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Abstract. We prove that the orbIt-Hlp l)1ful"catlOil m the systems ·wIth a smoothl 
first integral (e.g. in the Hamiltonian ones) leads to appearance of infinitely manyl 
multi-pulse self-Iocahzed soIutlOllS. We glve a complete descnptIOn to tillS set ml 
the language of symbolic dynamics and reveal the role played bv special non-I 
sclfiocalized solutions (c.g. periodic and hct.croclinic ones) in the structure of the setl 
of self-localized solutions. \Ve pay a special attention to the superhornoclinic ("ho-I 
lllodinic to hOlllodinic") orbits \vhose presence leads t.o a particularly rich st.ructurel 
of thIS set. 

1 I ntroductionl 

Consider a 2n-dimensional (n > 2) dynamical system 

j; = X(:r) 

\vith a smooth first integral H, i.e.; 

IH'(:r)X(J;) '" O. (1) 

A Hamiltonian system \vith n degrees of freedom is a natural example butl 
the symplectic structure is not important for our purposes. 

Let X have a hyperbolic equilibrium stat.e 0 at the origin (i.e. X (0) = 01 
and the eigenvalues of the matrix ~yl(O) do not lie on the imaginary axis). 
By (1) 

H' (O)X' (0) - 0 

so, Rince ~Y' (0) iR non-degenerate by aRRllInpt.ion, the linear part. of H atl 
o vanishef:>. Af:>f:>ume that the quadratic part of H at 0 if:> a non-degenerat~ 
qnadratic form. It if:> an eas·v exerdf:>e to check that \"hen thif:> non-degeneridt\] 
assulllPtion holds; the systelll ncar 0 may be brought by a linear transfor-I 
mation of coonlinateR t.o t.he follmving forml 

11i - -Bn + ... , iJ - B I V + ... (2) 

\vhere 'Ii. E R n , t' E R n , t.he dotR Rtand for nonlinearit.ies and n iR a matrixl 
\vhoRe eigenvalues have positive real partR. l\Ioreover, the firRt integral takesl 
the torn]] 

H - (v,Bu) + ... (3) 
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where the dots stand for the third and higher order terms. 
Let AI, ... An be the eigenvalues of B, ordered in such way that 0 <1 

ReAl:::; ... :::; ReAn . We assume that the first two leading eigenvalues of BI 
are real and different; precisely, we assume 

(i > 2). 

In this case the matrix B may be written in the form 

(4) 

where the real parts of the eigenvalues of B O are strictly greater than A2.1 
The equilibrium state 0 is a saddle with n-dimensional stable and unsta-I 

ble manifolds Wo and Wo which are tangent at 0 to the u-space and v-space,1 
respectively. Both the invariant manifolds lie in the (2n -1 )-dimensionallevell 
{H = O} and they may intersect transversely in that level, producing anum-I 
ber of homo clinic loops, i.e. the orbits which tend to 0 both as t --+ +001 
and t --+ -00 (see Fig.l). This paper addresses the question on the possiblel 
structure of the homo clinic loops in the given class of systems, in particular,1 
on the conditions for the coexistence of infinitely many of homo clinic loops.1 

ss 

Fig. 1. A homo clinic orbit r of a transverse intersection of the stable and unstablel 
manifolds of a saddle (left) or a saddle-focus (right) O. 

It follows from [1-3] that (generically) there exists infinitely many homo-I 
clinic loops in an arbitrarily small neighborhood of a single homo clinic loopi 
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to a saddle-focus (this is the case where Al and A2 are a pair of complex-I 
conjugate numbers, we do not consider this case in this paper). On the con-I 
trary, when the equilibrium state is a saddle (i.e. Al is real) no other homo-I 
clinic loops can accumulate to a homo clinic loop in general position [4]. Thel 
homo clinic loops correspond to self-localized (decaying to zero as t -+ ±oo)1 
solutions of (1). When 0 is a saddle, this solution tends to zero monotonicallyl 
in time whereas the time dependence of any component of the self-Iocalizedl 
solution is, typically, oscillatory when 0 is a saddle-focus. Thus, the citedl 
results suggest that a self-localized solution with oscillatory tales is accom-I 
panied by infinitely many multi-pulse solutions, and self-localized solutionsl 
with monotonic tales do not form infinite series, generically. This contradictsl 
to the fact that plenty of multi-pulse solutions with monotonic tales havel 
been seen in different Hamiltonian systems. 

o 

Fig. 2. Infinitely many homo clinic loops appear as a result of a transverse intersec-I 
tion of the invariant manifolds of 0 and a saddle periodic orbit L. 

To resolve this problem, a simple scenario of appearance of infinitely manyl 
homo clinic loops to a saddle was proposed in [4]: if a saddle periodic orbit LI 
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exists in the zero level of the first integral (L E {H = O}) and ifthe unstablel 
manifold of the saddle 0 intersects transveri:>ely the i:>table manifold of LI 
,vhereas the unstable manifold of L intersects transversely the stable manifoldl 
of 0; then infinite sequence of homo clinic loops exists ,vhich accumulate tol 
the union of 0, L and the pair of heteroclinic connections. This statementl 
is a simple consequence of A-lemma: take a small cross-sect.ion 5 t.o L inl 
{H - O}; since rV8 n 5 interi:>ects rv{" n S transveri:>ely; the infinite sequencel 
of images of l'V() n S by the Poincare map ncar L accumulates to TV ~ n S; 
each of these images must, hence; intersect T'Vo n S transversely (as HT~ n 51 
does so by assumption), producing thereby a hornoclinic orbit (Fig.2). 

\:Ve st.art this paper with showing hmv such configurat.ion appears at t.hel 
i:>o-called orbit-flip bifurcation of the homodinic loop I. Kamely; let the systeml 
have a transverse homo clinic loop r. \Ve assume that renters 0 as t --+1 
+00 along the leading direction, i.e. it is tangent at 0 at t = +x to thatl 
eigenvector of n in the '/1,-space \vhich corresponds t.o the eigenvalue AI. Onl 
the contrary, \ve reqlllre that at t - 00,1 
the homodinic orbit r leaves 0 along the eigenvector of BT in the v-spac1 
which c01Tesponds to the eigenvalue .\2 (the next after leading). 

:."Jote that the situation we consider here is essentially irreversible. so ourl 
orbit-flip bifurcation is different in many instances from t.hose consideredl 
earlier in the reversible case [5,6]. 

The tra jectories in the unstable manifold \vhich leave 0 not along the lead-I 
ing direction form a smooth (n - I)-dimensional i:>ubmanifold HT'U'U of rVH ,I 
transverse to the leading direction and tangent at 0 to the invariant sub-I 
space (in the v-space) of the matrix BT which corresponds to the eigenvaluesl 
A2, ... , An. The above assumption implies that r c YF 11

,11,. The presence of ~~ 
common orbit of the n-dimensional manifold rV8 and the (n -1 )-dimeni:>ionall 
manifold n:u.u. both lying in the (2n I)-dimensional hypersurface ~ H - 0 H 
is an event of co dimension one. By a small perturbation of the system (notl 
moving it out of the class of syst.ems \vith a smooth first integral) t.he orbit of 
hornoclinic intersection of TY lJ and YF s \vill, generically, miss lvnn. To studyl 
this bifurcation \ve \vill embed our i:>ystem (1) in a one-parameter family of 
i:>vstems with a i:>mooth first integral, depending continuously on a parameterl 
'" (the first integral H is assumed to depend continuous!)' on I' as well). Thel 
original system ,vill correspond to /1 = 0 and \ve consider t.he bifurcations atl 
small/i. The system will retain its form (2). (4) (with the formula (3) stilll 
valid for H) \vhere A 1,2 and EO are now continuous functions of fJ. (as ,veIl ai:>l 
the terms denoted by dots in (2),(3) are).1 

I Note that the orbit-flip is the only codimension-l homoclinic bifurcation in thel 
class of systems ,vith a first integral ,vhich could give rise to the birth of infinitel 
series of multi-pulse self-loca.li:.-;ed solutions \vith monotonic tales (the t\.vo otherl 
codimension-l bifurcations - the tangencv of stable and unstable manifolds andl 
the transition from a saddle t.o a saddle-foClIs - are known to produce no non-I 
oscillating multi-pulse loops). 
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Since the manifolds W S and W U depend on JL continuously and theirl 
intersection along r is transverse at JL = 0, this intersection persists at smalll 
JL and the corresponding homo clinic orbit rfJ depends on JL continuously. Wei 
assume that rfJ rz. WUU at JL -=I- 0; moreover rfJ S;;; Wu+ at JL > 0 and rfJ 9 
wu- at JL < 0 where Wu+ and wu- denote the two connected componentsl 
into which W UU divides W U (Fig.3). 

