BIFURCATIONS OF TWO-DIMENSIONAL DIFFEOMORPIIISMS WITH NON-ROUGH HOMOCLINIC CONTOURS

S.V. GONCHENKO, L.P. SHILNIKOV and D.V. TURAEV (NIZHNY NOVGOROD)

Two-dimensional diffeomorphisms having two saddle points for which one pair of stable and unstable manifolds intersect transversely and the other pair has a quadratic tangency are considered.

1. Introduction

Consider a C^{r}-smooth ($r \geq 3$) two-dimensional diffeomorphism f having two saddle fixed points O_{1} and O_{2} with multipliers λ_{i}, γ_{i} where $\left|\lambda_{i}\right|<1,\left|\gamma_{i}\right|>1, i=1,2$. Suppose $W^{u}\left(O_{1}\right)$ and $W^{s}\left(O_{2}\right)$ intersect each other transversely along a heteroclinic orbit Γ_{12} and $W^{u}\left(O_{2}\right)$ and $W^{s}\left(O_{1}\right)$ exhibit a quadratic tangency along a heteroclinic orbit Γ_{21} (Fig. 1). We will say that f has a non-rough homoclinic contour $C=O_{1} \cup O_{2} \cup \Gamma_{12} \cup \Gamma_{21}$.

Fig. 1.
Denote by N the set of orbits of f which lie in a sufficiently small neighbourhood U of C. We show that such diffeomorphisms may be divided into three classes, depending on the character of tangency of $W^{u}\left(O_{2}\right)$ and $W^{s}\left(O_{1}\right)$ along Γ_{21} and give a description of the structure of the set N. For the first class the structure is trivial, for the second class it admits a complete description in terms of symbolic dynamics. For the third class
the following results are obtained: the principal moduli of Ω-conjugacy are found; the density of systems possessing non-rough periodic orbits and the density of systems having infinitely many stable or (and) completely unstable periodic orbits are proved.

2. Three Classes of Diffeomorphisms

It is shown in [1, 2] that in a small neighbourhood U_{i} of the point O_{i} there exist C^{r-1}-coordinates $\left(x_{i}, y_{i}\right)$ such that the map $f_{\mid U_{i}}$ has the form

$$
\begin{equation*}
\left.\bar{x}_{i}=\lambda_{i} x_{i}+f_{i}\left(x_{i}, y_{i}\right) x_{i} y_{i}, \quad \bar{y}_{i}=\gamma_{i} y_{i}+g_{i}\left(x_{i}, y_{i}\right) x_{i}\right) y_{i}, \tag{1}
\end{equation*}
$$

where $f_{i}\left(0, y_{i}\right) \equiv 0, g_{i}\left(x_{i}, 0\right) \equiv 0$. Equations of the manifolds $W_{\mathrm{loc}}^{s}\left(O_{i}\right)$ and $W_{\mathrm{loc}}^{u}\left(O_{i}\right)$ are $y_{i}=0$ and $x_{i}=0$, respectively.

Choose two points of orbit Γ_{12} : the point $M^{-}\left(0, y^{-}\right) \in U_{2}$ and the point $M^{+}\left(x^{+}, 0\right) \in$ U_{1}. Evidently, $f^{n}\left(M^{-}\right)=M^{+}$for some integer n. The map $T \equiv f^{n}$ from some neighbourhood of M^{-}into some neighbourhood of M^{+}may be written in the form

$$
\begin{align*}
\bar{x}_{1}-x^{+} & \left.=a x_{2}+b_{(} y_{2}-y^{-}\right)+\ldots \\
\bar{y}_{1} & =c x_{2}+d\left(y_{2}-y^{-}\right)^{2}+\ldots \tag{2}
\end{align*}
$$

Note that T is a diffeomorphism, therefore, the Jacobian does not vanish at $M^{-}: b c \neq 0$. Also, $d \neq 0$ because the tangency is quadratic. The character of adjoining of $W^{u}\left(O_{2}\right)$ to $W^{s}\left(O_{1}\right)$ at M^{+}is determined by signs of c and d (Fig. 2). For instance, $W^{u}\left(O_{2}\right)$ touches $W^{s}\left(O_{1}\right)$ from below if $d<0$, and from above if $d>0$.

The diffeomorphisms with non-rough homoclinic contours are divided into three classes, depending on signs of $\lambda_{1}, \gamma_{2}, c$ and d. The combinations $\lambda_{1}>0, \gamma_{2}>0$, $c<0, d<0$ and $\lambda_{1}>0, \gamma_{2}>0, c<0, d>0$ correspond to the first and the second classes, respectively (Fig. 2a and Fig. 2b). The remaining cases (among them those with negative λ_{1} and γ_{2}) correspond to the third class.

For the diffeomorphisms of the first class the set N is trivial: $N=C$. For the diffeomorphisms of the second class the structure of N is non-trivial. Here, all orbits of the set $N \backslash \Gamma_{21}$ are of saddle type and N admits a complete description in terms of symbolic dynamics.

