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1 Introduction. Statement of results.

A long standing open problem in the theory of dynamical systems is to
describe which kind of dynamical phenomena one can expect in close to
identity maps. It started with a celebrated paper [1] where it was shown that
any n-dimensional dynamics can be realized via Cn+1-small perturbations
of the identity map of an n-dimensional torus. The paper seized a lot of
attention by physicists, because it proposed a new view on the onset of
hydrodynamical turbulence; at the same time it caused a lot of criticism. One
of the reasons was that the Cn+1-small perturbations constructed in [1] were
not small in Cn+2, which is quite unphysical. The controversy was resolved
in [2] where it was shown that given any r, any Cr-diffeomorphism of a
closed n-dimensional ball can be obtained as a restriction to an n-dimensional
invariant manifold of some iteration of a Cr-close to identity map of the closed
unit (n + 1)-dimensional ball Bn+1. Thus, the restriction on smoothness
of perturbations was removed by sacrificing one dimension of phase space;
anyway, other scenarios of the transitions to turbulence had already been
known.

From the purely mathematical point of view, the question still remained
unsolved: can an arbitrary n-dimensional dynamics be obtained by iterations
of a Cr-close to identity map ofBn, i.e. in the same dimension of phase space?
The difficulty is that the straightforward construction proposed in [1] does
not work for high r in principle. Indeed, given an orientation-preserving
diffeomorphism F : Bn → Rn, one can imbed it into a continuous family Ft

of the diffeomorphisms such that F1 = F and F0 = id. Then, given any N ,
the map F can be represented as a superposition of N maps

F = FN ◦ . . . ◦ F1, where Fs = F s
N
◦ F−1

s−1

N

, (1)

that are O(1/N)-close to identity. One can choose then N small balls Ds ∈
Bn of radius ρ ∼ N−1/(n−1) and define a map φ : Bn → Bn such that
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Figure 1: An illustration to Ruelle-Takens construction.

φ(x)|x∈Ds
≡ xs+1 +ρFs(

x−xs

ρ
) where xs is the center of Ds (Fig.1). Obviously,

φN |D0
is conjugate to F , i.e. the dynamics of φN |D0

coincides with the
dynamics of F . However, the derivatives of φ of order n + 1 behave as
N−1ρ−n, i.e. they do not, in general, tend to zero as N → +∞. Thus, an
arbitrary n-dimensional dynamics can be realized by iterations of Cn-close
to identity maps of Bn, but the construction gives no clue of whether the
same can be said about the Cn+1-close to identity maps.

One could try to position the regions Ds differently, or make their radii
vary, or change their shape. This, however, hardly can lead to an essential
increase in the maximal order of the derivatives of φ which tend to zero as
N → +∞. The reason lies in a well-known fact from the averaging theory
that the O(δ)-close to identity map

x̄ = x+ δf(x)

can be approximated by a time shift of a certain autonomous flow with the
accuracy O(δm) for an arbitrarily large m (if f ∈ C∞). That means that
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the number of iterations necessary in order to obtain a dynamics which is far
from that of an autonomous flow, has to grow faster than O(δ−m), for every
m. As we see, one has to control a very large number of iterations of close to
identity maps, hence decompositions much longer than that is given by (1)
have to be considered.

In this paper we propose such a decomposition (Theorem 3), using which
we show that an arbitrary Cr-generic orientation-preserving n-dimensional
dynamics can be obtained by iterations of Cr-close to identity maps of Bn,
n ≥ 2.

To make the formulations precise, we will borrow some definitions from
[3]. Let g be a Cr-diffeomorphism of a certain closed n-dimensional ball D.
Take any Cr-diffeomorphism ψ of Rn such that ψ(Bn) ⊆ D, and a positive
integer m. The map gm,ψ = ψ−1 ◦ gm ◦ ψ|Bn is a Cr-diffeomorphism that
maps Bn into Rn. We will call the maps gm,ψ obtained by this procedure
renormalized iterations of g.

Theorem 1. In space of Cr-smooth orientation-preserving diffeomorphisms
of Bn into Rn (n ≥ 2) there is a residual set Sr such that for every map
F ∈ Sr, for every δ > 0 and for every n-dimensional ball D there exists a
map g : Rn → Rn, equal to identity outside D, such that ||g− id||Cr < δ and
F is a renormalized iteration of g.

This is the main result of the paper. The central part is to prove that
for any δ > 0 every orientation-preserving Cr-diffeomorphism F : Bn → Rn

can be arbitrarily well approximated by renormalized iterations of δ-close to
identity maps, equal to identity outside a given ball D (it is enough to prove
this for one particular ball D, then for other balls the claim will remain true
because there always exists an affine conjugacy that takes one ball to the
other). In other words, we show that the set of all renormalized iterations of
the maps g : D → D such that ||g− id||Cr < δ is dense in space of Cr-smooth
orientation-preserving diffeomorphisms of Bn into Rn, for every δ > 0. This
set is also open (just by definition). Hence, the intersection Sr of these sets
over all δ > 0 is residual (and independent of the choice of D), which gives
us the theorem.

We construct the approximations of the given map F by renormalized
approximations of close to identity maps in Sections 2 and 3. As a first step,
we represent F as a composition of a pair of certain special maps and some
volume-preserving diffeomorphisms (Lemma 1). Each of the special maps
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can be realized as a flow map through a kind of saddle-node bifurcation (see
Fig.2), reminiscent of the so-called “Iljashenko lips” (see [4]). For volume-
preserving diffeomorphisms one may adjust the results of [3] for symplectic
diffeomorphisms and prove (Lemma 2) the existence of an arbitrarily good,
in the Cr-norm on any compact, polynomial approximation by a composition
of the volume-preserving so-called Hénon-like maps. It is known that Hénon
maps often appear as rescaled first-return maps near a homoclinic tangency
(cf. [5, 6]). In this paper we find a kind of homoclinic tangency which does
incorporate all the Hénon-like maps that appear in our volume-preserving
polynomial approximations. Thus, we show that the map F can be approxi-
mated arbitrarily well by a composition of maps related to certain homoclinic
bifurcations. The last step is to build a close to identity map which displays
these bifurcations simultaneously. This is achieved by an arbitrarily small
perturbation of the time-δ map of a certain C∞ flow (the time δ map of a
flow is, obviously, O(δ)-close to identity).

