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ABSTRACT

We study the Schrödinger equation i∂tψ = −Δψ + Vψ on L2((0, 1),C) where V is a very high and localized potential wall. We con-
sider the process where the position and the height of the wall change as follows: First, the potential increases from zero to a very
large value, and so a narrow potential wall is formed and almost splits the interval into two parts; then, the wall moves to a dif-
ferent position, after which the height of the wall decreases to zero again. We show that even though the rate of variation of the
potential’s parameters can be arbitrarily slow, this process alternates adiabatic and non-adiabatic dynamics, leading to a non-trivial per-
mutation of the instantaneous energy eigenstates. Furthermore, we consider potentials with several narrow walls and show how an
arbitrarily slow motion of the walls can lead the system from any given state to an arbitrarily small neighborhood of any other state,
thus proving the approximate controllability of the above Schrödinger equation by means of a soft, quasi-adiabatic variation of the
potential.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005399

I. INTRODUCTION
In this paper, we control the eigenstates of the Schrödinger equation in a bounded interval by moving very slowly a sharp and narrow

potential wall. Our aim is twofold. First, we show how to permute eigenstates through a slow cyclic process. Second, we provide a method for
approximate control of the Schrödinger equation.

One of the basic principles of quantum mechanics is that quantum numbers are preserved when the parameters of the system change
sufficiently slowly.1–3 That is, a slow variation of the Hamiltonian operator makes the system evolve adiabatically: if one prepares the initial
state with a definite energy and, then, changes the Hamiltonian slowly, the system will stay close to the state defined by the same set of
quantum numbers for a very long time. In the absence of symmetries, this means that if we order the eigenstates of the Hamiltonian by the
increase in energy, then the adiabatic evolution along a generic path from a Hamiltonian H1 to a Hamiltonian H2 must lead the system from
the kth eigenstate of H1 to the kth eigenstate of H2 with the same k. In particular, a slow cyclic (time-periodic) variation of the Hamiltonian is
expected to return the system to the initial eigenstate (up to a phase change) after each period, for many periods.

A class of (quasi)adiabatic processes we consider in this paper violates this principle in the following sense. Consider a particle in a
bounded region subject to an external potential. We show how an arbitrarily slow cyclic change in the potential can lead the system close to a
different eigenstate after each cycle, provided that the potential wall almost separates the region into disjoint pieces during a part of the cycle.
Moreover, the evolution over the cycle of our process may act as any finite permutation of the energy eigenstates. By building further on this,
we are able to perform a global approximate control of the Schrödinger equation using adiabatic arguments: by a slow change in potential, we
can lead the system from any given state to any other one, up to an arbitrarily small error.
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The effect is due to the fact that when the region is separated into parts, an additional quantum number emerges (the number of the
part where the particle is localized). It is an implementation of a general idea from Ref. 4. Let the Hamiltonian vary slowly and periodically
such that, for a part of the period, the system acquires an additional quantum number that gets destroyed for the rest of the period. The
system will evolve adiabatically, but it can find itself close to a different eigenstate at the end of each period. Thus, the periodic creation and
destruction of an additional quantum integral gives rise to much more general and diverse types of adiabatic processes than it was previously
thought.

We consider the one-dimensional Schrödinger equation in L2((0, 1),C) with a locally supported potential with time-dependent position
and height,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i∂tu(t, x) = −∂2
xxu(t, x) + V(t, x)u(t, x), x ∈ (0, 1), t > 0,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(t = 0, ⋅) = u0(⋅) ∈ L2((0, 1),C).

(1.1)

The potential V is defined as follows: Take a function ρ ∈ C2(R,R+) supported in [−1, 1] such that ∫Rρ(s) ds = 1. Take η ∈ C2(R,R+),
I ∈ C2(R,R+), and a ∈ C2(R, (0, 1)) and set

V(t, x) = I(t) ρη(t)(x − a(t)), where ρη(x) = η ρ(ηx). (1.2)

When I and η are very large, this describes a very high and thin wall (where I and η determine the wall’s height and sharpness, respectively)
that splits the interval (0, 1) into two parts (0, a) and (a, 1). We are interested in controlling the eigenmodes of the Schrödinger equation by
suitably changing η, I, and a.

