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Summary. In this paper we give a proof of the existence of smooth nonlocal center
manifolds for systems close to a system with a homoclinic orbit to a saddle-type equi-
librium point. Our proof is based on a consideration of some class of the boundary value
problems (see Section 3). We obtain estimates for solutions of the boundary value prob-
lems that allow us to prove the theorem on the center manifolds &%assumptions

for the smoothness of systems.

1. Introduction

It is well known that in neighborhoods of equilibrium points and periodic orbits of
Ck-smooth dynamical systems there exi&tsmooth invariant center manifolds. This
result goes back to Pliss [1964], Kelley [1967], and then to Fenichel [1971], Hirsch et
al. [1977], and Shoshitaishvili [1975]. For equilibria, the dimension of such manifolds
is determined by the number of roots of the characteristic equation with zero real parts,
and for periodic orbits it is determined by the number of multipliers that lie on the unit
circle. Due to the existence of such manifolds, the investigation of local bifurcations
(bifurcations of equilibrium points and periodic orbits) can be reduced to the study of
the systems on the center manifolds.

However, a large number of the models of multidimensional dynamical systems is
provided by nonlocal bifurcations and, in particular, by bifurcations of homoclinic and
heteroclinic contours consisting of equilibria and orbits asymptotic to them. The in-
vestigations of such bifurcations were pioneered by Shilnikov. He studied the principal
nonlocal bifurcations (bifurcations of homoclinic orbits to a saddle and to a saddle-node)
of multidimensional systems (see Shilnikov [1963], [1968]) and discovered the complex
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structure near a homoclinic loop to a saddle-focus and near a homoclinic bunch to a
saddle-saddle (see Shilnikov [1965], [1967], [1969], [1970]). By now bifurcations of
homoclinic and heteroclinic contours have been developed intensively. For instance,
codimension-two bifurcations of heteroclinic contours with two equilibrium states were
studied in Bykov [1978], [1980], [1993]; Chow et al. [1990b]; Deng [1989], [1991];
Shashkov [1991b], [1992], [1994]; Shashkov and Turaev [1996]; bifurcations of a pair
of homaoclinic orbits to a saddle, in Turaev [1984], [1991]; Turaev and Shilnikov [1986];
Gambaudo et al. [1988]; bifurcations of two separatrices of a saddle, one of which forms
a homoclinic loop and the other one tends to the loop, in Homburg, [1993], [1996]; and
bifurcations of a homoclinic loop to a saddle at the resonant eigenvalues, in Chow et al.
[1990a].

In connection with the study of the global bifurcations of multidimensional systems, a
number of papers have been devoted, in recent years, to the extension of center-manifold
theory to homoclinic and heteroclinic contours. First, the existence of a Lipschitz two-
dimensional nonlocal invariant manifold was pointed out in [Turaev, 1984], where bifur-
cations of a system with two homaoclinic trajectories to a saddle were studied. A proof
of the existence of &£'-smooth center manifold fo€4-smooth systems was done in
[Turaev, 1991]. Note that in [Turaev, 1996] the center-manifold theory was developed
up to more complex contours that consist of finite number of equilibria, limit cycles,
homoclinic and heteroclinic orbits and, moreoveranda-limit trajectories. The anal-
ogous theorems on the existence of smooth center manifolds*emooth systems,
close to a system with a heteroclinic contour, have been proved in Shashkov [1991a],
[1994]. Independently, Homburg [1993], [1996] has shown the existence of a smooth
two-dimensional center manifold for sufficiently smooth systems with a homoclinic loop
at the nonresonant eigenvalues. By now, the theorem on existence of a smooth center
manifold near a homoclinic loop has been prove@t: assumptiongk > 1, ¢ > 0)
for the smoothness of vector fields Sandstede [1994]. Note that Sandstede [1994] has
extended his results to an infinitely dimensional case.

In this paper we develop a tool that permits us to prove the presence of nonlocal center
manifolds at minimal restrictions to the smoothness of the system. This tool involves
solutions of some class of boundary value problems (see Section 3). Using the estimates
for the solutions of one such problem near an equilibria, we prove the existence of the
smooth center manifold faE!-systems close to a system with a homoclinic orbit to a
saddle equilibrium state. Finally (in Section 9) we giv€aexample of a vector field
with a smooth global center manifold.

2. Main Theorems

Let us consider a family of vector fields, on an(n + m)-dimensional manifold,
X =F(X, ), X e R™M n>1 m=>1 peR, I>0

We assume the functioR (X, ) to be Ck-smooth(k > 1) with respect to the phase
variablesX and the parameter.
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Fig. 1. The stable manifoldVs intersects the unstable
manifoldW" along the orbil”, forming a homoclinic loop
L = OUT. The orbitI" does not belong to the strong-
unstable manifoldv'".

We make the following assumptions:

(A) atu = 0, the system xhas a saddle equilibrium point O and theroats . .., A1,
y1, - - -, ¥m Of the characteristic equation of the linearized system at the point O
satisfy the following inequalities:

Rein <---<Rer; <0<y <Rey; <--- < Réym.

In this case, the dimension of the stable manifédld of the equilibrium pointO
is equal ton and the unstable manifol/" of O is anm-dimensional surface. Since
y1 < Rey, (i = 2,..., m), there exists aim—1)-dimensional strong-unstable invariant
submanifoldW"" in WY. The main feature characterizivg" is that all its orbits tend
to O, ast — —oo, being tangent to the subspace corresponding to the eigenvalues
v2, ..., ¥n, Whereas all orbits ofv"\ W"" are tangent, as— —oo, to the eigendirection
corresponding to thprinciple eigenvaluey;. We shall assume that

(B) atu = 0, the system ¥has an orbitl" that is doubly asymptotic to the equilibrium
point O, i.e.,(WsNW")/O O T,

and
(C) the orbitI" does not belong to the strong-unstable manifolé'\(gee Figure 1).

Denote byES* < R™! the invariant subspace of the linearization matrix of the
systemXg at the pointO, which corresponds to the eigenvalugs. . ., A1, y1. Itis well
known (Fenichel [1971]; Hirsch et al. [1977]) that, under the assumtiprthere exists
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Fig. 2. There exists &'-smooth invariant manifold
WS+, containingWs, that is tangent a® to the sub-
space corresponding to the eigenvalugs . ., AL, 2.
The manifoldWs* is not uniquely defined, but any
two of such manifolds have the common tangent
everywhere onWs. The strong-unstable manifold
WU is uniquely embedded into a smooth invariant
codimension-one foliatiofr" on W".

an invariantC!-smooth manifold/Ns* tangential toES* at the pointO (see Figure 2).
The manifoldWs* contains entirely the stable manifdlilS. It is not uniquely defined,
but any two of them are tangent at all pointswigf. It is known that the manifoldv“"
is uniquely included in a smooth invariant foliatiéiY on the manifold\/Y. We require
the following condition to be fulfilled.

(D) The manifold W is transverse to the leaves of the foliatiod &t each point of
the homoclinic orbif” (see Figure 3).

Notice that conditiorfD) must be verified only at one point on the trajectbrybecause
the manifoldws* and the foliationFY are invariant with respect to the flow defined by
the systenXy. It should also be noted that the dimension of the mani¥wfd and the
dimension of the leaves of the foliatidf' complement each other; therefore condition
(D), as well as condition6A) and(C), are conditions of the general position.

Theorem 2.1. If conditions(A), (B), (C), and (D) are fulfilled, then there exists a
small neighborhood U of the loof = O U T such that, for allu small enough, the
system X has an(n + 1)-dimensional invariant &-smooth manifoldV1°s that depends
smoothly onu and such that any orbit not lying il leaves U as t tends té-oco
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Y

Fig. 3. The manifoldWs" transversely intersects the
leaves of the foliatiorF".

(see Figure 4}. The manifoldM°®s is tangent at the point O to the invariant subspace
corresponding to the eigenvalugs, ..., A1, y1.

Reversing the time, Theorem 2.1 immediately implies the following corollary. Let

(A"). the eigenvalues at the point O satisfy the following conditions:
Reln < - <Reiz <ti1 <0< Rey; <..-- <Reynp.

In this case, since&; > Reii, (i = 2,...,n), there exists arfn — 1)-dimensional
strong-stable invariant submanifoll*s lying entirely in the stable manifolslvs. We
also modify the conditiongC) and(D). Namely,

(C"). the homoclinic orbitl", which exists aix = 0, does not lie in the strong-stable
manifold WS (see Figure 5).

Denote byE'+ ¢ R™! the invariant subspace of the linearization matrix of the
systemXg at the pointO, which corresponds to the eigenvalygs .. .. y1, A1. Under
the condition(A"), there exists an invariaf!-smooth manifoldvY*, tangential ta='+
at the pointO (see Figure 6). The manifol/“* is not uniquely defined, but any two
of them contairW" entirely and are tangent at all points \f!. The strong-unstable
manifoldW3%is uniquely included in a smooth invariant foliati6f on Ws. We require
the following condition to be fulfilled.

Lin fact, M e CK*e if F(X, 1) € CK™ and Reyalyr > k + ¢.
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Fig. 4. The systenX,, has an(n + 1)-dimensionalC!-
smooth invariant manifold1¢ for all 1 small enough.
Any orbit not lying in M escapes the neighborhood of
the loopL = O U T, which exists ajt = 0, ast + oco.

Fig. 5. The homoclinic orbifl", which exists ajx = 0,
does not belong tavss, i.e.,I" tends to the equilibrium
O, if t — 400, along theprinciple direction corre-
sponding to;.
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Fig. 6. There exists an invaria@!-manifoldW"*, con-
taining WY, that is tangent a® to the subspace corre-
sponding to the eigenvalues, y?!, ..., y™. The man-
ifold WY+ is not unique, but any two of them have the
common tangent everywhere @. The strong-stable
manifold W*% is uniquely embedded into a smooth in-
variant codimension-one foliatiofRs on W5,

4

(D). Ateach point of", the manifold W is transverse to the leaves of the foliation
F*s (see Figure 7).

Theorem 2.2. If the conditiongA’), (B), (C'), and(D’) are fulfilled, then there exists
a small neighborhood U of the homoclinic logp= O U I" such that, for allx small
enough, the system,has an(m+ 1)-dimensional invariant &-smooth manifoldv1©!
that depends smoothly gnand such that any orbit, not lying inm°®, leaves U as t
tends to—oo (see Figure 8). The manifolé1® is tangent at the point O to the subspace
corresponding to the eigenvalues, . .., y1, A1.

If the conditions of both Theorem 2.1 and Theorem 2.2 are fulfilled, then we have the
following result.

Theorem 2.3. The manifolds\M®“ and M°® intersect each other transversally along a
two-dimensional invariant &manifold M€ that depends smoothly @n The manifold
ME contains all orbits of X lying in U entirely for all t € (—o0, +00) and it is tangent
at the point O to the subspace corresponding to the principle eigenvajugs.

By definition, in the situation of Theorem 2.1, thedimensional stable manifold of
the pointO belongs taM®s. The invariant manifold\®s is (n 4 1)-dimensional and,
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Fig. 7. The manifoldW"* is transverse to the leaves of
the foliation F>.
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Fig. 8. The systenX, has anim+1)-dimensional
C!-smooth invariant manifold for all i small
enough. Any orbit not lying inM*® escapes the
neighborhood of the loof = OUT, which exists
atu =0, ast > —oo.

hence, the unstable manifold 6f is one-dimensional for the restriction of the system
X,, onto M. Thus, the restriction onto the center-stable manifd° reduces the
dimension of the unstable manifold. Analogously, in the situation of Theorem 2.2, the
restriction onto the center-unstable manifdld® reduces the dimension of the stable
manifold.
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Notice that the manifolda1°s, M, and M¢ are in general onl€!-smooth? There-
fore, in contrastto the local bifurcation theory, we cannot apply the reduction to the center
manifold directly for studying subtle bifurcational problems requiring higher smooth-
ness of the system. Theorems 2.1-2.3 are, thus, qualitative results that allow one to
evaluate possible dynamical behavior in a neighborhood of the homoclinic loop. For
instance, they provide restrictions on the possible dimensions of the stable and unsta-
ble manifolds of the orbits ity or, which is the same, on the number of positive and
negative Lyapunov exponents. Moreover, it is possible to use the restriction onto the
invariant manifold for the study of a bifurcation problem that actually requires only
Cl-smoothness. For instance, we believe that the bifurcation problems considered by
Shilnikov [1963], [1965], [1968], [1970]; Turaev [1984], [1991]; Turaev and Shilnikov
[1986]; Chow et al. [1990b]; Deng [1989], [1991]; Shashkov [1991b], [1992], [1994];
Shashkov and Turaev [1996]; Homburg [1993]; and Gambaudo [1988] actually require
only C-smoothness.

