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Abstract We consider semigroup actions on the unit interval generated by strictly
increasing Cr -maps. We assume that one of the generators has a pair of fixed points,
one attracting and one repelling, and a heteroclinic orbit that connects the repeller
and attractor. We also assume that the other generators form a robust blender, which
can bring the points from a small neighborhood of the attractor to an arbitrarily small
neighborhood of the repeller. This is a model setting for partially hyperbolic systems
with one central direction. We show that, under additional conditions on f ′′

f ′ and the
Schwarzian derivative, the above semigroups exhibit, Cr -generically for any r ≥ 3,
arbitrarily fast growth of the number of periodic points as a function of the period. We
also show that a Cr -generic semigroup from the class under consideration supports
an ultimately complicated behavior called universal dynamics.
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1 Introduction

One of the great mysteries of dynamical chaos is its extreme richness. Only in uni-
formly hyperbolic systems the variability of chaotic dynamics can be controlled: every
basic set in AxiomA systems has a finiteMarkov partition [13], which implies that the
chaotic behavior is self-similar in this case. However, once we leave uniformly hyper-
bolic systems, the self-similarity gets broken. It is typical for non-hyperbolic chaotic
systems that going to longer time scales and finer phase space scales exhibits dynamics
which is not present on the previous scales. Moreover, the diversity of dynamics that
emerges in this process can be unlimited.As typicalmanifestations of such complexity,
in this paper we investigate the phenomena of the fast (super-exponential) growth of
the number of periodic points and the universal dynamics in a class of non-hyperbolic
systems.

The super-exponential growth of periodic points does not seem to be natural. By
Artin and Mazur [2] a generic polynomial map has only exponential growth of the
number of periodic orbits as a function of period. The same holds true for hyper-
bolic systems: as we mentioned, their dynamics can be described by means of a
finite Markov partitions and, consequently, the number of periodic orbits can grow
at most exponentially. Notice also the result of Martens, de Melo, and van Strien
[26] which implies the exponential growth of periodic points for Cr -endomorphisms
(2 ≤ r ≤ ∞) of the unit interval with non-flat critical points. However, in other situa-
tions the super-exponential growth appears generically and is a characteristic feature
of the wild behavior. The Cr -genericity of the super-exponential growth for systems
in the Newhouse domain (the open region of diffeomorphisms with robust homoclinic
tangencies [28]) was discovered by Kaloshin [25]. He noticed that the highly degen-
erate local bifurcations in the Newhouse domain, which were found in [17,18], create
large numbers of periodic orbits of the same period, and this, generically, leads to
the super-exponential growth. By a similar strategy, the C1-genericity of the super-
exponential growth was shown in [10] for systems with robust heterodimensional
cycles.

Another important phenomenon observed in the non-hyperbolic setting is the
generic occurrence of universal dynamics. This phenomenon, discovered in [17,18],
can be formally described by the concept of a universal map which was introduced
in [8,35]. A map is (d, r)-universal if the set of its iterations, each restricted to an
appropriate region in the phase space and written in certain rescaled coordinates,
approximates all possible maps from a unit ball to Rd with arbitrarily good precision
in the Cr -topology.

By definition, a single universal map mimics all of the d-dimensional dynamics,
i.e., it gives an example of chaos of ultimate complexity. The existence of universal
maps may, at the first glance, seem improbable. Indeed, if one considers one dimen-
sional dynamics, it is an easy consequence of Belitsky–Mather theory [5,27] that
there exists no C2-universal diffeomorphisms of an interval, see [37]. However, when
the dimension of the phase space is 2 or higher, then, under the presence of robust
non-hyperbolicity, universal maps do exist in abundance: they form a residual sub-
set of certain open regions in the space of dynamical systems. Namely, C1-universal
maps are generic in the Bonatti–Díaz domain (the class of systems with robustly

123



Degenerate behavior in non-hyperbolic semigroup actions on...

non-dominated heterodimensional cycles, see [8]), and (d, r)-universal maps with
arbitrarily large r ≥ 2 are generic in the Newhouse domain for d = 2 [20,35,37].

One may wonder if there is another non-uniformly hyperbolic setting which leads
to the wild behavior as we saw above. According to the famous conjecture of Palis,
the mechanism of non-hyperbolicity is ascribed to the existence of homoclinic tan-
gency or heterodimensional cycles (see [12,30] for the precise statement and relevant
discussions). Thus it is interesting to ask if such degenerate behavior is observable in
systems exhibiting robust heterodimensional cycles.

By the pioneering work of Bonatti and Díaz [9], we certainly know that the occur-
rence of heterodimensional cycles can beC1-robust (as a result,Cr -robust) through the
presence of blenders (see [12]). In such situation, it is not hard to prove thatC1-generic
dynamical systems exhibit super-exponential growth of the number of periodic points
(see [10]) and has universal dynamics to the center direction [7]. However, it is not
obvious if such phenomena occur under higher regularity settings.

In this article, aiming at the understanding of the behavior in generic Cr -systems
with robust heterodimensional cycles, where r ≥ 2, we investigate semigroup actions
on the interval. As suggested in several papers (see for example [4,16,23]), they
serve as simplified models of systems with robust heterodimensional cycles and,
more generally, partially hyperbolic systems with one central direction. We prove
that under certain mild non-hyperbolicity conditions such systems do exhibit the wild
behavior.

Let us briefly see the statement of our main result; for basic definitions and precise
statements, see Sect. 2. We investigate semigroup actions on the interval I = [0, 1]
generated by three maps fi : I → I (i = 0, 1, 2), which are smooth and strictly
increasing. We assume that f0 contains a repeller-attractor heteroclinic connection.
We also assume that ( f1, f2) is a persistent blender on an interval containing the
repeller-attractor heteroclinic (see Sect. 2 for the definitions). The fact that ( f1, f2)
is a blender means that the action of ( f1, f2) spreads points over the interval. This
implies that there are orbits starting near the attracting fixed point of f0 and ending
near the repelling fixed point. Thus there are transient orbits going back and forward
between the repelling point and the attracting point, which supports the non-hyperbolic
behavior.

Let us introduce the Cr -topology in the space of such semigroups. Then, our result
can be stated as follows:

Main Result: For each r ≥ 1, there exists a non-empty, Cr -open regionWr in the
space of semigroups satisfying above conditions, in which Cr -generic elements exhibit
super-exponential growth of periodic points (Theorem 2.1) and have Cr -universal
dynamics (Theorem 2.2).

We also prove that the itineraries along which we observe the super-exponential
growth are quite abundant (see Theorem 2.3).

Local genericity of the super-exponential growth of periodic points for r = 1 is
just an easy analog of a result in [10]. Our main contribution is the case r ≥ 2.
One interesting feature of our result is that the dynamics we describe is controlled by
derivatives of order higher than 1. Usually, the conditions on the generic dynamics are
formulated in terms of the first derivative only. It seems probable that no conditions
involving higher order derivatives restrict the possible richness of chaotic dynamics
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in systems with homoclinic tangencies [21,24,34,36,37]. Surprisingly, as the results
of the present paper suggest, this “the first derivative alone” principle should not be
applicable to the description of dynamics near semigroup actions and, accordingly,
robust heterodimensional cycles.

The class Wr is described in terms of the second order derivatives if r ≥ 2 and
the third order derivatives if r ≥ 3 (see Sect. 2.1). A simple speculation reveals the
necessity of such conditions. Consider the semigroups for which all the maps fi have
strictly positive second derivatives everywhere. Any composition of increasing convex
functions is, obviously, convex. Therefore, any composition of themaps fi cannot have
more than 2 fixed points, i.e., it cannot approximate a map with a higher number of
fixed points, so any such semigroup can not have universal dynamics. Neither can it
have a super-exponential growth: a periodic orbit corresponds to a periodic itinerary;
if for each such itinerary the corresponding period map cannot have more than 2 fixed
points, then the number of periodic orbits is not more than twice the number of the
periodic itineraries, and the latter grows exponentially with period. The same holds
true if all the maps are concave. Similarly, if the Schwarzian derivative is negative for
all the maps fi (or positive for all of them), then every composition of fi has negative
(resp. positive) Schwarzian derivative too. This restricts the number of periodic points
for every given itinerary by 3, so we do need some condition on the third derivatives,
involving the Schwarzian derivatives, in order to have universal dynamics and/or the
superexponential growth.

As we have already mentioned, the semigroups which we study here can serve as
simplified models for the study of systems with heterodimensional cycles in partially
hyperbolic systems. Therefore, our result suggests that the rate of the growth of the
number of periodic orbits for a Cr -generic system having robust heterodimensional
cycles can be determined by different factors for r = 1, r = 2 and r ≥ 3.

Let us briefly explain the scheme of the proof of the Theorem. First, we construct
an r -flat periodic point by an arbitrarily small perturbation of the maps (see Sect. 5).
A periodic point is r -flat if it is neutral (i.e., the first derivative of the period map at
that point is equal to 1) and the derivatives of orders from 2 to r vanish at this point,
i.e., the period map is given by x �→ x + o(xr ).

The construction of such periodic points is done by induction in the order of flatness:
we show that if the semigroup with the persistent blender has a sufficiently large
number of k-flat periodic points with k ≥ 3, then a (k + 1)-periodic point can be
created by an arbitrarily small Cr -perturbation of the system. Moreover, the existence
of a persistent blender allows to place this point within any given interval and also
let its itinerary to follow the itinerary of any given orbit as long as we want. The
perturbation can be localized in an arbitrarily small neighborhood of some finite set
of points, so the process can be repeated without destroying any finite number of the
flat points created at the previous steps.

A k-flat periodic point corresponds to a codimension-k bifurcation. A local unfold-
ing of this bifurcation can only decrease the codimension. However, the presence of
homoclinic and heteroclinic points due to the blender allows for creating bifurcations
of codimension (k+1). The fact that homoclinic bifurcations can lead to an unbounded
increase in the codimension of accompanying bifurcations of periodic orbits was dis-
covered in [17,18]. It was related to the presence of hidden bifurcation parameters
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(moduli of conjugacy) at typical homoclinic bifurcations [22]. The strategy of our
proof here has the same flavor as the proof of a similar result for systems with homo-
clinic tangencies [19,20]. Indeed, the main argument is based on the calculation of a
superposition of polynomial maps. However, the actual construction is quite different:
in the case of a homoclinic tangency the argument unfolds in a neighborhood of a
critical point, while the maps we consider here are diffeomorphisms of an interval,
which results in a different algebraic structure.

As we have seen before, the information on the signature of the second and
Schwarzian derivatives is important in our case. For example, the induction cannot start
at k ≤ 2. If wewrite the periodmap near a k-flat point as x �→ x+ak+1xk+1+o(xk+1),
then the sign of a2 for a 1-flat point is the sign of the second derivative; the sign
of a3 for a 2-flat point is the sign of the Schwarzian derivative. Therefore, for a
semigroup whose generators have second (resp. Schwarzian) derivatives with definite
signature, we see that we cannot produce 2- (resp. 3-) flat points. In our proof, 2-flat
periodic points are created by a perturbation over 1-flat periodic points with differ-
ent signs of a2. Such 1-flat points are obtained by a perturbation of a heteroclinic
cycle which includes a pair of repeller-attractor heteroclinic connections of different
characteristics in terms of the second derivative; the existence of such heteroclin-
ics is a part of the conditions that describe the set W2. Similarly, when the same
heteroclinics carry also an opposite sign of Schwarzian derivative (this condition is
assumed in the definition of Wr with r ≥ 3), we are able to make the resulting
2-flat points having opposite signs of a3. Then, a perturbation including such 2-flat
points creates a 3-flat point. After that the above described induction can start, as the
sign of ak+1 does not play a role if k ≥ 3. The difference between the case k ≤ 3
and k > 3 will be elucidated through the proof of local algebraic lemmas given in
Sect. 3.

Once the possibility to create an r -flat periodic point by an arbitrarily small per-
turbation is established, the proof of the generic super-exponential growth of periodic
points is done by the Kaloshin argument (see Sect. 5). The creation of universal
dynamics out of the abundant r -flat points is less straightforward. The idea of creating
universal dynamics by perturbing a flat periodic point can be traced back to Ruelle
and Takens work [31]. This task is not trivial in the Cr -topology setting with large r .
While it was solved in [37] for maps of dimension 2 and higher, the methods of [37]
are inapplicable in the one-dimensional setting. Therefore, we derive the genericity
of the Cr -universal maps in Wr from the occurrence of r -flat points by employing a
completely different technique; we also make a substantial use of the existence of a
blender which gives us the freedom in choosing orbit itineraries (see Sect. 6).

Let us discuss one technical matter. Even though we use localized (hence, non-
analytic) perturbations in our proof, it seems that the construction can be modified
(in the spirit of [14,20]) in order to encompass the analytic case, and we believe that
semigroups that have Cω-universal semigroups are generic in Wω. However, we do
not know whether the generic super-exponential growth holds in the analytic case or
not. Recently, the genericity of the super-exponential growth for real-analytic area-
preserving diffeomorphisms was shown in [3]. The class of semigroups we consider
in this paper can, possibly, serve as another sufficiently simple non-trivial class of
systems for which this question can be investigated.
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In conclusion, we also remark that the analysis of semigroup actions presented in
this paper has similar flavorwith the study of dynamics of cocycles. The readerwill find
similarities of arguments amongpapers such as [1,11,29]. Indeed, these twoobjects are
tightly related: given a semigroup action, one can construct a diffeomorphism cocycle
dynamics over shift spaces by taking a skew product. Consequently, all the results we
obtain immediately give us corresponding results for the skew-product systems.

