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Abstract
Can elliptic islands contribute to sustained energy growth as parameters of a
Hamiltonian system slowly vary with time? In this paper we show that a
mushroom billiard with a periodically oscillating boundary accelerates the
particle inside it exponentially fast. We provide an estimate for the rate of
acceleration. Our numerical experiments corroborate the theory. We suggest
that a similar mechanism applies to general systems with mixed phase space.

Keywords: Fermi acceleration, adiabatic theory, non-autonomous billiards,
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(Some figures may appear in colour only in the online journal)

1. Introduction

Consider a particle which moves freely inside a bounded domain (a billiard) and reflects
elastically from the domainʼs boundary. We assume that the boundary of the billiard changes
with time and restores its shape periodically. Elastic collisions with the moving boundary
cause changes in the particle kinetic energy. If the average energy gain over multiple colli-
sions is positive, the particle accelerates. This process is often called ‘Fermi acceleration’
since it resembles the mechanism of cosmic particles acceleration by reflecting from magnetic
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mirrors proposed by Fermi in 1949 [14]. In recent years the problem has attracted a lot of
attention (see e.g. [4, 5, 12, 13, 16, 22, 25, 30, 35, 36] and references therein).

When the particle accelerates indefinitively, the motion of the boundary eventually
becomes slow compared to the particle motion. So we assume that the separation of time
scales is already present in the billiard. From the physical point of view, it is important that
the motion of the billiard boundary is not affected by the collisions with the particle, i.e. the
boundary can be considered as a wall of infinite mass. Thus, the Fermi acceleration can be
viewed as a process of energy transfer from a slow heavy object (in our case, the billiard
boundary) to fast light particles. In this respect, the crucial question is whether the energy
transfer is possible at all, and if so, how effective it is, i.e. what is the rate of the particle
energy growth and how it distributes among an ensemble of particles.

We note that there are two alternative approaches to measurements of rates for the Fermi
acceleration in billiards. Some authors (e.g. [4, 11, 20, 24, 25]) study the growth of the energy
as a function of the collision number n. It is easy to see [16] that the particle speed can grow at
most linearly in n. We prefer an alternative point of view, where the billiard is considered as a
flow and we study the energy growth with time t. When a particle accelerates the rate of
collisions increases, and the resulting energy growth rate may be either polynomial or
exponential [15, 18, 26].

It turns out that the acceleration rates strongly depend on the shape of the billiard or,
more precisely, on the dynamics of the corresponding ‘frozen’ billiards. At any given moment
of time t, let us stop the slow motion of the billiard boundary. The dynamics within the frozen
domain consist of free inertial motion inside the domain and elastic reflections from its static
boundary. This standard billiard dynamical system is completely determined by the shape of
the frozen domain. Thus, one considers the family of static billiards parameterized by the
frozen time t. When all ‘frozen’ billiards in this family are integrable (e.g. have a rectangular4,
circular or elliptic shape), the papers [11, 20, 24, 25] report either no Fermi acceleration or a
slow one. This may be explained by extending the classical adiabatic theory to integrable
systems with impacts, as in [19]. On the other hand, if all the frozen billiards are chaotic (e.g.
Sinai billiards, Bunimovich stadium, etc), then the Fermi acceleration is usually present
[6, 21, 29, 30].

This statement, that chaotic frozen dynamics typically lead to acceleration, is known as
the Loskutov–Ryabov–Akinshin conjecture [29] (see also [21]). In a sense, this conjecture
was proven in [18] (based on [17]): exponentially accelerating trajectories exist in a billiard of
periodically oscillating shape provided every static billiard in the corresponding frozen family
has a non-trivial hyperbolic invariant set. The proof uses the existence of a Smale horseshoe
structure in the frozen billiards, see also [27]. As a result, the exponentially fast energy growth
is established for initial conditions from a set of Lebesgue measure zero only. Such orbits are
difficult to observe numerically and, indeed, only power-law energy growth was reported in
numerous papers (e.g. [21, 29, 30]). In order to model this moderate growth of the averaged
energy seen in numerical experiments, a stochastic differential equation was proposed and
verified numerically in [16]. This equation is, in fact, a partial case of the Langevin equation
derived in [31]. According to this model the ensemble-averaged Fermi acceleration is
quadratic in time, provided all frozen billiards are ergodic and mixing. The slow pace of the
acceleration is caused by the long-time preservation of the Anosov–Kasuga adiabatic
invariant for a large set of initial conditions [1, 23]. In the billiard context, the Ano-
sov–Kasuga invariant is equal to EV d2 , where E is the particleʼs energy, V is the volume of

4 The rectangular case reduces to the original one-dimensional Fermi–Ulam model [38] in which no acceleration
occurs when the boundary oscillations are smooth in time [33, 34].
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the billiard and d is the dimension of the billiard domain5. For slowly oscillating ergodic
billiards, the conservation of the Anosov–Kasuga invariant coincides with the classical
thermodynamics adiabatic law for an ideal gas. In particular, the ergodic adiabatic theory
predicts that 1E T

E

( )

(0)
≈ for a large set of initial conditions if T is the time-period of oscillations

of the billiard shape. In this way the ergodic adiabatic theory prohibits fast acceleration in
periodically perturbed ergodic billiards.

A much faster, in fact exponential in time, ensemble-averaged Fermi acceleration is
possible when a fraction of the frozen billiard family has several ergodic components [15, 35].
Moreover, in this case most initial conditions experience exponential energy growth. Namely,
transitions between different ergodic components of the frozen billiard family lead to a
substantial increase in energy transfer to the moving particles.

In this paper we further explore the accelerating effect of the violation of ergodicity: we
consider an example of a slow–fast system whose fast subsystem has a chaotic set coexisting
with an elliptic island filled by invariant tori. We show that the slow changes in the billiard
shape lead to transitions of the fast variables between the chaotic and the elliptic zone of the
frozen system. We suggest that these transitions break the Anosov–Kasuga adiabatic con-
servation law (which can be related to the Boltzmann entropy of the system [16, 31, 36]),
cause a systematic increase of the entropy over each period of the slow oscillation, and thus
lead to a steady (exponential in time) increase in the energy.