Since both Theorems 2.2 and 2.3 follow from main Theorem 2.1, all of our consid-
erations below will be focused on the proof of Theorem 2.1. We prove Theorem 2.1,
reducing the problem on a Poineariap (see Sections 4 and 5) and applying the stan-
dard arguments used in proving the contractibility for the graph transformations (see
Section 6). In order to construct the Poireanap, we use an appropriate boundary
value problem that gives the proper estimates for the solutions of the system near the
equilibrium point (see Section 3). A proof of the smoothness of the invariant manifold
MCs s carried out in Sections 7 and 8. We give an example®f-amooth vector field
with the nonlocal center manifold in Section 9.

3. On a Class of Boundary Value Problems

In order to prove Theorem 2.1, we need proper estimates for the orbits of the system
near the homoclinic loog. Notice that the study of solutions near the equilibrium
point is the most complicated because flight time of orbits nearO is unbounded
and, therefore, we need estimates that are fulfilled for unbounded times. If the system
can be linearized in the neighborhood of the equilibrium point, the question about the
estimates does not arise. However, the smooth linearization requires that the superfluous
additional resonance restrictions be satisfied. Moreover, the system should be extra
smooth. Therefore, the general way to find the suitable estimates near the equilibrium
point is to use Shilnikov’s method, which is based on a consideration of some boundary
value problem (see Shilnikov [1967]). This method gives the proper estimates (see
Ovsyannikov and Shilnikov [1986], [1991], Turaev [1991]) for the solutions and their
derivatives up to ordek if the initial system isC*+3-smooth. There are many nonlocal
bifurcational problems that were solved by this method (see, for instance, Chow et al.
[1990a], [1990b]; Deng [1989], [1991]; Fiedler and Turaev [1996]; Shashkov [19914a],
[1991b], [1994]; Turaev [1984], [1991]; Turaev and Shilnikov [1986]).

Since we consider here vector fields that are @tysmooth, we cannot apply the
results mentioned above and, therefore, we develop Shilnikov's method. Namely, we

2 For instance, smoothness.8f°S is not higher than the integer part of Rey; > 1.
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consider the boundary value problem at the other assumptions for the boundary con-
ditions (formulas (3.61)—(3.64) below). Moreover, since the boundary value problems
are of interest in its own, in this section we consider a sufficiently wide class of these
problems (see (3.1), (3.2), (3.5), and (3.6)). BSrsmooth k > 1) vector fields, we
obtain estimates for the derivatives of the solutions up to dedéfe also investigate the
convergence of these derivatives when the flight time of the solutions tends to infinity.

3.1. The Existence Theorem

Consider a system of ordinary differential equations,

B

U= Au+ f(u,v, pu,t),
v = Bv+g(u, v, u,t),

whereu € R", v € R™, t is time, andu is a vector of parameters from some compact
setD ¢ R, (I > 0). We assume that the functiofisandg areC*-smooth(k > 1) with
respect to all variable@u, v, u, t). Let the following conditions hold for the matricés
andB:
SpectrA = {ag, ..., an}, SpectB = {81, ..., Bm},

3.2
‘max Regj <a < B < min Rep.
i=1,..., n i=1 m

In this case, it is possible to choose the norms of the vectarsdv in such a way that
fors >0,

[ehe] = e < e,

i 3.3
e®s] e <ers,
where constants, § satisfy the conditions
max Reoj <@ <a and B <pB < min Reg.3 (3.4)
i=1..n i=1,..m
We also require that, for any, v) € R™™andu € D,
a(f, g
P , 35
‘ 3. v) <§ (3.5

wheret is a small enough constatht.
We are interested in solutions of the system (3.1) that satisfy the following boundary
conditions:

u(0) = u°, v(r) = v, 7> 0. (3.6)

Notice thatthe difference between our boundary value problem (3.1), (3.6) and Shilnikov’s
is that we do not require the conditioas< 0 andj > 0.

3 Here and below, the symbdl- || denotes a norm ifRP if it is applied to a vectox = (xg, ..., Xp), and
denotes the compatible operator norm if it is applied to an operator.

4 The exact value of the constantan be extracted from the proofs of the theorems below.
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Theorem 3.1. A solution of the boundary value problem (3.1), (3.6),
u(t) = u(t; ul, vi, 7, w, v(t) = v(t; u®, vt 7, 7)) 3.7)

exists. Itis uniquely defined and dependssinoothly ort; u°, vt, z, ). Moreover, the
following estimates hold:

a(u, v)
auo

(U, v)
vl

< Cceht), (3.8)

oo |

where C is some constant.

Before the proof of Theorem 3.1, we notice that vector fields in neighborhoods of
equilibrium points give us one of the main examples of systems of the kind (3.1). Indeed,
let us consider a family oE¥-smooth dynamical systems that depends on a parameter
w and is given on aiin + m)-dimensional manifold:

X=FX,pn, XeR"M"n>1m>1),
(3.9
peR (>0, F(XpeCkk=>1.

Assume that att = 0 the system (3.9) has an equilibrium po@tin the origin of the
coordinates and the spectrum of the linear part of the system (3.9) in the(poant be
divided onto two parts, i.e.,

oF
Spectr{ —
P <a><)

In this case, it is possible to introduce coordinates R" andv € R™ such that, in a
neighborhood of the poir® for © small enough, the system (3.9) is given by

={a1,...,an, B1,..., Bm}, ax Req; < j=minm Reg;.

(X, 1)=0 i=1,..,n 1.,

{u = Au+ f(u,v, p),

0 = Bu+g(U, v, ), (310

where the matriceé\ and B satisfy conditions (3.2), (3.3), and the functiofsg are
Ck-smooth and satisfy the following conditions:

I(f. 9

f(0,0,0) =0, (0,0,0) =0,
( ) g ) DU ) | o010

—0. (3.11)

We are interested in solutioria(t), v(t)), att € [0, 7], lying entirely ¢ € [0, z]) in a
small neighborhood of the poi@. Therefore, the transition to a new system is justified

U= Au+ f(u,v,w),
{i) = Bv+§(u, v, p), 312
where the functiond, § € CX are given by the following formulas:
fu, v, ) = £ @ VI, 21U, /e, 1), (3.13)

g(u, v, w) = g @I, v)li/p)u, F(IU, V)PV, 1)
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Here p is a small positive constant and the functidt) € C* has the following
properties:

1Lift<1, v (t)

M) = {o, if t > 2, ot | =2 S
Notice that the function§ andg satisfy inequality (3.5) for anfu, v) € R™™ and small
w. By (3.11), (3.13), and (3.14), and by choosjmgmall, the constari can be made
arbitrarily small. Therefore, the system (3.12) is a system of the kind (3.1). The functions
f and§ coincide with f andg correspondingly foif|(u, v)|| < p. So, if the boundary
value problem (3.12), (3.6) has a solutian(t), v(t)) lying entirely ¢ € [0, t]) in the
neighborhood|(u, v)|| < p, then(u(t), v(t)) is also the solution of the boundary value
problem (3.6), (3.109.

Let us pass to a proof of Theorem 3.1. Consider the spoécontinuous functions
(u(t), v(t)), which are given on the segment [0, t]. Define ay-norm by the following
formula:

I, v, = tS[gp] (Iu®), vnle™), (315

where
a<y<pB. (316

Obviously,H with they-norm is a complete metric spate.
Let us introduce an integral operafbr which maps any functiou(t), v(t)) € H
into the function(ti(t), v(t)) € H, by the following rule:

t

ut) = eAtu°+/eA(“s)f(u(S),v(s),u,t)ds
0

(3.17)

t
(t) = eB“—f)vl+/eB“—S>g(u(s),v(s),u,t)ds

T

Itis easy to check that any solution of the boundary value problem (3.1), (3.6) is a fixed
point of the integral operator (3.17). It is also true that any fixed poifit ifa solution
of the boundary value problem (3.1), (3.6). Therefore, the question of the existence and
uniqueness of the solution of the problem (3.1), (3.6) is reduced to the question of the
existence and uniqueness of the fixed point of the opefiator

In order to show thafl has a unique fixed point, we shall establish thats a
contraction operator in the spakle Let us check it. Consider any functioqsg, v1) € H

5 Notice the solution of the boundary value problem (3.12), (3.6), generally speaking, can fall outside the
limits of the neighborhood oD. Therefore, in this case, the solution is not the solution of the boundary value
problem (3.10), (3.6).

6 Note that they-norm is equivalent to the usual uniform norm.
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and(uz, v2) € H. Let T(ug, v1) = (U1, v1) andT (uUp, v2) = (Uz, v2); then, by (3.2)—
(3.5) and (3.15)—(3.17), we have the following relations:

t

/e’““sk f (U1(8), v1(9), . 1) — f(UAS), v2(9), 1, t))ds

0
t

< / &9 Uy — U, vy — v2) [, €°ds
0

U — Uzl =

= et (e 1) Uy — U, w1 — )l
Yy — o
;

Yy — o

&' (ug, v1) — (Uz, V), (3.18)

t

/ €59 (g(U(S), v1(9), 1. 1) — G(U(S), va(S), 1, D)

T

vy =2l =

IA

T
/ 9 | (Ug — Uz, v1 — v, €°ds
t

- /fjeﬂt (7P — &7 P) Jl(uy — Uz, vy — v2)l,
< Le”ll(ul, v1) — (U2, v2)]ly. (3.19)
B—v

By (3.15)—(3.19), we obtain

(T, 91) — (U2, D), < s[up] (IIty — Tolle™" + [[v1 — Volle™™")
tel0,7
1 1
< £ <_ + _> (U1, v1) — (U2, V)|l (3.20)
y—a B-vy

We assume that the constdnts so small that (1/(y — «) + 1/(B — y)) is less than
1. In this caseT : H — H is a contraction operator and, therefofehas a unique
fixed point(u(t), v(t)) € H. Moreover, any sequendey, vp), (U1, v1), (U2, v2), ...,
obtained by the iterations

(Un41(D), vnga (D) = T (Un(t), vn (D)), (3.21)

with any initial function(ug(t), vo(t)) € H, converges to the fixed point.

