for µ (h) and ξ (h) defined in (31) and (32), the

v = µ (h) , ζ = ξ (h) ,

will satisfy the assumptions of theorem A.1 for M  =  L. This will imply (A.1) for φ = Φh, for 
the flow Φ induced by (26).

We now give the sketch of the proof of theorem 12.

Proof of theorem 12.  The proof of the theorem follows from a mirror argument to the 
proof of theorem 30 from [38]. The one important difference is that the result from [38] is 
written in the context where in addition to the hyperbolic directions x, y, we also have a center 
coordinate. Here such coordinate does not exist, which allows us to obtain better bounds on 
the slope of the established manifold. Also, due to the lack of the center coordinate, we have 
less inequalities in the assumptions of our theorem compared to [38]. Instead of repeating the 
proof of theorem 30 from [38] we refer the reader to the source, and will focus here on the 
Lipschitz bounds of the manifold, which is the improvement of the current result over [38].

The proof of theorem 30 from [38] follows from a graph transform method [40]. We start 
with a flat function

Bu (R) � x → 0 ∈ Bs (R) ,� (A.2)

and propagate it using the graph transform method. The manifold Wu is obtained by passing 
to the limit. Theorem 30 from [38] ensures that Wu is a graph of the function wu, meaning that 
we have (30). (We refer the reader to [38] for the proof of this procedure that is just outline 
here.) We will focus here on the Lipschitz bounds obtained at the limit. From [38] we would 
obtain directly the Lipschitz bound 1/L, but here we will show that the bound (due to lack of 
the center coordinate) is in fact L.

The important issue is that (29) ensures that the assumptions of theorem A.1 are satisfied 
(with M  =  L,) for the map z → Φh (z) , by taking v = µ (h, L), ζ = ξ (h, L) and sufficiently 
small h  >  0. This means that the cones Ju are preserved along the flow in the sense of (A.1); 
i.e. that

Φh (Ju (z, M) ∩ U) ⊂ intJu (Φh (z) , M) ∪ {Φh (z)} .

For any x ∈ Bu (R) the graph of (A.2) is inside of the cone Ju ((x, 0) , L). The graph of (A.2) 
after propagating by Φh using the graph transform, will also be contained in cones Ju. This 
implies that, after passing to the limit with the graph transform, for any x1, x2 ∈ Bu (R)
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(x1, wu (x1)) ∈ Ju ((x2, wu (x2)) , L) ,

hence

‖wu (x2)− wu (x1)‖ � L ‖x1 − x2‖ .

This means that wu is Lipschitz with constant L, as required.� □ 
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