We believe that this general principle of induced exponential acceleration should be
applicable to a wide class of slow–fast Hamiltonian systems whose fast subspace contains
coexisting chaotic and elliptic components [37]. The recent preprint [5] provides analytical
and numerical arguments supporting this conjecture for billiards with mixed phase space,
whereas [32] provides numerical evidence for this phenomenon in a smooth system with
mixed phase space.

We stress that this conjecture is of great importance as Hamiltonian dynamical systems
are rarely ergodic on every energy level. In fact, it is widely believed that the majority of
Hamiltonian systems have mixed phase space.

Figure 1. Bunimovich mushrooms.

5 The Anosov–Kasuga theorem is proven only for smooth dynamical systems. Billiard dynamical systems have
singularities that correspond to corners and to orbits tangent to the billiard boundary, so the application of the
Anosov–Kasuga theory is not formally justified. However, numerical experiments suggest that this theory is still
valid for slowly varying billiards [7, 15, 16].
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Here we provide a detailed analysis of this process for a special type of a planar billiard
with periodically moving boundaries, an oscillating Bunimovich mushroom. The frozen
billiard shape is shown in figure 1. This shape was invented in [9]. The corresponding billiard
has a phase space that is sharply divided into a single elliptic and a single chaotic component,
each one of positive measure [9, 10]. One can easily find explicit expressions for the volumes
of the regular and chaotic components. Using this data we propose analytical expressions for
the energy distribution after one cycle of the billiard boundary oscillation and predict the
energy growth rate. We show that provided the billiard boundary moves along a non-trivial
loop in the space of the billiard parameters, a particle inside the billiard accelerates expo-
nentially fast.

Essentially, we show that the process of energy growth over many cycles of boundary
oscillations can be modelled by a geometrical Brownian motion, where the particle energy
after each cycle is multiplied by an independent random variable. We derive an expression for
the expectation of the logarithm of this random factor in terms of the volumes of the chaotic
and elliptic components, and show that this expectation is non-negative (and typically strictly
positive, which immediately implies the exponential energy growth). Our numerical experi-
ments confirm the predicted growth rate with good precision.

The paper has the following structure. In section 2 we study the properties of the
Bunimovich mushroom [9] and find explicit expressions for the volumes of the regular and
chaotic components. Section 3 contains our main theoretical results. In particular, we derive
an adiabatic theory in the presence of particle flux, which is used to calculate the change in the
particleʼs energy while it stays in the chaotic or regular component. Then we find the
probability of capture into the regular component. Finally, we calculate the averaged growth
rate of energy over a period of the mushroom oscillations, and show that this rate is non-
negative. Moreover, it is strictly positive for generic oscillations. Thus the average energy
increases exponentially fast. In section 4 we present several numerical experiments that
confirm our prediction for the energy growth rate, probabilities of capture into the elliptic
island and distributions of the energy. In section 5 we summarise the work and discuss
possible extensions for our theory.

2. Frozen mushroom

A Bunimovich mushroom consists of a semi-disk and a stem [9] (see figure 1). A particle
moves freely inside the mushroom D and reflects elastically from its boundary. The particle
can go from the cap to the stem and back through a hole. The dynamics of the particle are
defined by the Hamiltonian

H
p p

Dp x x( , )
2

for ,
x y
2 2

=
+

∈

where p pp ( , )x y= and x yx ( , )= are respectively the momentum and position of the particle.
On the boundary of D the particle velocity is reflected according to the elastic low: the
incidence angle is equal to the reflection angle and the absolute value of the velocity is not
changed.

The phase space of the Bunimovich mushroom consists of two invariant components of
positive Lebesgue measure: a regular component (an elliptic island) filled by invariant tori,
and a chaotic component, which is ergodic and mixing [9, 10]. The regular component
consists of points trapped in the mushroom cap.
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Let r and w denote the radius of the cap and the semi-width of the hole respectively (see
figure 1 (left)). When the particle moves inside the cap, the incidence angle φ with the semi-
circular part of the boundary remains constant. So if at some collision

w

r
sin ,φ ν⩾ =

the particle cannot reach the hole and consequently never leaves the cap. Along these
trajectories the absolute value of the angular momentum, xp yp| |y x− , is preserved, and
consequently the dynamics are integrable. The chaotic component is the complement to the
integrable one [10].

In this paper we will consider a tilted Bunimovich mushroom in the domain
D D Dstem cap∪= defined by

{ }
D x w y h y

D x y r y

{ tan and 0 },

and 0 .

stem

cap
2 2

θ= ⩽ + − ⩽ ⩽

= + ⩽ ⩾

We assume that w r⩽ and | |
2

θ < π . For simplicity of presentation we assume that for positive
θ the cone extends up to y = h, namely, that w h tan θ⩾ . At 0θ = we obtain the original
Bunimovich mushroom (which has a family of parabolic orbits formed by horizontal
oscillations inside the stem, whereas at non-zero θ the family of parabolic orbits is destroyed).
It can be shown by methods of [8, 10] that the tilted mushroom has, for every θ, the same
property as the non-tilted one: the complement to the set of points whose orbits are forever
trapped in the cap is ergodic and mixing.

Consider a set D D0
2⊂ ⊂ and let A D( )0 denote its area. LetV D( )0 be the phase space

volume of the set defined by H x y p p( , , , )x y
1

2
= and x y D( , ) 0∈ . Obviously, the volume of

all points in the phase space such that H x y p p E( , , , )x y = and x y D( , ) 0∈ is equal to

E A D2 2 ( )0π , so V D A D( ) 2 ( )0 0π= .
In particular, we find that

( )V r V wh hand 2 2 tan . (1)cap
2 2

stem
2π π θ= = −

For the future analysis we will need to find volumes of the integrable and chaotic components.
The elliptic island (i.e., the integrable component) occupies only a part of the cap. Let Vell be
the phase space volume of the elliptic island at the energy level H 1