Thus, for any fixed value&i®, v*, 7, 1), the boundary value problem (3.1), (3.6) has
a unique solution. Depending on the boundary conditi@isv?, ) andx, we obtain
different solutions. Below we show the existence of a consfasiich that the solution
(3.7) satisfies the following Lipschitz conditions with respeaif@ndv?:

| (uct; ug, vt 7, ), vt ud, vt T, ) — (Ut ud, vt T ), vt ud, vt T, ) [
<ce'|uf—ulf. (3.22)
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[(uct; u®, v1, 7, ), v(t; W%, v1, T, ) — (U(t; U0 v, 7, ), v(t: U0 v, 7, ) |
<CeP |vf —vg]. (3.23)
Consider the spadd of continuous functiongu(t; u®, v, 7, 1), v(t; u°, v1, 7, w)) that
satlsfy Lipschitz conditions (3.22) and (3.23). Heree D, 7 > 0,0<t <7, ueR"
andv! € R™. Let us define an operatdr in the spaceH by the relations (3. 17).
Below, we show thatl is an invariant space with respect o Consider any function
(u(t; u®, vt 7, w), v(t; u®, v, 7, u)) € H. Now, we shall check that the function
(Uct; W% vt 7, ), vt W0 vt ) = T (uct ul, vt o), vt Ul vt T )
satisfies inequality (3.23). Fix any®, 7, 1) and take any two values': v = v} and
v! = vl. Below, we use the following denotations:
(u(t; u® Ul,‘C w), v(t; u° vl,r w) = (Ua(t), vi(t)),
(u(t; u® vz,l’ w), v(t; u° vz,r w) = (Ua(t), va(t)),

o (3.24)
a(t; u vl,t w), o(t; u° vl,r w)) = (), (1)),
(u(t u vz,t w), v(t; u® v2,r u)) (Uz(t), v2(1)).
By (3.2)—(3.5), (3.17), (3.23), and (3.24), we have the following relations:
t
Ty — Tz|| = / M9 (f (Ug, va, . t) — f (U2, v, 1, 1))dS
0
< [etosce Tt - vids
§ - -
- 5% (1—e“ P Ccet v} — vl
< ﬂf Ce -0 ut — v, (3.25)
91 — w2l < 7o} —vg
t
4 / 689 (g(uy, vy, 1, 1) — G(Up, v, 12, D)dS
< Dl — v +/e5<t*S>ECe3<S*T>||v}— v3||ds
t
- (1+ . (1P c) STl ol
B—B
< <1+ ﬁg—ﬁc) vl — vl (3.26)

7 The difference betweet andT is that the operators are defined on different spaces of functions.
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Therefore, by inequalities (3.25) and (3.26),
(U1, v1) — (U2, v2)|| < |[Ug — U]l + [[vg — 2|
1 1
<1+s (/g + I ﬂ) C) 0 vt — v3).
—a _

We assume thdtis so §mal| that (1/(8 — «) + (B — B)) < 1. Inthis case, iC > 1/
(1—-&@A/B —a) + 1B — B))), we have

IA

o o S T
(T, v1) — (U2, D2)|| < CE vl — w3,

i.e., the function(t(t; u®, vt, r, w), v(t; u®, vt, r, n)) satisfies estimate (3.23). In the
same way, it is possible to check that the functiarct; u®, vt, =, ), v(t; u®, vt, 7, w))
satisfies inequality (3.22). This means tiihiis an invariant space with respect to the
operatorT .

Notice, ifu®, v!, r, andu are fixed, the sequence of functions

(un(t; %, vt 7, ), vn(t; U2 vt 7, ) = T"(0, 0)

coincides with the sequence (3.21) with the initial elem@gtt), vo(t)) = (0,0) € H
and, therefore, converges to the solution (3.7) of the boundary value problem (3.1), (3.6)
in H. Due to the theoreron the passage to the limit in inequalitighe solution also
satisfies relations (3.22) and (3.23).

Below we shall show that the solutiqn(t; u®, v, 7, u), v(t; u®, v1, 7, u)) is aCk-
smooth function with respect to all variables. To establish this, we consider Cauchy’s
initial value problem for the system (3.1) with the following initial conditions:

u(0) = u°, v(0) = v°. (3.27)

Smoothness of the functiorfsandg in the right-hand side of the system (3.1) guarantees
the existence and uniqueness of the solution

(ur(t; u®, 00, ), vt U200, W), (3.28

which is Ck-smooth with respect té; u®, v°, ). The phase trajectories of the system
(3.1) determine the one-to-one correspondence between the initial (3.27) and the bound-
ary (3.6) conditions. This correspondence can be specified by the following formulas:

(uo, vo) = (u(O; ue, vl T, w), v(0, uo, vl T, u)) , (3.29

(uo, vl) = (u*(O; u, 00, w), v*(r; u°, v°, ,u)) . (3.30

Further, we use the following corollary tfe implicit function theorem

Lemma 3.1. Let a function KX, y) satisfy the Lipschitz condition with respect to X,
i.e., for any x, X, and y from the domain of definition

IF (X1, y) = F(X2, YII = LlIx1 — X2]|.
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Let the equation z= F (X, y) be resolved with respect to X, i.e.,= ®(y, z), and,
moreover, letd (y, z) be a C-smooth function with respect (v, z). Then KX, y) is
also a CX-smooth function with respect t&, y) and

oF
0X

The functions in (3.30) deper@*-smoothly on the variables because the functions in

(3.28) are smooth. The functions in (3.29) satisfy the Lipschitz condition (3.23) with
respect tav®. Applying Lemma 3.1, we obtain that the functions in equality (3.29) are
Ck-smooth. NowCK-smoothness of the solution (3.7) follows from the fact that it can

be represented as a superposition of smooth functions:

<L.

u(tu® vt o) = Ut (60000, W0 vt T, ), ),

vt vt ) = vt (U0 00U v T ), ).
The smoothness of the solution (3.7) and the Lipschitz conditions (3.22), (3.23) imply
estimates (3.8). The theorem is proved.

Notice that our boundary value problem (3.1), (3.6) makes sense with the following
conditions:

v =0, T = 00.
In this case, we define the solution as a fixed point of the following integral operator:

t

at) = eAtuO—i—/eA(t_s)f(u(S),v(s),u,t)d&

0
t

v(t) = f e Ig(u(s), v(s), 1, t)ds.

This operator, as well as the operafor(see (3.17)), has a unique fixed point in the
spaceH

ut) =ut; u w), ) = vt u, w8

Since the functioffu(t; u®, w), v(t; u°, ) isboundedinthg-norm, the orbitu(t), v(t))
belongs to an invariant manifold that corresponds to the eigenvalyes., o, and,
therefore, the function® = V (U°, u) = v(0; U°, 1) specifies that

1. the extended stable manifold ifOa < B;
2. the stable manifold & < 0 < 8;
3. the strong stable manifolddf < 8 < 0.

8 The functionau(t; u°, ) andv(t; u°, 1) dependCk-smoothly on(t; u, w) if « < 0, and the smoothness is
bounded by the integer part 8fx if « > 0.
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By virtue of the symmetry with respect to the changes

UO 1 1

t—>1t—1t, u— v, v — U, — vl vl — WO,

A — —B, B—> —A, a— —f, B — —a,

there exists an invariant maniflthat corresponds to the eigenvalygs. . ., m, i.e.,

1. the strong unstable manifold if O « < g;
2. the unstable manifold < 0 < g;
3. the extended unstable manifoldvif< 8 < 0.

3.2. Estimates for the Derivatives

Theorem 3.1 gives us the estimates (3.8) for the derivatives of the first order with respect
to u® andv?. In this subsection we estimate any derivatives for the solution (3.7) of the
boundary value problem (3.1), (3.6) up to ortter

We use the following denotations for the derivatives of a vector funcfios-

(¢1. ..., ¢q) € RY with respect to a vector argument= (Xy, ..., Xp) € RP:
3\sl¢ 9SS gy 351+---+sp¢q
axs 8X§1~-~3X;p T 8X§1~-'3X;p ’
Here, the vectos = (sy, ..., Sp) consists of nonnegative integer-valued components

and|s| = s+ --- + 8.
Theorem 3.2. Let the solution (3.7) of the boundary value problem (3.1), (3.6) lie in a
bounded domain; then the following estimates hold.
1. Let0 < o < B;then

C if k| = [ko| =0,
8\k1|+|k2|+|k3\(u’ v)

3 (U0, 1) 9 (v1, 7)" atks

< {céklet jf k| = 0and|kio — B < O,

C -kl jf k| £ 0or |ky|a — 8 > O.
(3.31)
2. Leta < 0 < B; then

C if [ky| = |ko| =0,

Cet if |ko| = Oand |k # 0,

_ (3.32)
Cet9 if |k = 0and|ky| # O,

lkultlkel kel (y )

8 (u%) 9 (1, 7)@ act, ke

C et+At=1 jf |Kk;| # O and |ky| # O.

9 The smoothness of this manifold is bounded by the integer pamfif 8 < 0.
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3. Leta < B < 0; then
C if [ky| =lko| =0,
glkallkellksl ()

C ekelft=0 jf |ky| = 0anda — [kl < O,
5 (uo)kl d (vl T, M)kz atks

C et-lklft jf |ky| £ 0 or a — [ko| 8 > O.
(3.33

Here C is some positive constant.

Notice that our boundary value problem is symmetric with respect to the following
change:

t—>1-—1, o — —B, B — —a, u— v,

v U O 1 1 (3.3%

— v, vl — uo, ki — ko, ko — ki.
Therefore, by Theorem 3.2, we have

Theorem 3.3. Let the solution (3.7) of the boundary value problem (3.1), (3.6) lieina
bounded domain, then the following estimates hold.

1. LetO < o < B; then

C if [ka| = lka| =0,

[Ka |+[Kz|+Ks|
i CIL) C kit if |ko| = Oand|kija — B < O,

3 (U0 7, 1) 8 (v1) @ a(x — tyks
C ft-otlkler jf k| £ 0or k| — 8 > O.
(3.35)

2. Leta < 0 < B; then

C if k| = |ko| =0,
gllal+lkellkal (1)) Cet if [ko| =0and|k| # 0,

3 (U0, 1) 9 ()¢ a(r —t, ks

C e if |ky| = 0andlks| # 0,

C &Pt if |ki| # 0and|ky| # 0.
(3.36)
3. Leta < B < 0; then
C if |ky| = |ko| =0,
a\k1|+|k2|+|k3‘(u’ U)

C dkelBt=) if |ky| = Oanda — |ky|B < O,
9 (UO, T)kl 0 (Ul, M)kz 8(‘[ - t)k3

Cet-lklft if |ky| £ 0ora — |ky|8 > O.
(3.37)

Here C is some positive constant.
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Let us prove Theorem 3.2 for the first case, i.e. under the conditiehs:O< 8. Note
that the estimates for the derivatives with respegi tan be reduced to the estimates for
the derivatives with respect td. In order to see that it is sufficient to add the equation
i = 0to the initial system (3.1) and the conditinii0) = w to the boundary conditions
(3.6).

Note also that the differentiation with respectttaloes not change the estimates.
Indeed, by (3.1), we have the following recurrence relations:

glkalHkal+Ks|+HKal+Ksl gl kel —11 (A u - f (U, v, . 1))
AUy (vhykedpkedrhagtis d(UOYkr (vTyked kg TRtk ’ 338
glkal+lkel-+ ks +Ikal+1Ksl 5, gl kel Hksl+Hkal ks =11 (B y 4 g(u, v, 1, 1))
(U)K ()R ks R ptks B (UOYk1 g (v1)ked ks drRagtks— 1
So, by (3.38),
glkltlkel+ksl+kal+sl () glkultlkel+lksl+lkal (y )
U0k (vh)kgpksgrhagths (a(uO)kla(vl)kzauksarM)'

In order to find the estimates for the derivatives with respectte use the following
trick. By the definition of the solution of the boundary value problem we have the
following identities:

uct; u®, vl T ) =u; ul, vr + 85Ul v T, ), T+ 8, 1,
(3.39)
v(t; uwo, v, t, w) = v(t; uo, v(t +6; uw, v, r, W), T+, 1),

The differentiation of the identities (3.39) with respedt tives us the following equality:

a(u, v)
ot

a(u,v) dv
dvl ot

=0. (3.40

t=t

This formula implies that the differentiation with respectitas “analogous” to the
differentiation with respect to?, i.e.

lkalHlkal ksl +Hkal () lkal+kel ksl (yy 4))
d(uOk(vhequearhe (a(u%kla(vl)kﬁaukﬁ)’
wherelke| = [kz| + [Ka-

So, to prove Theorem 3.2, under the conditiorcx < B, we need to check the
following estimates:

(3.41)

glkaHkel (. ) Cellt if |ko] = Oandlkila — B <O,

e 3.42
3 (u9)* 9 (v1)" (542

C eft-tlker if |ko| # 0 or|kijoe — B > O.

