Journal of Technical Physics, J. Tech. Phys., 37, 3-4, 349–352, 1996. Polish Academy of Sciences, Institute of Fundamental Technological Research, Warszawa. Military University of Technology, Warszawa.

### BIFURCATIONS OF TWO-DIMENSIONAL DIFFEOMORPHISMS WITH NON-ROUGH HOMOCLINIC CONTOURS

#### S. V. GONCHENKO, L. P. SHILNIKOV and D. V. TURAEV (NIZHNY NOVGOROD)

Two-dimensional diffeomorphisms having two saddle points for which one pair of stable and unstable manifolds intersect transversely and the other pair has a quadratic tangency are considered.

#### 1. Introduction

Consider a  $C^r$ -smooth  $(r \ge 3)$  two-dimensional diffeomorphism f having two saddle fixed points  $O_1$  and  $O_2$  with multipliers  $\lambda_i$ ,  $\gamma_i$  where  $|\lambda_i| < 1$ ,  $|\gamma_i| > 1$ , i = 1, 2. Suppose  $W^u(O_1)$  and  $W^s(O_2)$  intersect each other transversely along a heteroclinic orbit  $\Gamma_{12}$ and  $W^u(O_2)$  and  $W^s(O_1)$  exhibit a quadratic tangency along a heteroclinic orbit  $\Gamma_{21}$ (Fig. 1). We will say that f has a non-rough homoclinic contour  $C = O_1 \cup O_2 \cup \Gamma_{12} \cup \Gamma_{21}$ .



Denote by N the set of orbits of f which lie in a sufficiently small neighbourhood U of C. We show that such diffeomorphisms may be divided into three classes, depending

| on the character of tangency of $W^{\alpha}(O_2)$ and $W^{\alpha}(O_1)$ along $I_{21}$ and give a description |
|---------------------------------------------------------------------------------------------------------------|
| of the structure of the set $N$ . For the first class the structure is trivial, for the second                |
| class it admits a complete description in terms of symbolic dynamics. For the third class                     |

the following results are obtained: the principal moduli of  $\Omega$ -conjugacy are found; the density of systems possessing non-rough periodic orbits and the density of systems having infinitely many stable or (and) completely unstable periodic orbits are proved.

## 2. Three Classes of Diffeomorphisms

It is shown in [1, 2] that in a small neighbourhood  $U_i$  of the point  $O_i$  there exist  $C^{r-1}$ -coordinates  $(x_i, y_i)$  such that the map  $f_{|U_i|}$  has the form

(1) 
$$\overline{x}_i = \lambda_i x_i + f_i(x_i, y_i) x_i y_i, \qquad \overline{y}_i = \gamma_i y_i + g_i(x_i, y_i) x_i y_i,$$

where  $f_i(0, y_i) \equiv 0$ ,  $g_i(x_i, 0) \equiv 0$ . Equations of the manifolds  $W_{loc}^s(O_i)$  and  $W_{loc}^u(O_i)$  are  $y_i = 0$  and  $x_i = 0$ , respectively.

Choose two points of orbit  $\Gamma_{12}$ : the point  $M^-(0, y^-) \in U_2$  and the point  $M^+(x^+, 0) \in U_1$ . Evidently,  $f^n(M^-) = M^+$  for some integer n. The map  $T \equiv f^n$  from some neighbourhood of  $M^-$  into some neighbourhood of  $M^+$  may be written in the form

(2)  
$$\overline{x}_1 - x^+ = ax_2 + b_1y_2 - y^-) + \dots,$$
$$\overline{y}_1 = cx_2 + d(y_2 - y^-)^2 + \dots.$$

Note that T is a diffeomorphism, therefore, the Jacobian does not vanish at  $M^-: bc \neq 0$ . Also,  $d \neq 0$  because the tangency is quadratic. The character of adjoining of  $W^u(O_2)$  to  $W^s(O_1)$  at  $M^+$  is determined by signs of c and d (Fig. 2). For instance,  $W^u(O_2)$  touches  $W^s(O_1)$  from below if d < 0, and from above if d > 0.

The diffeomorphisms with non-rough homoclinic contours are divided into three classes, depending on signs of  $\lambda_1$ ,  $\gamma_2$ , c and d. The combinations  $\lambda_1 > 0$ ,  $\gamma_2 > 0$ , c < 0, d < 0 and  $\lambda_1 > 0$ ,  $\gamma_2 > 0$ , c < 0, d > 0 correspond to the first and the second classes, respectively (Fig. 2 a and Fig. 2 b). The remaining cases (among them those with negative  $\lambda_1$  and  $\gamma_2$ ) correspond to the third class.

For the diffeomorphisms of the first class the set N is trivial: N = C. For the

diffeomorphisms of the second class the structure of N is non-trivial. Here, all orbits of the set  $N \setminus \Gamma_{21}$  are of saddle type and N admits a complete description in terms of symbolic dynamics.