We also expect that the statement similar to our theorems should hold true
for partially hyperbolic diffeomorphisms with heterodimensional cycles with one-
dimensional central direction. However, compared to the semigroups case, the
holonomies along the center foliation of a generic partially hyperbolic map have low
regularity, which prevents a direct transfer of the results we obtain for one-dimensional
semigroups to multi-dimensional partially hyperbolic diffeomorphisms. Meanwhile,
we believe that the main techniques are transferrable, and should be useful for the
further work in this direction.

In the next section, we start rigorous arguments: we give basic definitions and
precise statement of our results. The organization of this paper is explained at the end
of Sect. 2.

2 Main results

As explained in Sect. 1, the aim of this paper is to show that generic semigroup
actions in a certain open subset of the space of actions has a wild behavior. The
first theorem (Theorem 2.1) asserts that an arbitrarily fast growth of the number of
attracting periodic points is generic in Wr , an open region whose precise definition
is explained below. The second theorem (Theorem 2.2) asserts that a generic triple
in Wr generates ‘’universal dynamics”. The last theorem (Theorem 2.3) asserts that
under certain additional conditions, the number of attracting periodic points grows,
along a generic infinite word, faster than any given function of the period for a generic
triple in Wr .

2.1 Space of semigroup actions and its open subset W r

In this subsection, we prepare basic terminologies used throughout the paper.
For a finite set S, we denote the set

⊔
n≥0 S

n by S∗. The set S∗ is called the set
of words of alphabets S. Under concatenation of words, S∗ forms a semigroup. For
1 ≤ r ≤ ∞, let Er be the space of orientation-preserving Cr embeddings from [0, 1]
to (0, 1) endowed with Cr -topology. By composition of maps, it is also a semigroup.
We write Ar (S) for the set of families ( fs)s∈S of maps in Er indexed by S. This
set is endowed with the product topology of the Cr -topology of Er . For a family
ρ = ( fs)s∈S ∈ Ar (S) and a word ω = sn . . . s1 ∈ S∗, we define a map ρω in Er by
ρω = fsn ◦ · · · ◦ fs1 . Then, the map ω �→ ρω is a homomorphism between S∗ and Er .
This homomorphism is called the semigroup action generated by ρ = ( fs)s∈S . It is
easy to see that any homomorphism from S∗ to Er is generated by a family inAr (S).

For ρ ∈ Ar (S) and x ∈ [0, 1], let O+(x, ρ) be the forward orbit of x under ρ

{ρω(p) | ω ∈ S∗}. We call an element ρ ∈ Ar (S) a blender on a closed (non-trivial)
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interval J ⊂ (0, 1) if the closure of O+(x, ρ) contains J for any x ∈ J . We say
that a blender ρ on J is Cr -persistent if any semigroup action which is Cr -close to
ρ is a blender on J . It is known that a Cr -persistent blender exists. For example,
suppose that ( f1, f2) ∈ Ar ({1, 2}) satisfies that f ′

1 < 1 and f ′
2 < 1 on a closed

interval [a, b] ⊂ (0, 1), f1(a) = a, f2(b) = b, and f1(b) > f2(a). Then ( f1, f2) is a
Cr -persistent blender for any closed interval J ⊂ (a, b) (see [32, Example 1]).

Let f be a map in Er with 1 ≤ r ≤ ∞. A pair (p, q) of points in [0, 1] is a
repeller-attractor pair if p and q are fixed points of f such that f ′(p) > 1 > f ′(q)

and Wu(p) ∩ Ws(q) = ∅. A point in Wu(p) ∩ Ws(q) is called a heteroclinic point
of (p, q). We define two quantities τA(z0, f ), τS(z0, f ) ∈ {±1, 0} for a heteroclinic
point z0 as follows. For a map g ∈ Er and x ∈ [0, 1], let A(g)x and S(g)x be the
non-linearity and the Schwarzian derivative of g at x , defined as follows:

A(g)x = g′′(x)
g′(x)

, S(g)x = g′′′(x)
g′(x)

− 3

2

(
g′′(x)
g′(x)

)2

,

where A(g)x is defined only if r ≥ 2 and S(g)x is defined only if r ≥ 3. When r ≥ 2,
there exist normalized Cr -linearizations ϕ : Wu(p)→R and ψ : Ws(q)→R at p
and q, i.e., orientation preserving diffeomorphisms satisfying ϕ ◦ f (x) = λpϕ(x),
ψ ◦ f (x) = λqψ(x), and ϕ′(p) = φ′(q) = 1, where λp = f ′(p) and λq = f ′(q).
For a heteroclinic point z0 ∈ Wu(p) ∩ Ws(q), set

τA(z0, f ) = sgn(A(ψ ◦ ϕ−1)ϕ(z0)),

τS(z0, f ) = sgn(S(ψ ◦ ϕ−1)ϕ(z0)),

where sgn : R→{0,±1} is the sign function. We call the pair (τA(z0, f ), τS(z0, f ))
the sign of z0 if f is of classC3. If f is onlyC2, then the sign of z0 is just one number,
τA(z0, f ).

The normalizedCr -linearizations ϕ andψ are known to exist uniquely if r ≥ 2 (see
[33, Theorem 2]). Therefore, the map ψ ◦ ϕ−1 is uniquely defined and is an invariant
(a functional modulus) of the smooth conjugacy of maps of the interval [5,27]. Hence,
τA(z0, f ) is well-defined if r ≥ 2, and τS(z0, f ) is well-defined if r ≥ 3. Moreover,
the sign of the heteroclinic point is invariant with respect to Cr -smooth coordinate
transformations, and it is the same for every point of the orbit of z0 by f .

Let W1 be the set of ρ = ( f0, f1, f2) ∈ A1({0, 1, 2}) which satisfy the following
conditions:

Existence of Blender ( f1, f2) ∈ A1({1, 2}) is aC1-persistent blender on a closed
interval J ⊂ [0, 1].
Non-hyperbolicity f0 admits a repeller-attractor pair (p, q) in Int J .
The set W1 is an open subset of A1({0, 1, 2}). Let W2 be the set of ρ =
( f0, f1, f2) ∈ W1 ∩ A2({0, 1, 2}) which satisfy the following condition:
Sign condition I f0 admits repeller-attractor pairs (p1, q1) and (p2, q2) in Int J
(the case where (p1, q1) = (p2, q2) is allowed) and there exist heteroclinic points
z1 ∈ Wu(p1) ∩ Ws(q1) and z2 ∈ Wu(p2) ∩ Ws(q2) for f0 such that τA(z1, f0) ·
τA(z2, f0) < 0.
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Finally, letW3 be the set of ρ = ( f0, f1, f2) ∈ W2 ∩A3({0, 1, 2}) which satisfy
the following condition:
Sign condition II f0 admits repeller-attractor pairs (p3, q3) and (p4, q4) in Int J
(the case where (pi , qi ) = (p j , q j ) for some 1 ≤ i < j ≤ 4 is allowed) and there
exist heteroclinic points z3 ∈ Wu(p3) ∩ Ws(q3) and z4 ∈ Wu(p4) ∩ Ws(q4) for
f0 such that τS(z3, f0) · τS(z4, f0) < 0.

Remark that W3 ⊂ W2 ⊂ W1. We also define Wr = W3 ∩ Ar ({0, 1, 2}) for
r ≥ 4 (i.e. we do not apply any other conditions except for smoothness if r ≥ 4). It
is known that the normalized Cr linearization of a one-dimensional Cr map f at a
hyperbolic fixed point depends continuously on the map f in the Cr topology (see
Section 5.2 of [6] for example). This fact implies that τA(z0, f0) (resp. τS(z0, f0))
does not change at C2(resp. C3)-small perturbations if it is non-zero. Hence,Wr is an
open subset ofAr ({0, 1, 2}) for any r ≥ 1. In Sect. 8 we give simple sufficient criteria
for the fulfillment of the sign conditions, which do not require the computation of the
Belitsky–Mather invariant ψ ◦ ϕ−1. These criteria are formulated in terms of the first
derivatives only, so we can conclude that W1 has a C1 open subset where each Cr

semigroup belongs to Wr .

2.2 Arbitrary growth of the number of periodic points

For a map f ∈ Er , set

Fix( f ) = {x ∈ [0, 1] | f (x) = x}, Fixa( f ) = {x ∈ Fix( f ) | f ′(x) < 1}.

The following is our first result.

Theorem 2.1 For any 1 ≤ r ≤ ∞ and any sequence a = (an)∞n=1 of positive integers,
a generic (in the sense of Baire) element ρ inWr satisfies

lim sup
n→∞

∑
ω∈{1,2,3}n # Fixa(ρω)

an
= ∞.

Thus, in Wr , semigroups which exhibit arbitrarily fast growth of # Fixa(ρω)

are quite abundant. Meanwhile, notice that every semigroup action can be Cr -
approximated by the one generated by polynomial maps, and for these maps, by
estimating the growth of the degree, we can easily see that # Fixa(ρω) grows at most
at an exponential rate (this is analogous to the theorem by Artin and Mazur [2]).

Theorem 2.1 shows an interesting contrast between the average growth of the num-
ber of periodic points and the growth along almost every infinite word. Let μ be the
uniform distribution on {0, 1, 2}. We denote the product probability on {0, 1, 2}∞ by
μ∞. For ω = · · · s2s1 ∈ {0, 1, 2}∞ and n ≥ 1, set ω|n = sn . . . s1. As we will see in
Sect. 8, the set

Wr
att = {ρ = ( f0, f1, f2) ∈ Wr | | f ′

0|∞ · | f ′
1|∞ · | f ′

2|∞ < 1}
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is non-empty, where |h|∞ = supx∈[0,1] |h(x)|. By the law of large numbers,

lim
n→∞

#{m ∈ {1, . . . , n} | sm = s}
n

= 1

3

for any s ∈ {0, 1, 2} and μ∞-almost every ω ∈ {0, 1, 2}∞. By using this, we can see
that

lim sup
n→∞

|(ρω|n )′|1/n∞ ≤ (| f ′
0|∞ · | f ′

1|∞ · | f ′
2|∞)1/3 < 1

holds for any ρ ∈ Wr
att and μ∞-almost every infinite word ω ∈ {0, 1, 2}∞. Hence,

lim
n→∞ # Fix(ρω|n ) = 1 for μ∞-almost every ω.

On the other hand, Theorem 2.1 implies that semigroup actions ρ satisfying

lim sup
n→∞

1

an

∫

{0,1,2}∞
# Fixa(ρ

ω|n )dμ∞(ω)

= lim sup
n→∞

1

an

∑
ω∈{0,1,2}n # Fixa(ρω)

3n
= ∞

is generic inWr
att for any sequence a = (an)∞n=1 of positive integers (by applying The-

orem 2.1 replacing (an) by (3nan)). Therefore, theμ∞-averaged growth of # Fixa(ρω)

and the growth of # Fixa(ρω|n ) alongμ∞-almost every infinite wordsω are completely
different for generic ρ inWr

att.

2.3 Universal dynamics

For finite sets S and S′, and families ρ = ( fs)s∈S ∈ Ar (S) and ρ′ = (gs′)s′∈S′ ∈
Ar (S′), we say that ρ realizes ρ′ if there exists a closed interval I ⊂ [0, 1], a
diffeomorphism 	 : [0, 1]→I , and a family (ωs′)s′∈S′ of words in S∗ such that
gs′ = 	−1 ◦ (ρωs′ |I ) ◦ 	 holds for any s′ ∈ S′. In other words, the semigroup
actions generated by ρ′ = (gs′)s′∈S′ and (ρωs′ |I )s′∈S′ are conjugate by the diffeomor-
phism 	. We say that ρ ∈ Ar (S) generates a universal semigroup if for each finite set
S′ there exists a dense subset DS′ of Ar (S′) such that ρ realizes any ρ′ ∈ DS′ .

The following is our second result.

Theorem 2.2 For any 1 ≤ r ≤ ∞, a generic element in Wr generates a universal
semigroup.

2.4 Wild behavior along generic infinite words

Under an additional mild condition, the semigroup generated by a generic element of
Wr exhibits wild behavior along generic infinitewords. LetWr

# be the set consisting of
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elements ρ = ( f0, f1, f2) ofWr such thatO+(x, ρ) ∩ Int J = ∅ for each x ∈ [0, 1],
where J is the interval on which ( f1, f2) is a persistent blender. The setWr

# is a non-
empty open subset of Ar ({0, 1, 2}). We furnish the product topology on {0, 1, 2}∞
induced by the discrete topology of the set {0, 1, 2}.
Theorem 2.3 For any sequence (an)∞n=1 of positive integers, a generic ρ ∈ Wr

# sat-
isfies

lim sup
n→∞

# Fixa(ρω|n )
an

= ∞

for every generic infinite word ω ∈ {0, 1, 2}∞.

As we will see in Sect. 8, Wr
# ∩ Wr

att is non-empty. For any ρ ∈ Wr
# ∩ Wr

att and
μ∞-almost every ω, ρω|n is a uniform contraction for any sufficiently large n. This
implies that the generic infinite words in Theorem 2.3 form a null subset of {0, 1, 2}∞
with respect to the probability measure μ∞.

2.5 Organization of this paper

The rest of this paper is organized as follows. In Sect. 3, we prepare several local
algebraic results about the composition of germs. In Sect. 4, we prepare the notation
for the perturbation of semigroups and give several lemmas, which produce orbits that
realize desired germs. In Sect. 5, by using the techniques which we prepare in Sects. 3
and 4, we give the induction argument producing r -flat periodic orbits, and complete
the proof of Theorem 2.1. In Sect. 6, we prove Theorem 2.2 by using the construction
of r -flat periodic orbits (which is already obtained in Sect. 5) together with a lemma
about the decomposition of diffeomorphisms on the interval (Lemma 3.3). In Sect. 7,
we prove Theorem 2.3. The proof is done by a careful reiteration of the proof of
Theorem 2.1 together with a genericity argument (Lemma 7.1). Finally, in Sect. 8,
we give a simple sufficient condition for the fulfillment of the sign conditions. As an
application, we give a simple polynomial example for a semigroup inW∞

# ∩ W∞
att .

3 Cancellation of germs

As explained in the introduction, for the proof of Theorems 2.1 and 2.2, we first
produce r -flat periodic points by an arbitrarily small perturbation. The construction of
such periodic points will be done inductively. In this section, we derive local algebraic
propositions needed for the inductive step. Namely, we show how to obtain an (r +1)-
flat germ as a composition of iterations of r -flat germs.

