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The universal rotation curve of spiral galaxies
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ABSTRACT

The observed strong dark-to-luminous matter coupling is described by a bias relation between
visible and dark matter sources. We discuss the bias which emerges in the case where the
topological structure of the Universe at very large distances does not properly match that of the
Friedman space. With the use of such ‘topological’ bias, we construct the universal rotation
curve (URC) for spirals which happens to be in striking agreement with the empirically known
URC. We also show that the topological bias explains the origin of the Tully—Fisher relation
(L ~ V*) and predicts peculiar oscillations in the URC with a characteristic length ~ /L.

Key words: galaxies: kinematics and dynamics — galaxies: spiral — dark matter.

1 INTRODUCTION

It has long been known (Persic, Salucci & Stel 1996, hereafter
PSS) that the shape of the rotation curves of spirals is rigidly deter-
mined by a single global parameter, e.g. luminosity or the number of
baryons in a galaxy. This feature was stressed in PSS by an empirical
construction of a universal rotation curve (URC) which describes
quite well the rotation velocity at any radius and for any galaxy as
a function of, say, the galaxy luminosity only. It follows that the
distribution of the dark matter (DM) in galaxies carries a univer-
sal character as well, and is a function of the luminous mass. Note
that the standard cold DM (CDM) models fail to explain this strong
dark-to-luminous matter coupling, for an obvious reason: in any
model where DM is built from hypothetical non-baryonic particles
(e.g. CDM, worm DM, or self-interacting DM) the number of the
DM particles in the halo of a galaxy is, essentially, a free parameter,
and relating it to the number of baryons in the galaxy requires some
very strong non-linearity. Moreover, it is well established that the
DM density in galaxies shows an inner core, i.e. a central constant
density region (e.g. see Gentile et al. 2004 and references therein;
Weldrake, de Blok & Walter 2003; de Blok & Bosma 2002; for spi-
rals and Gerhard et al. 2001; Borriello, Salucci & Danese 2003 for
ellipticals), which is in clear conflict with the predictions of ACDM
models yielding Navarro—Frenk—White (NFW) type profiles with a
cusp (e.g. ppm ~ 1/r) in the central region of a galaxy (Navarro,
Frenk & White 1996).

The strong coupling between DM haloes and baryons (see also
Donato, Gentile & Salucci 2004) definitely requires some new
physics. The coupling can be described by a rigid relation between
the sources of dark, ppy, and visible, p1 , matter; the so-called bias
relation (Kirillov 2006). In the linear case the most general form of
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the bias relation is
oom(x) = /b(x,x')pL (x') av. 1)

The homogeneity assumption b(x, x') = b(x — x”) allows one to fix
empirically the bias operator b.y,. Indeed, in this case the Fourier
transform of the bias relation (1) gives

pom (1, k) =b(t, k) pL(t, k) @

where we added a dependence on time to account for the cosmic
evolution. The empirical bias function beymp = ppm(t, k)/pL(Z, k),
in virtue merely of its definition, will perfectly describe DM effects
at very large scales (i.e. in the region of linear perturbations).

The present Universe is not quite homogeneous though, e.g. it is
not uniform at galaxy scales. Still, we would expect relation (2) to
hold in the geometrical optics limit (i.e. for rather short wavelengths
as compared to the Hubble scale, or to a cluster scale when a single
galaxy is considered). Parameters of the bias function may then vary
for different spatial regions, i.e. beyp may include an additional slow
dependence on the location in space: b = beyp(?, k, x). In order to
fit observations, any theoretical source of DM should reproduce
properties of the bias function by, in detail.

In linear gravity, the bias relation (2) can be interpreted as a
modification of the Newton law:

1 2 (™ sin (kr) — kr cos(kr)
i / (1 +b (k)] = dk. ©)
0

The asymptotically flat rotation curves in galaxies require that the
correction to the Newton’s potential should be logarithmic, i.e. the

gravitational acceleration should switch from r~2 to r~'. This, ac-
cording to (3), implies b(k) ~ k!, or
b(x —x') ~|x —x'|7? 4)

at galaxy scales. In fact, observations suggest the same behaviour
of b(x — x’) for much larger scales (Kirillov 2006). Indeed, the
distribution of the luminous mass shows characteristically fractal
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behaviour: the mass M (r) within the ball of radius r grows, es-
sentially, as ~? with D ~ 2 on distances up to at least 200 Mpc
(Pietronero 1987; Ruffini, Song & Taraglio 1988; Labini, Montuori
& Pietronero 1998). The bias function (4) leads then to M py (') ~
r3ie.toa homogeneous distribution of the DM and, hence, of the
total mass. Thus, bias (4) is just one that reconciles the two seem-
ingly contradictory observational facts: the fractal distribution of
baryons with the dimension D ~~ 2 and the large-scale homogeneity
of the metric.