Diffeomorphisms of the third class also have nontrivial hyperbolic subsets. These subsets, however, may not exhaust all the set  $N \setminus \Gamma_{21}$ . Moreover, the structure of N changes when the value of the invariant  $\theta = -((\ln |\lambda_2|)/(\ln |\gamma_1|))$  changes. Namely, let  $H_3$  be a codimension one bifurcation surface in the space of dynamical systems, composed by diffeomorphisms of the third class.

THEOREM 1. If  $f, f' \in H_3$  and f is  $\Omega$ -conjugate to f', then  $\theta = \theta'$ .

Theorem 1 means that  $\theta$  is a modulus of  $\Omega$ -conjugacy [1, 2] for the third class. Moreover, similarly to the case of homoclinic tangency of invariant manifolds of a single saddle point [3, 4], the following result is proved:

THEOREM 2. Systems with a countable set of moduli of  $\Omega$ -conjugacy are dense in  $H_3$ . As it is argued in [3, 4], if a system has  $\Omega$ -moduli, then changing the values of the moduli causes bifurcations of nonwandering orbits (in particular, periodic and homo-







THEOREM 3. Systems with non-rough periodic orbits of any order of degeneracy and systems with a homoclinic tangencies of any order are dense in  $H_3$ .

### 3. Sinks and Sources of Diffeomorphisms of the Third Class

Note, that saddle-node periodic orbits having one unit multiplier and non-zero first Lyapunov value are the simplest form of non-rough periodic orbits mentioned in the Theorem 3. Stable (sinks) or completely unstable (sources) periodic orbits may appear when the saddle-nodes bifurcate. The type of stability of these orbits depends, first of all, on the saddle values  $\sigma_i = |\lambda_s| |\gamma_i|$  of the points  $O_i$ .

THEOREM 4.

1. Systems with a countable set of sinks (resp., sources) are dense in  $H_3$  in the case  $\sigma_1 < 1$ ,  $\sigma_2 < 1$  (resp., in the case  $\sigma_1 > 1$ ,  $\sigma_2 > 1$ ).

2. If  $\sigma_1 < 1$ ,  $\sigma_2 < 1$ , then neither f nor any nearby system has sources in U. If  $\sigma_1 > 1$ ,  $\sigma_2 > 1$ , then neither f nor any nearby system has sinks in U.

In the case where one of the saddle values is less than 1 and the other is greater than 1, systems in  $H_3$  may have sinks and sources simultaneously. Here, an important



THEOREM 5. Systems with a countable set of sinks (sources) are dense in  $H_s$  (in  $H_u$ ).

THEOREM 6. In the cases where  $\lambda_1$  or  $\gamma_2$  are negative, systems having a countable set of sinks and sources simultaneously are dense in  $H_s \cup H_u$ .

In the case where  $\lambda_1$  and  $\gamma_2$  are positive, let  $H_{s+}$  be the subset of  $H_s$  for which d > 0,  $\sigma_1 > 1$ ,  $\sigma_2 < 1$  or d < 0,  $\sigma_1 < 1$ ,  $\sigma_2 > 1$ , let  $H_{u+}$  be the subset of  $H_u$  for which d > 0,  $\sigma_1 < 1$ ,  $\sigma_2 > 1$  or d < 0,  $\sigma_1 > 1$ ,  $\sigma_2 < 1$ .

THEOREM 7.

1. Systems in  $H_{s+}$  do not have sources and systems in  $H_{u+}$  do not have sinks.

2. Systems having a countable set of sinks and sources simultaneously are dense in  $(H_s \setminus H_{s+}) \cup (H_u \setminus H_{u+})$ .

The coexistence of periodic sinks and sources is not only the property of diffeomorphisms on  $H_3$ ; in fact, it is a general situation in the following sense

THEOREM 8. Let f be a diffeomorphism with non-rough homoclinic contour (f is not assumed here to belong to the third class) and let one of the saddle values be less than 1 and the other be greater than 1. Then, in any neighbourhood of f in the space of dynamical systems there exist open domains (Newhouse regions) where systems having a countable set of sinks and sources simultaneously are dense.

# Acknowledgments

This research was supported in part by the EC-Russia Collaborative Project ES-PRIT P9282-ACTCS and by Russian Foundation of Fundamental Researches (grant 93-011-1787).

## References

- 1. S.V. GONCHENKO and L.P. SHILNIKOV, Ukrainian Math. J., 42, 2, 1990.
- 2. S.V. GONCHENKO and L.P. SHILNIKOV, Russian Acad. Sci. Izv. Math., 41, 3, 1992.
- 3. S.V. GONCHENKO, L.P. SHILNIKOV and D.V. TURAEV, Physica, D 62, 1-4, 1993.
- 4. S.V. GONCHENKO, L.P. SHILNIKOV and D.V. TURAEV, Chaos, 5, 4, 1995.

DEPARTMENT OF DIFFERENTIAL EQUATIONS, INSTITUTE FOR APPLIED MATHEMATICS AND CYBERNETICS, NIZHNY NOVGOROD, RUSSIA.