Let Dr be the set of germs of an orientation-preserving local Cr -diffeomorphisms
of R with a fixed point at the origin. We simply write D for D∞. For F ∈ D and
s ≥ 1, we denote by F (s) (or F ′ for s = 1) the s-th derivative of F at 0. We define a
pseudo-distance d on D by
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d(F,G) =
∞∑

r=1

2−r

(
|F (r) − G(r)|

1 + |F (r) − G(r)|

)

.

The pseudo-distance d defines a topology on D. This topology is non-Hausdorff.
Indeed, a germ F with F ′ = 1 and F (r) = 0 for all r ≥ 2 is not separated from
the identity germ I . We say that F ∈ D is r-flat if F ′ = 1 and F (s) = 0 for all
s = 2, . . . , r . The term ∞-flat will mean r -flat for every r ≥ 1. For F ∈ D, let A(F)

and S(F) be the non-linearity and the Schwarzian derivative of F at 0 respectively.
The sign of a germ F ∈ Dr is the pair (sgn(A(F)), sgn(S(F)))We say that two germs
F,G ∈ Dr have the same or opposite signs if both A(F) · A(G) and S(F) · S(G) are
positive or, resp., negative. For f ∈ Diffr ([0, 1]) and x ∈ (0, 1), we define a germ
[ f ]x in Dr by [ f ]x (y) = f (x + y) − f (x).

We start with recalling the fact (Lemma 3.1) that any germ inD equals to a time-one
map of a local flow up to order r , for each fixed r ≥ 1. For α > 0, let Lα be the element
of D given by Lα(x) = αx .

Lemma 3.1 For any F ∈ D and r ∈ [1,+∞), there exists a continuous family
of germs (Ft )t∈R in D such that F0 is the identity map, F1 = F + o(xr ), and
Ft ◦ Ft ′ = Ft+t ′ + o(xr ) for any t, t ′ ∈ R.

Proof Recall that F is orientation preserving. Put α = F ′ > 0. If α = 1, then F
is smoothly linearizable at 0. This means that there exists 	 ∈ D such that 	 ◦ F ◦
	−1(x) = αx . In this case, the family (	−1 ◦ Lαt ◦ 	)t∈R satisfies the required
properties.

By D(r), we denote the subgroup of D consisting of r -flat elements, where the
group operation is given by the composition of germs. Suppose that F ′ = 1. Then
F belongs to D(1). The group D(1)/D(r) is a finite-dimensional, connected, and
simply connected nilpotent Lie group and it is well-known that the exponential map is
a diffeomorphism for such Lie groups (see [15, Theorem 1.2.1] for example). Hence,
there exists an element ξ in theLie algebra ofD(1)/D(r) such that exp(ξ) = F+o(xr ).
Then the family (exp(tξ))t∈R satisfies the required properties.

Remark 3.2 There is an explicit inductive construction of the family (Ft )t∈R for the
case F ′ = 1: The constant family (Ft

1 ≡ I )t∈R satisfies the required condition for
r = 1. Suppose that we have a family (Ft

r )t∈R which satisfies the required condition
for some r ≥ 1. Put a = [F (r+1)(0)−F (r+1)

r (0)]/(r+1)! and let (Gt )t∈R be the germ
of local flow generated by the vector field axr+1(∂/∂x) at 0. We set Ft

r+1 = Ft
r ◦ Gt .

Then, F1
r+1(x) = F1

r (x)+ axr+1 + o(xr+1) = F(x)+ o(xr+1). Since the germ Gt is
r -flat, the maps Ft

r and Gt commute up to order xr+1 (see also Remark 3.4). Hence,

we have Ft+t ′
r+1 = Ft

r+1 ◦ Ft ′
r+1 + o(xr+1). Thus the family (Ft

r+1)t∈R satisfies the
required condition for r + 1.

For h ∈ Diffr ([0, 1]) orDiffr (R), the support of h, denoted by supp h, is the closure
of {h(x) = x}. For a family of diffeomorphism (ht ), its support means the closure
of the union ∪t supp ht . The following lemma plays a key role in our construction of
universal semigroups.
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Lemma 3.3 Let r ∈ [2,+∞]. Let I be a compact interval in R and F be an
orientation-preserving Cr -diffeomorphism of R such that supp(F) ⊂ I . Then, there
exist one-parameter groups (Gt )t∈R and (Ht )t∈R of Cr -diffeomorphisms of R and a
compact interval I ′ such that F = G1 ◦ H1 on I and the support of (Gt ) and (Ht )

are both contained in I ′.
Proof Take 0 < λ < 1 such that the map Fλ(x) = λF(x) is a uniform contraction on
R. The contraction property implies that the map Fλ has a unique fixed point p∗. This
fixed point is exponentially stable. It follows that Fλ is Cr -linearizable on R. More
precisely, there exists a Cr -diffeomorphism ϕ of R and a constant μ > 0 such that
Fλ ◦ ϕ(x) = ϕ(μx) for any x ∈ R.

Put Ḡt (x) = λ−t x and H̄ t (x) = ϕ(μt · ϕ−1(x)) for x ∈ R. These are one-
parameter groups of diffeomorphisms of R. Take a compact interval I ′ whose interior
contains Ḡt ◦ Fλ(I ) and H̄ t (I ) for any t ∈ [0, 1]. By cutting-off the vector fields
generating (Ḡt ) and (H̄ t ) outside I ′, we obtain one-parameter groups (Gt )t∈R and
(Ht )t∈R of diffeomorphisms of R such that Gt (x) = Ḡt (x) and Ht (x) = H̄ t (x) for
any x ∈ I ∪ Fλ(I ) and t ∈ [0, 1], and the supports of Gt and Ht are both contained
in I ′. By construction, G1 ◦ H1(x) = λ−1 · Fλ(x) = F(x) for any x ∈ I . ��
In the following, we give three lemmas on the cancellation of germs, which are the
main ingredient of the proofs of Theorems 2.1 and 2.2 for the case r ≥ 2. Their proofs
will be done by calculating compositions of polynomials. In the proofs, wewill exploit
the following elementary observations.

Remark 3.4 1. Non-linearities andSchwarzianderivatives satisfy the following cocy-
cle properties: for F,G ∈ D, we have

A(F ◦ G) = A(F) · (G ′) + A(G), S(F ◦ G) = S(F) · (G ′)2 + S(G).

In particular, if the germs F and G are 1-flat, then

A(F ◦ G) = A(F) + A(G), S(F ◦ G) = S(F) + S(G).

2. Suppose that F ∈ D is 1-flat and G ∈ D satisfies G(x) = x + cxr+1 + o(xr+1)

(i.e, G is r -flat). Then an easy computation shows that

F ◦ G(x) ≡ G ◦ F(x) ≡ F(x) + cxr+1 mod o(xr+1).

In particular, (F ◦ G)(r+1) = (G ◦ F)(r+1) = F (r+1) + G(r+1).

For a germ F ∈ D satisfying A(F) = 0, we put (S/A)(F) = S(F)/A(F).

Lemma 3.5 Let F1 and F2 be 1-flat germs inD with the opposite signs and satisfying
|(S/A)(F1)| > |(S/A)(F2)|. Then, for any neighborhood V of the identity germ in D
and any α, β ∈ R, there exist 1-flat germ H ∈ V and m, n ≥ 1 such that the following
holds:

A(Fn
2 ) + A((H ◦ F1)

m) + α = 0,

S(F1) · {
S(Fn

2 ) + S((H ◦ F1)
m) + β

}
> 0.
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Proof Since A(F1) · A(F2) < 0, there exist sequences (mk)
∞
k=1 and (nk)∞k=1 such

that limk→∞ mk = +∞ and |mk A(F1) + nk A(F2)| < 1 for any k ≥ 1. Put ck =
(mk A(F1) + nk A(F2) + α)/(2mk) and let Hk be the germ in D given by Hk(x) =
x − ckx2 + c2k x

3. Then, A(Hk) = −2ck , S(Hk) = 0, and Hk converges to the identity
germ in D. Notice that, by Remark 3.4, we have

A(Fnk
2 ) + A((Hk ◦ F1)

mk ) = mk (A(F1) + A(Hk)) + nk A(F2) = −α

and

S(Fnk
2 ) + S((Hk ◦ F1)mk )

mkS(F1)
= nk S(F2) + mk[S(Hk) + S(F1)]

mkS(F1)

= nk S(F2)

mkS(F1)
+ (0 + 1)

= − A(F1) + A(Hk) + (α/mk)

A(F2)
· S(F2)

S(F1)
+ 1

k→∞−−−→ − A(F1)S(F2)

A(F2)S(F1)
+ 1.

Since |S(F1)/A(F1)| > |S(F2)/A(F2)|, the last term is positive. This implies that

lim
k→∞ S(F1) · {S(Fnk

2 ) + S((H ◦ F1)
mk )} = +∞.

This shows that Hk , mk and nk satisfy the desired properties for sufficiently large k. ��
Lemma 3.6 Suppose r ≥ 2. Let F1 and F2 be r-flat germs in D such that F (r+1)

1 ·
F (r+1)
2 < 0. Then, for any neighborhood V of the identity and α ∈ R, there exist

H ∈ Dr and m, n ≥ 1 such that

Fm
2 ◦ (H ◦ F1)

n(x) = x + αxr+1 + o(xr+1).

Proof Proof is similar to Lemma 3.5. Put αi = F (r+1)
i /(r + 1)! for i = 1, 2. Since

α1 ·α2 < 0, there exists sequences (mk)
∞
k=1 and (nk)∞k=1 such thatmk → ∞ as k → ∞

and |mkα2 + nkα1| < 1 holds. Put

ck = mkα2 + nkα1 − α

nk

and Hk(x) = x − ckxr+1. Then, Hk converges to the identity inD. Since r -flat germs
are commutative up to (r + 1)-st order, we have

Fmk
2 ◦ (Hk ◦ F1)

nk = x + (mkα2 + nk(α1 − ck))x
r+1 + o(xr+1)

= x + αxr+1 + o(xr+1).

This shows that Hk , mk and nk satisfy the desired property if k is sufficiently large. ��
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Lemma 3.7 Suppose r ≥ 3. Let F1, . . . , F4 be r-flat germs in D. Then, for any
neighborhood V of the identity map in D and α ∈ R, there exist H1, . . . , H4 ∈ V and
n ≥ 1 such that

(H4 ◦ F4)
n ◦ · · · ◦ (H1 ◦ F1)

n(x) = x + αxr+1 + o(xr+1).

Proof Set c = (
∑4

i=1 F
(r+1)
i )/(r + 1)!. Let (Gt )t∈R and (Ht

μ)t∈R be the germs of

local flows generated by vector fields x2 ∂
∂x and μxr ∂

∂x , respectively. They satisfy the
following:

Gt (x) = x

1 − t x
= x + t x2 + · · · + tr xr+1 + o(xr+1),

Ht
μ(x) = x + μt xr + o(xr+1).

Since

Gt ◦ Ht
μ(x) = (x + μt xr ) + t (x + μt xr )2 + · · · + o(xr+1)

= Gt (x) + μt xr + 2μt2xr+1 + o(xr+1),

Ht
μ ◦ Gt (x) = Gt (x) + μt (x + t x2 + · · · )r + o(xr+1)

= Gt (x) + μt xr + rμt2xr+1 + o(xr+1),

we have

Gt ◦ Ht
μ(x) = Ht

μ ◦ Gt (x) − (r − 2)μt2xr+1 + o(xr+1).

This implies that

Gt ◦ Ht
μ ◦ G−t ◦ H−t

μ (x) = x − (r − 2)μt2xr+1 + o(xr+1).

Set μn = c − (α/n) and tn = 1/
√
n(r − 2) for n ≥ 1. The germs Gtn and Htn

μn

converge to the identity in D. Since r -flat germs commute with any germs in D up to
(r + 1)-st order, we have

(Gtn ◦ F4)
n ◦ (Htn

μn
◦ F3)

n ◦ (G−tn ◦ F2)
n ◦ (H−tn

μn
◦ F1)

n

= Gntn ◦ Hntn
μn

◦ G−ntn ◦ H−ntn
μn

(x) + cnxr+1 + o(xr+1)

= x +
[
−(r − 2)μn(ntn)

2 + cn
]
xr+1 + o(xr+1)

= x + (c − μn)n · xr+1 + o(xr+1)

= x + αxr+1 + o(xr+1).

Thus, letting n large, H1 = H−tn
μn , H2 = G−tn , H3 = Htn

μn and H4 = Gtn , we complete
the proof. ��
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Remark that the above proof needs the assumption r ≥ 3 because of the expression
tn = 1/

√
n(r − 2).

These lemmas allow us to construct flat germs. For the practical use, we need to take
their realizations as close to identity diffeomorphisms. The following statement shows
that such realization are always possible (we omit the proof since it is well-known):

Remark 3.8 For any neighborhood N of the identity map in Diff∞([−1, 1]), any
x ∈ (0, 1), and any neighborhood V ⊂ [−1, 1] of x , there exists a neighborhood M
of the identity germ in D such that for every F ∈ M there exists a diffeomorphism
F̃ ∈ N such that F̃(x) = x , [F̃]x = F , and suppF̃ ⊂ V .