Fig. 3. The orbit-flip bifurcation: at J1 = 0 the homoclinic orbit r lies in the strong-I 
unstable manifold of the saddle O. 

Theorem 1 in the next Section shows that, generically, a saddle periodicl 
orbit L E {H = O} is born from r as JL passes through zero and this indeedl 
implies the birth of infinitely many multi-pulse homo clinic loops. In the samel 
Section we also analyze how the general structure of the set of homoclinicl 
loops is changed due to the orbit-flip bifurcation. Namely, we establish that if I 
a homo clinic loop t in general position exists simultaneously with the bifur-I 
eating loop r, then either a double homo clinic loop close to a concatenationl 
t r or an infinite family of loops close to t rk (k = 1, ... , 00) is born as JLI 
passes through zero (see theorems 2,3). 

Far richer possibilities are opening when we include in the picture thel 
so-called superhomoclinic (i.e. "homoclinic to homo clinic" ) orbits. Like thel 
existence of a homo clinic orbit to a single periodic orbit implies the existencel 
of infinitely many periodic orbits [7], the existence of an orbit which is homo-I 
clinic to a single homo clinic loop may imply the existence of infinitely manYI 
of loops. We show in Section 3 that at the moment of the orbit-flip bifurca-I 
tion in the so-called orient able case the homo clinic loop r has the unstabl~ 
manifold Wr E {H = O} which is a smooth n-dimensional manifold with al 
boundary (the boundary is the manifold W UU ) which consists of the orbitsl 
whose limit set as t --+ -00 is r. This manifold is the limit of the unstablel 
manifold of the periodic orbit LfJ which tends to r as JL --+ 0 (the stable man-I 
ifold of LfJ tends to the stable manifold of 0). Since W} is n-dimensional andl 
since it lies, as a whole, in the (2n - I)-dimensional level {H = O}, it mayl 
intersect transversely with WOo Here, we call the orbits of such intersectionl 
the superhomoclinic orbits (see Fig.4). We show that their presence impliesl 
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s 

Fig. 4. A supehomoclinic orbit S is a-limit to the homoclinic loop rand w-limitl 
to the saddle o. 
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immediately the existence of an infinit.e set of mult.i-pulse hmnoclinic loopsl 
vdth a nontrivial structure. 

Bifurcations of superhomorlinic orbits in general (non-Hamiltonian) sys-I 
terns were studied in [8,9] (some cases were considered earlier in [10-12]). Fori 
systems with the smooth first int.egral, superhornoclinic orbit.s \vere discov-I 
ered in [13] (t.he proofs are in [14]) in connection wit.h t.he problem of thel 
explanation of the existence of infinitely many self-locali?;ed solutions in ani 
applied problem. Our construction here is close to that studied in [8,9] andl 
it is quite different from that in [13,14]. Howeyer, the main idea remains thel 
same: superhmnochmc orlnts seem to playa rIli-1Jor role 1Il orgamzmg the setl 
of multi-pulse homodinic loops in Hamiltonian systemsl 

Finallv. the author would like to acknowledge the support bv the DF G-I 
Schwerpunktprogramme DA~SE and to express his gratitude to L.P.Shilnikov 
\vho proposed him this problem many years ago. 

2 Orbit-flip bifurcation! 

'Ve impose, first, some genericity assumptions on t.he system under consider-I 
ation, \vhich are necessary to study the orbit-Hip bifurcation. The first hvo of 
them were the transversalitv of the intersection of fl 8 and W'U along 1 andl 
the requirement that r g W" (i.e. it enters 0 as t --+ +00 along the leading 
direction) . 

To formulate the third genericity assumption \ve recall (see [15]) thatl 
an extended stable manifold rV8et

: \vhich is a smooth (n + 2)-dimensionall 
invariant manifold tangent at 0 to the direct sum of the u-space and thel 
invariant subspace of BT in the v-space \vhich corresponds to the leading! 
eigenvalues Al and A2. Note t.hat. YFsee contains the st.able manifold YF s , sol 
it cont.ains the hornodinic orbit r (not.e t.hat. YFsee is not unique but anyl 
hvo of such manifolds are tangent to each other at every point of rv"'l \Vel 
require that at It = 0, at the points of r the manifold rv scr is transversq 
to the strong unstable manifold TV- UU (by invariance of rv scr and HTUU it isl 
sufficient. t.o require t.he transversality at an arbitrary single point on r). 

According to 1161 this kind of transversality assumption is sufficient fori 
the result of [17] to be fulfilled; namely, it guarantees the existence of a C I_I 
smooth invariant repelling (n + 2)-dimensional manifold which is transversg 
to TYuU and which contains all orbit.s staying in a small neighborhood of t.hel 
hornodinic loop r for all times.1 

The fourth genericitv assumption is 

It IS not a techmcal assurnpt.lOn; \ve v-nIl see that t.he cases A2 < :lA1 andl 
.\.2 > 2.\.1 are indeed different (though the results are similar). \Ve will alsol 
need a different smoothness assumptions in these cases: the system will bel 
assumed C'r-smooth vdth r > 3 at }\.) < 2}\1 and r > 4 at}\·) > 2}\1. 
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~'vIost important.ly, t.he last., fifth, genericity assumpt.ion is different. in t.hel 
cases >1:2 < 2;\ I and ;\2 > 2;\ I. If ;\2 < 2;\ I ~ then in fl 8 there existi:> al 
special smooth (at least C') invariant (n - I)-dimensional manifold lpu 

,,,hich is tangent at () to the eigenspace of the matrix B in the u-spacel 
\vhich corresponds to t.he eigenvalues AI, A:'I, ... ,An (i.e. it. is transverse tol 
the eigenvect.or corresponding to the eigenvalue A2). The existence of thisl 
manifold is proved later. \Ve \vill aSi:>ume that in this cai:>e 

Basically. this means that when renters () at t = +X'. the coordinate Ul 

(the projection ont.o t.he stable leading eigenvect.or) behaves asympt.oticallyl 
as 

U11e-'\" + U12 e -'\,I + 0(e-1 '\")1 

\vhere '/1,12 -::j:. 0 (t.he non-vanishing of 'ltll is given by t.he assumption r tj 11/sS). 
"Then A2 > 2'\'1, the special manifold nT1J

·
Q ii:> not defined uniquely and,1 

moreover, the above aSi:>umption is unnecessary. An important requirementl 
,,,e need in this case is tha~ 
the inter'section of the extended unstable manifold wue with the stable man-I 
ifold IF'"< along T is tranS'lJer·se in R 2'n . 

Thii:> extended uni:>table manifold ii:> an (11, + I)-dimeni:>ional i:>mooth invariantl 
manifold ,vhich ii:> tangent at 0 to the direct i:>um of the v-space and thel 
leading eigenvector in the u-space (it is the eigenvector corresponding to the! 
leading eigenvalue Al of B) (see [15]). This manifold is not unique but anyl 
hvo of them contain t.he st.able manifold lF 1

J. and are t.angent. to each other atl 
every point of (+ u.. Hence, the transveri:>ality aSi:>umption above is ,veIl poi:>edl 
(recall that r c W"J Note that we speak here about the transversality inl 
the whole phase space, not in the level {H = O}, The intersection of IV ue 

\vith {H = O} is the union oft,vo 'fl.-dimensional manifolds: one is TY lJ and t.hel 
second is a smooth manifold lF 1J.l ,vhich int.ersects H,~n at. t.he point.s of t.hel 
manifold n:u.u. transveri:>ely in {H - OJ. Since r lt C rVHH at fJ. - O~ the abovel 
transversality assumption can be read as the transversality (in {H = O}) of 
the intersection of wu1 and W' along the homo clinic loop r o, Note that thisl 
requirement. is unnecessary if A2 < 2Al. 

In both casei:> , the fifth non-degeneracv aSi:>umption can be expressed as al 
non-vanii:>hing of i:>(Hne functional A(X) which v-.'ill be explicitly defined later. 
'Ve will introduce also a functional a(X) ,,,hose non-vanishing is equivalentl 
to the transversality of TY lJ and lFs . The signs of A and a determine t.hel 
struct.ure of bifurcat.ions \vhich happened at. p -::j:. 0.1 

Theorem L Let U be a sufficiently small neighborhood of ro in the level 
{H = O}. At Aap ? 0 then; is no other· orbit, e:J:Cept for Tit and 0, whichj 
stays in U for all times. At A(},p < 0, the set of the or·bits staying in UI 
for all times consists of: 0, 1 u, a single-round periodic orbit L u, a pair of 
heteroclinic orbits Gig and C2u - the former is a-limit to 0 and w-limit tg 
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LfJ when;as the latter is o.-limit to LfJ and (;)-lirnit to 0) and a seqnenee of 
homoclinic loops r klt (rku is a k-mund loop) k - 2~ ... , one such loop for 
each k) which accumulate to the union 0 U L" U C t " U C2W 

Generically, in addition to r~ the system at It = 0 may have some numberl 
of ot.her hmnoclinic loops rJ, ... ,r;l+ and rI, ... ,rill \vhich correRpond tol 
transverRe int.erRection of H,~H and YF 1

1. and \vhich do not lie neit.her in YF 1
1.