2
= . We claim that

V V r( ) ( ), (2)ell capδ ν=

where w

r
ν = and

( )( ) 2 arccos 1 . (3)1 2δ ν π ν ν ν= − −−

Indeed, consider a point x y( , ) ( cos , sin )ρ ψ ρ ψ= inside the cap with a velocity vector
p p( , )x y . Then define the angle ϕ by p p v v( , ) ( cos ( ), sin ( ))x y ψ ϕ ψ ϕ= − − , where

v E2= . The absolute value of angular momentum is equal to v | sin |ρ ϕ . Notice that at
the cap boundary the angle ϕ coincides with the incidence angle φ. The integrable component
consists of trajectories that never cross the stem-cap boundary

w w{ 0, } { , }∪ψ ρ ψ π ρ= < = < , where w is the half width of the hole. Since the angular
momentum is conserved, and it is smaller than wv on this boundary, the integrable component
at v = 1 is defined by the inequalities
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w
r:

sin
, 0 , 0 2 . (4)ell

⎧⎨⎩
⎫⎬⎭ϕ

ρ ψ π ϕ π= ⩽ ⩽ ⩽ ⩽ ⩽ ⩽

Introducing s cos1 ρ φ= , s sin2 ρ φ= , we get

{ }s s r s w, , 0 ,ell 1
2

2
2 2

2 ψ π= + ⩽ ⩾ ⩽ ⩽
so the volume is given by the following integral

V s s r s sd d d 4 d .
w

r

ell 1 2
2

2
2

2
ell

∫ ∫ψ π= = −

Dividing by Vcap and using (1), we obtain (2).
The chaotic component is the complement of the regular one, therefore its volume is

given by

V V V V . (5)cha cap stem ell= + −

3. Adiabatic oscillations and capture into an island

Now suppose that the parameters of the mushroom change slowly with time. The speed of the
particle is no longer preserved and we study the time evolution of the particleʼs energy. The
classical adiabatic theory describes dynamics for a slowly changing integrable system
[2, 3, 28], and the ergodic adiabatic theory studies the case when the system is ergodic at
every energy level for every frozen moment of time [1, 23]. Neither of these theories is
directly applicable when the phase space of the frozen system is a mixture of integrable and
chaotic components as the particle can transfer from one type of motion to another one due to
the changes in the system.

3.1. Dynamics in an oscillating circular billiard

While the particle stays in the cap, its dynamics can be described by a circular billiard of the
same radius. We assume that the radius is a given smooth function of time, r(t), and the centre
of the circle does not move. Let the particle hit the boundary at a point P and φ be the impact
angle, i.e., the angle between the pre-collision velocity and the external normal to the
boundary at the point of collision. Let v v sin φ=∥ denote the component of the particle
velocity parallel to the boundary, and v v cos φ=⊥ be the normal component of the velocity.
The elastic reflection v v v v( , ) ( ¯ , ¯ )↦∥ ⊥ ∥ ⊥ from the moving boundary is given by

v v v u t v¯ , ¯ 2 ( ) ,= = −∥ ∥ ⊥ ⊥

where u t r t( ) ˙ ( )= is the velocity of the boundary motion (note that the relation
v u t v u t¯ ( ) ( ( ))− = − −⊥ ⊥ represents the standard elastic law in the coordinate frame that

moves with the boundary). Then for the outgoing angle φ̄ we have tan ¯ sin

cos 2 u

v

φ = φ
φ −

and

consequently

( )u t

v
O v¯ 2

( )
sin . (6)2φ φ φ= + + −

We assume that the particle moves much faster than the boundary, i.e. u v≪ . The particle
speed after the collision is given by
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( )v v v v
u

v
O v¯ ¯ ¯ 1 2 cos .2 2 2⎜ ⎟

⎛
⎝

⎞
⎠φ= + = − + −

∥ ⊥

The time interval tΔ to the next collision is Lv̄ 1− where L PQ| |= is the distance to the next
collision point Q. Since t O v( )1Δ = − , the change in the circle radius is also O v( )1− , so L is
O v( )1− -close to the value it takes in the static circular billiard of radius r(t), i.e. to the length of
the chord that makes the angle φ to the radius. This gives us

( )t
r

v
O v

2 cos
.2Δ φ= + −

The new value of the radius at the moment of the next collision is

( )r r t t r t
u t

v
O v( ) ( ) 1 2

( ) cos
. (7)2⎜ ⎟⎛

⎝
⎞
⎠Δ φ′ = + = + + −

Now, by considering the triangle PQO where O is the centre of the circle, we find

r t r( )

sin sin ¯
,

φ φ′
= ′

where φ′ is the impact angle at the collision point Q. By (6), (7), we obtain

( )O v . (8)2φ φ′ = + −

It follows immediately that the impact angle φ stays approximately constant over time
required for at least O(v) collisions, i.e. φ is an adiabatic invariant.

Since the circular billiard keeps being rotationally symmetric even when its radius
oscillates, the angular momentum is preserved

v r vrsin sin .φ φ′ ′ ′ =

Taking into account equation (8) we conclude that

( )( )v r vr O v1 .2′ ′ = + −

It follows immediately that the product v t r t( ) ( ) stays approximately constant over time
required for O(v) collisions. Taking the square, we see that E t V t( ) ( )cap is an adiabatic
invariant.

In terms of the billiard flow, the adiabatic invariance of the impact angle φ can be
expressed as the adiabatic invariance of the angle φ̂ defined as

xp yp

E r t
sin ˆ

2 ( )
. (9)

y x
φ = −

−

Indeed, at the moments of collision φ̂ coincides with φ, and it stays approximately constant
between impacts. In the oscillating mushroom the above equations are valid for segments of
trajectories located entirely inside the mushroom cap.

3.2. Capturing into the cap

Suppose that a fast particle moves inside the non-autonomous mushroom. While the particle
moves inside the mushroom cap, its dynamics follow the laws of the circular billiard but the
sign of its angular momentum is reflected each time the particle hits the bottom of the cap.
The hole of the mushroom cap is characterized by the dimensionless parameter
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t
w t

r t
( )

( )

( )
. (10)ν =

Suppose that at a moment t t0= the particle is exactly at the hole. Then it is located at a point
x( , 0) with x w t| | ( )0< and has velocity p p( , )x y . Let tsin | sin ˆ ( )|0 0φ φ= be the absolute value

of the adiabatic invariant defined by equation (9). Since p E| | 2y ⩽ we conclude
that tsin ( )0 0φ ν⩽ .