Note that (1.1) is a free Schrödinger equation when I ≡ 0 and that ρη is close to the Dirac delta-function for large η. Thus, in the limit
η = +∞, the system can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∂tu(t) = −∂2
xxu(t), x ∈ (0, a) ∪ (a, 1),

u(t, 0) = u(t, 1) = 0, u(t, a − 0) = u(t, a + 0), t ≥ 0,

αu(t, a) + (1 − α)(∂xu(t, a + 0) − ∂xu(t, a − 0)) = 0, t ≥ 0,

u(t = 0, ⋅) = u0(⋅) ∈ L2((0, a) ∪ (a, 1),C),

(1.3)

where α = I
I+1 . Let α(t) change slowly in such a way that α ≡ 0 for t close to 0 and T and α ≡ 1 for a closed subinterval of (0, T). Then, system

(1.3) formally describes adiabatic transitions from a free particle confined in the interval (0, 1) (when α = 0) to a free particle confined in
the pair of disjoint intervals (0, a) and (a, 1) (when α = 1) and back to a free particle in (0, 1). In Ref. 4, it was proposed that the adiabatic
evolution starting at t = 0 with an eigenstate of the Laplacian leads this system, typically, to the vicinity of a different eigenstate at t = T and
that repeating the same process for many time periods T makes the energy grow exponentially in time.

The analysis of Ref. 4 is non-rigorous because of the singularity of the Dirac potential. However, we show that the evolution defined by
the well-posed system (1.1) can mimic the permutations of eigenmodes described in Ref. 4, even though it lets the tunneling effect appear
since the potential in (1.1) is not a perfect infinite wall. Moreover, the tunneling effect can be used to obtain the global controllability of the
system by tuning the speed of the slow motion of the potential wall.

A. Main results: Permutation of the eigenstates
We start by formally introducing the permutation of eigenmodes defined by Eq. (1.3). Let a ∈ (0, 1), and let N∗ be the set of strictly

positive integers. Set

μl
p(a) =

p2π2

a2 and μr
q(a) =

q2π2

(1 − a)2 with p, q ∈ N∗. (1.4)

These numbers are the eigenvalues of the Dirichlet–Laplacian operator in the left and right parts of the split interval (0, a) ∪ (a, 1). For any
initial and final positions ai and af in (0, 1)/Q, we define the quasi-adiabatic permutation σaf

ai : N∗ → N∗ as follows: Since ai is irrational, it
follows that μl

p ≠ μr
q for all p, q ∈ N∗, and so we can order the set {μl

p(ai)}p∈N∗ ∪ {μr
q(ai)}q∈N∗ as a strictly increasing sequence. Let k ∈ N∗.

The kth element of this sequence is either a number μl
p0 (ai) or a number μr

q0 (ai) for some p0 or q0. When a changes from ai to af, the
corresponding eigenvalue μl

p0 (ai) or μr
q0 (ai) smoothly goes to μl

p0 (af) (or, respectively, μr
q0 (af)) with the same p0 (or q0). As af ∉ Q, the union

{μl
p(af)}p∈N∗ ∪ {μr

q(af)}q∈N∗ can, once again, be ordered as a strictly increasing sequence in a unique way. Thus, we define σaf
ai (k) as the

number such that μl
p0 (af) (or μr

q0 (af)) is the σaf
ai (k)−th element of the sequence obtained by the ordering of {μl

p(af)}p∈N∗ ∪ {μr
q(af)}q∈N∗ .