1
1. 

nor in rv,'IS (i.e. they leave and enter 0 along the leading directions). \Vel 
assume that the loops T-i- ~ ... ,r~l+ lie in TV s+ and the loops r~, ... , r~L 
lie in T,F S

- where T,F s ± are hvo components into ,vhich TV SS divides H/ S
: ,vel 

assume that the orbit. r ll belongR t.o IF''<+.1 
Let. U be a small neighborhood of the hmnoclinic bunch r u r l u ... u 

rm+ U r,- U ... U r_ U 0 in the level {H - OJ. It is a union of a small 
neighborhood of 0 with 1H+ + 1H_ + 1 handles Do~ (.'1+, ... ~ (.'m++~ (.'I-~ ···,1 
U m _ (the handle Uo surrounds r). Since the fundamental group of U isl 
nontnvIal, every orlnt 1Il D getR It.S natural codmg ,vlnch deRcnbes the se-I 
quence of handleR t.he orbit. viRitR as time runs. TllUR, the coding of 0 is t.hel 
empty sequence, r is coded by O~ the loops r~ are coded by i± respectivelY~1 
the periodic orbit L/! from theorem 1 is coded by the infinite sequence of 0 's,1 
the heteroclinic orbits C lf1 and C2f1 arc coded, respectively, by the infinitel 
to t.he right and infinite to the left. sequenceR of O~s; the k-round hmnoclinicl 
loopR from theorem 1 are coded by Ok. 

Tlieorenl 2. Except jar the orbits given by theorem 1 and the homoclinicl 
loops rt the set of all orbits lying entirely in U contains the following 01·-1 
bits (and only them); double homodinic loops (i-)O (where i = 1, ... ,TIL) at 
Aap > 0; nothing at J1 = 0; e:radly one hmrwdinie loop U+ )Ok fm· each k ? 1 
and i = 1, ... , 'ff/+, and .,,1+ heteTOdinie connections (1+ )Ocx" ... ) (.,,1++ )ocx, 
from 0 to L" at ADI1 < 0 (as k -+ +x, the limit of the sequence of loop.~ 
(i+)O' is the hderodinic connection (i+)0= }.I 

Let us prove theorems 1 and 2. Choose the coordinates (Ul, 'iL2 ~ ... ~ Un, VI, V2 ~ ... ~ V n ) 

near 0 Ruch that the ul-a .. xis ,vill be t.he eigenvector of n corresponding to t.hel 
leading eigenvalue /\ I , the u2-axis will be the eigenvector of B correspondingJ 
to the next eigenvalue A2 and the plane ( U I - 112 - 0) v-.'ill be the eigenspacel 
corresponding to the rest of the spectrum of B; similarly, let the vI-axis bel 
the eigenvector of BT corresponding to AI, the v2-axis be the eigenvectorl 
of n I correRponding t.o '\2 and t.he plane (VI - V2 - 0) be the eigenspacel 
corresponding to the rest of the spectrum of BT. B-v assumption. renters 01 
at t - +x· tangent to the 11raxis. \Ve choose the sign of 'HI such that UI > 01 
on r at t close to +x; i.e. the component TV s+ of T,F S corresponds to thel 
positive direct.ion of the ul-axiR. At. p = 0 the hmnoclinic orbit r iR tangentl 
at 0 t.o t.he v2-axiR at t = -00. 'Ve aRRllIne that L'2 > 0 on r at t dose t.o -00. 

l\loreover~ we assume that 1 adjoins 0 at t - CXJ from the side of positivel 
VI at f! > 0 and from the side of negative VI at 11 < 0; i.e. the componentl 
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wu+ extends from W UU towards VI > ° and W U- extends towards negativel 
VI· 

Let us straighten the invariant manifolds WS and WU near 0 so that theirl 
equations will be, respectively, V = ° and U = ° locally. The system will takel 
the following form near 0: 

u = -Bu + f(u, v)u, V = BT V + g(u, v)v (5)1 

where f and g are some Cr-l-functions vanishing at zero. The first integrall 
is now locally written as 

H = (v, Bu) + Ho(u, v) (6)1 

where Ho vanish identically both at u = ° and v = 0. According to [18] 
(see also [19,12] and [15]), by an additional Cr-l-smooth transformation ofl 
coordinates system (5) is brought to the following form, where we denotel 
UO = (U3, ... , un) and VO = (V3, ... , vn ): 

(7) 

with the Cr-l-functions fij, gij vanishing at zero and satisfying the followingl 
identities 

fil(O,V) == 0, 
fi2 (0,0, v) == 0, 
fll(Ul,O) ==0, 
gll (0, vd == 0, 

gil(U,O) ==0 (i=I,2,0), 
gi2(U,0,0) == ° (i = 2,0), 

h2(Ul, U2, 0) == 0, ho(u,O) == 0, 
g12(0,Vl,V2) == 0, glO(O,V) == ° 

and, at ?-2 < 2?-1, the following additional identities 

h2(0,0,V) == 0, 
hl(Ul,O) ==0, 
g21 (0, vd == 0, 

g12(U,O,O) == 0, 
h2(Ul,U2,0) == 0, 
g22(0,Vl,V2) == 0, 

ho(u,O) == 0, 
g20(0, v) == 0. 

(9)1 

By [12], an additional C r- 2-smooth coordinate transformation can be donel 
in the case ?-2 > 2?-1 which keeps the system in the form (7),(8) with fij, %1 
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(now C r - 2 ) satisfying the following additional identities: 

(10) 

at Ul = o. 

Hereafter we assume that the system is brought to this form. We denotel 
the smoothness of the obtained system as q (i.e. q = r - 1 at ).2 < 2).1 andl 
q = r - 2 at ).2 > 2).1, so q :2: 2 in both cases). 

In these coordinates, the non-leading manifolds W SS and W UU are givenl 
by equations {v = 0, Ul = o} and {u = 0, VI = O}, respectively. Furthermore ,I 
identities (8) guarantee that the extended unstable manifold wue is tangentl 
to {U2 = 0, UO = O} at the points of the local unstable manifold Wl~c : {u =1 
O}. Indeed, the tangents to wue at the points Wl~c form a continuous fieldl 
of linear spaces invariant with respect to the flow linearized along the orbitsl 
in Wl~c and this field is transverse to W SS at O. According to [15] such fieldl 
is unique. When identities (8) are satisfied, the space {U2 = 0, uO = O} isl 
invariant with respect to the linearized flow and it is transverse to Wss atl 
0, hence it is the tangent to wue indeed. Thus, wue is locally given by ani 
equation of the form 

(11)1 

where hue vanishes at zero along with its first derivatives. Note that huel 

must vanish identically at Ul = 0 because wue contains Wl~c : {u = O} bYI 
definition. Now, it is seen that the first integral (6) on Wl~~ is written in thel 
form 

H = ).IUl(Vl - hUl(Ul'V)) 

for some smooth hu1 which vanish at zero along with the first derivative.1 
Hence, the intersection Wl~~n{ H = O} is the union of Wl~c and a C 1-manifoldl 
Wl~~ given by (11) with the constraint 

(12)1 

The intersection of w u1 with Wl~c must be an (n - 1 )-dimensional invari-I 
ant submanifold of Wl~c' transverse to the vI-axis in virtue of (12). Such al 
submanifold is unique - it is Wl~~. Thus, 

i.e. hu1 (0,v) == O. 
Analogously, the tangent to w see at the points of Wl~c is VO = O. 
When).2 < 2).1, identities (8), (9) imply that the evolution of the variablesl 

(Ul, U2) on Wl~c is independent on UO and is governed by the linear systelll 
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Thus, for every orbit in Wl~c \W SS we have U2(t) = CUf(t) with a = >"d>"l '1 
2. It follows that U2 = 0 is a unique invariant submanifold of Wl~c which isl 
transverse to the u2-axis and which is at least C 2-smooth. We denote thisl 
manifold as W so. 