A theoretical scheme capable of explaining the origin of such
bias was proposed in (Kirillov 1999; Kirillov & Turaev 2002). It
was shown there that processes involving topology changes during
the quantum stage of the evolution of the Universe unavoidably (and,
in fact, model-independently) lead to a scale-dependent renormal-
ization of the constant of gravity, G, and this effect can be imitated
by the emergence of DM, the distribution of which is linearly re-
lated to the distribution of actual matter. Importantly, assuming the
thermal equilibrium during the quantum stage predicts in a unique
way a very specific form of the bias function (Kirillov & Turaev
2002; Kirillov 2003)
_r

K2+ k2
where i ~ T p; a(tp;)/a(t) has the meaning of the primordial temper-
ature at which the topology has been tempered and « ~ ma(tp;)/a(t)
is the mass of primordial scalar particles if they exist. This means
that at scales k < « the bias becomes constant: b(k) = p/k and the
standard Newton’s law is restored. However, at galaxy scales there
should be k ~ > k, so in what follows we take ¥ = 0 in (5).!
Thus in the coordinate representation the bias takes the form

bk) = for k< pu. (®)]

1 " in (kr) dk
bt = 3 /O [b(k)kﬁsmk(r’)?
— M _ "
=520 [1 —cos(ur)]. (6)

Bias (5) is of the form of (4), so it predicts the logarithmic correction
to the Newton’s potential for a point source: §¢ ~ (1/Rg) Inr at
r > Ry, where Ry = 7t/(21) (see for details Kirillov & Turaev 2002;
Kirillov 2006). Thus, the parameter R, plays the role of the scale at
which DM starts to show up, so in galaxies it has to be estimated as
a few kpc. As bias (5) has a thermodynamical origin, there have to
be certain fluctuations in the value of R (this effect is analyzed in
the next section).

In the present Letter we demonstrate that bias (5), (6) gives
very good agreement with the empirical URC constructed in PSS
and, therefore, it seems to be reasonable to believe that the non-
trivial topological structure of the Universe indeed gives a correct
explanation of the DM phenomenon.

2 THE TULLY-FISHER RELATION

The parameter w in (6) represents the temperature at which the topol-
ogy has been tempered (Kirillov & Turaev 2002; Kirillov 2003). We
expect that in the very early Universe it had the order of the Planck
temperature T'p; (recall that at T > Tp quantum gravity effects
are thought to dominate). When, on the further stages of the Uni-
verse evolution, topology changes were suppressed, this parameter
evolved as w ~ Tp a(tp)/a(t), where a is the scale factor. Note,

!For example, inflationary scenarios suggest m ~ 10> mp; and, therefore,
w/k ~ 10°. However, so far scalar particles have not been observed which
makes us think that scalar fields are no more than phenomenological objects.

however, that the present value of x has the sense of the primordial
temperature. As it is extremely small: t ~ 1072 T, where T ,, is the
temperature of CMB radiation (T, >~ 2.7 K), we have to admit the
existence of a specific phase in the past when the non-trivial topolog-
ical structure might decay (Kirillov & Turaev 2002; Kirillov 2003),
causing a certain re-heating of matter. During the decay phase, pa
was a decreasing function of time, i.e. the scale Rg = 7t/(2u), that
corresponds to the cross-over from the standard Newton’s law to the
logarithmic behaviour of the potential of a point mass, grew faster
than the scale factor a(r).

Note that the homogeneity of the Universe requires the total mass
distribution (luminous plus dark components) to have a constant
density in space. With the bias of form (5), (6), this corresponds to
a fractal distribution of baryons (Kirillov & Turaev 2002; Kirillov
2003), i.e. the number of baryons within the sphere of a radius R >
R behaves as

Ny (R) ~ vR? @)

with D ~ 2, while for R < R the fractal distribution is unstable
(for the Newton’s law restores and baryons dominate over the DM).
The increase of R(/a allows one to assume that in the very early
Universe there was a moment #, when Ny, [Ro(7,)] < 1, i.e. baryons
had the fractal distribution (7) at all scales. After the topology de-
cay phase, as the scale Ry(¢) ‘jumps’ towards a new, higher value,
the fractal distribution is preserved at scales larger than Ry, but it
becomes unstable on smaller scales. The instability develops and
baryons under a certain scale of order R start to redistribute, gov-
erned by Newtonian dynamics. This means that we can relate R,
to the scale of galaxy formation. Then, according to (7), we should
expect the number of baryons in a galaxy to be

Ny >~ V'RY, (8)

with the values of Ry and v’ corresponding to the moment when a
galaxy started to form. Note, however, that during the formation of
a galaxy the value of Ry switches off from the Hubble expansion
(Kirillov 2006), i.e. law (8) remains valid for the present-time values
of Ny and Ry.