We prove the validity of these estimates by induction|ion + |ko|. By virtue of
Theorem 3.1 (see (3.8)), the estimates are fulfilledKgr+ |ko| = 1. Assume that the
estimates (3.42) are fulfilled for amy andk; such thatk;| + |ko| < q. Let us show the
validity of the estimates for ariyy andk; such thatk;| + |ko| = g + 1.
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Take anyk; andk, such that 2< |k;| + |kzo] = g + 1 < k. Since the solution of the
boundary value problem is a fixed point of the operdiofsee (3.17)), the derivative
ghlielwy) gatisfies the following equation:

3(u0)a(v?1)?
a\k1|+|k2|u jeA a|k1‘+‘k2‘ f(u v, U, S)
_— = k1 kg
9 (uO J (u9)™a (vt
(3.43)
k1 kz - e kl k2
8 (W) 5 (v2) 9 (u9)“ d (v1)

where the derivatives of the composite functidrsi(s; u®, vi, 7, u), v(s; u®, vl 7, u),
w,s) andg(u(s; u®, v, 7, w), v(s; u®, v, 7, w), u, s) are calculated by the following
formula:

3|k1\+\k2\(f7 9) a(f, g 3|k1\+\k2\(u7 v)

A(UO)kig (vl)ke - (U, v) (U0 g (vl)ke

ol [ 5ilcf, g) ( g lii+m(y U))
n L9 Chty | [——2 )| (349
|i|2::2 LD +X|I\:u| Ika PPy 111 dUNIdHP

[Pal+-+1pji|=lkl
[Iml+Ipm|>1

HereC ,..1;, are some constants. Notice, by the proposition of induction, the derivatives
P1---Bji|
% satisfy the estimates (3.42) becallse+ |pj| < q.
Let us consider the spad¢ of continuous functiongn (t), n2(t)) which are defined
onthe segmertte [0; t]. The spacéN with they-norm (see (3.15), (3.16)) is a complete
metric space. Formulas (3.43) and (3.44) associate afmap\ — N. Namely, we

define(n1, 72) = P [(n1, n2)] by the following relations:

t

t Att—-s)__ ~"~ of A(t ) ‘klg‘-HkZI a\i\ f
N, — - ) e
n = /e 3(” ) (711, ’72)d5+f = (8(”, U)i )dS,

0 0

(3.45

t

] sy 00 . ! . kel o gilg .
n2=/e T )(771,712) S+/ 2:: <8(u,v)i ) S.

T

In order to obtain the formulas (3.45), we substituted, n,) for m% in the

right-hand side of the equation (3.43) afid, #72) for 2w in the left-hand side.

e 3(U0)k13(v1)k2
kgl +k2l (. o
Thus, Fhe derivativ (ut)k.lza((;‘; _k)z is a fixed point ofP. _ .
Notice that the maj® is a linear operator. It can be represented in the following form:

(M1, 12) = A1, n2) + B, (3.46)
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where
t t

of _o 00
_ A(t—s) eB(t-s)
A, n2) = /e T )(771 ﬂz)dS,f FTORD) (n,m2)ds |, (3.47)
0

T

and

! kel /ol § ! el /g
P S A Py U TR

(3.48
By (3.2)—(3.5) and (3.47), there exists a constant 1 such that|A| < p, i.e., the
operatorP satisfies the contraction property

dist(P (11, 72)) < p dist(n1, n2) .

It means, in particular, that the derivati»%fm% is a unique fixed point of the
operatorP and, moreover,

3\k1I+IkzI(u’ v)
H d(UO)kag(vhke
Therefore, by (3.49) and (3.48), there exists a condiastich that

<@-p7tIBJ. (3.49

H 3|k1\+\kz\(u, v)

a(UO)kla(vl)kz
-5 . /1'_[ alli+Ip (U, v) /eﬂ“ S) alil+Ipl(u, v)
- i=2...|ke|+Ko| 1 a(uo)'lﬁ(vl)pl a(uO)'Ja(vl)pl
Mo+l l=lk)] \o =
[p1l++Ipi|= |k2|
[lml+Ipml=>1

(3.50
By the proposition of induction, the derivativg’-ém% satisfy the estimates (3.42)
and, therefore, the right-hand side of inequality (3.50) can be estimated indeed. Thus,
by the relations (3.50) and (3.42), we must estimate the maximum of the integrals

t
/ea(t—s) emlas emzﬂ(s—r)+m3ards and /eﬂ(t—s) emlas emzﬁ(s—r)+m30lfds’
0
wherem; + mz = |k;| and, moreovem, = mz = 0if |ky| = 0 and(|k;| —Da—8 < O.
Obviously, the integrals satisfy the estimates (3.42).

So, Theorem 3.2 is proved for the case<Qx < 8. The statements of the theorem
for the other cases can be proved in the same way.

3.3. Behavior of the Derivatives & — oo

In Section 3.2 we obtained the estimates for the derivatives of solutions of the boundary
value problem. Below we study the convergences of these derivatives-ift>o.
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By virtue of the inequalities (3.31)—(3.33) and (3.35)—(3.37), some of the derivatives
tend to zero ift — oo because their norms go to zero. It is clear also that some of the
derivatives do not have limits since their norms are unbounded. In this subsection we
consider derivatives that are uniformly bounded by some positive constants. Namely, we
study here the convergences of the following functions:

P oo -
9 (UO’ “) otk t=to
glkaltlkal (Y, v) " 0<p
—— a <0< B,
9 (uo) RIGYDON t=to
glkaltiksl (y, v) " 50
R el a<pB <0,
8 (U)ot | _,
(3.51)
3\kz\+\k3|(u7 v) 0 p
<o < B,
8 () o —tie|
3\kz|+|k3|(u’ ) " 0<p
a <0< B,
9 (vl)kz At —t e T—t=to
3|kz|+|k3\(u’ V) )
8(1 — if @ < k|8 <O.
vhi) (T —tke|

Unfortunately, in the general case, the derivatives (3.51) do not have limitssifoo,
but, under some additional conditions, convergence takes place. The next two theorems,
3.4 and 3.5, give us these conditions.

Below, for any functions (t), ¥ (t) and constantg, =, we use the following denota-
tions:

Dist(¢; ¥),. = sup (llg®) — ¥l e?),

te(0;7)

sup ([l¢t) — y®)lle ™). (3.52)

te(0;7)

Dist(¢; ).

Theorem 3.4. Lett — +ooandu — u.. Also let the boundary condition8 w? vary
in such a way that the solution (3.7) of the boundary value problem (3.1), (3.6) liesin a
bounded domain and the poit®, v°) = (u(t = 0; u%, vt, 7, w), v(t = 0; U, vl, 7, u))
converges to a poinu?, v2). Then there exist functionsA (t), Bek, (), and G, (t)
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such that

o alkalkel gy, _
Dist %; Ak, —0 if 0< |k <o < 8B,
1
pe e )

a|k1|+|k3\(u V)
Dist| ——————: Bk —- 0 ifa<0<fB, a<o<pB, (353
a(uo) 18(t,u)k3 o,T

[ke|+[ks]
Dist w;Ckk — 0 ifa <o <pB <0,
g U)otk T
(uO) o

where|ky| + |ks| < k.
Notice, by virtue of the changes (3.34), Theorem 3.4 directly implies the following result.

Theorem 3.5. Lett — +oo and 4 — pu,. Let also the boundary conditions,u

v! vary in such a way that the solution (3.7) of the boundary value problem (3.1),
(3.6) lies in a bounded domain and the pojot, v!) = (u(t = 7; u% vl 7, w), v(t =
7;u° vl 7, u)) convergestoapoirt, vl). ThenthereeX|stfunct|on§<2,{-(\g(t) Biok. (1),

and G, (t) such that

*’*

gllel+lkal (. B _
st 7 W, v) ;Al:zkg -0 fO<a <o <8,
3 (v1)*a(r —t)s e
3|k2\+\k3\(u, v)

Dist 7 ;
()7 a(r —t, ke

Bk2k3) -0 ifa<0<p, a<o<p, (359

. glkel+lksl (y, - _
Dist . . v) 5 Crok -0 ifa<o<|klB <0,
1 2 k 2
a (vt )z — ) .

where|kz| + |ks| < k.

Now we shall prove Theorem 3.4 for the first case, i.e., under the conditiofk@|a <

o < B. Note that, by the considerations of the previous subsection, the derivatives with
respect tq. andt can be calculated via derivatives with respeaioSo, we must prove

the statement fofer ) only.

3(U0)k1
First, letus prove the theorem florsuch thatks | = 1,i.e., for’2 | etthe sequences
u, vl, 7, andui, (i = 1,2, 3,...) satisfy the theorem condltlons In this case, for any
fixed 10, the appropriate solutionﬁui (t; u2, vl 7, wi), vi(t; U2, vl 7, wi)) converge
uniformly ont € [0,7¢] to a solution of the initial value problem
(Ug(t; U2, 02, 1), vy (t; U0, 00, ) that starts from the poinu?, v9), i.e.,

*? *

sup [|(ui (), vi (1)) — (U (1), v (D)l — O. (3.55

te(0,70)
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It means, in particular, that for ardy> 0,

. a(f, a(f, .
Dist (ﬁ (Ui,Ui,Mi,S); ﬁ(u*a User My S))(sr -0 if Tji — OQ.
- (3.56)

We shall show that the sequence of the derivatﬁﬁg%) is a Cauchy sequence in the
following sense: For any > 0, there exists a constaNt(¢) such that

DiSt(a(UI’vl); 9 (Up, Up)) <&
0,7

auo auo

if | > N(¢), p > N(¢), ande < o < B.1% Since the splutiomui, vi), (i =1I,p)isa
fixed point of the operatof (see (3.17)), the derivativé‘g'u’—ﬁ satisfies the following
equality:

t

ou; At / At—s) of a(Uj, vj)
— —e e — (Ui, Vi, 4, S d
U0 + 3 (UO, vl) (Ui, vi, Ui, S) 3u0 S,

¢ 0 (3.57)
v B(t—s) a9 a(ui, v)
_— = e ——— (Ui, Vi, Wi, S dS
auo ,/ a (uo, vl)( i Vs 44, S) auo

T

Therefore, for any fixed € [0, 1], by (3.2)—(3.5), (3.31), (3.52), (3.56), and (3.57), we
have

auy dUp
aud  quo
t
ffe““) 8 aof : a(?,ow) - aof : a(lgp,ovp) ds
u u
0 (U v ) (U, vr, ) (U v ) (Up~prMp)
t
< fe“(t’s) 78]: Dist 8(u|,v|); 9(Up. vp) e’sds
d (UO, Ul) auo au° 0,7
0 (U, v, 1) o
t
+/e““*5) Dist(L LI ) ] [ACURL i
0,1 ? 0,1 au
0 (U, v) a0 (U0, v1) (upvprtp) / 5 4
. (0, v)  9(Up, vp) . .
<& D|5t< 00 a‘LOp) &'+ e(N)e ™", (3.58)
0,7

10without loss of generality, we assume that .
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oy dvp
ouo  guo
7
sfeﬁﬁﬂ : 309 . 3(:;01)') - ig : 3(:::;1) ds
t (U v ) (U, vr, ) (U v ) (Upyvp://-p)
Tp
B(t— ag 8(up9 Up)
+/eﬁ(t S) Ll ds
9 (uo, vt ouo
7 ( v ) (up.vp,1tp)
T
§/e’§“‘s) 99 Dist a(u|,v|); 0WUp. vp) ) sy
9 (U0, v1) au° ouo /-
t U, v, ) !
7
B(t— . a9 a9 8(Up, Up)
+ [ L9 Dist| ——— ; — eS| —2 i ds
/“ 3 (uo, vt) 3 (uo, v?) u°
t (U, v, ) (Upavpaﬂp) 5,7
Tp
S I [ LCRSTA
d (uo, 1 auo
7 ( v ) (up.vp.itp)
. a(ur, d(Up, _
<e3 DISt( (aluovl); (apuovp)) €7t 4 g4(N)e@HIt 4 gebft=m)tan (3.59)
a,7

where the constants, 3, § can be made arbitrarily small arg(N) — 0, e4(N) — 0
if N — oo. By the inequalities (3.58) and (3.59), the following relation holds:

. a(u, v)  3(Uup, vp) . a(u, v)  9(uUp, vp)
Dist : < Dist : N),
'S ( auo oue J T fo DI auo oue /o +&7(N)
(3.60)

wheregg < 1 andez(N) — 0 if N — oo. Formula (3.60) implies that
Dist(2); 2edo)y - 0 atN — oo, i.e., the sequence of the derivativié:" is
a Cauchy sequence and, therefore, it has a limit.