If at this moment p 0y > , the particle enters the cap and can have multiple consecutive
collisions inside the cap. We have already seen that t| sin ˆ ( )|φ is adiabatically invariant while
the particle stays inside the cap. So if the function ν decreases below sin 0φ while the particle
remains inside the cap, the particle cannot reach the hole. So it must remain in the cap till ν
returns back to sin 0φ .

We see that the particle can be captured into the cap when ν decreases. If the particle is
captured at t tin= , then it is released back into the chaotic zone around the moment t tout=
when t t( ) ( )out inν ν= for the first time. Thus, we can introduce the release function tr(t)

{ }t t t t t t t( ) inf : and ( ) ( ) , (11)r ν ν= ′ ′ > ′ ⩾

which establishes a connection between the capture and release times as t t t( )rout in= .

3.3. Adiabatic theory in the presence of particle flux

The classical ergodic adiabatic theory [1, 7, 23] relies on the analysis of evolution of volumes
in the phase space. This theory relies on two observations which can be presented in a bit
oversimplified form in the following way. First, the ergodicity implies that time averages can
be replaced by space averages and, consequently, the time evolution of the energy is the same
for the majority of initial conditions starting on a given energy level. Second, if the evolution
of the energy depended on initial energy only, the dynamics would map an energy level into
another energy level. Since the Hamiltonian flow is volume preserving, the volume under the
energy level would stay constant. In a two-dimensional billiard this volume is proportional to
EV , which is indeed the ergodic adiabatic invariant.

If the system is not ergodic on energy levels, the dynamics may produce phase space flux
between different ergodic components of the frozen system. Then, the above volume pre-
servation argument is invalid. A new paradigm is thus developed.

In the non-autonomous mushroom billiard the flux between the regular and chaotic zones
is governed by the parameter t( )ν defined by (10). If ˙ 0ν < , phase volume ‘leaks’ from the
chaotic zone to the regular one, whereas ˙ 0ν > leads to the opposite effect.

We analyze this situation by considering a short time interval, t t t[ , d ]+ , at which the
mushroomʼs shape does not change noticeably, yet, the particle experiences a large number of
collisions with the billiard boundary. Suppose that during this time interval the radius of the
hole w has changed by wd , the length of the stem h has changed by hd and the radius of the
cap r has changed by rd .

In this discussion we need to distinguish two cases depending on the sign of

r w w r

r
d

d d
, (12)

2
ν = −

which determines the direction of the particle flux between the integrable and chaotic
components. In particular, if r w w rd d< , the particle in the integrable component cannot
leave the cap but the particle in the chaotic zone can be captured into the integrable
component. Let us consider the case of capture, d 0ν < , in more details.
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We conjecture that if the particle is sufficiently fast and the changes in the billiardʼs shape
are sufficiently small then, from the statistical point of view, the distribution of the energies at
t td+ depends only on the initial and final billiard shapes, i.e., it depends only on the values
of w h rd , d , d and dθ, and is independent of the particular form of the evolution of the
billiardʼs shape in the intermediate moments of time.

Now, in order to separate the process of capturing into the cap from the adiabatic
evolution of the energy, we represent the change of the billiardʼs shape as a composition of
two steps. At the first step, we allow the mushroom to take the intermediate shape shown on
figure 1 (right): we make the hole in the cap slightly narrower by inserting two straight-line
segments into the hole that symmetrically extend the cup bottom line.

We use the notation zd′ and zd″ to label changes of a parameter z during the first and
second of these steps respectively (z r w h{ , , , }θ∈ ). So, over the time interval td we
get z z zd d d= ′ + ″ .

The shape of the billiard at the end of stage 1 is uniquely defined by the following
requirements: on stage 1 the particle energy is not changed but all possible transitions
between the chaotic and integrable component take place during this step, i.e., Ed 0′ = and
d d 0ν ν′ = < . On stage 2 the particle cannot move from the integrable to the chaotic com-
ponent or vice versa. This condition is achieved by the requirement d 0ν″ = . All changes in
the energy are on this step: E Ed d= ″ .

On stage 1 all walls remain static (hence hd 0′ = , d 0θ′ = , rd 0′ = ) except for the
bottom of the cap, which extends to cover a part of the hole as shown on figure 1 (right). By
the end of this stage the radius of the hole is changed by

w rd d ,ν′ =

which is negative since we assume d 0ν < . Moreover, the parameter ν takes its final value

d d .ν ν′ =
The total volume of the phase space remains constant on this stage but a part of the phase
volume is transferred from the chaotic to the regular component

V V V Vd d 0, d d . (13)cha ell ell cap δ′ + ′ = ′ =

The last equality is a consequence of equation (2) and the requirement rd 0′ = . It is important
to note that on stage 1 the energy remains constant. Indeed, as the straight-line segments that
are inserted into the hole slide along themselves, and the other parts of the billiard boundary
do not move during the stage 1, the normal velocity of the boundary is non-zero only at two
points, the end points of these two segments. Therefore, the particle energy can change only if
it hits the boundary exactly at one of these points at some moment of time, but this is a
probability zero event.

On stage 2 the billiard is slowly deformed from its intermediate shape to the final one in
such a way that the parameter w

r
ν = remains constant, r rd d″ = and d 0ν″ = . Then

equation (12) implies that w wd d′ + ″ attains its correct final value wd . At the same time h, θ
are changed to ensure h hd d″ = , d dθ θ″ = . It follows that on stage 2 the particle is trapped
either in the regular or in the chaotic zone and cannot transfer from one component to the
other due to the conservation of impact angles in the circular part.

If the particle is in the regular zone, its dynamics are described by the circular billiard and
its energy changes according to the adiabatic law EVd ( ) 0cap″ = as derived in section 3.1.
Since both E and Vcap are constant on stage 1, and we get E Ed d= ″ , V Vd dcap cap= ″ and,
consequently
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E

E

V

V

d d
. (14)

cap

cap
= −

Since the flux is absent the chaotic zone remains invariant for the non-autonomous billiard,
and we assume that the standard ergodic adiabatic theory can be applied to the restriction of
our dynamical system onto its invariant subset. So if the particle is inside the chaotic zone,
then the absence of flux allows us to claim that EVd ( ) 0cha″ = . Using equation (13) we get

V V V V V V Vd d d d d d d .cha cha cha cha ell cha cap δ″ = − ′ = + ′ = +

Since E Ed d″ = , we conclude that for particles in the chaotic zone

E

E

V

V
V

V

d d d
, (15)cha

cha
cap

cha

δ= − −

where Vcha is given by (5). Note that in contrast with the classical ergodic adiabatic theory,
the right-hand side of this equality contains an additional term which takes care of the phase
volume flux from the chaotic zone.