It is easy to see that this relation leads directly to the Tully—Fisher
law L ~ V* (Tully & Fisher 1977), where L is the luminosity and V
is the rotation velocity of a galaxy. Indeed, recall that R fluctuates
in space: small spatial fluctuations of the primordial temperature
(Ap/w ~ AT, /T ) represent seeds for the present-time scatter in
the local value of u = /(2R ) in different galaxies. Accordingly,
the masses of galaxies M ~ my, N, (where m, is the baryon mass)
fluctuate as

M ~ mbv’Ré). ©)
This fixes the choice of
—1/D
[ M,
H=He 2 (mw’) a0

in the bias (5), (6) for any given galaxy. Sufficiently far from the
centre, the galaxy can be considered as a point-like object, so (3),
(5) yield the following law for the gravitational acceleration at a
sufficient distance from the edge of the optical disc:

G 2
g= - g {1 + ;[[,ugr - sin(p.gr)]} . (11)

As V2, /r = g(r), the Tully-Fisher relation for the asymptotic rota-
tion velocity V o, follows now from (11) and (10):

B
2 2 AL
Vi = ;EGMgMg = Ly~ M~ <7> ) (12)
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with 8 = 2D /(D — 1) and a®> = (2/7)G(m,v)"/P. Thus, in our
interpretation of the DM, the Tully—Fisher law reduces to relation
(10) which, in turn, can be read as an indication of the fractality of
the primordial distribution of baryons with the dimension D =~ 2
(see equation 7).

3 ROTATION CURVE OF SPIRALS

Let us now compute the rotation curve (RC) of a galaxy modelled
by an infinitely thin disc with surface mass density distribution
pL =0 e/ § (2). From (1), (6), we find for the DM halo density
(we use the notations x =7/Rp and . = uRp)

Ao

o (%) = m

e
/—2(1 —cos (x|x — y|) d’y (13)
lx =yl
where y lies on the plane z = 0, while x is the three-dimensional
vector. For the sake of convenience, we present the Fourier transform

2 M
0 — A/ k?+ k2 14
/k2 +k? [(kRD)Z + 1] 3/2 (H’ + _/) ( )

where 6 is the step function: 8 (1) =0foru < 0,60 (1) =1foru >
0,and M =27 oR%) is the (non-dark) mass of the galaxy.

First of all we note that this distribution is quite consistent with
the observed cored distribution (Gentile et al. 2004). Indeed, in the
central region of the galaxy

pu (k, k) =

M,
m)* R},
while for x > 1 we find

2pu (0) [1 — cos(Ax)]
In(1 + A2) x2 )

If we neglect the oscillating term and compare this with the pseudo-
isothermal halo p = poa?/(a® + x2) we find for the core radius

»_ RE 2

o (0) = Aln(1 4+ A2, (15)

pu (x) ~ (16)

=—<=-__- 17
TR T (A an
According to PSS, the core radius can be estimated as
a=48(L/L)Y? (18)

with log L, = 10.4, which makes A a certain function of the lumi-
nosity.

Consider now circular velocities predicted by the above mass
distributions. For the disc contribution to the equilibrium circular
velocity, we get (PSS)

Vi
V2

= fp(x,A)

R () o

and for the dark halo contribution we find from (14) the expression

V2 X /A 22— k2
— =fulx,A)= - —————J; (kx) dk, (20)
vz " A Jo [ (k2+1)]3 !

where J ,,, I ,, K, are the Bessel and the modified Bessel functions
and fo) = (GM/R p)(2/m)A. Thus for the rotation curve we find
the expression

V3, ) = V2o (6, 2) + fu (x, )] 1)