Diffeomorphisms of the third class also have nontrivial hyperbolic subsets. These subsets, however, may not exhaust all the set $N \backslash \Gamma_{21}$. Moreover, the structure of N changes when the value of the invariant $\theta=-\left(\left(\ln \left|\lambda_{2}\right|\right) /\left(\ln \left|\gamma_{1}\right|\right)\right)$ changes. Namely, let H_{3} be a codimension one bifurcation surface in the space of dynamical systems, composed by diffeomorphisms of the third class.

Theorem 1. If $f, f^{\prime} \in H_{3}$ and f is Ω-conjugate to f^{\prime}, then $\theta=\theta^{\prime}$.
Theorem 1 means that θ is a modulus of Ω-conjugacy [1, 2] for the third class. Moreover, similarly to the case of homoclinic tangency of invariant manifolds of a single saddle point [3,4], the following result is proved:

Theorem 2. Systems with a countable set of moduli of Ω-conjugacy are dense in H_{3}.
As it is argued in [3, 4], if a system has Ω-moduli, then changing the values of the moduli causes bifurcations of nonwandering orbits (in particular, periodic and homoclinic orbits). Moreover, when a countable set of Ω-moduli exists, we deduce that those bifurcations may be very complex.

Fig. 2.

Theorem 3. Systems with non-rough periodic orbits of any order of degeneracy and systems with a homoclinic tangencies of any order are dense in H_{3}.
3. Sinks and Sources of Diffeomorphisms of the Third Class

Note, that saddle-node periodic orbits having one unit multiplier and non-zero first Lyapunov value are the simplest form of non-rough periodic orbits mentioned in the Theorem 3. Stable (sinks) or completely unstable (sources) periodic orbits may appear when the saddle-nodes bifurcate. The type of stability of these orbits depends, first of all, on the saddle values $\sigma_{i}=\left|\lambda_{s}\right|\left|\gamma_{i}\right|$ of the points O_{i}.

Theorem 4.

1. Systems with a countable set of sinks (resp., sources) are dense in H_{3} in the case $\sigma_{1}<1, \sigma_{2}<1$ (resp., in the case $\sigma_{1}>1, \sigma_{2}>1$).
2. If $\sigma_{1}<1, \sigma_{2}<1$, then neither f nor any nearby system has sources in U. If $\sigma_{1}>1$, $\sigma_{2}>1$, then neither f nor any nearby system has sinks in U.

In the case where one of the saddle values is less than 1 and the other is greater than 1 , systems in H_{3} may have sinks and sources simultaneously. Here, an important quantity is also $\alpha=\sigma_{1}^{\theta} \sigma_{2}$. Divide the surface I_{3} into two parts. Denote as H_{s} the part of H_{3} where $\alpha<1$, and as H_{u} the part of H_{3} where $\alpha>1$.

Theorem 5. Systems with a countable set of sinks (sources) are dense in H_{s} (in H_{u}).
Theorem 6. In the cases where λ_{1} or γ_{2} are negative, systems having a countable set of sinks and sources simultaneously are dense in $H_{s} \cup H_{u}$.

In the case where λ_{1} and γ_{2} are positive, let H_{s+} be the subset of H_{s} for which $d>0, \sigma_{1}>1, \sigma_{2}<1$ or $d<0, \sigma_{1}<1, \sigma_{2}>1$, let I_{u+} be the subset of H_{u} for which $d>0, \sigma_{1}<1, \sigma_{2}>1$ or $d<0, \sigma_{1}>1, \sigma_{2}<1$.

Theorem 7.

1. Systems in H_{s+} do not have sources and systems in H_{u+} do not have sinks.
2. Systems having a countable set of sinks and sources simultaneously are dense in $\left(H_{s} \backslash H_{s+}\right) \cup\left(H_{u} \backslash H_{u+}\right)$.

4. Newhouse Regions

The coexistence of periodic sinks and sources is not only the property of diffeomorphisms on H_{3}; in fact, it is a general situation in the following sense

Theorem 8. Let f be a diffeomorphism with non-rough homoclinic contour (f is not assumed here to belong to the third class) and let one of the saddle values be less than 1 and the other be greater than 1 . Then, in any neighbourhood of f in the space of dynamical systems there exist open domains (Newhouse regions) where systems having a countable set of sinks and sources simultaneously are dense.

Acknowledgments

This research was supported in part by the EC-Russia Collaborative Project ESPRIT P9282-ACTCS and by Russian Foundation of Fundamental Researches (grant 93-011-1787).

References

1. S.V. Gonchenko and L.P. Shilnikov, Ukrainian Math. J., 42, 2, 1990.
2. S.V. Gonchenko and L.P. Shilnikov, Russian Acad. Sci. Izv. Math., 41, 3, 1992.
3. S.V. Gonchenko, L.P. Shilnikov and D.V. Turaev, Physica, D 62, 1-4, 1993.
4. S.V. Gonchenko, L.P. Shilnikov and D.V. Turaev, Chaos, 5, 4, 1995.