Note that the approximation of any volume-preserving diffeomorphism of
a unit ball into Rn by a polynomial volume-preserving diffeomorphism is not
straightforward, because the Jacobian of the approximating diffeomorphism
should be equal to 1 everywhere, and this constrain is quite strong for polyno-
mial maps. Had the approximation result been true for all volume-preserving
maps, i.e. not necessarily diffeomorphisms, it would produce a counterexam-
ple to a famous “Jacobian conjecture”; however, our approximation result
uses in an essential way the injectivity of the map that has to be approx-
imated (we represent the map as a shift by some smooth non-autonomous
flow).

It should be mentioned that Theorem 1 does not hold true at n = 1. In-
deed, if a map F on the interval B1 has two fixed points (with the multipliers
different from 1), then every close map F̂ has a pair of fixed points P1,2 as

well. If such F̂ is a renormalized iteration of a diffeomorphism g, then g will
also have a pair of fixed points, ψ(P1) and ψ(P2) (at n > 1 this is not true).
The interval between P1 and P2 will be invariant with respect to ψ−1 ◦ g ◦ψ,
hence ψ−1 ◦g◦ψ will be a root of degree m > 1 of the map F̂ on this interval.
Now note that the maps of the interval that have a root are not dense in C2,
according to [7], hence renormalized iterations are not dense either.

One can check through the proof of Theorem 1 that it holds true for
finite-parameter families of orientation-preserving diffeomorphisms: in space
of k-parameter families Fε, ε ∈ Bk, of Cr-smooth orientation-preserving
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diffeomorphisms of Bn into Rn (n ≥ 2) there is a residual set Skr such that
for every Fε ∈ Skr and for every δ > 0 there exists gε : D × Bk → D such
that ||gε − id||Cr < δ and Fε = ψ−1

ε ◦ gmε ◦ ψε|Bn for some m > 0 and some
family ψε of Cr-diffeomorphisms of Rn.

Thus, any dynamical phenomenon which occurs generically in finite-
parameter families of dynamical systems can be encountered in maps ar-
bitrarily close to identity (with the same dimension of phase space).

To put the result into a general perspective, we recall that one of the
main sources of difficulties in the theory of dynamical systems is that struc-
turally stable systems are not dense in space of all systems [8, 9], moreover
most natural examples of chaotic dynamics are indeed structurally unstable
(like e.g. the famous Lorenz attractor). Understanding the dynamics of sys-
tems from the open regions of structural instability (i.e. the regions where
arbitrarily close to every system there is a system which is not topologically
conjugate to it) has been the subject of active research for the past four
decades. It often happens, and helps a lot, that structurally unstable sys-
tems may possess certain robust properties, i.e. dynamical properties which
are not destroyed by small perturbations. For example, systems with Lorenz
attractor are pseudohyperbolic (or volume-hyperbolic) [10, 11, 12], and this
is the property which, in fact, allowed for a very detailed description of them
[13, 14, 15]. Another robust property is uniform partial hyperbolicity, a rich
theory of systems possessing it is actively developing now [16, 17]. In fact,
not so much of robust properties are known, it could even happen that be-
yond the mentioned partial hyperbolicity and volume-hyperbolicity no other
robust dynamical properties exist. This claim can be demonstrated for var-
ious examples of homoclinic bifurcations (see [18]), and can be used as a
guiding principle in the study of bifurcations of systems with a non-trivial
dynamics:
given an n-dimensional system with a compact invariant set that is neither
partially- nor volume-hyperbolic, every dynamics that is possible in Bn should
be expected to occur at the bifurcations of this particular system.
The last statement is not a theorem and it might be not true in some situa-
tions, still it gives a useful view on global bifurcations. In particular, it was
explicitly applied in [19] to Galerkin approximations of damped nonlinear
wave equations in order to obtain estimates from below on the dimension of
attractors in the situation where classical methods [20] do not work.

Theorem 1 gives one more example to the above stated principle: the
identity map has no kind of hyperbolic structure, neither it contracts nor
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expands volumes, so it should not be surprising that its bifurcations provide
an ultimately rich dynamics.

The same idea can be expressed in somewhat different terms. Let us
call the set of all renormalized iterations of a map g : D → D its dynamical
conjugacy class. The map will be called Cr-universal [3] if its dynamical con-
jugacy class is Cr-dense among all orientation-preserving Cr-diffeomorphisms
of the closed unit ball Bn into Rn. By the definition, the dynamics of any
single universal map is ultimately complicated and rich, and the detailed
understanding of it is not simpler than understanding of all diffeomorphisms
Bn → Rn altogether.

Theorem 2.For every r ≥ 1, Cr-universal diffeomorphisms of a given closed
ball D exist arbitrarily close, in the Cr-metric, to the identity map.

Proof. Take an arbitrary sequence of pairwise disjoint closed balls Dj ⊂
D, a sequence of maps Fj which is Cr-dense in space of orientation-preserving
Cr-diffeomorphisms Bn → Rn, and a sequence εj → +0 as j → +∞. By
Theorem 1, given any δ, there exist maps gj such that gj is identity outside
Dj, some renormalized iteration of gj is εj-close to Fj, and ‖gj − id‖Cr ≤ δ.
By construction, the map g(x) ≡ gj(x) at x ∈ Dj (j = 1, 2, . . .) and g(x) ≡ x
at x ∈ D\ ∪∞

j=1 Dj is Cr-universal and δ-close to identity. 2

This work was done during the author’s stay in MPI für Mathematik,
Bonn. The author acknowledges the support by grant ISF 926/04.

2 An approximation theorem.

Let F be an orientation-preserving Cr-diffeomorphism (r ≥ 2) which maps
the ball Bn : {

∑n
i=1 x

2
i ≤ 1} into Rn. Without loss of generality we may as-

sume that F is extended onto the whole Rn, i.e. it becomes a Cr-diffeomorphism
Rn → Rn, and it is identical (i.e. F (x) = x) at ‖x‖ sufficiently large; such
extension is always possible. Let K be a constant such that

sup
x∈Rn

‖∇J(x)‖

J(x)
< K, (2)

where J(x) is the Jacobian of F . Denote Rn
+ := {xn > 0}.
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Lemma 1. There exists a pair of volume-preserving, orientation-preserving
Cr-diffeomorphisms Φ1 : Rn

+ → Rn
+ and Φ2 : Rn → Rn such that

F = Φ2 ◦ Ψ2 ◦ Φ1 ◦ Ψ1, (3)

where
Ψ1 := (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, e

Kxn),
Ψ2 := (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, ln xn).