One can check that the same equations describe the evolution of the energy in the case
when d 0ν > (flux from the integrable to chaotic component). The equations can be derived
in a similar way but stages 1 and 2 are to be swapped.

3.4. Probability of capture

In order to describe the acceleration induced by the capture-release mechanism we consider
an ensemble of non-interacting particles inside the billiard. Then we can discuss the prob-
abilities for a particle to be captured inside the mushroom cap.

Suppose that ˙ 0ν ⩽ on a time interval t t( , )0 1 so the quotient t w t r t( ) ( ) ( )ν = is
decreasing. We start with n t( )cha 0 particles with initial conditions uniformly distributed inside
the chaotic zone. We assume that the distribution of the particles in the chaotic zone remains
uniform for all times.

Let t t t[ , )0 1∈ . We consider the transfer of particles from the chaotic zone during the
time interval t t t( , d )+ following the two-steps approximation described in the previous
section. On Stage 1, a volume of size

V Vd dell cap δ′ =

is transferred from the chaotic zone to the regular component, and on stage 2 the number of
particles in the chaotic zone remains unchanged. Since the particles are uniformly distributed
we get

n

n

V

V

d d
.cha

cha

cap

cha

δ
= −

Let p t n t n t( ) ( ) ( )cha cha cha 0= be the probability of being in the chaotic zone at the time t. On
the time interval t t( , )0 1 , the function pcha satisfies the relation

p

p

n

n

V

V

d d
d . (16)cha

cha

cha

cha

cap

cha
δ= = −
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Integrating equation (16) we get

p t p t
V

V
( ) ( )exp d (17)

t

t

cha cha 0
cap

cha0

⎛
⎝⎜

⎞
⎠⎟∫ δ= −

for all t t t( , )0 1∈ . We stress that these equations are valid only during the period of capture
when no particles are released from the elliptic zone.

3.5. Energy growth rate over a cycle

Suppose that the parameters of the mushroom are periodic functions of time and let T be the
period. During this cycle a particle from the chaotic zone may be captured into the island
when t( )ν decreases. If the particle is captured at a time t, then it is released at the time tr(t)
defined by (11). Note that according to this definition, if t( )ν is increasing at some t, then
t t t( )r = . We also note that t t t( ) ( ( ))rν ν= . Since all particles captured between t and tr(t) are
released back into the chaotic zone by the time tr(t), we also get n t n t t( ) ( ( ))rcha cha= for all t.
We assume that at t = 0 the parameter t( )ν takes its maximum, so all particles which were
captured inside the chaotic zone during the cycle are releases back by the beginning of the
next cycle.

Let us define a compression factor which describes the change in the relative size of the
chaotic zone during the time of capture

( )
( )

g t
V t

V t

V t t

V t t
( )

( )

( )

( )

( )
. (18)

r

r

cha

cap

cha

cap
=

Let S t E t( ) log ( )= and t S t( ) [ ( )] = . Then equations (14) and (15) imply that

S

V

V
V

V

V

V

d

d d
inside the chaotic zone,

d
in the island.

(19)

cha

cha
cap

cha

cap

cap

⎧

⎨
⎪⎪

⎩
⎪⎪

δ

=
− −

−

The total number of particles is n n n0 cha ell= + . Consequently,

n

n

V

V
V

V

n

n

V

V
d

d d
1

d
,cha

0

cha

cha
cap

cha

cha

0

cap

cap

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

δ= − − − −

We can rewrite this equation in the following form

n

n

V

V

n

n

V

V
Vd dlog d dlog .cap

cha

0

cha

cap

cha

0

cap

cha

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ δ= − − −

Integrating over a complete cycle and taking into account that p n ncha cha 0= (all particles are
in the chaotic zone at the beginning) we get

T t p
V

V
p

V

V
( ) (0) d ( ) dlog d .

T T T

0 0
cha

cha

cap 0
cha

cap

cha

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟  ∫ ∫ ∫ δ− = = − −
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The first term may be integrated by parts

I p
V

V

V

V
p g t pdlog log d log ( )d ,

T T

1
0

cha
cha

cap 0

cha

cap
cha

capture
cha

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∫ ∫= − = =

where we grouped together contributions from capture-release pairs taking into account that
p t p t t( ) ( ( ))rcha cha= and t t t( ) ( ( ))rδ δ= . For the second integral we get

I p
V

V
p t

V t

V t

V t

V t
t

p t g t
V t

V t
t g t p

d ( )
( )

( )

( )

( )
d ( )

( )(1 ( ))
( )

( )
d ( ) (1 ( ))d ,

T

cha
r

r
2

0
cha

cap

cha capture

cap

cha

cap

cha

capture
cha

cap

cha capture
cha

⎛
⎝⎜

⎞
⎠⎟∫ ∫

∫ ∫

δ δ

δ

= − = − −

= − − = −

where we used equation (16) which is valid during the capture process. Defining
p p1ell cha= − we get the formula

m
E T

E
T g g p: log

( )

(0)
( ) (0) ( 1 log )d . (20)1

capture
ell

⎡
⎣⎢

⎤
⎦⎥   ∫= = − = − −

Since pell(t) is a non-decreasing function of time during the capture and g glog 1< − for any
g 0> , g 1≠ , we conclude that the energy growth rate m1 is non-negative. Moreover, it is
strictly positive if g t( ) 1≢ . As pell increases during the capture process, we have shown that

E T

E
log

( )

(0)
0

⎡
⎣⎢

⎤
⎦⎥ >

for any periodic cycle which is non-trivial, namely, for any cycle having a non-trivial interval
of capture with g t( ) 1≢ on this interval.