So, we have proved the statement of Theorem 3.4 for the deriv D such that
|k;] = 1. The statement of the theorem for the higher order derivatives |(&| < k)
may be proved by induction giy|.

3.4. A Boundary Value Problem for the System), X

In this subsection we evaluate behavior of orbits of the systgmmear equilibriaO
using the results obtained above.

It is well known that in a neighborhood of the saddleone can introduce local
coordinategx, y, z),x € R",y € R}, ze R™!, such that the systeiX, takes the form

X = Ax+ fXx,y,z ),
y = yy+ PY(xy.z ), (3.61)
z = Bz+ fix,y,z w),

whereAis a matrix(n x n) and SpectA = {1y ... Ay}, Bisamatrix(m—1x m—1)
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and SpectB = {y»...vm}, ¥ = y1. Remember that, by the conditiga), we have the
relations

max Reri <0<y <, m|n Rey (3.62

i=,..n i=2..,
The functionsf*, Y, fZ areC'-smooth(k > 1) with respect to the phase variables
(X, Y, 2) and the parameter. Moreover, these functions satisfy the following equalities:

a(fx, Yy, %
(%, 1Y, 13 0=0 ——= =0. 3.63
(X.y.2)=0 10592 loxyzmeo (3.63

Below we are interested in the solutions of the system (3.61) satisfying the following
boundary conditions:

x(0) = x°, y(0) = y°, z2(t) = 2%, >0, (3.64)

with smallx?, y°, andz!. So, the problem (3.61), (3.64) is a boundary value problem of
the kind (3.1), (3.6§*
By virtue of Theorem 3.2 (see (3.31)), the solution

(x()., y), z(t)) = (x(t: X% y°, 25 7, w), yt: X0, ¥, 28 7, ), 2t X0, ¥0, 2H T )
(3.65)
of the boundary value problem (3.61), (3.64) satisfies the following inequalities:

8(X7 yv Z) < C, a(x y Z) 8(X5 y1 Z) < C eg(’[f-[)’
ot - 3(X° yO, w) A1) |~
(3.66)
where
max Reri <0<y <a<p < m|n Rey (3.67)
Moreover, by Theorems 3.4 and 3.5uif— 0, 7 — oo, and
x°,y°, 2% = (x(0), y(0), 2(0)) - (xT, y", z") € W*,
(xtyh zh = (x(1), y(r), 2()) — (X7, y~,Z) € WY,
then
a(X,Yy,2 I(X,Y,2
o A rag| B 368
(’y’“’)t=o (’T’)t=

where A andB are some matrices.

11 We use(x, y) for the variableu and the variable for v.
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4. Local and Global Maps

The proof of the main Theorem 2.1 is based on the investigation of the Peinap”
along the orbits of the systeiX,, in a neighborhood of the homoclinic loop. This map
may be represented as a superposition of two mBgsand Ty, whereTq is defined
by the flow of the system near the equilibrium point didis defined by the flow near
the global piece of the homoclinic trajectdry Using the form (3.61) for the systeKj,,
we shall construct cross sectioBy S' near the equilibrigd and investigate properties
of the first return map3i. : S° — St Ty : St —

By virtue of the system (3.61), the stable manifahf of the pointO is ann-
dimensional surface that, when= 0, is tangent to the plang/, z) = 0 at the point
O = (0,0, 0). This means thatV® is locally the graph of a smooth function,

(. 2) = (Y°(X, ), Z2(x, )

where
(Y, 2°)

=0.
0X

(X,u)=0
The unstable manifolaVY of O is locally the graph of a smooth function

(¥*(0, ), 20, w)) =0,

x = x"(y, z, ),
where
8 u
x¥(0, 0, 1) = O, X —0
a (yﬂ Z) (yqzﬁu)zo

If « = 0andt - +o0, the orbitl'’ ¢ W* N W tends toO. Therefore, there exist
small enouglt > 0,8 > 0, andu such that the surface

S={xy.2lxll=¢

|(x—xt,y—y" z—z")| <5} 4.1

is a cross section for the orbits closeltphere(x™, y*, z") are the coordinates of a
point of the first intersection df with the surfacd|x|| = ¢ (see Figure 9).

Since the orbil" ¢ W* N WY does not belong to the strong-unstable submanifold
WYY (see condition(C)), I" leaves the equilibrium poin® tending toward they-axis,
which corresponds to the leading direction. Without loss of generality, we assume that
I leavesO in the positive direction of thg-axis. In this case, i > 0,y~ > 0, andu
are small enough, the surface,

St={xy.2ly=y, |(x—-x",z—2)| <5}, (4.2)

is a cross section for the orbits closeltphere(x~, y—, z7) are the coordinates of a
point of the first intersection df with the surfacey = y~.

Thus, we have constructed two cross sections in a small neighborhood of the equi-
librium point O: St and S°. It is clear that the dimension of the cross sections equals
(n + m — 1) and, without loss of generality, we may consider the coordinates
(X1, ..., Xn, 21, - . ., Zm—1) As coordinateé&xt, z1) on the cross sectio®! and the coordi-
nates(Xy, ..., Xn—1, ¥ Z1, - . . , Zm—1) as coordinate&x®, y°, z°) on the cross sectio®’.
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Fig. 9. Two cross section§” andS! can be constructed
for orbits of X, near the loopC = O UT.

The Poincee'mapT : S — S is the superposition ofie; : S — St and Ty :
St — S. The mapTy : St — s a diffeomorphism because the flight time fr&h
to S is bounded. Thereforg;*: S” — S' may be represented in the following form:

Xt — X" (1) aqa(p)  aga(w) Xg B XI(M) d(x%, ¥y, 2%, w)
<21—Z‘(u)) - (azl(u) azz(u)) Yoy <w(x°, V0, 20, M)>’ (4.3

2% — 7" ()
det Q1 812 #0.
dx1 a2
Hereay1, axy, a1, ax; are matrices of the dimensio@sx n), (m—1xm—1), (nxm—1),

(m—1xn), respectively. The smooth functiopgx®, y°, 2°, ), v (x°, y°, 2°, i) contain
only the nonlinear terms ofx® — x*, y° — y*, 20 — z*) and are defined in the domain

where

{00, y%, 2% ) | [|[(x0—xt, ¥y —yt, 22—z )| <8} (4.4

Note that we assume that the manifdF* transversely intersects the leaves of the
foliation FY (condition(D)). This assumption means exactly the same as the condition

det(au) #* 0. 4.5)

Consider the local mafoc : S — St. The study of this map is not so trivial because
the flight time of orbits that go fron®® to S is unbounded. Moreover the infimuni
of the flight times can be made arbitrarily big by choosing sihdh order to obtain the
local map, we use the boundary value problem (3.61), (3.64). According to this problem,
for givent and smallx?, y°, 7%, there exists a unique orbit

(x(@), y(), z(t)) = (x(t; X%, y°, 24 7, ), y(t; X%, y0, 24 7, ), z(t; X0, y0, 2, T, ),
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which, att = 0, starts with a pointx?, y°, z%) and reaches a poix?, y*, z%) att = r.
This means that the following equalities are fulfilled:

x=x(r; x% y0, 2L, 7, ),
v =y X0 y0, 2, T, ), (4.6)
22 =2z(0;x% y° 7%, 7, ).

If we fix y = y~ > 0 and|x°|| = &, the first and third equations of the system (4.6)
give implicitly the mapTioc : (X0, y°, 2% — (x%, z}) from S to St wheret should be
expressed from the second equation of the system (4.6) as a functixh 9f, 2, 1):

xt=x(r(x% y% z% w); x%, 0, Z4, T(x0, y°, 2, w), ),

2 = 200 X0, ¥, 2%, 7(xO, O, 21, ), ), 4.7
where
y" =y Y% 2 0 x0y0, 2 (O ¥, 2 ), ). (4.8)
We shall show (see (4.17)) that
d a

Therefore, the flight time > 7*(8) can indeed be found from the equation (4.8) and
the local mapl,c may be represented in the following form:

xt= f(x%y° % ),

22 =9g(x%y0 7L ). 4.9

Sincey~ > 0, the functionsf, g are defined in the domain
[y, 25w | (= xt Yy —yh 2t =z 0| <6, ¥ > v°(x% W}, (4.10

where the functiory = yS(x°, 1) gives they-coordinate of the intersection of the stable
manifold WS with the cross sectios®.
Notice the relation that follows from the identity (4.8):

at _[dy ay ! ay
X0, y0, 2L, ) ot |, 9t/ (X0, y9 ZL, w)

By formulas (4.7), (4.9), and (4.11) we have

(4.11)

t=t

of B axt
a0, y0, 2, ) a(x0, ¥y, 2, )

_ X ax ax ay ay -1 ay
Cax0,y0Z2t )|, \dt|_, atl_./\at|_, dtl_./) axOy0. 72w,
ag _ 97°
(X0, y0, 24 )y A(x0, y0, 2, )
9z 9z 3 3 -1 3
S S B T T R
ax0 y0, 24 ) g 0T |io \ Ot |, 9T, a(x0, y0, L, )| _,
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By the identity (3.40), we also have the relation

ad
2 9z W o (4.13)
0z t=t ot t=t ot t=t
The orbit" leaves the equilibri@d tending in the leading direction (positiyeaxis);
therefore,
ad ad
oz =o<—y ) aty” — 0. (4.14)
ot |i_, ot |_,
The estimates (3.66) imply that
ay
— C. 4.1
H azl t=t = ( 5)
So, by (4.13), (4.14), and (4.15),
ad
%y =0(—y ) aty” — 0. (4.16)
at t=t ot t=t
Since% o yy~, formula (4.16) implies that
dy ay _
— —- ~ 0. 41
ot T ol Yy > (4.17)
Sincey~ is fixed, formula (4.17) implies that
-1
(ﬂ 8_y ) < i, (4.18)
ot |, 07|, Yy~

ie., (%h:r + %Itﬂ)‘l is bounded. Now, according to the estimates (3.66) for the
boundary value problem (3.61), (3.64), and by (4.12), (4.18), we have the following
relations:

ax? of . axt of
= < De", —=|=|=d,
a(x%, ¥y, ) a(x0, y0, ) azL 9zl @19
0 0 .
92 = 89 < d B_Z = E < D e*,BT’
A(xO, y0, 1) (X0, y0, ) 9zt 9zt

whereD andd are some constants and the constarasdg satisfy inequalities (3.67).
Moreover, ifiu — 0,7 — oo, (x%,y%, 2% — (x*, y*, z") € WS, and(x}, y!, Z}) —
X~,y7,Z27) € WY, by (3.68), we have
axt  of N 8z2° a9
—_— = — = —
ozt 9zt ' a(x%,y0, ) a(x0,y0, w)

whereA and3 are fixed matrices. Without loss of generality, we may assumetha®
andB = 0. Otherwise, we shall change the variabtés— x!, onStandz’ — 28,
on S in the following way:

xl, =xt— A5, B, =2°— By, w). (4.21)

new

B, (4.20)

So, we have
d =01 if T — +4o0. (4.22)
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5. Redefinition of the Local and Global Maps

In order to establish the existence of the center manifdfd, we must show that the cross
sectionsP contains an invariant set with respect to the operater Tgi0Tioc and that this
set is the graph of some vector-functigh= h%(x°, y°, ). Below we use the regular
method, which is based on proving the contractibility for the graph transformations (see
Section 6). Namely, we show that the operafanduces a contraction operatBrin a
complete metric spack ® of functionsz® = h%(x?, y°, ). However, to construct the
operatorP, we must redefine the mafg andTiqc in an extended domain and, by that,
redefine the PoincamapT = Ty o Tioc.