Figure 1 illustrates an example of this permutation.
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FIG. 1. An example of the quasi-adiabatic permutation σaf
ai

. The eigenvalues of the Dirichlet–Laplacian on (0, a) ∪ (a, 1) with a ∈ [ai , a f ] are decomposed into two sets given
by (1.4). When a goes from ai to af, the eigenvalues from the different sets can cross, which yields the permutation σaf

ai
. The line of eigenvalues μr

1(a) corresponds to the
evolution of the instantaneous energy value when the potential wall moves from a = ai to a = af, transforming the first eigenmode into the second one (see Fig. 2).

Theorem 1. Let ai, af ∈ (0, 1)/Q, N ∈ N∗, ε > 0, and κ > 0. There exist T > 0 and

● η ∈ C∞([0, T],R+) with ∥η′∥L∞([0,T],R) ≤ κ,
● I ∈ C∞([0, T],R+) with ∥I′∥L∞([0,T],R) ≤ κ and I(0) = I(T) = 0, and
● a ∈ C∞([0, T], (0, 1)) with ∥a′∥L∞([0,T],R) ≤ κ, a(0) = ai, and a(T) = af

such that the evolution defined by the linear Schrödinger equation (1.1) with the potential V given by (1.2) realizes the quasi-adiabatic
permutation σaf

ai . Specifically, let Γt
s be the unitary propagator generated in the time interval [s, t] ⊂ [0, T] by Eq. (1.1) with the potential (1.2).

Then, for all k ≤ N, there exist αk ∈ C with ∣αk∣ = 1 such that

∥ ΓT
0 sin(kπx) − αk sin(σaf

ai (k)πx) ∥
L2
≤ ε.

The trajectory of the potential wall V in Theorem 1 is shown in Fig. 2. First, we slowly grow a thin potential wall at a = ai until its height
I reaches a sufficiently large value, and so the interval gets almost split into two parts. During this stage, the system evolves adiabatically:
starting with the kth eigenstate sin(kπx) of the Dirichlet–Laplacian on (0, 1), it arrives close to the kth eigenstate of the Dirichlet–Laplacian on
(0, ai) ∪ (ai, 1). The latter eigenstates are localized either in (0, ai) or in (ai, 1) (see Fig. 2), and so the particle gets almost completely localized in
one of these intervals. After that, we slowly change the wall’s position a. When the kth eigenvalue of the Dirichlet–Laplacian on (0, a) ∪ (a, 1)
is a double eigenvalue, a fully adiabatic evolution would lead to a strong tunneling, and so we keep the slow wall speed fast enough so that
the particle remains trapped in (0, a) or (a, 1). Thus, the system stays close to the corresponding “left” eigenstate [with the eigenvalue μl

p0 (a)]
or “right” eigenstate [with the eigenvalue μr

q0 (a)], and so at the end of this stage, the system arrives close to the σaf
ai (k)−th eigenstate of the

Dirichlet–Laplacian on (0, af) ∪ (af, 1). Finally, we adiabatically decrease the potential V to zero—the system finds itself close to the eigenstate
sin(σaf

ai (k)πx).
We stress that the time-dependence in V(t, x) can be as slow as desired (the constant κ that bounds the rate of the parameters’ change

can be as small as we need). This ensures the softness of the control we apply to permute the eigenstates. However, it would be wrong to think
of this process as fully adiabatic (we call it “quasi-adiabatic” instead). Fully adiabatic dynamics would preserve the ordering of the eigenmodes
since the spectrum of the Hamiltonian −∂2

xx + V(t, ⋅) is simple for every t ∈ [0, T], as shown in Fig. 3 (see Proposition 2). Would the speed
of the parameters’ change be too slow, the evolution would trace the eigenstates of the instantaneous Hamiltonian too tightly, making no
permutation of the eigenstates possible. The permutation of eigenstates is achieved by choosing the slow speed of the potential wall to be

FIG. 2. A control path transforming the first mode to the second one, according to Theorem 1. The change in energy when the potential wall moves to the right follows the
line of eigenvalues μr

1(a) shown in Fig. 1.
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FIG. 3. The dashed lines represent the eigenvalues of the Hamiltonian −∂2
xx + V(t, ⋅) as functions of t ∈ [0, T] with the potential given by (1.2) with sufficiently large I and η.