Since t t t( ) ( ( ))rν ν= and δ is a function of ν only, we get t t t( ( )) ( ( ( )))rδ ν δ ν= , i.e., at
the moments of capture and release, the regular zone takes the same proportion of the capʼs
phase space volume. We conclude that g t( ) 1= if and only if
V t V t V t V t( ) ( ) ( ) ( )r rcap stem cap stem= (see (18), (5)).

This observation can be restated in the following way. The equation ,
V t

V t

V t

V t

( )

( )

( )

( )
ell

cap

cap⎜ ⎟
⎛
⎝

⎞
⎠ with

t T(0, )∈ defines a closed curve. If this curve encloses a non-empty interior, the cycle is non-
trivial. On the other hand, any cycle with an empty interior is trivial. In particular, if one
changes only a single parameter of the billiard, the above mechanism does not produce the
exponential acceleration and we expect much slower acceleration rates.

Next, we assume that all particles have the same energy E (0) at the beginning of the
billiard cycle and derive an equation for the energy distribution at the end of the cycle. For
simplicity we assume that the billiard cycle contains a single interval of capture, i.e. ν̇ is
negative only on a single interval of time during one complete cycle of the billiard boundary.
Then each particle can be captured at most once per billiard cycle. Suppose that a particle is
captured at t tin= and let E t( )1 in be its energy at the end of the cycle. In the adiabatic
approximation its energy can be obtained by integrating equation (19)
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E t

E

V

V
V

V

V

V

g t V
V

log
( ) d d d

log ( )
d

, (21)

t t T t

t

t

t T

1 in

0 0, ,

cha

cha
cap

cha

cap

cap

in cap
cha

in out in

out

out

in

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ ∫

∫

δ

δ

= − − −

= − + −

∪

+

where the second line uses the definition of the compression factor (equation (18)) and the
fact that Vd(log ) 0

T

0 cha∫ = . Since the probability of capture at t t t t[ , d ]in in in∈ + is equal to
p t t˙ ( )dcha in in− where pcha is given by equation (17), we obtain the probability distribution of

the energy after the cycle in an implicit form. Later in this paper we will use these implicit
equations to reconstruct the distribution of the energy for specific examples of the mushroom
cycles.

On the other hand, if the particle is not captured over the cycle its energy is defined in the
adiabatic approximation (see (15))

E

E

V

V
V

V
V

V
log

d d d
. (22)

nc T T
1

0 0

cha

cha
cap

cha 0
cap

cha

⎛
⎝⎜

⎞
⎠⎟∫ ∫δ δ= − − = −

This equation implies that, if the particle stays in the chaotic zone over the whole cycle, its
energy at the end of the cycle does not need to be equal to the initial energy. This conclusion
is in a strong contrast with the ergodic case, where the adiabatic theory predicts that the
energy returns close to its initial value at the end of a cycle. The changes in the energy are
determined solely by the correction term in (15), which takes into account the phase flux due
to the non-ergodicity of the frozen billiards. So the phase flux influences the evolution of the
energy even for the particles which never cross to the regular zone.

Any closed curve in the space of parameters defines two billiard cycles which correspond
to two different directions of motion along the curve. The values of the integrals (22) for these
two cycles have the same absolute value but opposite signs. So the energy of the non-captured
particles may increase or decrease after the completion of the cycle, but in both cases the
energy averaged over all initial conditions increases.

In the next section we check numerically the prediction of equation (22) for several
examples of billiard cycles.

4. Examples of billiard cycles

The theory developed in the previous sections relies upon several assumptions, which are
difficult to prove analytically. In particular, we assume that the ergodic averaging theory is
applicable to the chaotic component in a system which does not satisfy some of the
assumptions of the original averaging theory. The most dramatic violation here is that there
are transitions between the ergodic components—we propose that formula (15) replaces the
usual adiabatic law. Additionally, the billiard is not a smooth system (see discussion in [16]).
Finally, we also assume here that the distribution of the particle in the chaotic zone of the
breathing billiard is close to the stationary uniform one. So we carry out numerical tests to
check the correctness of the theoretical predictions for the energy growth rate and for the
distribution of the energy after a cycle of the billiard boundary.

4.1. Fixed cap

Our first example corresponds to the following protocol for the time dependence of the
mushroom parameters: the radius of the gap and the length of the stem follow straight lines
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which connect the points

( ) ( ) ( ) ( ) ( )w h w h w h w h w h, , , , , (23)1 1 0 1 0 0 1 0 1 1→ → → →

on the plane (w, h) while θ is fixed and r = 1 (see figure 2). For definiteness we assume that
w w0 1< and h h0 1< . The particle can be trapped inside the mushroom cap during the first
stage of the process, when the hole shrinks, and then it is released during the third stage. Since
the radius of the cap is fixed, the particleʼs energy stays constant while the particle remains in
the cap.

The processes of capture and release are determined by the width of the gap: if the
particle is captured into the cap at t tin= then it is released at t tout= such that
w t w t( ) ( )in out= . So we can rewrite equations (18) and (20)

E

E
g w g w p wlog ( ( ) 1 log ( ))d ( ), (24)

w

w1

0
cha

0

1⎡
⎣⎢

⎤
⎦⎥ ∫= − −

where

( )
( ) ( )

g w
V w h

V w h
p w

V w

V w h
( )

,

,
and ( ) exp

d ( )

,
,

w

wcha 1

cha 0
cha

ell

cha 1

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫= = −

′
′

and the volumes are defined by (1) and (2). In the derivation of the last equality we take into
account that Vcap remains constant and V w V( )ell capδ= .