Consider first the global mafy : S' — . As we have seen in Section 3.4, the
inverse mapl;* : S — S'is given by the formula (4.3). We redefirig* by the
following formulas:

xt = o(x%y% 2% w

X% — xF (1)
Yo =yt

X7 (w) + ag1(u) ( ) +ana(w) (2 — 27 (w)

+ (| (x° = xT, ¥y — yHI18)p (X°, y°, 2%, ),

' =vx%y. 2w =7 (w
0 _ +
+ (azl(ﬂ) ( );o B ’y(+ EZ; ) +aga(w) (2 — 25 (w) + v (X%, y°, 2, u))

< D ([(x° = xt, ¥ = yH)[1/8), (5.1)
whered (t) is aC*-function such that

(1 ift<1 |av®
z?(t)_{ o ifta2 | g | <2 (5.2)

Observe that the redefined map coincides with the initial mggxf—x*, y°—y )| < 8,
but functions® and¥ are defined in the larger domain

Qg ={° V.22 w1 (-2 w)| =5 (x°¥°) e R"}. (5.3)
Let us consider now the local mdp,. : S — S* (see (4.9)). We overwrit& . as

xt = F(x%y°, 24
= (1% = xT, y0 =y 18) F(XO, 1y° — yS(x°, 1| + Y3(x°, ), 2%, ),
2 =6x%y% 72w

= 2(I(x° = xT, y° = yO I8 g%, 1y° — vy X%, wl + y5(x%, w), 24, ). (5.4)
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The functionsf andg, defining the local map (4.9), coincide with the functidhand
G, respectively, if| (x° — x*, y0 — yH)|| < § andy® > yS(x°, ), but the functiong
andG are defined for anyx®, y°) € R", i.e., in the domain

Qo ={0° Y. 2w | (=7 w)] =6, X%y e R} (5.5)

Moreover, by (4.19), (4.22), (5.2), and (5.4),andG satisfy the following estimates:

F
9 <M e, E =0(1) if t— oo,
a0, y0, w) az
oG G (50
_ i —BT
raon] ECIIRASLN - B

HereM is a constant and the constaatandg satisfy inequalities (3.67).

6. Existence of the Lipschitz Center Manifold

Introduce the spacéi® of bounded(m — 1)-dimensional vector-functiong® =
ho(x?, y°, ) defined in the domain

D ={<% y0, w1 X% y%) € R, [lull < 8} (6.1)
Let the functionsh® e HO satisfy the following Lipschitz condition:
[0, ¥2, 1) — h°0G, ¥9, ) | < €] (X7, ¥, ) — 05, ¥3, w2) . (6.2)

Here¢ > 0 is a small constant, which we define below. The sgaevith the uniform
norm

W% o= sup [ROx°y°, w) 6.3)

(x0,y0,)eDO

is a complete metric space.
Introduce also the spad¢! of boundedm — 1)-dimensional vector-functiors =
h'(x!, i) defined in the domain

D' = {(x*, w) [xt e RY, |||l < 8} (6.4)
Let the functionsh! € H? satisfy the Lipschitz condition

; (6.5)

[htOd, wy) — g, w2)|| < L[| (x4, 1) — (0, w2)

whereL is some, maybe big, constant, which we define later. The spaosith the
norm

bt p. = [htect, w | (6.6)

sup
(x*,n)eD?

is a complete metric space.
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Lemma 6.1. The map J* induces an operator §: H® — H?, i.e., T,/ transforms
points of the graph of any functio’he H° to points of the graph of some function
h! € H®. Moreover the map  satisfies the property of the limited expansion, i.e., for

any H € H? hd € HO, the following estimate holds:
[ Par (h2) = Par (n2) [ 5 = Q1T — 2| o 67

where Q is some constant.

To prove the lemma we must show tHBf* induces an operatdPy : H® — HZ.
Let a point with the coordinate&?, y°, h°(x°, y°, 1)) be mapped bﬂ'g‘,l to a point
(x, h1(x1, n)). By virtue of formulas (5.1), we have the equalities

xt = @(x% vy, hO(x%, y°, ), w),

1,01 _ 0 0 RO(y0 /0 (6.8)
h™(x, ) = W (X7, y°, h°(X°, y°, w), ).

Let us fixh® € HC. We assume that the constdrin (6.2) is small enough. In this case
the functionh® ¢ HP° satisfies the Lipschitz condition with the small constarnd,
since detai1) # O (see (4.5)), the first equation in (6.8) may be resolved with respect to
x% andy?, i.e.,

x% = x0(xt, w), y0 = yoxt, ). (6.9

Substitutingx®(x?, 1) andy®(x%, ) into the right-hand side of the second equation in
(6.8), we obtain the functioh!(x!, ). Therefore, the operatdty is correctly defined.
It is easy to check that there exists a constaatich that the functioh*(x*, 1) satisfies
the Lipschitz condition (6.5) and that the functibh(x®, 1) is bounded. This implies
that the operatoPy maps any function fron ® into H*.

Let us examine the property of the limited expansion. Let the functidrs H® and
hd € HO be mapped byPy to hi € H! andhl € HZ, respectively. Let us estimate
the norm||h] — h3||p:. Assume that a poiri®, y°, h9(x°, y°, n)) is mapped to a point
(x1, hi(x}, 1)) and a point(x°, y°, h9(x°, y°, 1)) is mapped to a pointx3, h3(x3, i)
(see Figure 10). By (6.8), (6.5), and (5.1) we obtain

Ih 0. ) — h3(xg, W
< Ihix, w) — h30G, i + 130, 1) — h3(xd, w
< 101, ) = hz06G, il + L I1%g = X4
W (x%, y°, hQ(x°, ¥, ), i) — w(x°, yO, h3(x%, y°, ),
+ Lo y° hdx® y0, w), i) — d(X°, yO, h3(x%, y°, o), w

(‘ W I
<

820 920
whereQ is some constant ar1ti||le denotes SUR0 yo, 20, 1)eq [I-Il. The property of the
limited expansion immediately follows from the estimate (6.10). Lemma 6.1 is proved.

+L |

Q )i -rl <o -rgly. e
gl gl
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Fig. 10. The mapT,* induces a mafPy : H® — H?,
satisfying the property of the limited expansion.

h

Lemma 6.2. The map 2 induces an operator|p, : H! — HO i.e., T, transforms
points of the graph of any functionthe H? to points of the graph of some function
h® € HC. Moreover the operator R, satisfies the property of the strong contraction,
i.e., forany i} € HY, h} e HY,

[ Poc (1) = Ploc (N2) [ oo = a1 — 2] s (6.11)

where the constant q can be made arbitrarily small.

To prove the lemma, first we check thgE! induces an operatdPoe : H* — HP.
Assume that the points of the gragh= h°(x°, y°, 1) are mapped b, to the points
of the graphe* = h(x%, 1) € H™. By (5.4) we have the equalities
xt = FOC Y% htod, ), ),
%0, ¥, ) = GO, yo, ht(xt, w), ), (6.12)

which give us the operatd®o. : H* — HPO. First, let us check that the formulas (6.12)
determine the operatdi. correctly, i.e., it is possible to calculaz® = h(x°, y°, 1)

if we know h' € H®. Then we check that® belongs toH?. Let us fixh! € H* and
(x%, y%, u) e DO. Sinceh! is a Lipschitz function with respect td (see (6.5)), the map
x! > X! defined by the formula

xt=Fx° y% ht(xh, ), (6.13)
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is a contraction map frorR" to R". Indeed, it follows from formulas (6.13), (6.5), and
(5.6), that

X1 - %3]

|| F(Xov yo» hl(xis /-'L)’ /’L) - F(Xov yos hl(X%’ /’L)v ,bL) ”

aF

< L‘E ] [x$ = 1], (6.14)
loc
where
oF
L|— < 1. 6.1
el p< (6.195)

This implies that the first equation of the system (6.12) may be resolved with respect to
x1ie.,

xt = x2x% y°, ). (6.16)

Substituting (6.16) into the second equation of the system (6.12), we dBtafh y°, ).
Hence, the operatdf . is correctly defined. By (5.4), (5.2) the functi@is bounded
and, thereforeh® is also bounded. In order to show that the functiSrbelongs toH°,
we must prove that® satisfies the Lipschitz condition (6.2) in the domaifi(see (6.1)).
First, we check this property far e [z°; 679), i.e., in the domain

D% = {(x%y%, w1 (x%y%) € R", |lull <8, 7 e [t% 07}, (6.17)
where the constart satisfies the following equalities:
1<6 < Bl (6.18)
We denote the corresponding range of the variabt€sy®, z*, 1) by
Qe = {0V, 2w | |(Z -7, 0] <8 %y e R, e[%06:). (619
Let (X2, y9, u1) € D% and(x3, y2, u2) € D%. By (6.12), (6.5), and (6.16), we obtain
|| (Xl(xgs yj?v I‘Ll)’ I‘Ll) - (Xl(xgs ygv MZ)’ H/Z) ||
= [[(F (x, ¥, h* <M OxE, ¥2s ), 1), ) , )
— (F (X3, y2. W' (Y3, Y5, p2), 2), p2) » pa) |

GO 00\ 100
= H 3(x0. Y0 1) Hﬂ.’o‘l 109, ¥2, 1) = (2, ¥2, o) |
oF
+ L], 1000 y0 ) ) = (X706, 2, m2), m2) | (6.20)
eroc

Here we use the following notatiom:-||9,o = SURyo yo 21 )ec0® II-]l. It follows from
loc ’ ’ ’ loc

(6.15) and (6.20) that the functiam®(x°, y°, ), ) satisfies the Lipschitz property

“ (Xl(X](_)’ yj(_)v ,bLj_), Ml) - (Xl(xg’ YSv ,LLZ), MZ) ||

1- L ‘
o,

oF

- a(F, w)
- ozt

(x0, ¥, 1)

-1
) 10, ¥2, 1) — (X3, Y3, ma) || (6.21)
QltOC
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By virtue of the relations (5.6) (6.5), (6.12), (6.15), (6.16), and (6.21), the function
ho(x9, y°, ) satisfies the estimate

%, y5, ma) — hO(x3, ¥3, 2|
= ||G (Xg’ y]?’ hl(xl(xj(?v y](_)s Ml)s /-’Ll)v ,bLl)

— G (x9. ¥3. W (<O, 3. 112). p2), p2) |

[ (< Y2, 1) = (2. 3. 1e2) |

1-L ‘
o

X (. ¥ 1) — (2. ¥8. 1az) |
< Mo @ [ (. y1. 1) = (8. ¥3. u2) |

whereMg > 0 andp < 0 are some constants. Note thdt> t*(§) andt*(§) — oo

if § — 0. Therefore for any small, there exist$ such that the constai e will

be less thad, i.e., the functior®(x°, y°, u) satisfies the Lipschitz property (6.2) in the
domainDY,. Note thath®(x°, y°, ) is a continuous functionD® is a convex domain,

and
U D% = D°.

70>7%(8)

*|swren]
= 8(XO7 yo’ /’L) eri

G

oF
ozt

a(F, w)

L AR 2
- ‘ (X%, y0, w)

-1
0
Qfoc>

(6.22)

Therefore the functioh®(x°, y°, 1) satisfies the Lipschitz property (6.2) in the domain
DY, i.e.,h? belongs toH°.