(4)

Proof. We need to construct a volume-preserving diffeomorphism Φ1 :
(x1, . . . , xn > 0) 7→ (x̄1, . . . , x̄n > 0) in such a way that

det
∂

∂x
Ψ2 ◦ Φ1 ◦ Ψ1(x) ≡ J(x) (5)

(then the Jacobian of Φ2 = F ◦ (Ψ2 ◦Φ1 ◦Ψ1)
−1 will be equal to 1 automat-

ically). By (4), condition (5) is equivalent to

x̄n = φ(x1, . . . , xn) ≡
Kxn

J(x1, . . . , xn−1,
1
K

ln xn)
.

It follows from (2) that ∂φ/∂xn > 0 everywhere. Moreover, as F is the
identity map outside a bounded region of Rn, we have that

φ(x) = Kxn (6)

outside a compact subregion of Rn
+. Therefore, every trajectory of the vector

field

ẋj = 0 (j ≤ n− 2), ẋn−1 =
∂φ

∂xn
, ẋn = −

∂φ

∂xn−1

(7)

is extended for all xn−1 ∈ (−∞,+∞), and the time τ(x) that the trajectory
of the point x needs to get to xn−1 = 0 is a Cr-function of x, well defined
everywhere in Rn

+. By (7),

∂τ

∂xn−1

∂φ

∂xn
−

∂τ

∂xn

∂φ

∂xn−1
= −1. (8)

Hence, the foliations of R+
n by level surfaces of the functions τ and φ are

transverse, so (see (8),(6)) the map

x̄j = xj (j ≤ n− 2), x̄n−1 = −τ(x), x̄n = φ(x) (9)
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is a volume-preserving, orientation-preserving Cr-diffeomorphism Rn
+ → Rn

+,
i.e. it is the sought map Φ1. 2

The maps x 7→ x̄ of the following form:

x̄1 = x2, . . . , x̄n−1 = xn, x̄n = (−1)n+1x1 + h(x2, . . . , xn), (10)

will be called Hénon-like volume-preserving maps. Note that such maps are
always injective, and the inverse map is also Hénon-like.

Theorem 3. Every orientation-preserving Cr-diffeomorphism F : Bn → Rn

can be arbitrarily closely approximated, in the Cr-norm on Bn, by a map of
the following form:

H2q2 ◦ . . . ◦H21 ◦ Ψ2 ◦H1q1 ◦ . . . ◦H11 ◦ Ψ1, (11)

where the maps Ψ1,2 are given by (4), and Hjs (j = 1, 2; s = 1, . . . qj) are
certain polynomial Hénon-like volume-preserving maps.

Proof. The map Φ1 defined in Lemma 1 can be extended onto xn ≤ 0
by the rule x̄n = Kxn, x̄n−1 = xn−1/K, so it becomes a volume-preserving
Cr-diffeomorphism Rn → Rn. Then the theorem follows immediately from
Lemma 1 and from Lemma 2 below. 2

Lemma 2. Every volume-preserving, orientation-preserving C r-diffeomorphism
Φ : Rn → Rn can be arbitrarily closely approximated, in the Cr-norm on any
given compact, by a composition of polynomial Hénon-like volume-preserving
maps.

Proof. It is well known that Φ can be imbedded in a smooth in t family Ft

of volume-preserving Cr-diffeomorphisms Rn → Rn such that F0 ≡ id and
F1 = Φ. The derivative d

dt
Ft defines a divergence-free vector field X(t, x), i.e.

the diffeomorphism Ft is the time-t shift by the flow generated by the field
X. One can approximate X arbitrarily closely on any given compact by a
C∞-smooth divergence-free vector field which is defined and bounded for all
(x, t) ∈ Rn× [0, 1]. Therefore, it is enough to prove the lemma only for those
Φ which can be obtained as the time-1 shift by the flow generated by such a
vector field, i.e. we may assume that X ∈ C∞ with no loss of generality.

Let Tτt = Ft+τ ◦ F
−1
t , i.e. it is the shift by the flow of X from the time t

to t+ τ . This map is O(τ)-close to identity, in the Cr-norm on any compact
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subset of Rn× [0, 1]. By construction, given any, arbitrarily large integer N ,

Φ = Tτ,(N−1)τ ◦ . . . ◦ Tτ,mτ ◦ . . . ◦ Tτ,0 (12)

where τ = 1/N , and m = 0, . . . , N − 1.
Note that the vector field X admits the following representation:

X =
n−1
∑

i=1

X(i) (13)

where X (i) is a C∞-smooth divergence-free vector field such that

ẋj ≡ 0 at j 6= i, i + 1. (14)

Indeed, if we write the field X as

ẋi = ξi(x, t), i = 1, . . . , n,

where
n
∑

i=1

∂ξi
∂xi

≡ 0, then the fields X (i) are defined as

ẋi = ηi(x, t), ẋi+1 = ζi(x, t)

with
η1 ≡ ξ1, ηi ≡ ξi − ζi−1 (i = 2, . . . , n− 1),

ζi = −
∫ xi+1

0

∂

∂xi
ηi(x1, . . . , xi, s, xi+2, . . . , xn, t)ds (i = 1, . . . , n−2), ζn−1 ≡ ξn.

By construction, the fields X (1), . . . , X(n−2) are divergence-free, and X (n−1) =
X −X (1) − . . .−X (n−2), so X (n−1) is also divergence-free, as X is.