Take a small d > 0 and consider a pair of (2n - 2)-dimensional cross-I 
sections IIin and IIout to the homo clinic loop r: IIin = {Ul = d} n {H =1 
O} and IIout = {V2 = d} n {H = O}. Let Min(uin,vin) = r n IIin andl 
Mout(uout vout ) = r n IIout Since Min E W S and Mout E W U it followsl , . 1oc 1oc' 
that vin == 0 and uout == O. By assumption, Mout E Wl~~ at p, = 0, thereforel 
v~ut 1,,=0 = O. When p, increases through zero, the value of v~ut changes froml 
negative values to positive, so we may simply assume 

(13)1 

Recall that v~ut = U¥' = d. Since Min tf. w so at >"2 < 2>"1, it follows tha~ 

(14)1 

We take a small J > 0 and shrink IIin and IIout to the size J neighborhoodsl 
of Min and Mout , respectively. In particular, we have Ilvo - vooutll :S J onl 
IIout. Since the orbit r is tangent to the v2-axis at p, = 0 by assumption, itl 
follows that 

on IIout. 

Orbits which lie in the level {H = O} in a small neighborhood of rl 
must intersect IIin,out, so the problem of the study of these orbits reducesl 
to the study of the Poincare map on these cross-sections. The flow near thel 
global piece of the loop r outside the d-neighborhood of the saddle definesl 
the global map Tglo from IIout to IIin. Since the corresponding flight time isl 
bounded, this map is a diffeomorphism and it is well approximated by itsl 
Taylor expansion at the point Mout. 

Recall that H = 0 on IIout and V2 = canst i- O. Hence, by (4) and (6), u21 
is a smooth function of (Ul, VI, UO, Va) for points in IIout. Thus, (Ul, VI, uO, vO)1 
form a good set of coordinates on IIout. Analogously, (U2' V2, uO, va) are thel 
coordinates on IIin (here, Ul = canst i- 0 and VI is found from the conditionl 
H = 0). 

Now, we can write the map Tglo : M f--ct .!VI as 

{ 

ih = al(vl - p,) + b1Ul + Cl(VO - vOout ) + d1uO + ... 
fl2 - U~' = a2(vl - p,) + b2Ul + C2(VO - vOout ) + d2uO + ... 
VO = a3(vl - p,) + b3Ul + C3(VO - voout ) + d3uO +... (15) 
flo - UOin = a4(vl - p,) + b4Ul + C4(VO - voout ) + d4uo + ... 

where the dots stand for non-linear (quadratic and higher order) terms.1 
The intersection of Wl~~ with IIout is {VI = 0, U = O}, so it follows froml 

(15) that we have 
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on the tangent to Tglo(Wl~~ n JIout ) at /1 = O. The tangent to Wl~~e is vo = 0,1 
so the transversality of W UU to w see means that 

det C3 "I- O. 

This allows for recasting (15) in the so-called cross-form: M = TgloM if andl 
only if 

{ 

V2 = al(vl - /1) + blUl + C1VO + dluO + ... 
112 - ukn = a2 (VI - /1) + b2Ul + C2VO + d2uO + . . . (16) 
vO - vOout = a3(Vl - /1) + b3Ul + C3 VO + d3uO + .. . 
11° - uOin = a4(Vl - /1) + b4Ul + C4VO + d4uO + .. . 

for some new coefficients a, b, c, d, and for some functions of (VI - /1, Ul, vo, uO)1 
of at least second order of smallness which are denoted by dots in the right-I 
hand sides of this formula. 

When the map is written in the cross-form, it is obvious that the transver-I 
sality of Tglo(Wl~c n JIout) to Wl~c n JIin at the point Min is equivalent tq 

(17)1 

and the transversality of Tglo(Wl~~ n JIout ) to Wl~c n JIin at the point Min isl 
equivalent to 

(18)1 

So, our genericity assumptions are (17) and (14) in the case '\2 < 2'\1, andl 
(17) and (18) in the case '\2 > 2'\1. 

We can now introduce the quantities a and A from Theorems 1 and 2:1 

(19)1 

and 

(20) 

Let us now proceed to the evaluation of the local map from the cross-I 
sections JIin to JIout which is defined by the orbits in the d-neighborhood ofl 
the saddle o. This is a much less trivial problem because an orbit startingl 
on JIin may stay near 0 for an unboundedly large time before reaching thel 
cross-section JIout. 

The regular method which allows for resolving this difficulty is based uponl 
the study of a specific boundary value problem considered in [7]. Namely, asl 
it follows from [7] for our particular case, if an orbit in a small neighborhoodl 
of a saddle starts at t = 0 with some point M O(UlO,U20,Ug,vlO,V20,v8) andl 
reaches a point M T ( Ul T , U2T, u~, VI T, V2T , v~) at the moment t = T, then thel 
val ues of ( VlO, V20, v8) and (Ul T) U2T) u~) are uniquely defined by (UlO, U20, ug) j 
(V1T)V2T)V~) and T. Moreover, such M o and MT exist for any given T 2: 01 
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and small (UlO,U20,Ug), (VlT,V2TlV~); the corresponding piece of the orbit isl 
found as the unique solution of the following system of integral equationsl 

Vl(t) = e-)\1(T-t)VlT -iT eA.,(t-s) (gl1(u(s),vds))Vl(S) + g12(U(S),vds),V2(S))V2(S) 

+glO(U(S),v(s))vO(s)) ds 

V2(t) = e-A.2(T-t)V2T -iT eA.2(t-S) (g21(U(S),vdS))Vl(S) + g22(U(S),vds),V2(S))V2(S) 

+g20(U(S),v(s))vO(s)) ds 

VO(t) = e-(BO)T(T-t)v~ -iT e(BO)T(t-s) (g01(U(S),Vl(S))vds) + g02(U(S),Vl(S),V2(S))V2 

+goo( u(s), v(s) )VO (s)) ds 

Ul(t) = e-A.l tu1o + lot eA.l(S-t) (fll(Ul(S),V(s))uds) + h2(Ul(S),U2(S),V(S))U2(S) 

+ ho(u(s), v(s))uO(S)) ds 

U2(t) = e-A.2 tu2o + lot eA.2(S-t) (f21(Ul(S),V(s))uds) + h2(Ul(S),U2(S),V(S))U2(S) 

+ ho(u(s), v(s))uO(S)) ds 

UO(t) = e-BOtug + lot eBO(s-t) (f01(uds),v(s))uds) + f02(Ul(S),U2(S),V(S))U2(S) 

+ foo(u(s), v(s))uO(S)) ds. 
(21) 

This system is obtained by integration of (7). According to [7], the solutionl 
of (21) on the interval t E [0, T] is found by successive approximations. Thel 
first approximation is 

(u(t) = 0, v(t) = 0). 

Using identities (8), (9), (10) one can see (the detailed computation for al 
general case can be found in [18,12]) that the second and all the furtherl 
approximations have the form 

vdt) = e-A.l(T-t)VlT + O(e-A.'(T-t)), Ul(t) = e-A.l tu1o + O(e-A.'t) 

where)..' is some constant such that 

(23)1 

(note that)..' < ReA3); the O(-)-terms in (22) are bounded uniformly, for alll 
successive approximations. Hence, the solution of (21) has the same formj 
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Note that up to the order (q-1) the derivatives of the successive approxima-I 
tions with respect to the data {t, 7, UIO, U20, uS, VlT, V2T' v~) satisfy, uniformly,1 
the estimates obtained by the formal differentiation of (22) (see [18,12]).1 
Therefore, formulas (22) give estimates for the solution of (21) along withl 
the derivatives up to the (q - l)-th order. 

By (22), the following relation holds for the point Mo and its time 7 shiftl 
M T : 

Suppose now that Mo E IIin and MT E IIout. It means that UIO = d > 0,1 
and V2T = d > O. Since H = 0 at Mo, it follows that 

where the dots stand for the terms (vanishing at V20 = 0, vg = 0) of orderl 
higher than two. 

Now, it is seen that given any small U20, v~, uS and sufficiently large 71 
the corresponding values of V20, VI T, vg and u~ are defined uniquely and thel 
following estimates hold: 

(26) 

O( _)..IT) 
V20 = e , 

These formulas define (implicitly) the map Tloe from IIin to IIout if we assumel 
U20 close to U~', uS close to uOin , v~ close to vOout and UlO = V2T = d. 
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Combining formulas (26) and (16), we arrive to the following formula fori 
the Poincare map T = TglooTloc : IIin -+ IIin (we denote v = min(A1' A2 -Ad 
and A = A at A2 > 2A1 and A = A[l + (U2 - ukn)/ukn] at A2 > 2Ad: 

{ 

V2 = aM + Ae-VT + ¢(vO, M) + o(e- VT ), 

V2 = o(e-VT ), VO = o(e-VT ) 

U2 = ukn + 'ljJ(V2' va, M) + o(e- VT ), 

UO = UOin + 'ljJ°(V2, va, M) + o(e- VT ), 

where ¢, 'ljJ, 'ljJ0 are some smooth functions vanishing at zero: 

(27) 

(28)1 

is the equation of the surface wU * equal to Tglo(WI~c n IIout ) at A2 < 2A11 
and to Tglo(WI~~ n IIout ) at A2 > 2A1; the subset of this surface given by thel 
equation 

(29)1 

is wUu = T (Wuu. n IIout ) glo 1oc . 