Now let us prove the strong contractibility of the m&g. : H* — H°. Assume
the functionsh} € H! andh} € H* are mapped by, to hY € H® andhd € H°,
respectively. Let us estimate the nofth — h|pe. Let a point(x}, hi(xi, 1)) be
mapped to a pointx0 9, h9(x° y°, w)) and a point(x3, h(x}, n)) be mapped to a
point (x°, y°, h3(x%, y°, 1)) (see Figure 11). Then, by (6.12), we have

Ixd —xz] = |F (< y2 hioxd. ). i) = F (X% ¥°, hg. o). ) |
IF (% ¥ hioxq, w), ) = F (X% ¥0, ha0xt, w, )|
+ [F (O ¥°, h20q, 0, 1) = F (0, y2, 1500, 1), )|

A

IF OF
< ‘ e |h} — hd| o, + ‘ 2|, L [xt —x3]. (6.23)
Therefore, by (6.23) and (6.15), we obtain
-1
IF dF
||X1 ) X2 H < <1 - ‘ ﬁ Qioc L) H ﬁ Qiloc || hi - h%H bt (6'24)
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y'h ey ow)  xGhi(xLw) (b))

Ay (x4

\ Y 7

| 1
\ 2

[RgRTE

\/

\/

h)  hd h) h)
&y hx"y"w) (x5,h5(x1,1))
loc
—

Fig. 11. The mapT,,} induces a mafPo. : H! — HO,
satisfying the property of the strong contraction.

By virtue of the relations (5.6), (6.5), (6.12), (6.24), and (6.15), the following estimate
takes place:
[h20<%, ¥2, ) — hgx®, y2, |
= |G (x% y°, hixt, w). 1) — G (X% ¥°, hz0G, w). 1) |
<G (% y%. hi(x, 1), 1) = G (x° ¥2. h30xi, 1), )|
+ |G (X% Y2 ha(xi 1), 1) = G (x°, ¥°. b0, ). )|

-1
(S 1_pl G aF
<[52l,. -t 52, v (L )
oF .
x H@ . |ht = b3 oy < My € [hE—h,., (6.25)
loc

whereM; > 0andp < 0 are some constants. Note thafs) — oo if § — 0. Therefore
for any smallg > 0, there exist8 > 0 such that the constam; " is less tham, i.e.,
Poc is the strong contraction operator. Lemma 6.2 is proved.

By virtue of Lemmas 6.1 and 6.2, we have the following statement.

Lemma 6.3. The superposition P= P o Py : H® — HOis the contraction map,
i.e., forany B € H?, h9 € HO, the following estimate holds:

[P (hD) =P (h) oo = PNT—h2] 5. (6.26)

where the constant g q Q is strictly lesdl.
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By virtue of Lemma 6.3 and Banach'’s principle, there exists a unique fixed pdiat
P(h% e HO that is a limit of the function$3, h?, h3, ..., obtained by the iterations
h?, = P(hY), (i = 0,1,2,...) with any initial functionh$ € HP. The graph of the
functionh? is an invariant set with respect to the PoirearapT and, therefore, orbits of
the systenX, passing through the points of this graph form the invariant manitdafd.
Since the contraction map is induced by the inverse PoineamiapT ! = T 1o Tg‘ll,
the manifold M is a repelling manifold, i.e., any orbit not lying iM®S leaves the
neighborhoodJ of the homoclinic orbit as tends to+oo.

7. Smoothness of the Invariant Functionh? and h?

In order to establish that{°s is a smooth manifold, we must prove thé(x°, y°, u) €
HO is a smooth function with respect (°, y°, 1).

In our case, whereas the mﬁgl is a diffeomorphism, the following statement takes
place.

Lemma 7.1. The operator § maps a smooth functior’ke H° to a smooth function
h' e H.

To calculate the derivatives of the functibh(x®, ), we use the formulas (6.8), (6.9).
By these formulas we have the following identity:

(xt ) = (@ (X°xh ), YOO, ), OO, ), YOOH ), ), ) ). (7.1)

which directly implies the relation

8(X°(X1,M),YO(X1,M),M)=< 0O, AP 0K )1 7.2
a(xL, ) (X, y0, w) 920 a(x%,y0 )

Therefore, by the relations (6.8), (6.9), and (7.2),

30, Y0, ) 9B 3(x0, ¥O, 10

D, ) a(@, ) oh® N\
8(XO, yO’M) 920 B(XO, yO,M) x0=x2(x1, 1)

ahl(xl,u)_( W aw  ah° )
a(xL, ) _[

Yo=yoxt, )
22=h0(x2(x*, 1), yO(x*, 1) . 1)
(7.3)
Notice, by virtue of the relations (5.1), (5.2), (6.2), and (4.5), the operator

(P, ) (d, ) 9h°
(X%, y0, u) 9z%  3(xO,y0, w)

is aninvertible operator. Thus, the derivative may indeed be calculated via formula (7.3).
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Consider the spach® of continuous functiong®(x°, y°, 1) defined in the domain
DO (see (6.1)). We assume that the functigfise N° are uniformly bounded by the
constant. (see (6.2)), i.e.,

[7°0x y%, | < e (7.4)

The space\® with the uniform norm

I°lgo= sup  [n°(x%y% (7.5)
(x%,y0,u)eDO

is a complete metric space.

Let us introduce the spa®¢' of continuous functions! (x*, 1) defined in the domain
D! (see (6.4)). Let the functiongt € N* be uniformly bounded by the constdntsee
(6.5)), i.e.,

[ntect ] < L. (7.6)

The space\?! with the norm

Intlor= sup ||t < w| (7.7)
(x,u)eD?

is also a complete metric space.
The relation (7.3) induces a family of operatt%ﬁ;). For anyh® € HO, we define the

operator%0 (n°) = n* by the following rule:

10,1 _ v ﬂo 0,0 )
(X, ) = [(3(X°,y°,u) o Y1)

(D, u) (P, ) o0 o -t
(B(XO, yO, w) 90 O Y% ) x0=x0(x?, 1)

yO=yO(xt, 1)
22=h0(xO(x®, 1), YO (Xt ). )
(7.8)
Here the functiong®(x*, i) andy®(x?, 1) (see (6.9)) are obtained from the first equation
(6.8). These functions depend continuously on the fundifoa H°. Indeed, let the se-
quence of function&x®(x2, ), y2(x, u)), (i = 1,2,3,...) correspond to the sequence
of functionsh? € HP. Let alsoh? — h? € H, i.e., |h? — h%|p0 — 0. In this case
the sequencex®(x?, w), y2(xt, 1)) converges to the functiotx®(x?, w), yo(x2, n)),
which corresponds to the functidf € H?, i.e., [|[(x2(x%, w), Yo(xt, ) — (x2(x2, ),
yo(xt, ) llpr — 0.
This fact, along with the formulas (7.8), (5.1), and (4.5), implies the following state-

ment.

Lemma 7.2. For any i’ € HO, the operator §° maps any functiom® from N° to

n* € NL. This operator depends continuously dhé HO. Namely, if the sequence of
functions i} € H convergestofie HCasi — oo, i.e.,||h? —h?||pe — Othen, for any
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0. NO hg o 20y ' o 00
n° € N° the sequencegan ) converges to §(n ), i.e., ||Sgl n”) — % M) lpr — 0.
Moreover, the operatorg% satisfies the property of the limited expansion, i.e., for any
nY € N° 9 e N° and H € H?, the following estimate holds:

ENCHEERE]

where Q is some constant.

= Qlnd =3l (7.9

Let us now explore the properties of the operdigg.

Lemma 7.3. The operator B. maps a smooth function‘te H! to a smooth function
ho e HO.

To prove Lemma 7.3, let us assume first tid, y°) does not belong to the stable
manifold, i.e.,r # oo. In this case, ih' € H! is a smooth function, by (6.12), (6.16),
the following relation takes place:

8 (X1(x%, ¥°, ), 1) a(F,w  aht \7' aF
=(E- , (7.10)
9 (x0,y0, ) 9zh A(xt ) ) A(x%¥0 )
whereE is the identity matrix. By (5.6) and (6.5), we have
1
H O(F, 1) on <1 (7.11)
azt Qioc Xt 1) | ps
and, therefore,
d(F,n) oht
E-— — 7.12
( azt  a(xL, ) (712

is an invertible operator. Hence, formula (7.10) makes sense. By the relations (6.12),
(6.16), and (7.10),

aho G

0 (x0 Y0 ) a0y p)
L 96 aht IGD) aht "t Ak, w
Azt d(xt, ) Azt axi, ) (X0, yo, )’
Formula (7.13) allows us to extend the domain of definition up to the points that belong

to the stable manifold, i.e., far = oco. In order to show this, we consider the following
function:

(7.13)

CASHIAC

000,y ) 02"
FOON. 2ot =1 (g _dFw 1\ 8w
9zt (X%, ¥, w)

0, if T = o0.
(7.19

, if T # o0;
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The continuity of the functiorf, at the points provided that # oo, follows from the

fact thatF is an algebraic combination of the continuous functions. The continuity, at
the points provided that = oo, follows from the fact that| || — 0 if T — oo (see
(5.6), (7.6), and (7.14)). So, the superposition

0 0 hlnd aht
]—'(x LYo, he(xs, w), 3L, M),M), (7.15
wherex! = x(x%, y°, u) (see (6.12), (6.16)), depends continuously (&f, y°, 1)
because this function is a superposition of continuous functions. Therefore, the function
(7.15) is an extension of the functi%@% up to the points that belong to the stable
manifold, i.e., provided that = co. This fact, along with the continuity of the function
ho(x?, y°, ), implies the smoothness bf(x°, y°, ). Thus, we have the equality

aho

1
30000 F (xo, yo, ht(xt, w), a(%hm M), wherex® = x1(x%, y°, ),
(7.16)
for all points(x°, y°, u) € D°. Lemma 7.3 is proved.
Observe tha% is a uniformly continuous function because it is continuous
and equals zero if(x~x*, y° — yH)|| > p (see (5.2), (5.4), and (6.12)). By Lemmas 7.1

and 7.3, the following statement holds.

Lemma 7.4. The operator P= P o Py maps any smooth functioP ke HO to a
smooth functiom® € HO.

The relation (7.16) induces a family of operatﬁglt. For anyh! € H?, we define the
operatorS}, (') — n° by the formulas

<, y0, ) = F (X% ¥, ht o, ), nt ot ). ), wherext = xM(x%, yO, w).
(7.17)

Here we come to the following lemma.

Lemma 7.5. Foranyht € HZ,the operator § maps any function® € N2to;° € NO°.
This operator depends continuously ohé H*. Namely, if the sequence of functions
h! € H! (i — oo) convergestohe H2, i.e.,||h! —hl||p: — O, then for anyy® € N2,
the sequencqr:é(nl) convergest0|§c(n1), i.e.,||$rglc(nl)—§jc(nl)|| po — 0. Moreover,
the operator glc satisfies the property of the strong contraction, i.e., for ahy NZ,

ny € N1, and ht € HY, the following estimate is valid:

| S (nd) = S ()|

where the constant g can be made arbitrarily small.

o= A0t =3l (7.18)

The functiom°(x°, y°, ) (see (7.17)) is a continuous function since itis a superposition
of continuous functions. It follows from the relations (7.14), (5.2), (5.4), (5.6) that
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the norm||F| po is bounded (it tends to zero a$(s§) — oo). Hence, the function
n°(x%, y°, ) is bounded by the constant(see (7.4)) and, thereforg?(x°, y°, u) <
N°. The continuity of the operatdﬁ*g,lC with respect tah! follows from the following
considerations. Assume that the sequence of functiprsH* converges tt! € H? if

i — oo,i.e.,|ht—hl|p: — 0.Inthis case there exists the sequexce: x1(x%, y°, ),
which corresponds to the sequehées H? (see (6.16)). By virtue of the relation (6.24),
the sequence! = x1(x%, y°, ) uniformly converges tothe functio = x1(x°, y°, w),
which corresponds th?. Indeed,

Hxil(xov yO’ M) - Xi(xo’ yo, ,u) || DO

oF -
=(- @l ) |
0z Qloc

The functions h! and 5! are uniformly continuous. Therefore, the sequence
hixt(x0, y°, u)) converges tch1(x1(x° y°, w)) and nt(xt(x° y°, wu)) converges to
(% ¥, ), e,

aF

1| I =hlp—o. (7.19)

Qioc

[t ¥0, ) = heOG (X%, ¥2, w)) [ o = O,
[t O, ¥2, ) = o, y°, )| 5o — O.
SinceF is a uniformly continuous function, we obtain that

[P y°, 1) = 2<%, ¥°. ) | o
= |7 (<% y°, b6t %, y0, ), ), OGO, ¥, ), ), )
= F(x% ¥y hEod o< y2, ), ), nt (xEXC, ¥, ). ). ) || o — O. (7.20)

The property of the strong contraction for the operﬁ@lg follows from the relations
(7.17), (7.14), (7.6), and (5.6). Indeed,

” ng(x()’ yoi /’L) - ng(xov yoﬂ ,bL) ” DO

3G a(F, -1
3 (n}(xl, 1) <E— . 1) ni(xt, u))

ozt
a(F, 1) N\ 8w
S N | E_ 1,1
'72(X ) ,bC) ( 821 UZ(X ) ,LL) > a(XO, yo7 I,L) .
<q [t w —naxh w | o s (7.21)

where the constamnf may be made arbitrarily small. Lemma 7.5 is proved.
By virtue of Lemmas 7.2 and 7.5, the following statement takes place.