4 Connecting lemmas

In this section, we show that, in the presence of a blender, we can create an orbit
connecting any two prescribed points by a small perturbation. We consider semigroup
actions ρ = ( f0, f1, f2) ∈ Ar ({0, 1, 2}) (where r ≥ 1) which satisfy the following
conditions:

1. ( f1, f2) ∈ Ar ({1, 2}) is a blender on a closed interval J ⊂ [0, 1].
2. Int(J ) ∩ f0(Int(J )) = ∅.
Notice that these conditions hold for ρ ∈ Wr .

We prepare several definitions. For x ∈ [0, 1], we put

O−(x, ( f1, f2)) = {y ∈ [0, 1] | ρω(y) = x for some ω ∈ {1, 2}∗}.

We say that a point x ∈ J is ( f1, f2)-generic if the closure ofO−(x, ( f1, f2)) contains
J . An ( f1, f2)-generic point is a generic point in the sense of Baire as well. Indeed, the
set J (U ) = J ∩⋃

ω∈{1,2}∗ ρω(U ) is an open and dense subset of J for any non-empty
open subset U of J . Take a countable open basis (Un)n≥1 of J . Since ( f1, f2) is a
blender on J , every point in the residual subset

⋂
n≥1 J (Un) of J is ( f1, f2)-generic.

For h ∈ Diffr ([0, 1]), we define an element ρh of Ar ({0, 1, 2}) by

ρh = (h ◦ f0, f1, f2).

For a point x ∈ [0, 1] and a word ω = sn · · · s1 ∈ {0, 1, 2}∗, set

�ω
h (x) = {ρsk ...s1

h (x) | sk = 0, k = 1, . . . , n}.

When h is the identity map, we simply write ρω and �ω for ρω
h and �ω

h . If h ∈
Diffr ([0, 1]) satisfies supp(h) ∩ �ω(x) = ∅, then [ρω

h ]x = [ρω]x , hence [ρ0ω
h ]x =

[h]ρ0ω(x) ◦ [ρ0ω]x (remember that by [ · ]x we denote the germ of a diffeomorphism at
x , see Sect. 3). For ω ∈ {0, 1, 2}∗, a point x ∈ [0, 1] is ω-periodic for ρ if ρω(x) = x .
For r ∈ [1,+∞], we say that an ω-periodic point x is r-flat if the germ [ρω]x is r -flat.
For a word ω ∈ S∗ with an alphabet S, we denote the length of ω by |ω|, i.e. |ω| = n
if ω = sn . . . s1. For 1 ≤ k ≤ n, we set ω|k = sk · · · s1.
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Lemma 4.1 Let p and p′ be points in J such that p′ is ( f1, f2)-generic. For any
neighborhood N ⊂ Diff∞([0, 1]) of the identity map, any non-empty open subset
U of J ∩ f0(J ) and any l ≥ 1, there exist h ∈ N and ω ∈ {0, 1, 2}∗ such that
supp(h) ∪ �ω

h (p) ⊂ U, ρω
h (p) = p′, and |ω| ≥ l.

Proof Since p′ is ( f1, f2)-generic, O−(p′, ρ) intersects with U ⊂ J ∩ f0(J ). Take
η ∈ {1, 2}∗ such that |η| ≥ l and q = (ρη)−1(p′) belongs to U . Since ( f1, f2) is a
blender on J , the point f −1

0 (q) is contained in the closure of O+(p, ρ). Hence, there
exist h ∈ N and η′ ∈ {1, 2}∗ such that supp(h) ⊂ U and h ◦ f0 ◦ ρη′

(p) = q. Put
ω = η0η′. Then, ρω

h (p) = p′, �ω
h (p) = {q} ⊂ U , and |ω| ≥ l. ��

Remark 4.2 Notice that in the word ω obtained in the above proof the letter 0 appears
only once.

The next lemma shows that when there is an r -flat periodic point somewhere in J ,
then the connecting orbit can be constructed in such a way that the germ [ρω

h ]p will
coincide with any prescribed one up to order r . In particular, we can construct the
connecting orbit for which the corresponding germ will be r -flat.

Lemma 4.3 Let p and p′ be points in J such that p′ is ( f1, f2)-generic. Suppose that
there exist an ( f1, f2)-generic point p̂ ∈ J , a word γ ∈ {0, 1, 2}∗, and r0 ∈ [1, r ] such
that p̂ is an r0-flat 0γ -periodic point of ρ and p̂ /∈ �γ ( p̂). Then, for any neighborhood
N ⊂ Diff∞([0, 1]) of the identity map, any neighborhood V of p̂, any non-empty open
subset U of J ∩ f (J ), any germ F ∈ D and any l ≥ 1, there exist ω ∈ {0, 1, 2}∗ and
h ∈ N such that |ω| ≥ l, supp(h) ⊂ U ∪ V , ρω

h (p) = p′, [ρω
h (t)]p = F(t) + o(tr0),

and �ω
h (p) ⊂ �γ ( p̂) ∪U ∪ V .

Proof Without loss of generality, we may assume that the sets U , V , and �γ ( p̂) are
mutually disjoint. Applying Lemma 4.1 for pairs (p, p̂), ( p̂, p′) and the open set U ,
we obtain ω1, ω2 ∈ {1, 2}∗ and h̄ ∈ N such that |ω1| ≥ l, supp(h̄) ⊂ U , ρω1

h̄
(p) = p̂,

ρ
ω2

h̄
( p̂) = p′, and �

ω1

h̄
(p) ∪ �

ω2

h̄
( p̂) ⊂ U . More precisely, we first take U1,U2 ⊂ U

satisfying U1 ∩ U2 = ∅. Then we apply Lemma 4.1 for (p, p̂) and U1, and ( p̂, p′)
and U2 to obtain two diffeomorphisms h1 and h2 respectively. Then, since they have
disjoint support, their composition h̄ = h1 ◦ h2 gives us the desired h̄.

Put F1 = [ρω1

h̄
]p and F2 = [ρω2

h̄
] p̂. By Lemma 3.1, there exists a one-parameter

family of germs (φt )t∈R in D (which is a one-parameter group up to order r0) such
that

φ1(x) = (F2)
−1 ◦ F ◦ F−1

1 (x) + o(xr0).

Notice that, by Remark 3.8, for each φ1/N , we can choose a diffeomorphism ϕ1/N :
[0, 1] → [0, 1], such that ϕ1/N ( p̂) = p̂ and [ϕ1/N ] p̂ = φ1/N . Furthermore, by
choosing N sufficiently large, we can assume that h = ϕ1/N ◦ h̄ is contained in N ,
being the support of ϕ1/N arbitrarily close to the point { p̂}.

Then, the support of h is contained in U ∪ V , hence, it does not intersect �γ ( p̂).
Put ω = ω2(0γ )Nω1. Since p̂ is an r0-flat 0γ -periodic point, we have
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[ρω
h (x)]p = F2 ◦ ([ϕ1/N ] p̂ ◦ [ργ ] p̂)N ◦ F1(x)

= F2 ◦ [ϕ1] p̂ ◦ F1(x) + o(xr0)

= F(x) + o(xr0).

We can also see that |ω| ≥ l and �ω
h (p) = �γ ( p̂) ∪ { p̂} ∪ �

ω1
h1

(p) ∪ �
ω2
h2

( p̂). The
latter implies that �ω

h (p) ⊂ �γ ( p̂) ∪U ∪ V . ��
Remark 4.4 In this lemma, because of Remark 4.2, we can assume that there exists a
point y ∈ �ω

h (p) ∩U and a unique integer k ≥ 1 such that ρω|k
h (p) = y and ωk = 0,

where ω = ω|ω| · · · ω1. Indeed, the point in U1 ∩ �ω
h (p) is such a point. Roughly

speaking, y is a point which appears in �ω
h (p) only once.

Below we will use the following perturbation result whose proof we omit.

Remark 4.5 Let f ∈ Diffr ([0, 1])where r ∈ [1,+∞]. If f has an r -flat fixed point x ,
then Cr -arbitrarily close to the identity there exists g ∈ Diff∞([0, 1]) whose support
is contained in an arbitrarily small neighborhood of {x} such that g ◦ f coincides with
the identity map near x .

For the case r = ∞, we have the following

Lemma 4.6 Under the assumptions of Lemma 4.3, we furthermore assume that ρ ∈
A∞({0, 1, 2}) and p̂ is ∞-flat 0γ -periodic point of ρ. Then, for any neighborhood
N ⊂ Diff∞([0, 1]) of the identity map, any neighborhood V of p̂, any non-empty open
subsetU of J∩ f (J ), there existω ∈ {0, 1, 2}∗ and h ∈ N such that supp(h) ⊂ U∪V ,
ρω
h (p) = p′, [ρω

h (t)]p = [t], and �ω
h (p) ⊂ �γ ( p̂) ∪ V ∪U.

Proof For a given N ⊂ Diff∞([0, 1]), since the C∞-topology coincides with the
projective limit of Cr -topology, there exists s ≥ 1 and N s ⊂ Diffs([0, 1]) such that
N s ∩ Diff∞([0, 1]) ⊂ N . We fix such s and N s .

Then, for given ρ,U and V , by applying Lemma 4.3 where we let F be the identity
germ and r0 = s, we take h which is arbitrarily C∞-close to the identity map and
ω ∈ {0, 1, 2}∗ such that ρω

h (p) = p′ and [ρω
h (t)]p = t + o(t s).

Now, by Remark 4.5, we choose h̃ ∈ Diff∞([0, 1]) supported in an arbitrarily small
neighborhood of p′ such that it is arbitrarily Cs close to the identity and [h̃ ◦ρω

h (t)] =
[t]. We take a point y ∈ �ω

h (p)∩U given by Remark 4.4 and choose ωy , ω′
y such that

ρ
ωy
h (p) = y and ω = ω′

yωy .

Now, we take h̄ = (ρ
ω′
y

h )−1 ◦ h̃ ◦ ρ
ω′
y

h . Then, by taking h̃ arbitrarily Cs-close to the
identity, we can assume that h̄ ∈ N s ∩ Diff∞([0, 1]). Furthermore, by shrinking the
support of h̃, we can check that ρω

h̄◦h(p) = p′ keeping [ρω

h̄◦h(t)]p = [t] and all the

other conditions. Thus, h̄ ◦ h gives us the desired map g. ��

5 Creation of r-flat periodic orbits

In this section, we prove the following proposition which implies Theorem 2.1.
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Proposition 5.1 For any ρ = ( f0, f1, f2) ∈ W∞, any open neighborhood N of the
identity map in Diff∞([0, 1]), any N , l ≥ 1, and r ∈ [1,∞], there exist h ∈ N ,
( f1, f2)-generic distinct points p̂1, . . . , p̂N in J , and γ1, . . . , γN ∈ {0, 1, 2}∗ such
that |γi | ≥ l, p̂i is an r-flat 0γi -periodic point for ρh for any i = 1, . . . , N, and the
sets { p̂1, . . . , p̂N }, �γ1( p̂1), . . . , �γN ( p̂N ) are mutually disjoint.

Let us, first, see how we derive Theorem 2.1 from Proposition 5.1. In the proof, we
use perturbations given by the following construction.

Remark 5.2 Let f ∈ Diffr ([0, 1]) where 1 ≤ r ≤ +∞. If f coincides with the
identity map on some non-empty open interval U , then for every � > 0, there exists
g ∈ Diff∞([0, 1]) which is arbitrarily C∞-close to the identity and is supported in an
arbitrarily small interval in U , such that g ◦ f has more than � attracting fixed points
inU . For instance, one can build such g as follows: let g be a map which has the form
x + a sin(kx) (a and k are some constants). Collapse it to the identity map outside U
by some bump function. Then, by choosing a and k appropriately, one can see that
g will be arbitrarily C∞-close to the identity and have an arbitrarily large number of
attracting periodic points in U . The details are left to the reader.

Another important remark is that W∞ is dense in Wr for any r ≥ 1. For r ≥ 3,
it is trivial, since A∞({0, 1, 2}) is dense in Ar ({0, 1, 2}). So, let us consider the case
r = 2. For any ρ = ( f0, f1, f2) ∈ W2 with heteroclinic points z1 and z2 satisfying
Sign Condition I, a C2-small (but C3-large) perturbation of f0 at z1 and z2 creates a
C∞ map f such that τS(z1, f ) · τS(z2, f ) < 0. This implies thatW∞ is C2-dense in
W2. Similarly, we can see that W∞ is C1-dense inW1.

Proof of Theorem 2.1 from Proposition 5.1 Fix 1 ≤ r ≤ ∞ and a sequence (an)∞n=1
of integers. Put

U(ω) = {ρ ∈ Wr | # Fixa(ρω) ≥ |ω| · a|ω|}

for ω ∈ {0, 1, 2}∗ and Un = ⋃
|ω|≥n U(ω) for n ≥ 1. By the persistence of attracting

periodic points, U(ω) is open for every ω and, accordingly, Un is open as well. Notice
that every ρ ∈ ⋂

n≥1 Un satisfies

lim sup
n→∞

∑
ω∈{0,1,2}n Fixa(ρω)

an
= ∞.

Hence, it is sufficient to show that Un is a dense subset of Wr for every n ≥ 1.
Fix a non-empty open subset U of Wr , ρ = ( f0, f1, f2) ∈ U ∩ W∞, and n ≥ 1.