Since A of- 0 (recall that U2 - ukn is small on IIin), it follows that the firstl 
equation of (27) can be resolved with respect to T, provided 

If we make an additional change of coordinates on IIin: 

(30)1 

so that equations of wu* and wUU become, respectively, 

(31)1 

and 
(32)1 

then, after resolving (27) with respect to T, the Poincare map T can bel 
written in the following form 

(33)1 

where ~ is a smooth function defined at 

A(v2 - aM) > 0 (34)1 

and vanishing at V2 = aM along with the first derivatives, so that 

~ = O(V2 - aM)· (35)1 
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If we assurne ~ = 0 at ",,('ii, - up) < 0, then the right-hand side of (33) 
v-.'ill define a contracting map. Itf:> unique fixed point Jt,f* (u~, v,; ~ 11°* ~ vU*) willi 
be a fixed point of the Poincare map T if and only if v,; satisfies (34), Byl 
(35)1 

v,; - o(v,; all), (36) 

so it is obvious now that the map T has a fixed point if and only if Aa,u < O. 
The fixed point. of the Poincare map corresponds to the periodic orbit L/1 • 

By (36), v.; --+ ° as 11 --+ 0, By (33), it follows that (u;, v,;, "lI', vO,) --+ ° asl 
,u --+ 0, i.e. the periodic orbit merges into the homoclinic loop To at tt = O. 

Take some I{ > () and let us call as a vertical surface a surface of the kindl 
(U2,'U°) = TICU2,'IP) \vith II'!/II < I{ and let a horizontal surface be a surface of 
the kind (V2,VO) - v(u"uO) with Ilv'll <:: K,It is immediately seen from (33)-1 
(35) that for every K > 0, if the range of f! and '"2 is sufficient!)· small, thel 
prcimage of any horizontal surface which intersects the region A(V2 - alt) > 01 
is a horizontal surface again, and the image of any 'vertical surface is a piecel 
of a vertical surface (this piece is bounded by 'W

HH and lies in t.he regionl 
A( V L - att) > 0). l\Ioreover, \vhen restricted to a vertical surface the map TI 
is expanding and it is contracting on horizontal surfaces.1 

Thus, t.he map T has a hyperbolic st.ructure and, in particular, its fixedl 
point. is a saddle (so L/l is a saddle periodic orbit) \vhose st.able manifold is ~~ 

horizontal surface and the unstable manifold if:> a piece of a vertical surface.1 
Due to the hyperbolicitv, all the orbits of the map T must leave IIill after al 
number of iterations (forward or backward), except for the fixed point. Fori 
the flmv itself, t.his means that the only orbits \vhich may stay in a smalll 
neighborhood L' of the loop are the periodic orbit L/! and, possibly, somel 
orbits in W'(O) or "'''(0) (such orbits correspond to finite, at least froml 
one side, orbits of the Poincare map T). 

The orbits fwm j'V"(O) or W"(O) correspond to the orbits ofthe map TI 
f:>tarting on wH = Tqlo(HJ~c n n Ollj

,) or~ respectively, ending on wS = TTJ'~c nl 
n iTl = {vL = 0, vD = O}. If such an orbit is infinite to the right, it must startl 
\vith a point on wtt and tend to the fixed point .i.iJ*. Thus, it must belong to thel 
stable manifold of A[*, i.e. the starting point on W U is defined uniquely as thel 
int.ersection of ,wH 

( .ill*) n 'WI!, (this int.ersection is unique because 'IllS ( .ill*) is ~~ 

horizontal f:>urface and wH if:> vertical, by our assumption of the tranf:>versalitYl 
of w'U and WS). Thif:> gives us a unique heterodinic orbit Gilt which if:> a-limitl 
to 0 and w-limit to L".I 

The rest are hornodinic loops and the heterodinic orbit C2/ t \vhich isl 
a-limit to LlI- and t.v,-limit to O. \Ve start \vith homodinic loopf:>. Ihey cor-I 
respond to the interf:>ection of w'U v-.'ith 'ur'! (the original loop r) and v-.'ith itsl 
prcimages w;' = T-kw s . \Vhen exists; each of these prcimages is a horizon-I 
tal surface \vhich, hence, has a unique intersection point \vith 'w tt and thisl 
int.ersection corresponds to t.he hmnoclinic loop TkW Thus, the problem of 
existence of homodinic loops if:> reduced to the foIImving question: until \vhichl 
k the surfaces wk intersect the region A(V2 aM) > 0"1 At AaII? 0, the sur-I 
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face W S itself does not lie in this region so it has no preimages. Therefore, nol 
homo clinic loops r kM exist with k 2: 1 (heteroclinic orbits cannot exists eitherl 
because there is no periodic orbit at these Il} When Aal1 < 0, the surfacel 
W S lie in A(V2 - al1) > O. Hence, it has a pre image wI. By (33),(35), we havel 
V2 = 0(11) on w1, therefore A( V2 - al1) > 0 on w1, so it has a preimage as well ,I 
and so on: we obtain the infinite sequence of preimages w" for all of whichl 
V2 = 0(11) uniformly. Thus we have proved the existence of homo clinic loopsl 
r kM at Aal1 < O. Since the horizontal surfaces w" stay all in a bounded regionl 
they must accumulate to the stable manifold of the saddle fixed point M* ~ 
Therefore, they must intersect the unstable manifold of M* which gives usl 
the existence of the heteroclinic orbit C2M which is a-limit to LM and w-limitl 
to 0 (this orbit is unique because W S can have no more than one intersectionl 
with W U (M*) since the latter is a piece of a vertical surface). This finishesl 
the proof of theorem 1. 

To prove theorem 2, note that in a small neighborhood of 0 there isl 
no orbit which starts in a small neighborhood of a point in WS\ WSs withl 
{H = O} and comes in a small neighbor hood of any point in W U \ W Uu j 
Indeed, for such an orbit we would have VIr -I- 0 and UlO -I- 0 in formula! 
(24), and this makes it clearly impossible to have H(Mo) = 0 or H(Mr) = 01 
at sufficiently large T (recall that the large flight time T corresponds to thel 
orbits starting close to the stable invariant manifold of 0). 

Therefore, any orbit which stays in a small neighborhood U of the homo-I 
clinic bunch r u r~ u ... u rr;+ u r~ u ... u rrri,- u 0 in the level {H = O}I 
and which starts close to a loop rl must enter a small neighborhood of rl 
(and stay there after that) immediately after one passage near O. Thus, ex-I 
cept for the orbits which stay all the time in a small neighborhood of r, thel 
system may have in U only such orbits which start in Wl~c(O), make onel 
round near one of the loops rl and then enter a small neighborhood of rj 
To stay there, these orbits must either come into Wl~c n IIin after a numberl 
of rounds near r, or they must belong to the stable manifold of the periodicl 
orbit LM which exists at Aal1 < O. So, to prove the theorem we must, fori 
every loop r~ (r = ±), take a small piece of Wl~c ( 0) near this loop, continuel 
it by the orbits of the flow close to the loop back to a small neighborhoodl 
of 0, then trace how it goes to the loop r, make one round near r andl 
examine how the obtained surface intersects (on the cross-section IIin) thel 
surface W S = Wl~c n IIin (this intersection will correspond to a double loopl 
(iry)O) and, at Aal1 < 0, the surfaces w" = T-kw s (these intersections willi 
correspond to the loops (iry)Ok) and the stable manifold wS(M*) of the sad-I 
dIe fixed point of T (this intersection will correspond to the heteroclinic orbitl 
(iry)OOO). 