These curves are close to the set of lines of eigenvalues of the singular problem (1.3) shown in Fig. 1, but they never intersect. As a consequence, a fully adiabatic motion
would preserve the ordering of the eigenmodes in this framework.

much faster than the rate of tunneling that occurs for the values of a where different eigenvalues become close [for the singular problem (1.3),
this corresponds to the crossing of left and right eigenvalues μl

p(a) and μr
q(a), see Fig. 3]. Thus, the quasi-adiabatic evolution at these moments

is controlled by the rate of the parameters’ variation. This key fact is used in Theorem 2.
Note that the class of controls in Theorem 1 is quite wide. The robustness of the proposed control is an important aspect of our results:

the shape of ρ is not precisely constrained and the paths followed by the adiabatic and non-adiabatic parts of the control are very flexible,
once they are slow or fast enough. We can also make I(t) identically zero around the end points t = 0 and t = T of the control interval. This
means that the process can be repeated periodically, e.g., realizing the exponential heating process described in Ref. 4. We also remark that
even though the phase shifts appearing in Theorem 1 are not relevant from a physical point of view, they can be easily removed in order to
obtain αk = 1 for all k (see Ref. 5).

B. Main results: Control of the Schrödinger equation
Let us consider a more general class of potentials V(t, x) with several slowly moving walls. Specifically, let

V(t, x) =
J

∑
j=1

Ij(t)ρηj(t)(x − aj(t)) (1.5)

with {ηj}j≤J ,{Ij}j≤J ⊂ C∞([0, T],R+) and {aj}j≤J ⊂ C∞([0, T], (0, 1)). Increasing the number J of the walls and tuning the rate of the
parameters’ variation allows us to obtain the following approximate controllability result:

Theorem 2. Take ε > 0, κ > 0 and let ui and uf be functions from L2((0, 1),C) with ∥ui∥L2 = ∥uf∥L2 . There exist J ∈ N, T > 0, and smooth
functions {ηj}j≤J , {Ij}j≤J ⊂ C∞([0, T],R+), and {aj}j≤J ⊂ C∞([0, T], (0, 1)), with time derivatives bounded by κ in the absolute value, such
that

∥ΓT
0 ui − uf∥L2 ≤ ε,

where Γt
s denotes the unitary propagator generated by the linear Schrödinger equation (1.1) in the time interval [s, t] ⊂ [0, T] with the potential

V given by (1.5). The functions ηj can be taken constant, and the functions Ij can be taken identically zero at the beginning and the end of the
control interval [0, T].

Theorem 2 is stronger than Theorem 1; however, we formulated Theorem 1 separately, as it provides a simpler control protocol.

C. Some bibliography
The controllability of Schrödinger equations of the form (1.1) is commonly studied with potentials V(t, ⋅) = v(t)B for t ∈ [0, T] ⊂ R+.

The function v represents the time-dependent intensity of the controlling external field described by the bounded symmetric operator B.
Such bilinear Schrödinger equations are known to be not exactly controllable in L2((0, 1),C) when v ∈ Lr