Take a neighborhood N 1/3 of the identity map in Diff∞([0, 1]) such that ((h3 ◦ h2 ◦
h1) ◦ f0, f1, f2) ∈ U for any h1, h2, h3 ∈ N 1/3. By Proposition 5.1, there exist
h1 ∈ N 1/3, p ∈ J , and γ ∈ {0, 1, 2}∗ such that |γ | ≥ n and p is an r -flat 0γ -
periodic point of ρh1 satisfying p /∈ �

γ

h1
(p). Take h2 ∈ N 1/3 such that supp(h2) ∩

�
γ

h1
(p) = ∅, and ρ

0γ
h2◦h1 = h2ρ

0γ
h1

is the identity map on a small neighborhood V of

p (see Remark 4.5). We also take h3 ∈ N 1/3 such that supp(h3) ∩ �γ (p) = ∅ and
ρ
0γ
h3◦h2◦h1 admits more than a|0γ ||0γ | attracting fixed points in V (see Remark 5.2).
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Now ((h3 ◦ h2 ◦ h1) ◦ f0, f1, f2) is contained in U ∩ Un . Since the choice of U is
arbitrary, the set Un is dense inWr . ��

Let us prove Proposition 5.1. The proof is done by several inductive steps. The
following notation will be used throughout this section. Let ρ = ( f0, f1, f2) ∈
A∞({0, 1, 2}) and J ⊂ [0, 1] be a closed interval such that ( f1, f2) is a blender
on J . We assume that f0 has a repeller-attractor pair (p, q) in Int J .

In the following first step, we create 1-flat periodic points which satisfy certain esti-
mates on A and S. Recall that for a germ F ∈ D, we denote (S/A)(F) = S(F)/A(F).

Lemma 5.3 In the above setting, assume that for a repeller-attractor pair (p, q) the
repeller p is ( f1, f2)-generic, (log f ′

0(p))/(log f ′
0(q)) is irrational, and the pair (p, q)

has a heteroclinic point z∗ with τA(z∗, f0) = 0 and τS(z∗, f0) = 0. Then, for any
neighborhoodN of the identity map in Diff∞([0, 1]) and any finite subset � of [0, 1]
and ν > 0, there exist h ∈ N , an ( f1, f2)-generic point p̂ ∈ J \�, and γ ∈ {0, 1, 2}∗
such that p̂ is a 1-flat 0γ -periodic point for ρh, (supp(h) ∪ �

γ

h ( p̂)) ∩ � = ∅, the sign
of the germ [ρ0γ

h ] p̂ is (τA(z∗, f0), τS(z∗, f0)), and |(S/A)([ρ0γ
h ] p̂)| > ν.

We remark that the finite set � in the lemma can contain p and q.

Proof We may assume that � ∩ { f i0 (z∗) | i ∈ Z} = ∅ by replacing z∗ with a nearby
point if necessary.

We denote

X = f −1
0 (�) ∪ � ∪ f0(�) ∪ [p, q],

where [p, q] denotes the closed interval whose end points are p and q (note that we
do not assume p is to the left of q). Notice that { f i (z∗) | i ∈ Z} ⊂ [p, q]. Since Int J
contains a repelling fixed point p of f0, we see that [Int(J )∩ f0(Int(J )∩ f −1

0 (Int(J ))]\
X = ∅. Take a point p̂ in this set such that p̂ is ( f1, f2)-generic and f0( p̂) = p̂. Remark
that the three points p̂, f0( p̂), and f −1

0 ( p̂) aremutually distinct (since f0 is orientation-
preserving). Also, notice that by construction { p̂, f0( p̂), f −1

0 ( p̂)}∩ (�∪[p, q]) = ∅.
We take an open neighborhood U of { p̂, f0( p̂), f −1

0 ( p̂)} in (Int(J ) ∩ f0(Int(J )) ∩
f −1
0 (Int(J )))\ (�∪[p, q]). Then we take a neighborhood V of ( f0( p̂), p̂) inU ×U ,

a real number ε > 0, and a continuous family (hs,v)s∈(−ε,ε),v∈V in N such that

1. supp(hs,(x,y)) ⊂ U ,
2. hs,(x,y)( f0( p̂)) = x , (hs,(x,y))′( f0( p̂)) = 1,
3. hs,(x,y)(y) = p̂, and (hs,(x,y))′(y) = es ,

for any s ∈ (−ε, ε) and (x, y) ∈ V . Since, by construction, f0( p̂), f −1
0 ( p̂) ∈ J and p

is ( f1, f2)-generic, there exist η, η′ ∈ {1, 2}∗ such that v̄ = ((ρη)−1(p), f0 ◦ ρη′
(q))

is contained in V . Let γm,n = 0η′0m+nη0 and

vm,n = ((ρη)−1( f −m
0 (z∗)), f0 ◦ ρη′

( f n0 (z∗)))

for m, n ≥ 1. Since f n0 (z∗) converges to q and f −n
0 (z∗) converges to p as n→∞,

vm,n converges to v̄ as m, n→∞. Fix N ≥ 1 such that vm,n ∈ V for any m, n ≥ N .
For any m, n ≥ N , we have
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Fig. 1 Proof of Lemma 5.3

ρ
γm,n
hs,vm,n

= (hs,vm,n ◦ f0) ◦ ρη′ ◦ f m+n
0 ◦ ρη ◦ (hs,vm,n ◦ f0) (1)

in a small neighborhood of p̂. In particular, ρ
γm,n
hs,vm,n

( p̂) = p̂; see Fig. 1.

We will show that γ = γm,n and h = hs,vm,n satisfy the required properties at p̂ for
suitably chosen m, n and s. Let ϕ : Wu(p)→R and ψ : Ws(q)→R be linearizations
of f0 at p and q respectively. Notice that since supp (hs,(x,y)) ⊂ U , the perturbation
by hs,(x,y) does not change the behavior of ϕ and ψ on (p, q). Let λp = f ′

0(p),
λq = f ′

0(q), and define a continuous function

c(x, y) = ( f0 ◦ ρη′ ◦ ψ−1)′(( f0 ◦ ρη′ ◦ ψ−1)−1(y)) · (ϕ ◦ ρη)′(x) · f ′
0( p̂)

on V . By equality (1), notice that the following holds:

(
ρ

γm,n
hs,vm,n

)′
( p̂) = es · λmp · λnq · c(vm,n) · (ψ ◦ ϕ−1)′(ϕ(z∗)).

for any m, n ≥ N . Since λp > 1 > λq and the ratio log λp/ log λq is irrational, there
exist increasing sequences (mk)k≥1 and (nk)k≥1 such that

lim
k→∞ λmk

p · λnkq · c(v̄) · (ψ ◦ ϕ−1)′(ϕ(z∗)) = 1.

By the continuity of the function c, the sequence c(vmk ,nk ) converges to c(v̄) as k→∞.
Hence, we can choose a converging to zero sequence of real numbers (sk)k≥1 such
that |sk | < ε and

(
ρ

γmk ,nk
hsk ,vmk ,nk

)′
( p̂) = esk · λmk

p · λnkq · c(vmk ,nk ) · (ψ ◦ ϕ−1)′(ϕ(z∗)) = 1

for all large k.
Let us estimate A([ρ0γ

h ] p̂) and S([ρ0γ
h ] p̂) for (γ, h) = (γmk ,nk , hsk ,vmk ,nk

). Let

Fk = [ϕ ◦ ρη ◦ (hsk ,vmk ,nk
◦ f0)] p̂,

Gk = [(hsk ,vmk ,nk
◦ f0) ◦ ρη′ ◦ ψ−1]

ψ◦ f
nk
0 (z∗).

Then, Fk and Gk converge to [ϕ ◦ ρη ◦ (h0,v̄ ◦ f0)] p̂ and [(h0,v̄ ◦ f0) ◦ ρη′ ◦ ψ−1]ψ(q)

respectively,
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and
[
ρ
0γmk ,nk
hsk ,vmk ,nk

]

p̂
= Gk ◦ Lnk

λq
◦ [ψ ◦ ϕ−1]ϕ(z∗) ◦ Lmk

λp
◦ Fk,

where Lλ is the germ of the map x �→ λx at 0. By the cocycle property of A( · ) and
the equality (ρ

0γmk ,nk
hsk ,vmk ,nk

)′( p̂) = 1, together with the obvious relation A(Lλ) = 0, we

have

A

([
ρ
0γmk ,nk
hsk ,vmk ,nk

]

p̂

)

= A(Gk) · ((Gk)
′)−1 + A([ψ ◦ ϕ−1]ϕ(z∗)) · λmk

p (Fk)
′ + A(Fk).

This implies that

lim
k→∞ λ−mk

p · A
([

ρ
0γmk ,nk
hsk ,vmk ,nk

]

p̂

)

= A([ψ ◦ ϕ−1]ϕ(z∗)).

Similarly, we have

lim
k→∞ λ−2mk

p · S
([

ρ
0γmk ,nk
hsk ,vmk ,nk

]

p̂

)

= S([ψ ◦ ϕ−1]ϕ(z∗)).

Therefore, the germ [ρ0γmk ,nk
hsk ,vmk ,nk

] p̂ has the same sign as [ψ ◦ ϕ−1]ϕ(z∗) and

|(S/A)[ρ0γmk ,nk
hsk ,vmk ,nk

] p̂| > ν for all large k.

Thus we have completed the construction of h = hsk ,vmk ,nk
and p̂ having all the

desired properties. ��
Remark 5.4 In the proof of Lemma5.3,we can assume that the length of γ is arbitrarily
long. Indeed, we only need to choose one which corresponds to a large k.

On the second step, we construct a 2-flat periodic point from five 1-flat periodic
points.

Lemma 5.5 Suppose that there exist mutually distinct ( f1, f2)-generic points p1, . . . ,
p5 in J and γ1, . . . , γ5 ∈ {0, 1, 2}∗ such that

1. each pi is a 1-flat 0γi -periodic point,
2. �γ1(p1), . . . , �γ5(p5) and {p1, . . . , p5} are mutually disjoint,
3. [ρ0γ4 ]p4 and [ρ0γ5 ]p5 have opposite signs, and

|(S/A)([ρ0γ4 ]p4)| > |(S/A)([ρ0γ5 ]p5)|.

Then, for any neighborhood V of {p1, . . . , p5}, any neighborhood N of the identity
map in Diff∞([0, 1]), and any non-empty open subset U of J ∩ f0(J ), there exist an
( f1, f2)-generic point p̂ ∈ U, γ̂ ∈ {0, 1, 2}∗, and h ∈ N such that supp(h) ⊂ U∪V , p̂

is a 2-flat 0γ̂ -periodic point for ρh with p̂ /∈ �
γ̂

h ( p̂),�γ̂

h ( p̂) ⊂ ⋃5
i=1 �γi (pi )∪U ∪V ,

and sgn(S([ρ0γ̂
h ] p̂)) = sgn(S([ρ0γ4 ]p4)).
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Proof Without loss of generality, we may assume that U , V and
⋃5

i=1 �γi (pi ) are
mutually disjoint.

We prepare several regions for the construction of the periodic orbit. Take a neigh-
borhood N 1/4 of the identity in Diff∞([0, 1]) such that any composition of four
diffeomorphisms in N 1/4 belongs to N . We take a neighborhood Vi of pi for each
i = 1, . . . , 5 such that V1, . . . , V5 are mutually disjoint subsets of V . Then, we take
non-empty, mutually disjoint open sets Ui (i = 0, 1, 2, 3) in U such that f −1

0 (U0) is
also disjoint fromUi (i = 1, . . . , 3) and Vi (i = 1, . . . , 5). It is not difficult to choose
suchUi and Vi , so we leave it to the reader. Finally, we take an ( f1, f2)-generic point
p̄ in U0 such that f −1

0 ( p̄) is also ( f1, f2)-generic. One can check that such a choice
is indeed possible by using the fact that being an ( f1, f2)-generic point is a generic
property in J .

Now we construct the periodic orbit by using our connecting lemmas. First, by
Lemma4.3,with p̄, p4, p1,U1 andV1 corresponding to p, p′, p̂,U andV respectively
and F being the identity germ, we obtain ω1 ∈ {0, 1, 2}∗ and h1 ∈ N 1/4 such that
supp(h1) ⊂ (U1 ∪ V1), ρ

ω1
h1

( p̄) = p4, and H1 = [ρω1
h1

] p̄ is 1-flat. Similarly, we
apply Lemma 4.3 to (p4, p5, p2,U2, V2) and, again, letting F be the identity germ,
and to (p5, f −1

0 ( p̄), p3,U3, V3) and F = ([ f0] f −1
0 ( p̄))

−1, and obtain that there exist

ω2, ω3 ∈ {0, 1, 2}∗ and h2, h3 ∈ N 1/4 such that

1. supp(hi ) ⊂ (Ui ∪ Vi ) for i = 2, 3,
2. ρ

ω2
h2

(p4) = p5, H2 = [ρω2
h2

]p4 is 1-flat, and
3. ρ

ω3
h3

(p5) = f −1
0 ( p̄), H3 = [ f0] f −1

0 ( p̄) ◦ [ρω3
h3

]p5 is 1-flat.

Let h� = h1 ◦ h2 ◦ h3 and γm,n = ω3(0γ5)mω2(0γ4)nω1 for m, n ≥ 1. Notice that,
by construction, p̄ is a 1-flat 0γm,n-periodic point of ρh� . We show that by adding a
further perturbation and choosingm, n appropriately, we can obtain the 2-flatness and
the condition on the Schwarzian derivative.

Let α = ∑3
i=1 A(Hi ) and β = ∑3

i=1 S(Hi ). By Lemma 3.5 (where we let F1 =
[ρ0γ4 ]p4 and F2 = [ρ0γ5 ]p5 ), together with Remark 3.8, we take h4 ∈ N 1/4 and
m, n ≥ 1 such that supp(h4) ⊂ V4, h4(p4) = p4, [h4]p4 is 1-flat, and the following
holds:

A([ρ0γ5 ]mp5) + A(([h4]p4 ◦ [ρ0γ4 ]p4)n) + α = 0.

S([ρ0γ4 ]p4) ·
{
S([ρ0γ5 ]mp5) + S(([h4]p4 ◦ [ρ0γ4 ]p4)n) + β

}
> 0.