Let Ill'±. be small cross-sections to the local stable manifold, intersectingl 
the loops rl, respectively. We may assume that UI = d > 0 on Ill'+- andl 
UI = -d < 0 on IIl~. A piece of Wl~c mapped by the flow near a loop r~ onl 
the cross-section IIl~ is a surface transverse to Wl~c. The image of this surfacel 
by the local map on the cross-section IIout to the loop r is found by formulas 
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(24) \vhere one should put. UlO = d > 0 at "/ = + and put U10 = -d < 01 
at ",i = - (recall that V:lT = d > 0 on flout). ThUi:> , thii:> image ii:> a surfacel 
tangent to TV1'~:c n flout in the case A2 < 2.\1 or to n/l~~ n flout. in the casel 
.\2 > 2'\1. In both cases this surface is bounded by TFI~~ n flout .1 

".Then applying t.he global map (16) to t.his surface \ve ,\Till obtain a 'ver-I 
tical surface (in the coordinatei:> given by (30)) adjoining to 10

11
,11, from thel 

i:>ide i'A(v:z - ap) > O. It ii:> i:>een lHJ\V immediately that this i:>urface has ani 
intersection (and this intersection is transverse and unique) with w S and withl 
any horizontal curve o(tl)-close to 1.1)S (at Aay < 0 such arc the prcimagesl 
'wI, of'lllH and their limit. 'wH(Al*); see the proof of theorem 1) if and onlyl 
if JAap < O. Thii:> ii:> in a complete correspondence v-.'ith the statement of 
theorem 2. End of the proof. 

Theorem 2 treats the case of a finite number of loops rL, but it can bel 
easily generalized to t.he case of an infinite set of loops. ~amely, let a numberl 
of saddle periodic orbits L 1 , ... ,Lm exist.s in t.he level {H = O} at p = 01 
(hence~ at all i:>mall p). Supp0i:>e the uni:>table manifold of Li intersecti:> thel 
stable manifold of L j transversely at some number rnij '2: 0 of heteroclinicl 
(homo clinic at i = j) orbits Cij' (8 = 1, ... , rnij at rnij 2: 1). Then (seel 
[7,20]), one can t.ake a sufficient.ly small neighborhood 1/ of L1 U ... ULm UijH 
CijH in t.he le'vel {H = O} such t.hat. the set. 1\T of all orbits staying in 1/ entirelyl 
v-.'ill be a hvperbolic set topologicallY conjugate to a i:>ubshift of finite tvpe,l 
described b), the following transition graph G (oriented): it has rn verticesl 
denoted as L 1 . ... "Lm and. for every i = 1 ..... m, from the vertex Li ond 
edge, denot.ed also as L i , goes to the same 'vertex, plus Tnij edges denot.ed asl 
L~'CijHL} (s - 1, ... , Tnij) go to the vertex L j , for every j - 1 - 1, ... , 'm; 

here k is a sufficiently large integer. In other words, for every infinite orientedl 
pat.h in graph G, in F there exists an orbit whose natural coding is read froml 
the consecutrve edges m dus pat.h, and tIlls correspondence bet\veen the pathsl 
in the graph and the orbiti:> of J.\ ii:> one-to-one and continuous. Everv orbit of 
N has local stable and unstable manifolds the si~e of which is bounded awa,j 
from z;ero. If the co dings of t\vo fonvard semiorbits arc close, then their stablel 
manifolds are dose as well; also, if t.he co dings of t\VO backv·,Ti·lnl semiorbit.sl 
are dose, then t.heir unstable manifolds are dose. 

Let HT'U ( 0) intersect trani:>versely the i:>table manifolds of periodic orbits Li 
at rnOi '2: 0 heteroclinic orbits eOis , S = 1, ... , rnOi at mOi '2: 1, i = 1, ... , m,1 
and let W'(O) intersect transverscl), the unstable manifolds of periodic or-I 
bits Li at. Tn;o > 0 heterodinic orbits CWH , S = 1, ... , Tn;o at m,iO > 1. Then,1 
by A-lemma, rnOi pieces of n:u.(O) will come i:>ufficiently close to the local un-I 
i:>table manifold of Li; hence~ each of them ,vill have one point of tranSVeri:>9 
intersection v-lith the stable manifold of every orbit of J.V close to L i . Anal I 
ogously, 'mw pieces of TFs (0) '.vill come sufficient.ly dose to the local stablel 
manifold of L i , so each of these pieces \vill have one point of transverse inter-I 
i:>ection with the unstable manifold of every orbit of N dOi:>e to L i . 1'hui:>, if \vel 
enlarge the neighborhood f' bv adding to it a i:>mall neighborhood of 0 andl 
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the het.erodinic orbits GOL~ (s ~ 'tnOi) and C;os (s :::; m;o, i = 1, ... , m) in t.hel 
level ~ H - 0 L then in the new V there will exist a set J.\~ ::J J.V of orbiti:> fori 
\vhich the natural coding will give a one-to-one continuous correspondencq 
\vith the set of the oriented paths (infinite, or starting at OU; or ending inl 
(]H) in t.he graph G obtained from G by adding a pair of vert.ices (]H and 011, 
\vith the edges GoisLj: (s :::; mOl) aiming from on t.o Li and Lj:CrJis (s ~ m;o) 
aiming from Li to 0 8

, i-I, .. . , Tn. B-v coni:>truction, the paths i:>tarting withl 
0" and ending at 0' correspond to homoclinic loops, and if the graph G isl 
nontrivial; the set of these loops will be infinite, of coursej 

".Then all the heterodinic orbits GOis and GiDs are in general posit.ion, i.e. 
tIwv do not lie in strong unstable or. respectivelv, i:>trong stable manifoldsl 
T,F tttt and T,F SS of 0, there arc no other orbits lying entirely in l"T except fori 
o and those from the set iT described above Thjs follmvs from the fact vml 

est.ablished \vhile proving theorem 2 that in a neighborhood of 0 there canl 
be no orbit \vhich would lie in ~ H - 0 ~ and pai:>i:> from a small neighborhoodl 
of a point in 1+,8\1+,88 vdth ~ H - O} to a small neighborhood of any pointl 
in H/U\HTtttt 

- hence, every positive or negative semiorbit in l,T which comesl 
close to 0 must enter WI~c(O) or, respectively, WI~c(O), so it belongs to thel 
set .:\: indeed 

So, \ve ai:>i:>ume that [.'0';8 and Ci08 are in general position. l\loreover, \vel 
divide the orbiti:> Ci08 into t\VO groups: thoi:>e hring in 1+,8+ and thoi:>e hring inl 
T,F S 

• Accordingly; we change notations denoting these heterodinics as C'ws+ 
(s ~ 'ff/,iO+) and C;os- (s ::; 'ff/,iO_) '.vhere m;o+ and m;o_ are the nurnber of 
the orbit.s in YFs+ and the number of t.he orbits in IF'~- respect.ively, so thatl 
rniO+ + TniO- - TniO. \Ve also change the graph G by splitting the vertex (}8 

into two: 0 8 + and 0 8
-, so that the edges corresponding to the orbits Cws+ 

end at OS+ and those corresponding to Cws- end at Os . 

Let. ITj~l± be small cross-sections t.o the local st.able manifold, int.ersect.ingj 
the orbits Ci08±: rei:>pectively. \Ve may ai:>i:>ume that 'HI - d > 0 on lli~l+ 
and UI - d < 0 on IIi~l_. A piece of TF1~JLi) mapped by the flow nearl 
an orbit CiOS1 ("( = ±) on the cross-section IIj~;, is a surface transvers~ 

to lVI<~l'(O). Since t.he local unstable manifolds of the backv·.r;-lnl orbit.s in STI 
depend continuously on their coding, local unstable manifolds of all bacbvan~ 
orbits in }v: \vhose coding i:>tart \vith a sufficienUv long sequence of Li'i:> liel 
close to WI~,(Li) (at least in C'-sense). Therefore, if we took the value of kl 
sufficiently large when constructing the set fV!'; \ve will have for every path g inl 
the graph G which ends \vit.h the edge GiOS1 that the unst.able manifold of t.hel 
corresponding backward semiorbit intersect.s III~\: at a surface 'w s t.ransvers 
to 1+' 8 0 and the sizes of these surfacei:> are bounded away from 7;ero, ai:> 
\vell ai:> the anglei:> they form with 1+'1~J 0). 

Let. us now assume that at p - 0 t.here eXISt.s a hornochmc orlnt 1 un-I 
dergoing t.he orbit-flip bifurcation and the genericity assumptions of theoreml 
1 hold. \Ve can now apply the argumenti:> of theorem 2 to the i:>urfaces w~ ,I 
uniformly to all of them. This \vill give that the imagei:> of these surfacei:> bvl 
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the local map on the cross-section IIout to the loop r are some surfaces ,I 
whose size is bounded away from zero, confined all in a small angle aroundl 
Wl~c n IIout in the case ..\2 < 2..\1 or around Wl~~ n IIout in the case ..\2 > 2..\1 j 
In both cases the surfaces are bounded by Wl~~ n IIout. All the surfaces com-I 
ing from III~+ adjoin to Wl~~ n IIout from one side and the surfaces comingl 
from IIt~_ adjoin to Wl~~ n IIout from the other side, exactly by the same rule 
as in theorem 2. Thus, exactly like in theorem 2, we arrive at the followingl 
statement. 