It follows from (13) that

Tτt = T
(n−1)
τt ◦ . . . ◦ T

(1)
τt +O(τ 2), (15)

where T
(i)
τt is the shift by the flow generated by the vector field X (i). Recall

that the maps Tτ,iτ in (12) are O(1/N)-close to identity. Therefore, it follows
from (15),(12) that

Φ = T
(n−1)
τ,(N−1)τ ◦. . .◦T

(1)
τ,(N−1)τ◦. . .◦T

(n−1)
τ,mτ ◦. . .◦T (1)

τ,mτ◦. . .◦T
(n−1)
τ,0 ◦. . .◦T

(1)
τ,0 +O(τ),

(16)
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uniformly on compacta.
As τ can be taken arbitrarily small, it follows that in order to prove the

lemma, it is enough to prove that every of the maps T
(i)
τt in the right-hand side

of (16) can be approximated arbitrarily well by a composition of Hénon-like

volume-preserving maps. The maps T
(i)
τt are volume-preserving and satisfy

x̄j = xj at j 6= i, i + 1 (17)

(see (14)). Therefore, if we denote

x̄i = p(x), x̄i+1 = q(x), (18)

then
∂(p, q)

∂(xi, xi+1)
= 1. (19)

Thus, we can view (18) as an (n − 2)-parameter family of symplectic two-
dimensional maps (xi, xi+1) 7→ (x̄i, x̄i+1) parametrized by (x1, . . . , xi−1, xi+2, . . . , xn).

According to [3], every finite-parameter family of symplectic maps can be
approximated (on any compact) by a composition of families of Hénon-like
maps, i.e., in our case, maps of the form

x̄i = xi+1, x̄i+1 = −xi + h(xi+1; x1, . . . , xi−1, xi+2, . . . , xn).

It follows that every map of the form (17),(18),(19) can be approximated
arbitrarily closely by a composition of the maps of the form

x̄j = xj at j 6= i, i + 1,
x̄i = xi+1,
x̄i+1 = −xi + h(xi+1; x1, . . . , xi−1; xi+2, . . . , xn).

(20)

This proves the lemma if n = 2. In the case n > 2, it just remains to note
that every map of form (20) is a composition of volume-preserving Hénon-like
maps; namely, it equals to

Sn−i−1 ◦H ◦ S ◦Qn−1 ◦ Si+1,

where
S := (x1, . . . , xn) 7→ (x2, . . . , xn, (−1)n+1x1),

Q := (x1, . . . , xn) 7→ (x2, . . . , xn,
n
∑

j=1

(−1)n+jxj),
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H := {x̄1 = x2, . . . , x̄n−1 = xn, x̄n =

=
n−1
∑

j=1

(−1)n+jxj − xn + h(xn; xn−i+1, . . . , xn−1; (−1)n+1x2, . . . , (−1)n+1xn−i)}.

End of the proof. 2

3 Proof of Theorem 1.

Given a diffeomorphism F : Bn → Rn we will take its sufficiently close
approximation F̂ in a form, similar to (11) (see (33) below). Then we con-
struct a close to identity map whose some renormalized iteration is a close
approximation of F̂ .

First, we define a certain C∞ vector field Y (and the flow generated by
it) in Rn by means of the following procedure: we give explicit formulas for
the vector field inside certain blocks U1±, U2±, V1,2 described below, while
between the blocks we specify only the transition time from the boundary of
one block to another and the corresponding Poincaré map. The existence of
the C∞ flow with arbitrary (of class C∞) transition times and orientation-
preserving Poincaré maps between block boundaries is a routine fact (at least
for the given geometry of the blocks, see Fig.2).

Let Φ1,2 and Ψ1,2 be the maps defined by (3). Let I1± and I2± be intervals
of values of xn such that xn ∈ I1+ at x ∈ Bn, xn ∈ I1− at x ∈ Ψ1(B

n),
xn ∈ I2+ at x ∈ Φ1 ◦ Ψ1(B

n) and xn ∈ I2− at x ∈ Ψ2 ◦ Φ1 ◦ Ψ1(B
n). Let

R be such that all the intervals Ij± lie within {|xn| ≤ R}. Choose numbers
a1+ = a1− +3 = b1 +3 = a2+ +3 = a2− +3 = b2 +3. Let the vector field Y in
the regions Ujσ : {|xn−1 − ajσ‖ ≤ 1, |xn| ≤ R, |xi| ≤ 1 (i ≤ n− 2)}, j = 1, 2,
σ = ±1, be equal to

ẋn−1 = −µj − (1 − µj)(1 − ξ(xn−1 − ajσ)),

ẋi = σγiσ xi ξ(xn−1 − ajσ) (i 6= n− 1),
(21)

where µ1,2 > 0 are small (see (53),(54)), γi± ∈ [0, 1] (see (54),(55)), and

0 ≤ ξ ≤ 1, ξ(0) = 1, ξ(z) ≡ 0 at |z| ≥
1

2
. (22)

In the regions Vj : {|xn−1 − bj| ≤ 1, |xi| ≤ 1 (i 6= n− 1)} we denote x̂i = xi
at i 6= n− 1 and x̂n−1 = xn−1 − bj, and put Y to be equal to

ẋi = −λix̂i (i = 1, . . . , n− 1), ẋn = xn, (23)
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where λi > 0 are some numbers (see (35)).
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Figure 2: An illustration to the proof of Theorem 1.

As ẋn−1 < 0 in Ujσ, every orbit of Y that starts in Ujσ near xn−1 =
ajσ + 1 must come in the vicinity of xn−1 = ajσ − 1 as time grows. For the
corresponding time-t map, we have

xi(t) = eσγiσα(µj)xi(0) (i 6= n− 1), xn(t) = xn(0) − t+
1

2
β(µj), (24)
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where (see (21))

α(µ) =
∫ xn−1(0)−ajσ

xn−1(t)−ajσ

ξ(z)

µ+ (1 − µ)(1 − ξ(z))
dz =

∫ 1/2

−1/2

ξ(z)

µ+ (1 − µ)(1 − ξ(z))
dz,

β(µ) = 2

(

∫ 1/2

−1/2

1

µ+ (1 − µ)(1 − ξ(z))
dz − 1

)

.

(25)
Note that α(µ) > 0, it is independent of xn−1(0) and t (because we assume
that the integration limits (xn−1(0) − ajσ) and (xn−1(t) − ajσ) are close to 1
in the absolute value, i.e. they fall in the region where ξ(z) ≡ 0; see (22)),
and both α(µ) and β(µ) tend to infinity as µ→ +0 (the integrals diverge at
µ = 0 because ξ(0) = 1).