Let h = h1 ◦ h2 ◦ h3 ◦ h4 = h� ◦ h4. This is a map in N such that supp(h) ⊂
(
⋃3

i=1Ui ∪⋃4
i=1 Vi ). SinceU1,U2,U3, V1, . . . , V5 are mutually disjoint and they do

not intersects with { p̄, f −1
0 ( p̄)} ∪ ⋃5

i=1 �γi (pi ), we have

[ρ0γm,n
h ] p̄ = [ρ0ω3

h3
]p5 ◦ [ρ0γ5 ]mp5 ◦ [ρω2

h2
]p4 ◦ [ρ0γ4

h4
]np4 ◦ [ρω1

h1
] p̂

= H3 ◦ [ρ0γ5 ]mp5 ◦ H2 ◦ [ρ0γ4
h4

]np4 ◦ H1.
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This, together with the 1-flatness of each germ, implies that

A([ρ0γm,n
h ] p̄) = A([ρ0γ5 ]mp5) + A(([h4]p4 ◦ [ρ0γ4 ]p4)n) + α,

S([ρ0γm,n
h ] p̄) = S([ρ0γ5 ]mp5) + S(([h4]p4 ◦ [ρ0γ4 ]p4)n) + β.

Therefore, A([ρ0γm,n
h ] p̄) = 0 and S([ρ0γm,n

h ] p̄) · S([ρ0γ4 ]p4) > 0. By construction, one

can see that�
γm,n
h ( p̄) ⊂ (

⋃3
i=1Ui ∪⋃5

i=1(�
γi (pi )∪Vi )). In particular, p̄ /∈ �

γm,n
h ( p̄)

and �
γm,n
h ( p̄) ⊂ ⋃5

i=1 �γi (pi ) ∪U ∪ V .
Thus we have constructed the desired p̂ = p̄, γ̂ = γm,n and h. ��
The following lemma is the third step.

Lemma 5.6 Suppose that there exist mutually distinct ( f1, f2)-generic points p1, . . . ,
p5 in J and γ1, . . . , γ5 ∈ {0, 1, 2}∗ such that

1. each pi is a 2-flat 0γi -periodic point,
2. �γ1(p1), . . . , �γ5(p5) and {p1, . . . , p5} are mutually disjoint,
3. S([ρ0γ4 ]p4) · S([ρ0γ5 ]p5) < 0.

Then, for any neighborhood V of {p1, . . . , p5}, any neighborhood N of the identity
map in Diff∞([0, 1]), and any non-empty open subset U of J ∩ f0(J ), there exist an
( f1, f2)-generic point p̂ ∈ U, γ ∈ {0, 1, 2}∗, and h ∈ N such that supp(h) ⊂ U ∪V ,
p̂ is a 3-flat 0γ -periodic point for ρh with p̂ /∈ �γ ( p̂), and �γ ( p̂) ⊂ ⋃5

i=1 �γi (pi )∪
U ∪ V .

Proof The proof is done similarly to the proof of Lemma 5.5, with the use of Lemma
3.6 instead of Lemma 3.5.

Without loss of generality, we may assume that U , V and
⋃5

i=1 �γi (pi ) are mutu-
ally disjoint. Take a neighborhoodN 1/4 of the identity in Diff∞([0, 1]) such that any
composition of four diffeomorphisms in N 1/4 belongs to N . We fix open neighbor-
hoods Vi of pi for each i = 1, . . . , 5 such that V1, . . . , V5 are mutually disjoint subsets
of V . We also take mutually disjoint non-empty open sets Ui (i = 0, 1, 2, 3), such
that f −1

0 (U0) is also disjoint fromUi (i = 0, 1, 2, 3) and Vi (i = 1, . . . 5). Finally, we
take an ( f1, f2)-generic point p̄ ∈ U0 such that f −1

0 ( p̄) is also ( f1, f2)-generic.
Then, by applying Lemma 4.3 with r0 = 2 in the same way as Lemma 5.5, we

obtain ω1, ω2, ω3 ∈ {0, 1, 2}∗, h1, h2, h3 ∈ N 1/4 such that

1. supp(hi ) ⊂ (Ui ∪ Vi ) for i = 1, 2, 3,
2. ρ

ω1
h1

( p̄) = p4, H1 = [ρω1
h1

] p̄ is 2-flat,
3. ρ

ω2
h2

(p4) = p5, H2 = [ρω2
h2

]p2 is 2-flat, and
4. ρ

ω3
h3

(p5) = f −1
0 ( p̄), H3 = [ f0] f −1

0 ( p̄) ◦ [ρω3
h3

]p2 is 2-flat.
Since each Hi is 2-flat, there exists α0 ∈ R such that

H3 ◦ H2 ◦ H1(x) = x + α0x
3 + o(x3).

ByLemma3.6 for r = 2 andα = α0 (notice that since pi is 2-flat, our third assumption
implies [ρ0γ4 ](3)p4 · [ρ0γ5 ](3)p5 < 0), there exist h4 ∈ N 1/4 and m, n ≥ 1 such that
supp(h4) ⊂ V4, h4(p4) = p4, [h4]p4 is 2-flat, and
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[ρ0γ5 ]mp5 ◦ ([h4]p4 ◦ [ρ0γ4 ]p4)n(x) = x − α0x
3 + o(x3).

Let h = h4◦h3◦h2◦h1. This is amap inN such that supp(h) ⊂ (
⋃3

i=1Ui ∪⋃4
i=1 Vi ).

We also put γm,n = ω3(0γ5)mω2(0γ4)nω1. Since V1, . . . , V5 are mutually disjoint and
they do not intersects with { p̄, f −1

0 ( p̄)} ∪ ⋃5
i=1 �γi (pi ), we have

[ρ0γm,n
h ] p̄ = [ρ0ω3

h3
]p5 ◦ [ρ0γ5 ]mp5 ◦ [ρω2

h2
]p4 ◦ [ρ0γ4

h4
]np4 ◦ [ρω1

h1
] p̄

= H3 ◦ [ρ0γ5 ]mp5 ◦ H2 ◦ ([h]p4 ◦ [ρ0γ4 ]p4)n ◦ H1.

Since any 2-flat germs commute with each other modulo o(x3), this implies that the
germ [ρ0γm,n

h ] p̄ is 3-flat. As in the proof of Lemma 5.5, by construction we can check

p̄ /∈ �
γm,n
h ( p̄) and �

γm,n
h ( p̄) ⊂ ⋃5

i=1 �γi (pi ) ∪U ∪ V .
Thus p̂ = p̄ is the desired 3-flat (0γm,n)-periodic point for ρh . ��
The fourth step is the following

Lemma 5.7 Suppose that 3 ≤ r < ∞ and there exist mutually distinct ( f1, f2)-
generic points p1, . . . , p9 in J and γ1, . . . , γ9 ∈ {0, 1, 2}∗ such that

1. each pi is an r-flat 0γi -periodic point, and
2. �γ1(p1), . . . , �γ9(p9), and {p1, . . . , p9} are mutually disjoint.
Then, for any neighborhood V of {p1, . . . , p9}, any neighborhood N of the identity
map in Diff∞([0, 1]), and any non-empty open subset U of J ∩ f0(J ), there exist an
( f1, f2)-generic point p̂ ∈ U,γ ∈ {0, 1, 2}∗, and h ∈ N such that supp(h) ⊂ U∪V , p̂
is an (r +1)-flat 0γ -periodic point for ρh with p̂ /∈ �γ ( p̂),�γ ( p̂) ⊂ ⋃9

i=1 �γi (pi )∪
U ∪ V .

Proof One proves this in the same way as Lemma 5.6, using Lemma 3.7 instead of
Lemma 3.6. Hence we omit the details. ��

Now we finish the proof of Proposition 5.1. The case r = ∞ is reduced to the case
r < ∞. So, first we consider the case r < ∞.

Proof of Proposition 5.1 for r < ∞ Take ρ = ( f0, f1, f2) ∈ W∞. Let J be the
closed subinterval of [0, 1] on which ( f1, f2) is a blender, ( p̄1, q̄1), . . . , ( p̄4, q̄4) be
repeller-attractor pairs in Int J , zi ∈ Wu( p̄i )∩Ws(q̄i ) (i = 1, 2, 3, 4) be heteroclinic
points such that τA(z1, f0) > 0 > τA(z2, f0) and τS(z3, f0) > 0 > τS(z4, f0).
By perturbing f0 if it is necessary, we may assume that p̄i is ( f1, f2)-generic,
(log f ′

0( p̄i ))/(log f ′
0(q̄i )) are irrational, τA(zi , f0) = 0, and τS(zi , f0) = 0 for

i = 1, . . . , 4. By an elementary combinatorial argument,1 there exists a pair (i1, i2)
in {1, 2, 3, 4} such that the signs of zi1 and zi2 are opposite.

First, we show how we construct a 3-flat periodic point. Fix a neighborhood N of
the identity map in Diff∞([0, 1]). Take a smaller neighborhood N 1/3 of the identity
such that any composition of three maps in N 1/3 belongs to N . Applying Lemma

1 If τS(z1, f0) = τS(z2), then choose (i1, i2) = (1, 2). If τS(z1, f0) = τS(z2) = +1 and τA(z4, f0) =
+1, then choose (i1, i2) = (2, 4). Other cases are similar.
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5.3 repeatedly to the heteroclinic points zi1 and zi2 , we obtain a diffeomorphism
h1 ∈ N 1/3, ( f1, f2)-generic points p1, . . . , p25 ∈ J , and γ1, . . . , γ25 ∈ {0, 1, 2}∗
such that pi is a 1-flat 0γi -periodic point satisfying the following:

• �
γ1
h1

(p1), . . . , �
γ25
h1

(p25), and {p1, . . . , p25} are mutually disjoint,

• [ρ0γ5 j−1
h1

]p19 and [ρ0γ5 j
h1

]p24 have opposite signs and |(S/A)([ρ0γ5 j−1
h1

]p5 j−1)| >

|(S/A)([ρ0γ5 j
h1

]p5 j )| for any j = 1, . . . , 5,

• S([ρ0γ19
h1

]p19) > 0 > S([ρ0γ24
h1

]p24).
Notice that we may apply Lemma 5.3 repeatedly in such a way that the perturbations
do not interfere with each other, since Lemma 5.3 allows us to localize the support of
perturbations away from a given finite set.

Then, by applying Lemma 5.5 to each quintuple of 1-flat periodic points
(p5 j−4, . . . , p5 j ) of ρh1 ( j = 1, . . . , 5), we take h2 ∈ N 1/3, p′

j ∈ J , and
γ ′
j ∈ {0, 1, 2}∗ such that p′

j is an ( f1, f2)-generic, 2-flat 0γ ′
j -periodic point of ρh2◦h1

for j = 1, . . . 5, �
γ ′
1

h2◦h1(p
′
1), . . . , �

γ ′
5

h2◦h1(p
′
5), and {p′

1, . . . , p
′
5} are mutually disjoint,

and

S

([
ρ
0γ ′

4
h2◦h1

]

p′
4

)

> 0 > S

([
ρ
0γ ′

5
h2◦h1

]

p′
5

)

.

Then, by applying Lemma 5.6 to (p′
1, . . . , p

′
5), we take a diffeomorphism h3 ∈ N 1/3,

an ( f1, f2)-generic point p̂ in J , and γ̂ ∈ {0, 1, 2}∗ such that p̂ is a 3-flat 0γ̂ -periodic

point of ρh3◦h2◦h1 and p̂ /∈ �
γ̂

h ( p̂). Thus we have constructed a 3-flat 0γ -periodic
point p̂ of ρh , where h = h3 ◦ h2 ◦ h1 is a diffeomorphism in N . Notice that the
length of γ can be taken arbitrarily large, since by Remark 5.4 we can assume that the
lengths of the 1-flat periodic points produced in the first step are arbitrarily large.

In a similar way, for r ≥ 3, by Lemma 5.7 we can construct an (r + 1)-flat
periodic point with an arbitrary large period from nine r -flat periodic points by a
small perturbation. Hence, we obtain N of r -flat periodic points with an arbitrary
large period starting with 25 · 9r−3N of 1-flat periodic points. ��

Finally, let us consider the case r = ∞.

Proof ofProposition 5.1 for r = ∞For simplicityweonly consider the case N = 1 (the
proof for the general case is done similarly). First, as in the proof of Lemma 4.6, given
a neighborhood N ⊂ Diff∞([0, 1]) of the identity map, there exist s > 1 and a Cs-
neighborhoodN s ⊂ Diffs([0, 1]) of the identity map such thatN s ∩Diff∞([0, 1]) ⊂
N .

For ρ ∈ W∞ in the assumption of the proposition, we apply the already proven
result for finite r with r = s. This gives us h ∈ N , p̂ ∈ J , and γ ∈ {0, 1, 2}∗ such that
p̂ is an s-flat 0γ -periodic point for ρh such that p̂ /∈ �γ ( p̂). Now, by Remark 4.5, we
take a C∞-diffeomorphism g which is Cs-close to the identity such that [g] p̂ ◦ [ρ0γ

h ] p̂
is the identity germ and supp(g)∩�

γ

h ( p̂) = ∅. By choosing g sufficiently Cs-close to
the identity, we can assume that g ◦ h ∈ N s . Accordingly, we have g ◦ h ∈ N . Now,
p̂ is an ∞-flat 0γ -periodic point for ρg◦h . Thus the proof is completed. ��
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6 Universal semigroups

In this section, we prove the following proposition which, together with Proposi-
tion 5.1, implies Theorem 2.2.