G 

Fig. 5. The graphs G+ and G_ are obtained from G by adding one edge labelledl 
r which ends at 0 8 + and starts at 0 8 - or 0 8 +, respectively. 

Theorem 3. Let U be the union of the neighborhood V of the set N with!, 
a small neighborhood of r in {H = O}. Then the set of all orbits lying i~ 
U entirely is (excluding 0 and r) in one-to-one continuous correspondencel 
with the oriented paths in the graph G at JL = 0, G + at AaJL > 0 and G _ atl 
AaJL < 0 where G + and G _ are obtained from G by adding one more edgel 
r which starts with 0 8 - or 0 8 +, respectively, and ends at 0 8 + in both casesl 
(Fig.5). The homoclinic loops correspond to the paths starting with ou andl 
ending at one of the vertices 08±. 
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3 Super homo clinic orbits 

Let us now consider in more detail the behavior of orbits in a small ncigh-I 
borhood of the homoclinic loop r at the moment of the orbit-flip bifurcationl 
(i.e. at p = 0). The problem reduces t.o the study of the Poincare map TI 
on the (TORR-section nIn. By (33)-(35), the map T iR \vritt.en in t.he follmvingj 
form 

1(112, 11",V2,V") = ~(u2,u",D2,D") = 0(U2) (37) 

,vhere C is a smooth function defined atl 

(38) 

and vanishing at 'Ih = 0 along with the first derivatives. If we define thel 
function ~ at A'/)2 < ° as ~ = 0, then the right-hand Ride of (37) will be '1 
f:>mooth function defined for all small 'U"l~ 11°, V L , 1,.0, \vhof:>e firf:>t derivatives willi 
be all f:>mall. Hence, theorem 4.4 of 1151 if:> applied which givef:> the existencel 
of a smooth attracting invariant manifold (u for the map T. 1\ amcly, thisl 
mi-lIljfold II' lJ(ls the form 

tu" uo) = ~(V2, ri') (39) 

for Rome smooth funct.ion ii (t.he iIlvariance of thiR manifold implies thatl 
1] vanif:>hes at V L - 0 along \vith the first derivativef:>), and every forwarc~ 
semiorbit of T ,vhich never leaves n'iTl must tend uniformly to 'Ii'. Hence,1 
every infinite backward semiorbit of T must lie in 'tv.1 

~ot.e that it. iR obvioUR from (37) t.hat. on 'IL' t.he map T- 1 is defined andl 
strongly contracting everyv . ..'here in the region (34). 'Ve \vill shm'" t.hat t.hel 
orbitf:> of the timv \vhich start on 'w with v·) < 0 do not come to the crof:>f:>-I 
section n out after passing ncar the saddle (), so they do not return to nin. 
This means that the domain of the Poincare map T on 'tv lies in the regionl 
V2 > 0, i.e. the contracting map T- 1 mapR the region A'/)2 > 0 inside t.hel 
region t'L > O. Hence, at A < 0 the bacbvard semiorbit of everv point in 'wi 
leavef:> n iTl vdth the iterations of T I, whereas at A > 0 for every point in 'wi 
,vith positive V2 its backward semiorbit stays in nin. Since T- 1 is contracting;1 
all infinite semiorbits must tend to the fixed point in the origin in nin. Thus,1 
"ve have thM the Uli-lIljfoldl 

(40) 

if:> the nn8table manifold of the origin in nil! at A > O. Since thif:> point is thel 
intersection point of 1 vdth 1)1l! ~ it foIImvs that the orbitf:> of the timv \vhichl 
pass through the points of W U have the homo clinic loop r as the a-limit set. 
This giveR UR the folh}\ving reRult.: 

Lemma 1. Let A > 0 for the homodinic loop r at the moment of th~ 
orbit-flip bifurcation. Then, the unstable 8et of r (i.e. the 8et of all orbit.~ 
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whieh tend to r as t --+ -(X)) is non-empty and it is a STfwoth n-dirnew;ional 
manifold Wa(T) with the boundary W""(O) which is tangent at the point.j 
of r to W" if'\2 < 2,\, and to IP' if'\2 > 2'\,. All the orbits in {H - O}I 
which do not belong to wa(r), IV' or' IV" leave a small neighborhood of rl 
both as t --+ +00 and t --+ 00. 

'10 prove thii:> i:>tatement it remaini:> to i:>ho,v that the orbiti:> of the Hmvl 
"\vhich start on U' with V2 ::; 0 do not come to IIOll!.. Becall that "\ve assume! 
the transversality of the manifolds IV''' (0) and W"" (0) at the points of 
r, ,vhich is equivalent to the exist.ence of an (n + 2)-dimensional repellingl 
i:>mooth invariant manifold HTSee(r) "\vhich contains r and TVJ<~c(O) and ,vhichl 
is trani:>verse to n: u.u. at 0 [17,16] (it is tangent to V U - 0 at 0 ~ in fact). 

The intersection of H/s('r (r) "\vith IIiB is a surfacel 

"\vith some smooth function '-P vanishing at V2 = O. By construction~ wSf::e isl 
invariant vdth respect to T. Since the derivatives of the function TJ in (39) 
are small at. small V2, it follmvs t.hat. /1}'~ee intersects t.he invariant manifold 'Ii'l 
along a smooth lIlvanant. curv~ 

,vhere «(0) = O. The orbits ,vhich start. on 'w* lie in the invariant manifoldl 
HTIHe (r); since the latter is trani:>verse to rVHH, it follmvi:> that vD - 0 (v] , 'V2) 

for every orbit starting with w"', all the time this orbit lies in a neighborhoodl 
of 0 (moreover, W'" is tangent to V

O = 0 at 0, so we also have that Ilvoll «I 
d). Therefore, the evolution of the v2-coordinat.e on this orbit. is given by t.hel 
equat.ion of the form 

(see (7). By (24), the ratio 112/U] remaini:> uniformly bounded for this orbitl 
(since A2 > A] and u] - d ¥- 0 initially). Hence, i:>ince the orbit lies inl 
{H = O}, it follows that V, = 0(V2) and we havel 

It is now obvious that the orbits "\vhich start on w* with nonpositive V2 canl 
never enter the region of positive V2 so they leave the d-ncighborhood of 01 
through the cross-section V2 = -d (the orbit. r which pass through the pointl 
L'2 - 0 on w* tends to 0). 

5Jow, take any point 1\,1 on ID ,vith V:z ::; 0 and let A1* be the point of 
intersection of the surface {V2 = const} through the point iVI with w'. Thisl 
surface is t.ransverse to 'w sc

(,. Since the cone 11u.,Vl,V211::; I<II'IPII is, at. everyl 
IC invariant. ,vith respect. to t.he forward flmv linearized at the point 0, itl 
foIlmvi:> that the tangents to everv i:>urface obtained by the fonvard i:>hift bvl 
the local timv near 0 of a surface transverse to 'ur'lef:: belong all to such conel 
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\vith a sufficiently large I{, provided t.he size d of the neighborhood of 01 
under consideration is small enough. rhus. the forward time t shift A1t of thel 
point Al ,,,ill remain in such a cone ,,,ith the vertex at the time t shift Aft of 
the point fYI' which makes it impossible for fYI, to belong to IIou' (in thatl 
case bot.h Afr and Aft ,vould have II'IPII «d but the difference in L'2 would bel 
of order d ,vhich would cont.radict. t.he invariant cone property). This provesl 
the claim.1 

The invariant manifold WO(r) is n-dimensional and lies in the level {H =1 
a}. Hence, it may have orbits of the transverse (in this level) intersection withl 
YFS(O). 'Ve call such orbits 8u,per·h,omociinic. Let. 5 be a superhmnoclinicl 
orbit of transverse intersection of HT1J·(r) with T,vS(O). Assume that S entersl 
o at t - +x along the leading direction. i.e. it is tangent to the 'H1-axis.1 
1:1oreover. ,,,e assume that S adjoins 0 from the side of positive UI. i.e. 
S C WO(T) n lP+ (as we will sec the case S C WO(T) n lP is trivial). Letl 
U be a small neighborhood of r u SuO. It. is a ball (around 0) with t.wol 
handles around 1 and S. VVe can therefore consider a natural code for thel 
orbits in D describing the sequence of the handles visited bv the orbits. Notel 
that the codings of the orbits in WO(O) are finite to the left and the eodingsl 
of the orbit.s in TYS(O) are finit.e to t.he right, so t.he co dings of hmnoclinicl 
loops are finit.e to bot.h sides; the coding of 0 is empty. 