Denote Σin
j+ := {xn−1 = aj++1, |xn| ≤ 1}, Σout

j+ := {xn−1 = aj+−1, |xn| ≤
R}, Σin

j− := {xn−1 = aj− + 1, |xn| ≤ R}, Σout
j− := {xn−1 = aj− − 1, |xn| ≤ 1}

(we also assume that |xi| ≤ 1 for i ≤ n − 2 on Σin,out
j± ). Every orbit of

Y that intersects Σin
j+ at xn, xi (i ≤ n − 2) sufficiently small leaves Uj+

by crossing Σout
j+ , and the orbits that intersect Σin

j− leave Uj− by crossing
Σout
j− (see (24)). We define the vector field Y in the region between Σout

j+

and Σin
j− in such a way that the orbits starting in Σout

+ reach Σin
− at time

1, and the corresponding Poincaré map Σout
j+ → Σin

j− is (x1, . . . , xn−2, xn) 7→
(x1, . . . , xn−2, ψj(xn)), where we define the functions ψj in such a way that

ψ1(xn) = eKxn at xn ∈ I1+, ψ2(xn) = ln xn at xn ∈ I2+ (26)

(see (4)). Then, the flow takes the points from the vicinity of xn−1 = aj+ +1
in Uj+ into the vicinity of xn−1 = aj−− 1 in Uj−. By (24), the corresponding
time-t map Sjt is

xi(t) = e(γ
i+

−γ
i−

)α(µj )xi(0) (i ≤ n− 2),

xn−1(t) = xn−1(0) − t+ β(µj), xn(t) = e−γn−
α(µj )ψj(e

γ
n+

α(µj )xn(0)).
(27)

In the region between Σout
j− and Πin

j+ := {xn−1 = bj+1, |xi| ≤ 1}, we define
Y in such a way that all the orbits starting in a small neighborhood of xn =
x1 = . . . = xn−2 = 0 in Σout

j− intersect Πin
j+ at time 1, and the corresponding

Poincaré map is the identity: (x1, . . . , xn−2, xn) 7→ (x1, . . . , xn−2, xn). Then
the time-t map Qjt from a small neighborhood of xn−1 = aj− − 1, xn = x1 =

13



. . . = xn−2 = 0 in Uj− into a small neighborhood of xn−1 = bj + 1 in Vj is
given by

xi(t) = e−λi(t−xn−1(0)−2+aj−)xi(0) (i ≤ n− 2),

xn−1(t) − bj = e−λn−1(t−xn−1(0)−2+aj−), xn(t) = et−xn−1(0)−2+aj−xn(0)

(28)

(see (23); the term xn−1(0) + 2 − aj− in (28) is the time the orbit spends in
order to get from x(0) to Πin

j+).
In Vj (j = 1, 2), the point Oj : {xn−1 = bj, xi = 0 (i 6= n − 1)} is a

linear saddle (see (23)). Its local stable manifold W s
j is xn = 0, and the local

unstable manifold W u
j is xn−1 = bj, x1 = . . . = xn−2 = 0. The time-t map

Ljt within Vj is given by

x̂i(t) = e−λitx̂i(0) (i ≤ n− 1), xn(t) = etxn(0). (29)

Every orbit that enters Vj at xn > 0 leaves Vj by crossing the cross-section
Πout
j+ := {xn = 1, |x̂i| ≤ 1 (i ≤ n − 1)}, and every orbit that enters Vj at

xn < 0 leaves it by crossing the cross-section Πout
j− := {xn = −1, |x̂i| ≤ 1 (i ≤

n − 1)}. We assume that the orbits that start at Πout
j+ close to the point

W u
j ∩ Πout

j+ = (x1 = . . . = xn−2 = 0, xn−1 = bj) return to Wj at time 1 and
cross Πin

j− := {xn−1 = bj − 1, |xi| ≤ 1(i 6= n − 1)}; we also assume that the
corresponding Poincaré map (x1, . . . , xn−1) 7→ (x̄1, . . . , x̄n−2, x̄n) is given by

x̄i = x̂i+1 (i ≤ n− 2), x̄n = (−1)n+1x̂1

(the factor (−1)n+1 stands to ensure the orientability). It follows that the
time-t map Tjt from a small neighborhood of W u

j ∩ Πout
j+ in Vj into a small

neighborhood of xn−1 = bj − 1 in Vj is given by

xi(t) = e−λi(t−1)xn(0)λi+1−λix̂i+1(0) (i ≤ n− 2),

xn−1(t) = bj − e−λn−1(t−1)xn(0)−λn−1 , xn(t) = (−1)n+1et−1xn(0)1+λ1 x̂1(0).
(30)

For the orbits that leave Vj via Πout
j− , we assume that the orbits that start

at Πout
j− close to the point W u

j ∩ Πout
j− = (x1 = . . . = xn−2 = 0, xn−1 = bj)

cross Σin
3−j,+ at time 1, and the corresponding Poincaré map (x1, . . . , xn−1) 7→

(x̄1, . . . , x̄n−2, x̄n) is given by x̄i = xi at i = 1, . . . , n−2 and x̄n = −(xn−1−bj).
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Thus (see (21),(22),(23)), the time-t map Gjt from a small neighborhood of
W u

j ∩ Πout
j− in Vj into a small neighborhood of xn−1 = a3−j,+ + 1 in U3−j,+ is

xi(t) = |xn(0)|λixi(0) (i ≤ n− 2),

xn−1(t) = a3−j,+ + 2 − t− ln |xn(0)|,

xn(t) = −|xn(0)|λn−1(xn−1(0) − bj).

(31)

Every C∞ flow Y , which satisfies (27),(28),(29),(30),(31), is good for our
purposes. We may therefore assume that the vector field of Y is identically
zero outside some sufficiently large ball D. For small δ, the time-δ map of
the flow (which we denote as Yδ) is O(δ)-close to identity in the Cr-norm,
for any given r. It also equals to identity outside D. Thus, if δ is small, then
a small perturbation of Yδ is a small perturbation of the identity map. Let
us fix a certain r, and take a sufficiently small δ (for convenience, we assume
that N := δ−1 is an integer). Below we construct an arbitrarily small (in the
Cr-norm), localized in D perturbation of Yδ as follows.