Proposition 6.1 Letρ = ( f0, f1, f2)beanelement ofA∞({0, 1, 2})and (θ1, . . . , θN )

be in (E∞)N . Suppose that there exist distinct ( f1, f2)-generic points p1, . . . , p4N and
words γ1, . . . , γ4N ∈ {0, 1, 2}∗ such that pi is an ∞-flat 0γi -periodic point for each
i = 1, . . . , 4N, and the sets {p1, . . . , p4N }, �γ1(p1), …, �γ4N (p4N ) are mutually
disjoint. Then, for any neighborhood N of the identity in Diff∞([0, 1]), there exist a
map h ∈ N , a closed interval I ⊂ [0, 1], an affine diffeomorphism	 : [0, 1]→I , and
words ω1, . . . , ωN ∈ {0, 1, 2}∗ such that 	 ◦ θk = ρ

ωk
h ◦ 	 for every k = 1, . . . , N.

First, let us derive Theorem 2.2 from Proposition 6.1.

Proof of Theorem 2.2 from Proposition 6.1 Fix 1 ≤ r ≤ ∞. The space (Er )N admits
a countable open basis (On)

∞
n=1. Let Un be the set consisting of ρ ∈ Wr which realize

the semigroup action generated by some elements ofOn . The set Un is an open subset
of Wr and any element in

⋂
n≥1 Un generates a universal semigroup. Hence, it is

sufficient to show that every Un is a dense subset of Wr .
To see this, we fix a non-empty open subset U ofWr and an element (θ1, . . . , θN )

ofOn ∩ (E∞)N (notice thatOn ∩ (E∞)N is dense inOn). By Proposition 5.1 and the
density ofW∞ inWr , we take ρ̃ ∈ U ∩A∞({0, 1, 2}) which satisfies the hypothesis
of Proposition 6.1. Then, by Proposition 6.1 there exist ρ = ( f0, f1, f2) ∈ U ∩
A∞({0, 1, 2}), a closed interval I ⊂ [0, 1], an affine diffeomorphism 	 : [0, 1]→I ,
and words ω1, . . . , ωN ∈ {0, 1, 2}∗ such that 	 ◦ θk = (ρωk |I ) ◦ 	 for every k =
1, . . . , N . This implies that ρ realizes the semigroup action generated by (θ1, . . . , θN ).
Therefore U intersects with Un . Since the choice of U is arbitrary, Un is a dense subset
of Wr . ��

Now we prove Proposition 6.1.

Proof of Proposition 6.1 Let N # be a neighborhood of the identity in Diff∞([0, 1])
such that any composition of 6N maps inN # belongs to N . Take a neighborhood Vi
of pi for each i = 1, . . . , 4N , non-empty open subsets U1, . . . ,U4N , W1, . . . ,W2N
of J ∩ f (J ), and an ( f1, f2)-generic point p̄ ∈ J such that the sets

{ p̄}, V1, . . . , V4N , U1, . . . ,U4N , W1, . . . ,W2N ,

f −1
0 (W1), . . . , f −1

0 (W2N ),

4N⋃

i=1

�γi (pi )

are mutually disjoint. It is not difficult to check that such choice is possible (the
detail is left to the reader). Then choose qi ∈ Wi (i = 1, . . . , 2N ) so that qi and
f −1
0 (qi ) are ( f1, f2)-generic. For each j = 1, . . . , 2N , by applying Lemma 4.6 (for

the neighborhood Vj , the open subset Uj , and the triple ( p̄, f −1
0 (q j ), p j ) taken as

(p, p′, p̂)) we obtain h j ∈ N # and η j ∈ {0, 1, 2}∗ such that

• supp(h j ) ⊂ Uj ∪ Vj , �
η j
h j

( p̄) ⊂ �γ j (p j ) ∪Uj ∪ Vj ,
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• ρ
η j
h j

( p̄) = f −1
0 (q j ), and [ f0] f −1

0 (q j )
◦ [ρη j

h j
] p̄ is ∞-flat.

Similarly, for each j = 1, . . . , 2N , by viewing (q j , p̄, p2N+ j ) as (p, p′, p̂) in
Lemma 4.6, we take h2N+ j ∈ N # and η2N+ j ∈ {0, 1, 2}∗ (for j = 1, . . . , 2N )
such that

• supp(h2N+ j ) ⊂ U2N+ j ∪ V2N+ j , �
η2N+ j
h2N+ j

(q j ) ⊂ �γ2N+ j (p2N+ j ) ∪ U2N+ j ∪
V2N+ j ,

• ρ
η2N+ j
h2N+ j

(q j ) = p̄, and [ρη2N+ j
h2N+ j

]q j is ∞-flat.

Put ω̄ j = η2N+ j0η j for j = 1, . . . , 2N . Since the germ [ρη2N+ j
h2N+ j

]q j ◦ [ρ0η j
h j

] p̄ is ∞-

flat and q j /∈ �
η2N+ j
h2N+ j

(q j ) ∪ �
η j
h j

( p̄), there exists h̄ j ∈ N # such that supp h̄ j ⊂ Wj ,

h̄ j (q j ) = q j , and

[

ρ
ω̄ j

ĥ j◦h2N+ j◦h j

]

p̄
=

[
ρ

η2N+ j
h2N+ j

]

q j
◦ [h̄ j ]q j ◦

[
ρ
0η j
h j

]

p̄

is equal to the identity map as a germ. In particular, there exists an open interval I0
containing p̄ such that ρ

ω̄ j

h̄ j◦h2N+ j◦h j
(x) = x for all x ∈ I0. Put h# = h1 ◦ · · · ◦ h4N ◦

h̄1 ◦ · · · ◦ h̄2N . Remark that h# is a composition of 6N maps in N #, and hence, it

belongs to N . Now, ρ
ω̄ j
h#

is the identity map on I0. Notice that this is also true for

smaller intervals in I0 containing p̄. We shrink I0 so that ρ
0η j
h#

(I0) ⊂ Wj for every
j = 1, . . . , 2N .
For maps θ1, . . . , θN in the assumption of Proposition 6.1, we take their exten-

sions θ̄1, . . . , θ̄N over R in such a way that each θ̄i has compact support. Now,
for each θ̄i we apply Lemma 3.3 for I = [0, 1] to obtain one-parameter groups
(G̃t

1)t∈R, . . . , (G̃t
N )t∈R, (H̃ t

1)t∈R, . . . , (H̃ t
N )t∈R ofC∞-diffeomorphisms ofR having

compact support and satisfying G̃1
i ◦ H̃1

i |[0,1] = θi for every i . Let I1 be a compact
interval in R which contains supp(G̃t

i ) and supp(H̃ t
i ) for every i .

Now we take an affine map 	 : R→R satisfying 	(I1) = I0 and define one-
parameter groups (Gt

i ) and (Ht
i ) (i = 1, . . . , N ) of Diff∞(R) by Gt

i = 	 ◦ G̃t
i ◦	−1

and Ht
i = 	◦ H̃ t

i ◦	−1. Notice that supp(Gt
i ) and supp(H

t
i ) are contained in I0, hence

their restrictions on [0, 1] give diffeomorphisms of [0, 1]. Also, by definition we have
(G1

i ◦ H1
i ) ◦	 = 	 ◦ θ̄i = 	 ◦ θi on [0, 1] for every i = 1, . . . , N . Take a continuous

family (h̄t )t∈R of diffeomorphism of [0, 1] defined as follows: for k = 1, . . . , N , we
put

h̄t (x) =
{

ρ
0η2k−1
h#

◦ Ht
k ◦ (ρ

0η2k−1
h#

)−1(x) (x ∈ W2k−1),

ρ
0η2k
h#

◦ Gt
k ◦ (ρ

0η2k
h#

)−1(x) (x ∈ W2k),

and then extend them as the identity map outsideWj . Notice that this is a well-defined
procedure because of the choice of I0. Then, we have

ρ
ω̄2k−1

h̄t◦h# = ρ
η2N+2k−1
h# ◦ h̄t ◦ ρ

0η2k−1
h#

= Ht
k ,
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ρ
ω̄2k

h̄t◦h# = ρ
η2N+2k
h#

◦ h̄t ◦ ρ
0η2k
h#

= Gt
k

on I0. Hence, for any m ≥ 1,

ρ
ω̄m
2k ω̄

m
2k−1

h̄1/m◦h# = G1
k ◦ H1

k = 	 ◦ θk ◦ 	−1

on I0. Ifm is sufficiently large, h̄1/m ◦h# is contained inN . Therefore, h = h̄1/m ◦h#,
(ωk = ω̄m

2kω̄
m
2k−1)

N
k=1, and the map 	 satisfies the statement of the Proposition for

sufficiently large m.

7 Wild behavior along generic infinite words

In this sectionwe prove Theorem 2.3.We start with a general lemma on generic infinite
words.

Lemma 7.1 Let X be a Baire space, k be a positive integer, and (X (ω))ω∈{1,...,k}∗ be
a family of open subsets of X. Suppose that

⋃
η∈{1,...,k}∗ X (ηω) is dense in X for any

ω ∈ {1, . . . , k}∗. Then, for generic x ∈ X, the set

{ ω ∈ {1, . . . , k}∞ | x ∈ X (ω|n) for infinitely manyn′ s}

is a residual subset of {1, . . . , k}∞.

Proof By the assumption, the set

⋂

ω∈{1,...,k}∗

⎛

⎝
⋃

η∈{1,...,k}∗
X (ηω)

⎞

⎠ ,

is a residual subset of X . Fix a point x in this subset. For n ≥ 1, put

�n(x) = {ω ∈ {1, . . . , k}∞ | x ∈ X (ω|n)}.

This is an open subset of {1, . . . , k}∞. By the choice of x , for each ω ∈ {1, . . . , k}∞
and m ≥ 1, there exists ηm ∈ {1, . . . , k}∗ such that x ∈ X (ηm(ω|m)). Hence, the
open set {ω′ ∈ {1, . . . , k}∗ | ω′|m = ω|m} intersects with �m+|ηm |(x) for any m. This
implies that

⋃
n≥N �n(x) is a dense subset of {1, . . . , k}∞ for any N ≥ 1. Hence,⋂

N≥1
⋃

n≥N �n(x) is a residual subset of {1, . . . , k}∞. Any infinite word ω in this
residual subset satisfies x ∈ X (ω|n) for infinitely many n’s. ��

Now let us finish Theorem 2.3.

Proof of Theorem 2.3 Fix a sequence (an)n≥1 of positive integers. For ω ∈ {0, 1, 2}∗,
put

W(ω) = {ρ ∈ Wr
# | # Fixa(ρω) ≥ |ω| · a|ω|}.
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Since attracting periodic points are persistent under small perturbations, W(ω) is an
open subset of Wr

# . By Lemma 7.1, it is sufficient to show that
⋃

η∈{0,1,2}∗ W(ηω)

is a dense subset of Wr
# . In other words, our goal is to show that for any given

ρ = ( f0, f1, f2) ∈ Wr
# , ω0 ∈ {0, 1, 2}∗, and any neighborhood U ⊂ Diffr ([0, 1]) of

the identity map, there exist η ∈ {0, 1, 2}∗ and h ∈ U such that # Fixa(ρ
ηω0
h ) ≥ n · an ,

where n = |ηω0|.
First, by Proposition 5.1, after a small perturbation of f0 if necessary, we may

assume that there exist p∗ ∈ Int J and γ ∈ {0, 1, 2}∗ such that p∗ is an r -flat 0γ -
periodic point with p∗ /∈ �γ (p∗). Now we choose x0 ∈ J ∩ f −1

0 (J ) such that x0 is
( f1, f2)-generic and x0 /∈ O−(p∗, ρ). Such x0 exists since these are generic conditions
in J ∩ f −1

0 (J ). We put x1 = ρω0(x0). Since ρ ∈ Wr
# , we can take ω1 ∈ {0, 1, 2}∗

such that x2 = ρω1ω0(x0) ∈ Int(J ).
We choose two disjoint non-empty open intervals U and V in Int(J ) ∩ Int( f0(J ))

such that

• V is a neighborhood of p∗, and
• U , V are so small that both are disjoint from �ω1ω0(x0) ∪ �γ (p∗).

Nowwe apply Lemma4.3 (viewing (x2, x0, p∗) as (p, p′, p̂)) to obtainω2 and h1 ∈
U such that supp(h1) ⊂ U ∪V , ρω2

h1
(x2) = x0, and [ρω2

h1
(t)]x2 = [ρω1ω0(t)]−1+o(tr ).

By Remark 4.4, we can choose y ∈ U which appears in �
ω2
h1

(x2) only once. We

take the word ω′
2 of the form ω2|k for some k such that y = ρ

ω′
2

h1
(x2) ∈ U . Since U

is disjoint from �ω1ω0(x0) ∪ �γ (p∗), we have y /∈ �
ω′
2ω1ω0ω

′′
2

h1
(y), where ω′′

2 is the
(unique) word which satisfies ω2 = ω′′

2ω
′
2. Notice that, by construction, we also know

that y is an r -flat (ω′
2ω1ω0ω

′′
2)-periodic point of ρh1 .

Then, as in the proof of Theorem 2.1 in Sect. 5 (see also Remark 5.2), we can find
h2 ∈ Diff∞([0, 1]) which is sufficiently close to the identity in Cr and supported in

an arbitrarily small neighborhood of y such that Fixa(ρ
ω′
2ω1ω0ω

′′
2

h2◦h1 ) ≥ |ω′
2ω1ω0ω

′′
2 | ·

a|ω′
2ω1ω0ω

′′
2 |.

Since each generator of ρh2◦h1 is a diffeomorphisms on its image, we have the same

estimate for Fixa(ρ
ω′′
2ω

′
2ω1ω0

h2◦h1 ). Thus letting η = ω′′
2ω

′
2ω1 = ω2ω1 and h = h2 ◦ h1,

we complete the proof. ��

8 A criterion for sign conditions

In this section, we give the following simple criterion for sign conditions, which is
given only in terms of positions and multipliers of repellers and attractors.