As we see, the shape of the rotation curve indeed depends on one
parameter; A. Via relation (9), or equivalently (12), X is expressed
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as a function of the total number of baryons N, in the galaxy; there
is, however, an uncertainty in A due to the variation of the ratio
M /L for different galaxies. At the moment of the galaxy formation
Rp ~ Ry, which corresponds to the same initial value, > ~ 1, in all
galaxies. At subsequent stages of the evolution, A becomes different
in different objects. Indeed, in smaller galaxies supernovae are more
efficient in removing the gas from the central (star-forming) region
of a galaxy than in bigger galaxies (e.g. see Shankar et al. 2006, and
references therein) and this means that in smaller objects the disc
has a smaller baryonic density (a lower surface brightness) and the
ratio A ~ Rp /Ry > 1.
To compare expression (21) with that from PSS we rewrite it as

V2, _ oM fule M)
Vint o2+ fu@B2,2)

where x = 3.2 corresponds to the optical radius of a galaxy. The
plot of this curve for different values of A is presented in Fig. 1.

While the similarity of our RC (22) with the empirical URC of
PSS is quite good, we note that the topological bias (6) predicts
a new feature in RCs—specific oscillations in the DM density with
the characteristic wavelength £ = 27t/1 (or in dimensional units
€ ~ MY/"). Indeed at a sufficient distance from the edge of the
optical disc (i.e. as x 3> 3.2) a galaxy can be considered as a point-
like object. Then from (11) for the rotation velocity we find the
expression

V2 (x) T sin (Ax)
V2 T 2ax Ax

(22)

(23)

which shows the presence of a specific oscillations with the decay-
ing amplitude 1/(Xx). Such oscillations are, in turn, rather difficult
(though possible) to extract from observations. Indeed in the case of
HSB (high surface brightness) galaxies when A < 1 (i.e. for rather
long periods € = 271) the expression (23) gives a very good quanti-
tative approximation to the exact formula (22) starting already from
X = Xopy = 3.2. However, the reliable RC data available do not
usually extend to more than to x = (2 — 3)x . In this range os-
cillations are not established yet and the beginning of oscillations
is seen (e.g. see Fig. 1) as RC slopes that are not flat. The slopes
observed are known to take values between 0.2 and —0.2 (e.g. see
PSS). In the case of low surface brightness (LSB) galaxies, A >
1 (£ « 2m), the amplitude of oscillations is somewhat suppressed,
~1/A, and the small amount of the stellar mass in the range x o5 <
X < 3xop considerably smooths the oscillations which results in a
certain deviation of (23) from the exact expression (22). Moreover, in
deriving (22) we do not take into account the presence of gas which
due to supernovae does not trace the brightness, i.e. it deviates the
exponential profile. Essentially this is true for LSB galaxies. Thus,
to observe such oscillations we have either to measure velocities for
sufficiently large distances ~10x . (e.g. for high surface brightness
galaxies), or to improve the accuracy of available observational data
in LSB galaxies.

4 DISCUSSION AND CONCLUSIONS

As it can be seen from Fig. 1, the topological bias (5) predicted in
(Kirillov & Turaev 2002; Kirillov 2003) shows quite a good agree-
ment with observations. Indeed, it repeats all features of the empir-
ical URC of PSS: the amount of DM progressively increases with
decreasing luminosity (cf. PSS), DM shows the cored distribution
(cf. Gentile et al. 2004) with the strong correlation (17) between
the core radius and the disc size (cf. Donato et al. 2004), and the
Tully—Fisher relation (Tully & Fisher 1977) is explicitly present
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Figure 1. The rotation curves V2 (x)/ Vgp‘ vs x = r/R p for different values of A. The green and red dashed lines give the visible and DM contributions,
respectively, while the black line gives the sum. We see that with the decrease of the luminosity (increase of A) DM fraction increases in agreement with PSS.

(see 12). There is no doubt that the tuning of a single free parameter
M /L allows to fit any RC. At least, this is claimed in e.g. Milgrom
& Sanders (2005, and references therein) for the RCs obtained via
the Milgrom algorithm of modified Newtonian dynamics (MOND
Milgrom 1983), and our RCs are phenomenologically quite close
to those, although the physics in our approach is completely differ-
ent. In this respect we can claim that the topological bias gives a
rigorous basis for applying the MOND-type algorithm in galaxies
(which, however, allows the Tully—Fisher relation to have 8 # 4).
Therefore, there is enough evidence that bias (1)—(6) gives an
adequate description of galaxies.

We repeat that our approach produces as good a fit to the ob-
served RCs as the Milgrom algorithm, known to be quite successful
empirically (Milgrom & Sanders 2005, see however Gentile et al.
2004; Donato et al. 2004), can. However, contrary to MOND, our
theory remains linear in weak fields, and the superposition of forces
holds. In fact, our approach does not presume any modification of
the theory and basic equations: there is actually no modification of
gravity, while the bias appears merely as a result of a disagreement
between the actual topology of the physical space and that of the
flat space (e.g. see section 2 in Kirillov 2006). Thus, there is every
reason to believe that the DM phenomenon indeed has a topological
origin.