Note first, that the map

Φ0 := (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn,−xn−1) (32)

is an orientation-preserving, volume-preserving diffeomorphism ofRn. There-
fore, we may rewrite (3) as follows:

F = Φ0 ◦ Φ̃2 ◦ Ψ2 ◦ Φ0 ◦ Φ̃1 ◦ Ψ1,

where Φ̃1,2 are orientation-preserving, volume-preserving Cr-diffeomorphisms
(Φ̃j = Φ−1

0 ◦Φj; we assume that Φ1 is extended onto the whole of Rn, like in
Theorem 3). Now, by Lemma 2, we obtain the following, more convenient for
us, analog of Theorem 3: the map F can be arbitrarily closely approximated
by a map of the following form:

Φ0 ◦ H̃2q2 ◦ . . . ◦ H̃21 ◦ Ψ2 ◦ Φ0 ◦ H̃1q1 ◦ . . . ◦ H̃11 ◦ Ψ1, (33)

with polynomial Hénon-like volume-preserving maps H̃js. Take a sufficiently
close such approximation. There exists some finite d ≥ 1 (common for all
H̃js) such that the maps H̃js are written as follows:

x̄i = xi+1 (i = 1, . . . , n− 1), x̄n = (−1)n+1x1 +
∑

ν2≥0,...,νn≥0

ν2+...+νn≤d

hjsν
∏

2≤p≤n

xνp

p .

(34)
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In the segment Ioutj := {e−δ ≤ xn < 1} of W u
j (j = 1, 2), we choose qj − 1

different points Mj1, . . . ,Mj,qj−1, and one point Mjqj ∈ W u
j will be chosen

in the segment −e−δ ≥ xn > −1. Let ujs denote the coordinate xn of Mjs

(s = 1, . . . , qj). As Nδ = 1 =flight time from Πout
j+ to Πin

j−, near the segment
Ioutj the (N + 1)-th iteration of the time-δ map Yδ is the map Tj,1+δ from
(30). We will fix

λi = λ (i ≥ 2), λ1 = 1 − (n− 2)λ, (35)

where λ is a positive number such that

λ <
1

(n− 1)d+ r
. (36)

Then the map Y N+1
δ near Ioutj will be given by

x̄1 = e−λ1δx(n−1)λ−1
n x̂2 at n ≥ 3, x̄i = e−λδx̂i+1 (2 ≤ i ≤ n− 2),

x̄n−1 = bj − e−λn−1δx−λn−1

n , x̄n = (−1)n+1eδx2−(n−2)λ
n x̂1

(37)
(at n = 2 the first line is irrelevant). This map takes the segment Ioutj onto
the segment {bj − 1 < xn−1 < bj − e−λn−1δ, x1 = . . . = xn−2 = xn = 0} ∈ W s

j .
Let Pj,s+1 = Tj,1+δMjs (s = 1, . . . , qj − 1), and let Pj1 be a point from
{bj + e−λn−1δ < xn−1 < bj + 1, x1 = . . . = xn−2 = xn = 0} ∈ W s

j . By (37),

the coordinate xn−1 of Pj,s+1 equals to bj − e−λn−1δu
−λn−1

js .
We take sufficiently large integer m and choose some points P ′

js and M ′
js,

sufficiently close to Pjs and Mjs respectively (j = 1, 2; s = 1, . . . , qj), such
that at s ≤ qj − 1 we have M ′

js = LjmP
′
js (where Ljt is the map (29)). At

s = qj we assume M ′
jqj

= Lj,m+ljδP
′
jqj

where lj is an integer to be defined
later (see (56); note that ljδ is uniformly bounded). Denote the coordinates
of P ′

js and M ′
js as (z′js1, . . . , z

′
js,n−2, bj+z

′
js,n−1, z

′
jsn) and (u′js1, . . . , u

′
js,n−2, bj+

u′js,n−1, u
′
jsn) respectively. By (29),

u′jsi = e−λimz′jsi (i = 1, . . . , n− 1), u′jsn = emz′jsn (38)

at s ≤ qj − 1. At s = qj we have

u′jqji = e−λiτjz′jqji (i = 1, . . . , n− 1), u′jqjn = em+ljδz′jqjn. (39)
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Note that u′jsi are small at i ≤ n− 1, as m is assumed to be large, and ljδ is
bounded. The values of z′jsi with i 6= n− 1 will be taken sufficiently small as
well, and we will keep

u′jsn = ujs and z′j,s+1,n−1 = −e−λn−1δu
−λn−1

js , (40)

in order to ensure the closeness of P ′
js to Pjs and M ′

js to Mjs.
We will add to the map Yδ a small perturbation, which is localized in a

small neighborhood of the points Y −1
δ (Pj,s+1) (so outside these small neigh-

borhoods Yδ remains unchanged). We require that these localized perturba-
tions are such that in a sufficiently small neighborhood ofMjs = Y −N

δ (Y −1
δ Pj,s+1)

the map Ỹ N+1
δ (where Ỹδ denotes the perturbed map) is given by (37) with

the following correction term

z′j,s+1,n − (−1)n+1eδx2−(n−2)λ
n

∣

∣

∣x̂n−1/z
′
js,n−1

∣

∣

∣

1

λn−1
−(n−1)

e−λn−1mz′js1

+
∑

ν2≥0,...,νn≥0

ν2+...+νn≤d

εjsν
∏

2≤p≤n

(x̂p − u′jsp)
νp

(41)

added into the equation for x̄n, where εjsν are small coefficients to be deter-
mined later (see (46)). The first term in (41) is small as well (see (38),(39));
in the second term the values of xn and z′j,s,n−1 are bounded away from zero,
and the exponent 1

λn−1
− (n−1) is either zero (at n = 2) or larger than r (see

(35),(36)), hence the second term is also small with the derivatives up to the
order r at least. Note that the first two terms in (41) ensure, in particular,
that at ε = 0 the coordinate xn of Ỹ N+1

δ M ′
js coincides with that of P ′

j,s+1 (see

(38),(40),(35)). We want P ′
j,s+1 = Ỹ N+1

δ M ′
js at ε = 0, so we put

z′j,s+1,1 = e−λ1δ−λmu
(n−1)λ−1
js z′js2 at n ≥ 3,

z′j,s+1,i = e−λ(m+δ)z′js,i+1 (2 ≤ i ≤ n− 2),

(42)

(see (37),(38),(40)). At s = 1 we assume

z′j1i = 0 at i ≤ n− 2, z′j1,n−1 = e−λn−1δ/2. (43)

Now, the values of z′jsi, u
′
jsi are defined by (38),(39),(40),(42) for all j, s, i. As

one can see, z′jsi at i 6= n− 1 and u′jsi at i 6= n tend to zero as m→ +∞, i.e.
P ′
js → Pjs and M ′

js →Mjs indeed.
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At ε = 0 (hence at all small ε) the map T̃j,1+δ ◦ Ljm ≡ Ỹ mN+N+1
δ (where