Then p p w( )nc 0= is the probability of avoiding the capture completely. If the particle
avoids capture, equation (22) implies that the energy after a complete cycle is given by

( ) ( )
E

E V w h V w h
V wlog

1

,

1

,
d ( ). (25)

w

w
1
nc

0 cha 1 cha 0
ell

0

1 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫=

′
−

′
′

If a particle is captured at the moment when the hole size is w then its energy at the end of the
cycle is described by (21), which takes the form

( ) ( )
( )
( )

E w

E V w h V w h
V w

V w h

V w h
log

( ) 1

,

1

,
d ( ) log

,

,
. (26)

w

w1

0 cha 1 cha 0
ell

cha 0

cha 1

1 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫=

′
−

′
′ +

Figure 2. A cycle of the mushroomʼs oscillations: h and w are the length of the stem
and its radius (half-width) at the cap respectively.
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These equations can be used to construct a distribution for log E

E
1

0
at the end of a cycle since

they involve integrals of explicitly defined functions.
Another example is obtained when we reverse the protocol (23) by following the same

path in the space of parameters in the clockwise direction

( ) ( ) ( ) ( ) ( )w h w h w h w h w h, , , , , . (27)1 1 1 0 0 0 0 1 1 1→ → → →

The distribution of the energy and the acceleration rate are described by the same equations
but h0 and h1 are swapped.

In the first series of experiments we follow these two protocols by moving the billiard
boundaries with piecewise constant acceleration. We generate N 105= initial points uni-
formly distributed inside the billiard. All initial conditions have the same energy E 100

9=
and a random direction of the initial velocity. Then we follow numerically the trajectory for
each of the initial conditions during the time required to complete one cycle of the billiard
boundary.

The distributions of the final energy E1 is described by histograms which represent
relative frequency density for log E

E
1

0
. The histograms are shown on figure 3 where the dashed

red line represents the theoretical predictions for the energy distribution and the vertical red
line marks the position of the theoretically predicted energy for non-captured particles. In
parallel, we mark the capture and release time for each of the initial condition. In this way we
test the accuracy of the theoretical prediction for the particle flux into the cap and, in
particular, for pnc.

We see that the prediction for the energy growth rate is in good agreement with the
numerically obtained average growth rate:

• Anticlockwise protocol: Theoretical prediction: m [log ] 0.044926E

E1
1

0
= = . Non-

captured particles: log 0.161205E

E
1
nc

0
= with probability p 0.843472nc = . Numerical

simulations: average m 0.0463 0.00271
* = ± for 105 initial conditions.

• Clockwise protocol: Theoretical prediction: m [log ] 0.05252E

E1
1

0
= = . Non-captured

particles: log 0.161205E

E
1
nc

0
= − with probability p 0.717894nc = . Numerical simulations:

average m 0.0537 0.00341
* = ± for 105 initial conditions.

Figure 3. Distribution of log E

E
1

0
for anticlockwise (left) and clockwise (right) protocols.

The red dashed line represents the theoretical prediction. Parameters: E 100
9= , h 20 = ,

h 61 = , w0 = 0.3, w 11 = , 2.3θ = °.

J. Phys. A: Math. Theor. 47 (2014) 395101 V Gelfreich et al

15



The histograms of figure 3 consist of two components which correspond to captured and
non-captured particles. The distribution of the energy for the captured particles is apparently
in good agreement with the theory. The distribution for the non-captured particles looks like
Gaussian and its width scales as E0

1 4. This behaviour has been observed for system where the
ergodic averaging theory is applicable [7, 16]. The centre of the distribution is reasonably
close to the value predicted by equation (25). We see that the proposed correction to the
adiabatic theory (in particular, equation (22)) is realized. We also note that numerical
experiments show that the relative frequency of escaping the capture is in excellent agreement
with the theoretical prediction given by pnc. Notice that changing the loop direction leads to
changing the role of heating in the stem and cap—clockwise motion means that the heating
occurs in the cap and the cooling in the stem, whereas anticlockwise motion reverses their
role. Yet, as predicted, the overall averaged growth rate of energy is positive in both cases.

4.2. Example with moving cap

In the second set of examples we change the billiard parameters in the following way

r t r a t w t r t t

h t h b t t c t

( ) sin ( ), ( ) ( ) ( ),

( ) sin ( ), ( ) 1 sin ( ). (28)

0

0
2

ν
ν

= + =
= + = −

In this cycle all parameters of the billiard (except the slope θ) are changed simultaneously.
The capture-release process is determined by t( ) w t

r t

( )

( )
ν = . Since t t( ) (2 )ν ν π= − for all t and

ν is monotonically decreasing on (0, )π , there is a simple relation between the time of capture
and the time of release

t t t t( ) 2 for [0, ].r π π= − ∈

We find the compression factor from equation (18) and the energy growth rate from (20).
Then the distribution of the energy after a complete cycle is found from equations (17), (21)
and (22). For the purpose of plotting the distributions we evaluated these integrals
numerically using the Simpson rule.

Figure 4. The cycle on the plane ,V t

V t

V t

V t

( )

( )

( )

( )
ell

cap

cap⎜ ⎟
⎛
⎝

⎞
⎠ (clockwise direction). Parameters are

r h 10 0= = , a = 0.5, b 0.5= − , c = 0.8. On the right: theoretical prediction for E t( )1 in

described by equation (21).
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In the numerical experiments we use the following values for the parameters

r h a b c1, 0.5, 0.5, 0.8.0 0= = = − = =

The slope of the billiard stem is kept equal to tan 0.1111θ = during all experiments of the
present section. The protocol is illustrated in figure 4. The right hand side plot shows the
predicted energy after a full cycle for a particle captured at time tin, see equation (21). The
positivity of energy gain for most of the captured particles corresponds to the right hump of
the distribution shown in figure 5. The negative value for tin π= implies that non-captured
particles, on average, loose energy. A more accurate evaluation of the probabilities
suggests log 0.422465E

E
1
nc

0
= − .

We select N 25 000= uniformly distributed initial conditions inside the billiard, which
have the same initial energy and randomly chosen initial directions of velocity. The dis-
tribution of the energy after one cycle is shown on figure 5 for two selected values of the
initial energy E0. The dashed lines represent the theoretical distribution. We see that the
numerical data are rather close to the theoretical prediction and, as it should be expected, the
agreement is better for the higher initial energy. The distribution has two modes. The left
mode corresponds to the particles which are not captured into the cap during the cycle. The
position of the left mode is close to the theoretical prediction given by log 0.422465E

E
1
nc

0
= −

Figure 5. Distributions of log E

E
1

0
. Histograms are constructed on the basis of 25 000

initial conditions uniformly distributed inside the billiard. Initial velocity is taken with
random direction, E 100

6= (left) and E 100
7= (right).