Proposition 8.1 If f ∈ E3 has three fixed points q0 < p < q1 such that f ′(q0) <

f ′(p)−1 < f ′(q1) < 1 < f ′(p) and Wu(p, f ) = (q0, q1), then f satisfies Sign
conditions I and II.

The following criterion for the existence of a persistent blender is shown in [32,
Example 1].
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Proposition 8.2 Suppose that ( f1, f2) ∈ A1({1, 2}) satisfies that f ′
1 < 1 and f ′

2 < 1
on an closed interval [a, b] ⊂ (0, 1), f1(a) = a, f2(b) = b, and f1(b) > f2(a). Then
( f1, f2) is a C1-persistent blender for any closed interval J ⊂ (a, b).

Let us give a simple example of semigroups in W∞ by using these propositions.
Fix real numbers p, q0, q1, r, δ such that 0 < q0 < p < q1 < 1 < r , r − p < q1−q0,
and 0 < 2δ < min{q0, 1−q1}. Let ρ = ( f0, f1, f2) ∈ A∞({0, 1, 2}) be a triple given
by

f0(x) = x + ε(x − q0)(x − p)(x − q1)(x − r),

f1(x) = (1 − δ)x + δ2,

f2(x) = (1 − δ)x + δ(1 − δ).

with ε > 0. A direct computation shows that (p, q0), (p, q1) are repeller-attractor
pairs of f0, the point δ is the unique fixed point of f1, and 1 − δ is the unique
fixed point of f2. Set J = [2δ, 1 − 2δ]. The interval Int J contains the fixed points
p, q0, q1 of f0 and all heteroclinic points between them. Since 0 < 2δ < 1, we have
f1(1− δ) > f2(δ). By Proposition 8.2, the pair ( f1, f2) is a C1-persistent blender on
J . Since q0 < p < q1 < r , r − p < q1 − q0, and

f ′
0(p) · f ′

0(qi ) = 1 − ε(p − qi )
2{r − p + (−1)i (q1 − q0)} + O(ε2)

for each i = 0, 1, we have f ′
0(p) · f ′

0(q0) < 1 < f ′
0(p) · f ′

0(q1) if ε > 0 is suf-
ficiently small. By Proposition 8.1, f0 satisfies Sign conditions I and II. Therefore,
ρ = ( f0, f1, f2) is an element of W∞ when ε is sufficiently small. We also see that
the set W∞

# ∩ W∞
att defined in Sect. 2 is non-empty. Indeed, if δ > 0 is sufficiently

small, then f N1 ([0, δ]) ∪ f N2 ([1− δ, 1]) ⊂ J for some large N . This implies that ρ is
an element of W∞

# . It is easy to check that ρ is an element of W∞
att if ε is sufficiently

smaller than δ.
Proposition 8.1 is a direct consequence of the following

Proposition 8.3 The following hold for f ∈ Er with r ≥ 2 and its repeller-attractor
pair (p, q):

1. There exists z∗ ∈ (p, q) such that τA(z∗, f ) = sgn(p − q).
2. If r ≥ 3 and f ′(p) f ′(q) = 1, then there exists z# ∈ (p, q) such that

τS(z#, f ) = sgn( f ′(p) f ′(q) − 1).

We reduce the proposition to the following

Lemma 8.4 Let F beaCr map fromR+ = {x ∈ R | x > 0} toR− = {x ∈ R | x < 0}
with r ≥ 2. Suppose that F ′ > 0 and there exist positive real numbers λ and μ such
that μ < 1 < λ and F(λn) = −μn for all n ∈ Z. Then, the following hold:

1. There exists x∗ ∈ R+ such that A(F)x∗ < 0.
2. If r ≥ 3 and λμ = 1, then there exists x# ∈ R

+ such that sgn(S(F)x# ) =
sgn(λμ − 1).
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Proof of Proposition 8.3 from Lemma 8.4 Letϕ : Wu(p, f )→R andψ : Ws(q, f )→
R be the linearizations of f at p and q such that ϕ′(p) = ψ ′(q) = 1. Set
Ip = ϕ(Wu(p, f ) ∩ Ws(q, f )), Iq = ψ(Wu(p, f ) ∩ Ws(q, f )), and H = ψ ◦ ϕ−1.

First, we suppose that p < q. Then, Ip = R+, Iq = R−, and

H(λn) = ψ ◦ f n ◦ ϕ−1(1) = μn · H(1)

for any n ∈ Z. Set F(x) = H(x)/|H(1)|. Then, the map F satisfies the assumption of
Lemma 8.4. Since A(H)x = A(F)x and S(H)x = S(F)x , by applying Lemma 8.4,
we obtain the proposition for this case. The proof for the case q > p can be obtained
in a similar way with F(x) = −H(x)/H(−1). ��
Proof of Lemma 8.4 By the mean value theorem, there exists xn ∈ (λn, λn+1) such
that

F ′(xn) = F(λn+1) − F(λn)

λn+1 − λn
=

(μ

λ

)n 1 − μ

λ − 1

for any n ∈ Z. Since λ > 1 > μ > 0, we have F ′(xn+1) < F ′(xn) for any n. This
implies that there exists x∗ ∈ (x0, x1) such that F ′′(x∗) < 0.

Set G = (F ′)− 1
2 . By a direct calculation, we have

G ′′ = −1

2
(F ′)−

1
2 · S(F). (2)

Since λn < xn < λn+1, we have

λ2 − λ <
xn+2 − xn

λn
< λ3 − 1.

We also have

G(xn+2) − G(xn)

xn+2 − xn
=

((
λ
μ

) n+2
2 −

(
λ
μ

) n
2
)

·
√

λ−1
1−μ

xn+2 − xn

= (λμ)−
n
2 ·

(
λ

μ
− 1

)

·
√

λ − 1

1 − μ
· λn

xn+2 − xn
.

Hence, we can choose a constant C > 0 such that

C−1(λμ)−
n
2 <

G(xn+2) − G(xn)

xn+2 − xn
< C(λμ)−

n
2

for any n ∈ Z.
By the mean value theorem, there exists yn ∈ (xn, xn+2) such that G ′(yn) =

(G(xn+2) − G(xn))/(xn+2 − xn). Notice that limn→+∞ yn = +∞ and
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limn→−∞ yn = 0. If λμ > 1, then limn→+∞ G ′(yn) = 0 and limn→−∞ G ′(yn) =
+∞. This implies that there exists x# ∈ R+ such that G ′′(x#) < 0, and hence,
S(F)x# > 0 by Equation (2). If λμ < 1, then limn→+∞ G ′(yn) = +∞ and
limn→−∞ G ′(yn) = 0. This implies that there exists x ′

# ∈ R+ such that G ′′(x#) > 0,
and hence, S(F)x ′

#
< 0. ��

Acknowledgments The authors thank to Pierre Berger for useful dicsussions. KS and DT are grateful
for the hospitality of Department of Mathematics of Kyoto University. This paper is supported by GCOE
programofKyotoUniversity, JSPSKAKENHIGrant-in-Aid forYoungScientists (A) (22684003), Scientific
Research (C) (26400085), and JSPS Fellows (26·1121), by Grant No. 14-41-00044 of RSF (Russia), and
by the Royal Society Grant IE141468.

References

1. Avila, A., Bochi, J., Yoccoz, J.: Uniformly hyperbolic finite-valued SL(2,R)-cocycles. Comment.
Math. Helv. 85(4), 813–884 (2010)

2. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81(1), 82–99 (1965)
3. Asaoka, A.: Fast growth of the number of periodic points in generic families of two-dimensional

real-analytic area-preserving diffeomorphisms. arXiv:1603.0863 (preprint)
4. Barrientos, P., Raibekas, A.: Dynamics of iterated function systems on the circle close to rotations.

Ergodic Theory Dyn. Syst. (2016) (to appear)
5. Belitskii, G.: Smooth classification of one-dimensional diffeomorphisms with hyperbolic fixed points.

Sib. Math. J. 27, 801–804 (1986)
6. Berger, P.: Normal forms and Misiurewicz renormalization for dissipative surface diffeomorphisms.

arXiv:1404.2235 (preprint)
7. Bochi, J., Bonatti, C.: Perturbation of the Lyapunov spectra of periodic orbits. Proc. Lond. Math. Soc.

105(1), 1–48 (2012)
8. Bonatti, C., Díaz, L.: On maximal transitive sets of generic diffeomorphisms. Publ. Math. Inst. Hautes

Études Sci. 96, 171–197 (2002)
9. Bonatti, C., Díaz, L.: Persistent nonhyperbolic transitive diffeomorphisms. Ann. Math. (2) 143(2),

357–396 (1996)
10. Bonatti, C., Díaz, L., Fisher, T.: Super-exponential growth of the number of periodic orbits inside

homoclinic classes. Discrete Contin. Dyn. Syst. 20(3), 589–604 (2008)
11. Bonatti, C., Díaz, L.J., Pujals, E.: A C1-generic dichotomy for diffeomorphisms: weak forms of

hyperbolicity or infinitely many sinks or sources. Ann. Math. (2) 158(2), 355–418 (2003)
12. Bonatti, C., Díaz, L., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. Springer, Berlin (2004)
13. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in

Mathematics, vol. 470. Springer, Berlin (2008)
14. Broer, H., Tangerman, F.: From a differentiable to a real analytic perturbation theory, applications to

the Kupka–Smale theorem. Ergodic Theory Dyn. Syst. 6, 345–362 (1986)
15. Corwin, L.J., Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Part

I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, vol. 18. Cambridge
University Press, Cambridge, viii+269 pp (1990)

16. Díaz, L.J., Gelfert, K., Rams, M.: Rich phase transitions in step skew products. Nonlinearity 24(12),
3391–3412 (2011)

17. Gonchenko, S.V., Turaev, D.V., Shilnikov, L.P.: Onmodels with a structurally unstable Poincare homo-
clinic curve. Sov. Math. Dokl. 44, 422–426 (1992)

18. Gonchenko, S.V., Shilnikov, L.P., Turaev,D.V.:Onmodelswith non-roughPoincare homoclinic curves.
Phys. D 62, 1–14 (1993)

19. Gonchenko, S.V., Turaev, D., Shilnikov, L.: Homoclinic tangencies of arbitrarily high orders in the
Newhouse regions. J. Math. Sci. 105, 1738–1778 (2001)

20. Gonchenko, S., Shilnikov, L., Turaev, D.: Homoclinic tangencies of arbitrarily high orders in conser-
vative and dissipative two-dimensional maps. Nonlinearity 20, 241–275 (2007)

123

http://arxiv.org/abs/1603.0863
http://arxiv.org/abs/1404.2235


Degenerate behavior in non-hyperbolic semigroup actions on...

21. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: On dynamical properties of multidimensional diffeo-
morphisms from Newhouse regions. I. Nonlinearity 21, 923–972 (2008)

22. Gonchenko, S.V., Sten’kin, O., Turaev, D.: Complexity of homoclinic bifurcations and �-moduli.
Bifurc. Chaos 6, 969–989 (1996)

23. Gorodetski, A., Ilyashenko, Y.: Some properties of skew products over the horseshoe and solenoid.
Proc. Steklov Inst. Math. 231, 96–118 (2000)

24. Gourmelon, N.: Steps towards a classification of Cr -generic dynamics close to homoclinic points.
arXiv:1410.1758 (2014)

25. Kaloshin, V.: Generic diffeomorphisms with super-exponential growth of number of periodic orbits.
Commun. Math. Phys. 211(1), 253–271 (2000)

26. Martens,M., deMelo,W., van Strien, S.: Julia–Fatou–Sullivan theory for real one-dimensional dynam-
ics. Acta Math. 168, 273–318 (1992)

27. Mather, J.: Commutators of diffeomorphisms. Commun. Math. Helv. 48, 195–233 (1973)
28. Newhouse, S.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms.

Publ. Math. IHES 50, 101–151 (1979)
29. Navas, A., Ponce, M.: A Livsic type theorem for germs of analytic diffeomorphisms. Nonlinearity 26,

297–305 (2013)
30. Palis, J.: A global view of dynamics and a conjecture on the denseness of finitude of attractors.

Asterisque 261, 339–351 (2000)
31. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)
32. Shinohara, K.: On the minimality of semigroup actions on the interval which are C1-close to the

identity. Proc. Lond. Math. Soc. 109, 1175–1202 (2014)
33. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79(4), 809–824 (1957)
34. Turaev, D.V.: On dimension of non-local bifurcational problems. Bifurc. Chaos 6, 919–948 (1996)
35. Turaev, D.: Polynomial approximations of symplectic dynamics and richness of chaos in non-

hyperbolic area-preserving maps. Nonlinearity 16, 123–135 (2003)
36. Turaev, D.: Richness of chaos in the absolute Newhouse domain. In: Proc. ICM 2000 vol. III, pp.

1804–1815. World Scientific, Singapore (2010)
37. Turaev, D.: Maps close to identity and universal maps in the Newhouse domain. Commun. Math. Phys.

335, 1235–1277 (2015)

123

http://arxiv.org/abs/1410.1758

	Degenerate behavior in non-hyperbolic semigroup actions on the interval: fast growth of periodic points and universal dynamics
	Abstract
	1 Introduction
	2 Main results
	2.1 Space of semigroup actions and its open subset mathcalWr
	2.2 Arbitrary growth of the number of periodic points
	2.3 Universal dynamics
	2.4 Wild behavior along generic infinite words
	2.5 Organization of this paper

	3 Cancellation of germs
	4 Connecting lemmas
	5 Creation of r-flat periodic orbits
	6 Universal semigroups
	7 Wild behavior along generic infinite words
	8 A criterion for sign conditions
	Acknowledgments
	References