T̃ stands for the perturbed map T ) takes a small neighborhood of P ′
js into

a small neighborhood of P ′
j,s+1. We choose some η(m) that tends to zero as

m → +∞ and some, independent of m, coefficients Cjsi > 0, and introduce
rescaled coordinates v1, . . . , vn near P ′

js by the rule

x̂1|bj − xn−1|
n−1−1/λn−1 = z′js1|z

′
js,n−1|

n−1−1/λn−1 + Cjs1 η e
−λm(n−2)v1

x̂i = z′jsi + Cjsi η e
−λm(n−i−1)vi (2 ≤ i ≤ n− 1), x̂n = z′jsn + Cjsn η e

−mvn.
(44)

Note that λ1 = 1 at n = 2 (see (35)), so the exponent n− 1 − 1/λn−1 in the
first line is non-zero only at n ≥ 3 (recall that |bj − xn−1| is close to 1 near
Pjs, hence (44) is a smooth coordinate transformation in any case). Since η
tends to zero as m→ +∞, any bounded region of values of v corresponds to
a small neighborhood of P ′

js.

After the rescaling, the map T̃j,1+δ ◦Ljm ≡ Ỹ mN+N+1
δ from a small neigh-

borhood of P ′
js into a small neighborhood of P ′

j,s+1 takes the following form
(see (37),(29),(35),(38),(40),(42),(44)):

Cj,s+1,iv̄i = e−λδCj,s,i+1vi+1 (i ≤ n− 2),

Cj,s+1,n−1v̄n−1 = e−λn−1δ (u
−λn−1

js − (ujs + Cjsn η vn)
−λn−1)/η,

Cj,s+1,nv̄n = (−1)n+1φjsCjs1v1 +
∑

ν2≥0,...,νn≥0

ν2+...+νn≤d

εjsνEjsν
∏

2≤p≤n

vνp

p

where we denote

φjs = eδ(ujs + ηCjsnvn)
2−(n−2)λ|z′js,n−1 + ηCj,s,n−1vn−1|

1

λn−1
−(n−1)

,

Ejsν = e
m(1−λ

∑

2≤p≤n−1
(n−p)νp)

η
(−1+

∑

2≤p≤n
νp) ∏

2≤p≤n

C
νp

jsp.

Note that
∑

2≤p≤n−1(n− p)νp ≤ (n− 2)d, hence 1− λ
∑

2≤p≤n−1(n− p)νp > 0
(see (36)). Therefore, all the coefficients Ejsν tend to infinity as m → +∞
(provided η tends to zero sufficiently slowly).
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As we see, by putting

Cj,s+1,i = e−λδCj,s,i+1 (i ≤ n− 2), Cj,s+1,n−1 = λn−1e
−λn−1δu

−λn−1−1
js Cjsn,

Cj,s+1,n = eδu
2−(n−2)λ
js |z′js,n−1|

1

λn−1
−(n−1)

Cjs1,
(45)

and

εjsν = hjsi
Cj,s+1,n

Ejsν
, (46)

the map T̃j,1+δ ◦ Ljm near P ′
js takes the form

v̄i = vi+1 (i ≤ n− 2), v̄n−1 = vn +O(η),

v̄n = (−1)n+1v1 +O(η) +
∑

ν2≥0,...,νn≥0

ν2+...+νn≤d

hjsν
∏

2≤p≤n

vνp

p ,
(47)

i.e. it can be made as close as we want to the map H̃js, provided m is taken
large enough (recall that η → 0 as m → +∞). We take η tending to zero
sufficiently slowly, so, as we mentioned, Eijν → ∞ as m → +∞, which
implies that all εjsν → 0 (see (46)), i.e. our perturbation to Yδ is arbitrarily
small indeed.

It follows that in the rescaled coordinates the map
(

T̃j,1+δ ◦ Ljm
)qj

≡

Ỹ
qj(mN+N+1)
δ from a small neighborhood of P ′

j1 into a small neighborhood of

P ′
jqj

can be made as close as we want to the map H̃jqj ◦ . . . ◦ H̃j1, provided
m is large enough (the rescaled coordinates near P ′

j1 and P ′
jqj

are given by
formulas (44), where the coefficients Cj1i > 0 are taken arbitrary, and the
coefficients Cjqji are then recovered from the recursive formula (45); note
that m does not enter (45), hence Cjqji stay bounded away from zero and
infinity as m→ +∞).

Now, from (29) we obtain that the same holds true for the map Lj,m+ljδ ◦
(

T̃j,1+δ ◦ Ljm
)qj

≡ Ỹ
lj+mN+qj(mN+N+1)
δ from a small neighborhood of P ′

j1 into

a small neighborhood of M ′
jqj

, where the rescaled coordinates (v1, . . . , vn) are
introduced as follows:

x̂1|x̂n−1|
n−1−1/λn−1 = u′jqj1|u

′
jqj ,n−1|

n−1−1/λn−1 + Cjqj1 η e
−λn−1(n−1)m−λn−1ljδv1,

x̂i = u′jqji + Cjqji η e
−λm(n−i)−λljδvi (2 ≤ i ≤ n− 1), xn = ujqj + Cjqjn η e

ljδvn,

(48)
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with the same constants Cjqji as above.

Recall that, by construction, the point Y N+1
δ M ′

jqj
lies in U3−j,+ in the

region a3−j,++1−δ < xn−1 < a3−j,++1. We add to the map Yδ a perturbation,
localized near the point Y N

δ M
′
jqj

, such that the corresponding map G̃j,1+δ ≡

Ỹ N+1
δ will have the following form near M ′

jqj
:

x̄1 = |xn|
λ1(x1 − e−λ(m+ljδ)z′jqj1

∣

∣

∣(xn−1 − bj)/z
′
jqj ,n−1

∣

∣

∣

1

λ
−(n−1)

) at n ≥ 3,

x̄i = |xn|
λi(xi − u′jqji) (2 ≤ i ≤ n− 2),

x̄n−1 = a3−j,+ + 1 − δ − ln |xn|, x̄n = −|xn|
λn−1(xn−1 − bj − u′jqj ,n−1).