Once we accept the bias (1)—(6), the Tully—Fisher relation

L~VE (24

with 8 = 2D /(D — 1) =~ 4 serves as a strong indication of the
fractal behaviour in the primordial distribution of baryons with
the dimension D =~ 2. Such fractal distribution changes essen-
tially the estimate for the baryon number density in the Universe
(e.g. see Kirillov 2006). The currently accepted post-WMAP cos-
mology has (roughly): Qo = 1, 24 ~ 0.7, Qpm ~ 0.25, and
Qp ~ 0.05, which implies Qpy/Q2p ~ 5. We stress that such es-
timates are model-dependent, for they are strongly based on the
standard model (e.g. the content, evolution, the homogeneity of the
baryon distribution, the power law of initial spectrum of perturba-
tions, etc.).2 Moreover, the direct count of the number of baryons
gives 2, ~ 0.003 for the whole nearby Universe out to the radius
~300h3, Mpc (e.g. see Persic & Salucci 1992), which means that
in the standard cosmological models most of baryons are hidden
somewhere.

When the topological bias is accepted such estimates require es-
sential revision. Indeed, according to (5), the topological bias mod-
ifies the Newton’s law in the range of scales u > k > « where the
equilibrium distribution of baryons exhibits fractal behaviour. On

ZFor linear perturbations there are no doubts that if we take the observed
spectrum of AT /T and fix an arbitrary model a(z), we find in a unique way
the initial primordial spectrum of Ap/p. To fix the model we have to know
both the measured AT /T and the initial values of A p/p which are unknown
a priori.
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scales k < k the standard Newton’s law is restored (and baryons
cross over to the homogeneity) but dynamically every particle be-
comes heavier in 1 + ©/« times, which gives for the effective DM
fraction Qpn/Ry, ~ 1 4+ w/k. The scale Ry = 7t/(2u) is directly
measured in galaxies by RCs and is estimated as a few kpc. How-
ever, the mean value (R) for the homogeneous Universe should be
10? times bigger (Kirillov 2006). The maximal scale 1/« is the scale
where the primordial fractal distribution of baryons crosses over to
the homogeneity. This scale is not so easy to measure without a
detailed investigation. Indeed, the large-scale structure, e.g. the ex-
istence of huge (~100-200 Mpc) voids with no galaxies inside and
thin (~1-5 Mpc) walls filled with galaxies, fits quite well into the
fractal picture and suggests only the lower boundary 1/k > 100-
200 Mpc. This gives a DM fraction of Qpy/2p > 10>-10%, which is
consistent with the observed value €2, ~ 0.003. However, the maxi-
mal possible value 1/k ~ Ry(Ry is the Hubble radius), which gives
Qpm/ 2 ~ 10° cannot be excluded. To avoid any misunderstanding,
we stress that the topological nature of the bias causes the fractal
distribution to reach equilibrium and be consistent with the homo-
geneity of the metric and the observed CMB fluctuations AT /T
(e.g. see Kirillov 2006). The topological nature means that the same
bias appears in all interactions. If the bias did not modify the elec-
tromagnetic field, then the fractal distribution of baryons would
be in severe conflict with observations and surely would have to
be rejected as it does take place in the standard models (e.g. the
fractal distribution produces too strong fluctuations AT /T ~
Apyv/pv ~ /x). The topological nature of the bias however cre-
ates the fact that the Coulomb force and all Green functions are also
modified at galaxy scales (Kirillov & Turaev 2002; Kirillov 2006)
which reduces AT/T to the observed value A1/ Protal ~ K/ 10 ~
1073 [e.g. for sufficiently remote objects r > (Ry), the apparent lu-
minosity has to behave as £ ~ L /r”~! instead of 1/r2, which gives
the number of objects brighter than ¢ the somewhat higher (with
respect to D = 3) value N(£) ~ vrP(£) ~ 1/£P/P=V], Thus the
topological bias and the observational definition of 1/« requires the
careful and thorough revision of the standard model and all basic
formulas.
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In conclusion, we point out that bias (6) predicts the existence of
specific oscillations in the distribution of DM with the characteristic
wavelength ~M gl/ D ~ /L. When the observational data allow, this
can be used to verify the theory and, thus, to make a more definite
conclusion on the nature of DM.
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