Lemma 7.6. Forany H e H?, the superposition operatoS= S%._ o %‘lo where i =
Pyi (h°), maps any function? from N°ton® € N°. This operator depends continuously
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on the function A € H°. Moreover, the operator*ésatisfies the contraction property,
i.e., for anyn? € N° 13 € N° and i € H?, the following estimate holds:

s () - ()],

where the constant g q Q is strictly less than 1.

< pfnd— 13- (7.22)

Below we use the following statement, which is a parametric variant of Banach’s
contraction principle.

Lemma 7.7. (“Fiber contraction theorem” [Hirsch & Pugh, 1970]) Let @ and N°

be metric spaces. We assume also thdis\a complete space. Let P be an operator in
HO i.e., P: H® — HY and let any sequenceth?, h, ... obtained by the iterations
h?, = P(h?), (i =0,1,2,...), converge to a unique fixed poinf k= P(h%) € H

for any initial element f € HO. For any elementh e HO, let there be an operator
S N° — NO. We assume that the family of the operato?os shtisfies the following
conditions.

1. Forany i’ € HO, the operator & satisfies the contraction property, i.e.,
dist(Sh°(n2), S"°(n8)) < p dist(ng, n3) .

wheren? € N, 9 € N°, and the constant p is less than
2. The family of the operatorshgdepends continuously or‘g e HO i.e. ifa sequence
h? € HO (i — oo) tends to § € HO, then the sequence$,®) tends to & (,°) for
anyn® e NO.
Then, the operatof2 : H® x N® — H? x N° defined by the formul&(h°, %) =
(P(ho) g’ (no)) hasaunlqueﬂxed pointh®, n% = Q(h?, 71*) Moreover, anysequence
(h3, 1), (9, n9), (h3, 1Y), ..., obtained bythelterat|0r($1|+l, ) = Q(ho, n9), (i =
0,12,. )W|th any|n|t|al elemen(ho, no %), converges to the poirih?, n2).

By the conditions of the lemma, the opera@rhas a unique fixed point, i.eh? =
P(h%) e HO. SinceN®is a complete space arigl’ is a contractive operator, there exists
a unique fixed poing? = S (19 e N°. The point(h?, % € H? x NCis a fixed point
of the operatof2 becauseh®, n%) = Q(h?, % = (P(h%, S*(1%). The uniqueness
of the fixed point for the operatd® follows from the uniqueness of the fixed point for
the operatoiP. Let us show that any sequen(ch?J nd), (h9, n9), (h3, 1Y), ..., obtained
by the iterationgh?,,, n° ;) = Q(hI .9, (i = 0,1,2,...) with any initial element
(h9, ’70) converges to the poirth?, 7). It is clear that

dist(n2. n%.;) = dist(n. STar))

IA

dist (2, S7(n0) ) + dist(ST (D), TG

IA

dist(ng, s“?(ng?)) +p dist(n, n0). (7.23)
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By the conditions of the lemma, the family of the operatBts depends continuously
onh? andh? — h?if i — oo. Therefore,

dist(nf, §i"(n$)) N dist(nfj, §5(n§3)) =0 ati— oo,

i.e., for anye > 0, there exists such that, for any > io, dist(n%, S¥ (n%)) < &. Hence,
fori =ip+ j, we have the inequality

dist(n?, n°) = dist(n?, niyj.1) < &+ p dist(nd, i)

<e+pet--+p e+ p dist(n?nl)
%p +p! dist(n?, n?). (7.24)

IA

Observe that there exisg such thatp! dist(,°, ni%) < eforanyj > jo. Therefore, the
inequality distn°, n%) < e(1/(1 — p) + 1) holds true for any > ip + jo, i.€.,n° — 7C.
Lemma 7.7 is proved.

By Lemmas 6.3, 7.6, and 7.7, any sequetigg n9), (9, %), (h9, n9), ..., obtained
by the iterationgh? ;, n°.;) = (P(hD), S*»%), (i = 0,1,2,...), converges to the
fixed point (h?, n%). Let us choose the poin®, 0) as the initial point(h3, nJ). By
Lemma 7.4 and the formulas (7.16), (7.17), the relation

ah?
0 i
N S— 7.2
A0y ) (729
holds true for any = 0, 1, 2. ... Sinceh? uniformly converges tt® and,? uniformly
converges ta?, the equality

o N
T = (%0, y0, 1)

also holds true, i.eh? is aC*-smooth function with respect to all of its variables. Notice
that, using the results of Section 3, by induction it is possible to provenfhatCk+ if
X, € Ck** and Reya/y; > k+ ¢.

To finish the proof of the main Theorem 2.1 we must show that orbits passing through
the invariant curvén® (hl) form a smooth manifold\1°s. A proof of this fact is in the
following section.

(7.26)

8. Smoothness of the Invariant Manifold AM°®S

Here we show that orbits passing through the points of the graphs of funtfcarsd
h! form a smooth invariant manifold°s.

Note that the flight time of the orbits is bounded outside any neighborhood of the
equilibrium pointO. Therefore, outside the neighbourhood, the smoothness of the man-
ifold follows from the smoothness of the functibh. The following theorem guarantees
the smoothness of the manifold near the equilibrium p@int (x =0,y =0,z = 0).
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h,

S+
W2

Fig. 12. The functioni} andh} uniquely determine the
invariant manifold&\; ™ andW; ™", correspondingly. The
manifolds have a common tangent everywher&\én

Theorem 8.1. LetZ = h'(x!, u) (h! € HY) be a smooth function. Then orbits passing
through the points of the graphttiorm an invariant manifold. This manifold is locally
a graph of some smooth functiof z W+ (x?, y°, ). Two different functionshand

h2 uniquely determine two different manifolds’Wand W;*, such that the manifolds
have a common tangent space everywhere on the stable manifold (see Figure 12).

In order to find the functior?® = Ws*+(x°, y°, 1), we shall use the boundary value
problem (3.61), (3.64). Namely, let us consider an ofkit), y(t), z(t)) that starts, at

t = 0, with a point(x°, y°, z°) on the manifoldWws* and reaches, dt= 7, a point
(x%, y%, z1) on the cross sectiof!. Since the coordinat&! on the cross sectiof!
corresponds to the coordinaté— .Az* of the initial system (see (4.21)) ane?, y*, z%)
belongs to the graph!, we have the following equalities:

yl=y", ' =ht (x' — A ). (8.1)
According to the boundary value problem (3.61), (3.64), we have the following relations:
xt = x(r; x% y°, 2%, 7, ),
yt =y x% Y%, 2 T ), (8.2)
22 =2z2(0;x% y%, 2%, 7, ).

Sincey! = y~ (see (8.1)), by (4.17), the flight timemay be expressed from the second
equation of the system (8.2) as a functioe= 7(x°, y°, z, u). Thus we have

xt=x2x0, y0, 24 ) = x(r(x0, ¥0, 28, ); X0, y0, 2, T (X0, yO, 2, ), ),

2 = 22(x0,y0, 21, 11) = 2(0; X0, Y, 24, T (x°, y°. 21, 1), o). 8.3
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The derivatives of these functions may be expressed by (4.12) and they satisfy the
estimates (4.19), (4.20). Now, by (8.1) and (8.3), we have

z' = ht (x*x%, y0, 24 ) — AZ' ). (8.4)
Using formulas (4.19), (4.20), and (6.5), we obtain the following estimate:

aht axt -
s ()
3 (xt— Azt) \ 8z
By the implicit function theorenthe last inequality means th#tcan be expressed from
the equation (8.4) as a function
zt=2'(x%y%, w). (8.6)
Note that, by (8.4), (4.19), (4.20), and (6.5), we have the following relation:

02" _ (g on (8_)(1_A> T ox*
ax0,y0) 3 (xt— Azt) \ 9z 3 (xt— Azt) 9(x0, y9)
= O(e™). (8.7)

Substituting the function (8.6) in the second equation of (8.3), we obtain that the invariant
manifold W** is a graph of some function

<g<1 (8.5

2% =22 y°, Z(x%, 0, ), ) = WH (P, yO, ). (8.8)
The derivative of this function
AWSH(xO, yO, 920 9z 9zt
OOyl TR R L. (8.9
A(x0, y9) A(x%, y0) 3zt a(xO, yo)

may be calculated via formulas (4.12) and (8.7). By (4.19), (4.20), and (8.7), we have
W=t (x% y°, )
d(x0, y0)
i.e., the derivative has the fined limit if the initial poi(®, y°, 2% = W=*(x°, y°, 1))
goes to the stable manifol/s. Moreover, the limit does not depend on the functidn
Thus, all of the manifold$Vvs* have the same tangent space everywheré/driNotice
that the manifold has zero tangent spéce- 0} at the pointO, since the stable manifold
WS tangents to the-axis and orbits, passing through the poists) WY tangent to the

y-axis. Theorem 8.1 is proved.
That also concludes the proof of the main Theorem 2.1.

— B, if 7— oo, (8.10)

9. An Example

The following three-dimensional system of differential equations gives an example of a
C1-smooth vector field having a global center invariant manifold:

X =Y,

Y = =X+ p1y + uaXy + pusy? + uax® + uszin(z?),

72 = uez+ uryln(y?. (9.2)
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A

y

Fig. 13.The phase portrait of system (9.3)4f = u, = 0.

Here we assume that

2

(u1+&— <u1+&> +8) <0, pa>0, pz+ps>0. (92)
Ha Mna

Note that the right-hand side of (9.1) contai@$-smooth functionsy/In(y?), and

z/In(Z%), which are noC*¢-smooth.

The system has two equilibri@; and O, with coordinatesxs, y1, z1) = (0, 0, 0)
and(Xo, Yo, Z2) = (1/u4, 0, 0), correspondingly. Ifti7 = 0, the system (9.1) has a stable
global center manifoldz = 0}. Therefore, the vector field takes the following form on
this two-dimensional manifold:

X=Y,

(9.3)
Y = —X+ U1y + paXy + uay? + nax?.

Equations (9.3) were studied by Bautin (see Bautin and Leontovich [1976]). #

u2 = 0, the system is conservative (see Figure 13). Moreover, by (9.2), separatrices of
the saddléD, = (1/u4, 0) form a homoclinic orbit. In this case the integral of the system
(9.3) takes the form

H(x,y) = (ﬁx2 +y* + He _zuax + & _3M3> g X =,
M3 M3 2u3
Therefore, homoclinic orbits to the saddlg satisfy the following relation:
H(X,y) = H(1/u4, 0).

Thus, if (1, 12, u7) = (0, 0, 0), the initial system (9.1) has a homoclinic orbit@.
Moreover, by (9.2), this system satisfies Theorem 2.2. Therefore, by the theorem, we
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have that for anyis, w4, us, ue, and smalluq, uo, n7, the system has a smooth center
manifold M that depends smoothly on the parameters.
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