(49)
Note that u′jqji at i ≤ n − 1 tend to zero as m → +∞ (see (39)), while the
values of xn near M ′

jqj
and z′j,qj ,n−1 are bounded away from zero; the exponent

1
λ
− (n− 1) in the first line is larger than r (see (36)). Thus, for sufficiently

large m, map (49) is indeed a small perturbation of the map Gj,1+δ given by
(31).

Denote P ′
3−j,0 = G̃j,1+δM

′
jqj

. By (49), this is a point with the coordinates
xi = 0 at i 6= n − 1, and xn−1 = a3−j,+ + 1 + (κj − 1)δ (we assume that
the coordinate xn of M ′

jqj
is u′jqjn = ujqj = −e−κjδ for some 0 < κj ≤ 1).

Introduce rescaled coordinates near P ′
3−j,0 by the rule

xi = e−(lj+κj)δλiCjqji η e
−λm(n−i)vi (i ≤ n− 2),

xn−1 = a3−j,+ + 1 + (1 − κj)δ + e(lj+κj)δCjqjn η vn−1,

xn = e−(lj+κj)δλn−1Cj,qj,n−1 η e
−λn−1mvn

(50)

(with the same constants Cjqji as above). In coordinates (48),(50), map (49)
takes the form (v1, . . . , vn−1, vn) 7→ (v1, . . . , vn,−vn−1)+O(η), i.e. it becomes
arbitrarily close to the map Φ0 (see (32)) as m→ + ∞. Thus, in the rescaled

coordinates, the map G̃j,1+δ ◦Lj,m+ljδ ◦
(

T̃j,1+δ ◦ Ljm
)qj

≡ Ỹ
lj+(1+qj)(mN+N+1)
δ

from a small neighborhood of P ′
j1 into a small neighborhood of P ′

3−j,0 , can

be made as close as we want to the map Φ0 ◦ H̃jqj ◦ . . . ◦ H̃j1 as m grows.
Analogously, we take the point M ′

j0 : {xn−1 = aj− − 1 + δ/2, xi = 0 (i 6=
n − 1)} ∈ Uj−, and perturb the map Yδ near Y N

δ P
′
j0 in such a way that the
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map Q̃j,1+δ ≡ Ỹ N+1
δ near M ′

j0 will be given by

x̄i = e−λi(δ−xn−1−1+aj−)xi (i ≤ n− 2),

x̄n−1 − bj = e−λn−1(δ−xn−1−1+aj−), x̄n = eδ−xn−1−1+aj−xn + e−muj1.

(51)

It is a small perturbation of the map Qj,1+δ from (28), and it takes M ′
j0 to

P ′
j1 (see (38),(40)). When we introduce rescaled variables near M ′

j0 by the
rule

xi = eδλi/2Cj1i η e
−λm(n−i−1)vi (i ≤ n− 2),

xn−1 = aj− − 1 + δ/2 +
1

λn−1
eλn−1δ/2Cj,1,n−1 η vn−1,

xn = e−δ/2Cj1n η e
−mvn,

(52)

map (51) will take the form v̄ = v + O(η), i.e. it is close to the identity
map. Thus, in the rescaled coordinates given by (52),(50), the map G̃j,1+δ ◦

Lj,m+ljδ ◦
(

T̃j,1+δ ◦ Ljm
)qj

◦ Q̃j,1+δ ≡ Ỹ
lj+(1+qj)(mN+N+1)+N+1
δ from a small

neighborhood of M ′
j0 into a small neighborhood of P ′

3−j,0, is as close as we

want to the map Φ0 ◦ H̃jqj ◦ . . . ◦ H̃j1 at m large enough, i.e. it is a close
approximation of the map Φj.

Let us now determine the form of the map Sjt : v 7→ v̄ from a small neigh-
borhood of P ′

j0 into a small neighborhood of M ′
j0 in the rescaled coordinates

(52),(50). By (27), for an integer k > 0, the map Sj,kδ ≡ Y k
δ takes the point

P ′
j0 into M ′

j0 if
β(µj) = (k + κ3−j − 1/2)δ − 5 (53)

(see (52),(50)). Since β → +∞ as µ → +0 (see (25)), for every sufficiently
large k equation (53) has a solution µj(k), and µj(k) → +0 as k → +∞. It
follows that α(µj(k)) → +∞. Thus, for any sufficiently large m we can find
γn± ∈ (0, 1] and k such that

e−γn+
α(µj (k)) = e−(l3−j+κ3−j)δλn−1C3−j,q3−j ,n−1 η e

−λn−1m,

e−γn−
α(µj (k)) = e−δ/2Cj1n η e

−m.

(54)

This guarantees that v̄n = ψj(vn) (see (52),(50),(27)).
We also obtain v̄i = vi at i ≤ n− 2 by choosing γi± ∈ (0, 1] such that

e−γi+
α(µj (k)) = eδλi/2Cj1i η e

−λm,

e−γi−
α(µj(k)) = e−(lj+κj)δλiC3−j,q3−j ,iη.

(55)
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Finally, we fix the choice of the integer lj and κj ∈ (0, 1] as follows:

e(lj+κj)δ =
1

λn−1

eλn−1δ/2C3−j,1,n−1/Cjqjn. (56)

This (along with (53)) gives us v̄n−1 = vn−1 for the map Sj,kδ in the co-
ordinates (52),(50). As wee see, the map Sj,kδ in the rescaled coordinates
coincides with the map Ψj for v from some open neighborhood of D (if
j = 1) or of Φ1 ◦ Ψ1(D) (if j = 2).

Summarizing, we obtain that the map

G̃2,1+δ ◦ L2,m+l2δ ◦
(

T̃2,1+δ ◦ L2m

)q2
◦ Q̃2,1+δ ◦ S2,kδ

◦ G̃1,1+δ ◦ L1,m+l1δ ◦
(

T̃1,1+δ ◦ L1m

)q1
◦ Q̃1,1+δ ◦ S1,kδ

≡ Ỹ
2k+l1+l2+(2+q1+q2)(mN+N+1)+2(N+1)
δ

is a close approximation to the map Φ2 ◦ Ψ2 ◦ Φ1 ◦ Ψ1 (i.e. to the original
map F ), provided H̃jqj ◦ . . . ◦ H̃j1 are sufficiently close approximations to Φ̃j

(j = 1, 2) and m is large enough. 2
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