Figure 6. Distributions for times of capture
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while the right mode corresponds to the maximum value of log E t

E

( )1 in

0
(compare with

figure 4 (right)).
The theoretical prediction for the growth rate is m1 = 0.122768. During the numerical

experiment with E 100
7= we obtain the average growth rate to be m 0.1213 0.00331

* = ±
( )Nσ± which is in excellent agreement with the theory. We also trace the capture and release
times for each of the initial conditions. The distribution of the capture times is illustrated by a
histogram shown on figure 6. The theoretical prediction obtained from equation (17) is plotted
using the dashed line. In this experiment 38.78% of the particles are not captured in the cap,
which is in a good agreement with the probability of non-capture being p 38.474%nc = .

We conclude that the theory is overall in good agreement with the data from the
numerical experiments, including both the distributions of energy and of capture time.

We see that after a single cycle the distribution of log E

E
1

0
is quite far from being Gaussian.

The central limit theorem suggest that if the increments of the logarithm of energy are not
correlated over consecutive cycles, then the distribution of log

n

E

E

1 n

0
should be close to the

normal one centred around m1 for large values of n. Figure 7 represents the distributions for
n = 10 and n = 30. It is clearly seen that while the central part of the distribution is close to the
predicted Gaussian shape, the tails apparently deviate from the normal distribution.

Finally, we stress that the non-ergodicity of the billiard plays the central role in the
creation of the exponential acceleration. In order to illustrate this difference we consider a
billiard cycle with the same parameters as above but setting c = 0. While the radius of the cap
and the length of the stem are oscillating as in the previous experiments, the width of the stem
coincides with the cap diameter and thus the frozen billiard table remains chaotic at all times.
Here the ergodic adiabatic theory predicts that the energy should come to its initial value for
the majority of the initial conditions. This is corroborated by a numerical experiment: the
distribution of the energy after one cycle is shown in figure 8. We see that the final energy is
distributed in a Gaussian-like way with quite small standard deviation: m| | 3 · 101

* 5< − and
therefore we observe no exponential acceleration on average.

5. Summary and discussion

We propose a mechanism for achieving an averaged exponential acceleration rate for majority
of initial conditions in a slowly varying system in which the fast dynamics have mixed phase

Figure 7. Distributions of log E

E

1
10

10

0
and log E

E

1
30

30

0
. Histograms are constructed on the

basis of 25 000 initial conditions uniformly distributed inside the billiard. Initial
velocity is taken with random direction and E 100

7= .
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space. The mechanism is examined by considering an oscillating Bunimovich mushroom,
where analytical predictions are derived and are corroborated numerically. In particular, after
finding explicit expressions for the volumes of the regular and chaotic components, we derive
analytical expressions for the energy distribution after one cycle and for the exponential
energy growth rates. Numerical experiments support our predictions for both the energy
distribution and the growth rate, and support our claim that the violation of ergodicity is
essential for getting exponential acceleration. We note that our mechanism does not require
precise periodicity of the process—it only assumes that the billiard approximately restores its
shape and size from time to time.

Our theory involves a generalization of the ergodic adiabatic theory which takes into
account the flux between different ergodic components. We show that the averaged expo-
nential growth rate is described by the following formula

m
E T

E
g g p: log

( )

(0)
( 1 log )d , (29)1

capture
ell

⎡
⎣⎢

⎤
⎦⎥ ∫= = − −

where g denotes the compression factor for the phase volumes between the moments of
capture into the elliptic island and release (equation (18)) and pell denotes the probability of
the particle being captured in the elliptic component. This formula is derived under quite
general conditions and we hope that it may be applicable to other systems with mixed phase
space.

Averaged exponential acceleration is achieved when the billiard parameters change along
a non-trivial loop, for which the compression factor g of equation (29) is not identically one.
A non-trivial loop bounds a non-empty interior when projected on a parameter plane in which
one axis corresponds to the phase space volume of the chaotic zone and the other axis
corresponds to the flux between the chaotic and integrable components. An important con-
clusion is that the exponential acceleration rate vanishes if the motion of the billiard boundary
can be described by periodic oscillations of a single parameter (as is often done in numerical
simulations of Fermi acceleration). Similarly, it vanishes if one of these two ingredients—the
flux between the ergodic components or the volume change of the ergodic components—is
missing. When the exponential rate vanishes, we still expect to observe some slow accel-
eration, typically quadratic in time (see e.g. [24, 25, 29, 30]).

Figure 8.Distribution of log E

E
1

0
for a chaotic billiard. Histograms are constructed on the

basis of 25 000 initial conditions uniformly distributed inside the billiard. Initial
velocity is taken with random direction and E 100

7= .
a b c0.5, 0.5, 0= = − = , tan 0.1111θ = .
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We conjecture that the described mechanism, of exponential acceleration due to interior
flux and volume changes for different ergodic components of systems with mixed phase space
that are adiabatically deformed, is quite general. However, in contrast with the Bunimovich
mushroom, in generic billiards and in generic smooth systems, the separation of the frozen
fast system into ergodic components that depend continuously on parameters is more pro-
blematic. The existence of chaotic components with positive phase space volume is unknown,
and the numerically observed boundary between the seemingly integrable and chaotic
components is often ‘sticky’ and fractal. Nonetheless, we may envision that some rough
estimates distinguishing the regular from the chaotic components may be derived (e.g. by
calculating Lyapunov exponents), from which the compression rate g and the capture
probability pell may be found. Then, formula (29) may formally connect these geometrical
features of the frozen system with the energy growth rate in the adiabatically perturbed
system. We should note that the influence of sticky or parabolic orbits on the statistics may be
non-trivial. In fact, our initial numerical experiments with the classical Bunimovich mush-
room, which has a rectangular stem and thus a family of parabolic periodic orbits, showed that
the energy distribution in the chaotic zone was different from the one obtained with tilted
geometry. The influence of these effects when multiple slow cycles are considered is yet to be
explored.

While we do not anticipate that all the analytical predictions provided here may be
carried over to the general case literally, we expect that the main principle, of achieving
exponential acceleration by changing volumes of ergodic components on a non-trivial loop of
parameters, is quite general.
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