Let Jl be the set of sequences of symbols Sand 1 constructed by thel 
foIImving rule: for some positive integer k take all infinite or starting withl 
r and infinite to the right sequences obtained by repeated concatenation of 
subsequences rand STA: in an arbitrary order; t.hen change the infinite se-I 
quence composed of T's only t.o the one-symbol sequence {r} and, for everyl 
other sequence \\Thich ends bv the infinite string of 1 's, omit this string; thel 
set thus obtained plus the empty sequence is the set D.I 

Theorem 4. There e:J:i8ts a sufficiently large k and a 8rnall neighb()rh()o(~ 
U of r u SuO 8neh that the 8et of all orbit8 lying entirdy in U i8 in onc-to-I 
one correspondence (provided by natural coding) with [2. 

Proof. The intersection of l'VU(T) with the cross-section [Jin is the invari-I 
ant manifold ·w IJ

. of t.he Poincare map T. The manifold 'w IJ
. is given by (40) 

but we \\Till change coordinates on [Jin such that it vwuld have the equationl 

u = 0, V2 > 0; (41) 

since the funct.ion 'II in (40) vanishes at zero along ,vit.h its derivatives, thisl 
coordinate transformation vwuld not change the formula (37), nor it ,vouldl 
change the formula (16) for the map TI/lo : [Jout. --+ [Jill. 

Let P(O, tip) E u,tt be a point of intersection of the superhomoclinic orbitl 
5 \vith [J'in. By assumption, this orbit belongs to the stable manifold of 
0, hence it. must eventually cmne t.o H'J·~c(O). ~'vIoreover, this orbit lies inl 
HTIi+. Hence, it must intersect the cross-section {111 - d} at some pointl 
Q(nq,O) E H~:".(O). Let lIm be a piece of the cross-section {Ul - d} aroundl 
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Q in the level {H = O}. The flow near S defines a map Ts from a smalll 
neighborhood of P on IIin into iIin , so that Q = TsP. 

The map Ts corresponds to a finite flight time, so its derivatives arel 
bounded and it is well approximated by its linearization at the point P, likel 
the map Tgzo near r. We can write Ts in the following form 

{ v=a(v-vP)+bu+ ... 
U - uQ = c( v - v P ) + du + ... 

where the dots stand for non-linear (quadratic and higher order) terms; (u, v)1 
denote coordinates on iIin. Note that by assumption of the transversality ofl 
WU(r) to WS(O) the image of a small piece of surface u = 0 around thel 
point P by the map Ts is a surface transverse to v = 0 in iIin. It means thatl 
a i- 0 in (42). 

The map from iIin to IIout is given by formulas (24) where one shouldl 
put UIO = d > 0 and V2T = d > O. Note that the flight time T must be takenl 
sufficiently large because iIin is a small neighborhood of the point Q whichl 
lies in Wl~c (0) and whose forward orbit stays, therefore, infinitely long timel 
in the d-neighborhood of O. Now, combining formulas (42),(24) and (16), onel 
can see that the map TgzoTzocTs by the flow from a small neighborhood of PI 
in IIin close to the superhomoclinic orbit S and then close to r back to IIit~ 
is given by the formula 

( - -0 S 0 OS) C( 0 - -0) (- ) U2, U ,V2 - v2 , V - V = <, U2, U ,V2, V = 0 V2 ( 43)1 

where ~ is a smooth function defined at sufficiently small U and sufficientlyl 
small positive2 ih and vanishing at V2 = 0 along with the first derivatives, andl 
U = vS (v) is the preimage of Wl~c n iIin on IIin; by construction, 0 = vS (v P ) j 

Note that we cannot control the range of V2 for which the function ~ 
is defined (we only know that it is defined at sufficiently small positive v21 
which corresponds to sufficiently large time T ofthe flight from iIin to IIout)j 
In particular, the value of V2P can be out of the domain of { However, itl 
is easy to see from (43) and (37) that for a sufficiently large Ii the mapl 
T = Tk-1TgzoTzocTs from a small neighborhood of P is still written in thel 
form (43) where the function ~ is defined for V2 E (0,0] with some 0 > V2I1 
and the range of the map (u, v) c-+ (u, v) defined by formula (43) now liesl 
inside its domain (the domain of ~). 

If we define the functions ~ and ~ in formulas (43) and (37), respectively,1 
as zero at V2 = 0, we obtain a rectangular domain in IIin where a pairl 
of maps T and T are defined, for both of which the corresponding cross-I 
maps (u, v) c-+ (u, v) take this domain into itself and they are both stronglyl 

2 Note that if 5 E W S -, we would have UlO = -d < 0 in (24) which would givel 
V2 < 0 in (43). Thus, the orbits starting close to P would return to that part ofl 
[Jin where further iterations of TorT are not defined. Hence, in that case, nol 
orbits other than 5, rand 0 can lie in U entirely. 
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contracting. Thus, the lemma [7] on a saddle fixed point of a sequence of 
f:>addle operatorf:> in the product of Banach f:>pacef:> if:> applied here \vhich givef:>1 
that for every sequence {ud 7=C:,:x; of symbols 0 and 1 there exists a uniquel 

sequence of points lIIi such that .2Hi+l = TJ.iJi if Ui = 0 and Ali+1 = fAli if 
(Tj 1. Sloreover, the pOInts .Alj depend contmuously on the correspondmgj 
f:>equences {(Ji} t-..:...x-?C, and each of these points has a stable manifold which is al 
horizontal f:>urface (i.e. a f:>urface of the kind v - v( u) \vhere the derivative of , 1 

is sufficiently small). Every such surface has a unique point of the transversg 
intersection with the vertical surface W U 

- Tg[o(T'FI~c nJIout ). Thus, for everyl 
infinit.e t.o the right sequence {(7 i} t-..:...~' there exists a unique sequence of pOintsl 
iII; such that .Alo E w'U and ill i+ 1 - 1 iII; if (J-j - 0 and AIHI - '1 Ali if 
(Ji = 1. 

ffTnhccec-(~) h", C-t a~iccn-ce~d'-sc-, ecc, q"lCC, ecc.ncc,cc:ecc,s~j'i\'-' iTiTf-c,cc:occr"'r"es""pc-oCCnCCd"'tCCo't"hccec-. tLrCCa~j-Ce"c tL,cc)I"'i"el-lcc. -Co"f Cth~e -coccr~i g"'iCCn-Ca"ll 

maps T and T if and only if the coordinate V2 is not [';ero for every point Ali inl 
the sequence. If V2 = 0 at some point Ali+1 , it means that the corresponding 
values of f or ~ are zero in, respectively, (43) or (37). Hence, Ai;+l is t.hel 
oIlgm m 11 111

, I.e. Jl ,+1 1 n 11 111
, and eIther Jl t ±l 1 Al; - m tIlls easel 

AI; E (T.IIloTlo(:T,S') I (TV1~Cnftill), or lIIi+1 = TAli - in this case V:z = 0 at thel 
point Ali which means that Ali = r n JIin as well. Thus, \ve have that eitherl 
{rTi} consists of all O's, so all the points of the corresponding sequence {kI;} 
are the same fixed point r n JIIH of T, or all points Ali have '/)2 -::j:. 0, or therel 
is a point AI; E (TlJloTlo(:T.'j)-l(n'j·~c nftin) for \vhich all the previous pOintsl 
have nonzero '{,'2 and -f Ali - lIIi+ I - r n JIlll \vhich meanf:> that (Ji - 1 andl 
all the further s)'mbols arc O's. Vice versa, if the sequence {rTi} ends b), ani 
infinite sequence of O's, some point Ali must belong to the stable manifold of 
the fixed point rnJIin (v . ..'hidl is defined as a unique horizont.al surface passingj 
through this point and invariant with respect to T- 1 ), i.e. Ali E {v = O}. 

Hence, the sequences {Ai;} correspond t.o the traject.ories of t.he originall 
maps T and T if and only if the corresponding f:>equence ~ (Ji} doef:> not endl 
v-.'ith an infinite f:>equence of O's. If the sequence {(Ji ~ ends with an infinitel 
sequence of D's, we will cut the sequence {lUi} at the last point to which rTi = 1 
corresponds. The nev·..' sequence Ali \vill be a trajectory of t.he original maps 
T and T \vhich ends on the surface (T loTlorTS) l(TFs n JIiH). All this is 
now in a complete correspondence v-.'ith the statement of the theorem: recalll 
that one iteration of the map 1 corresponds to one round of an orbit of thel 
flow ncar the loop r and one iteration of the map T s corresponds to onel 
round near the superhOInodinic orbit S. End of the proof. 
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