loc(R
+,R) with r > 1 (see Ref. 6). As

a consequence, the exact controllability of the equation has been only addressed in suitable subspaces of L2((0, 1),C). To the subject, we refer
to Refs. 7–12. The approximate controllability of bilinear quantum systems was proved with Lyapunov techniques in Refs. 13 and 14 and via
Lie–Galerkin methods in Refs. 15 and 16.
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Adiabatic controls have been studied in quantum mechanics for a long time. Finite-level systems were, for instance, considered in Refs.
17–19 where the controllability via finitely many scalar controls is obtained with some good robustness properties with respect to parameter
uncertainties. The mathematical aspects of this type of problem were analyzed in Ref. 20. There, the permutation of eigenmodes for a finite-
dimensional quantum system is obtained by applying the classical adiabatic theory to a specific Hamiltonian with a uniformly separated
spectrum. The adiabatic controllability of Schrödinger equations with V given by the sum of bilinear controls was studied in Refs. 21–24. In
these works, the authors exploited the emergence of conical intersections of eigenvalues in the presence of at least two controls. Through a
suitable choice of the adiabatic controls, it is possible to cross the conical intersections and then ensure the global approximate controllability.
For other adiabatic controllability results, we refer to Refs. 25 and 26.

In our framework, we can neither create a simple path that links different eigenmodes nor use conical intersections. Indeed, all the
eigenvalues related to (1.1) are simple since Ω is a one-dimensional interval (see Proposition 2). Thus, the above adiabatic strategies fail.
From this perspective, the main idea of our work could be seen as first creating “almost-intersections” of eigenvalues, then traveling toward
them adiabatically, and finally moving from one energy level to another near the almost-intersection. Hence, our method provides a new and
different way to perform the global approximate controllability.

Finally, note that the controllability of linear Schrödinger equations with controls on a boundary has been shown, e.g., in Refs. 27 and 28
by the multiplier method, in Refs. 29 and 30 by microlocal analysis, and in Refs. 31–33 with the use of Carleman estimates. Concerning the
controllability of various PDEs by moving boundaries, we refer to Refs. 34–38.

II. PRELIMINARIES
We equip the Hilbert space L2((0, 1),C) with the scalar product ⟨ψ1 ∣ψ2 ⟩L2= ∫

1
0 ψ1(x)ψ2(x) dx and the corresponding norm ∥ ⋅ ∥L2

=
√
⟨ ⋅ ∣ ⋅ ⟩L2 . We consider the classical Sobolev’s spaces Hm((0, 1),C) for m ≥ 0 with the standard norms, the space H1

0 ((0, 1),C) = {u
∈ H1((0, 1),C), u(0) = u(1) = 0}, and the space H−1((0, 1),C), which is the dual space of H1

0 ((0, 1),C) with respect to the L2
−duality. Applying

the classical result of Kisyński39 (see also Refs. 40 and 41), we obtain that Eq. (1.1) is well posed.

Proposition 1. Let V be given by (1.2) with a ∈ C2([0, T], (0, 1)), I ∈ C2([0, T],R+), and η ∈ C2([0, T],R+). For any u0 ∈ H1
0 ((0, 1),C), Eq.

(1.1) has a unique solution u ∈ C0([0, T], H1
0 ((0, 1),C)) ∩ C1([0, T], H−1((0, 1),C)), and

∥u0∥L2 = ∥u(t)∥L2 , ∀t ∈ [0, T].

The flow of (1.1) can be unitary extended by density on L2((0, 1),C), and if u0 ∈ H2((0, 1),C) ∩H1
0 ((0, 1),C), then

u ∈ C0
([0, T], H2((0, 1),C) ∩H1

0 ((0, 1),C)) ∩ C1([0, T], L2((0, 1),C)).

Proof. In our framework, the Hamiltonian associated to the Schrödinger equation [Eq. (1.1)]

H(t) ∶= −∂2
xx + I(t)ρη(t)(x − a(t)) (2.1)

gives a family of positive self-adjoint operators smoothly depending on the time t ∈ [0, T]. Note that

u ∈ H1
0 ((0, 1),C)z→ V(t, ⋅)u ∈ H−1((0, 1),C)

is of class C2 with respect to t due to the smoothness of a, η, I, and ρ. This enables us to apply the result of Ref. 39. □

Proposition 2. For any a ∈ (0, 1), I ≥ 0, and η > 0, the eigenvalues of −∂2
xx + Iρη(x − a) are simple.

Proof. If ϕ,ψ ∈ H2((0, 1),C) ∩H1
0 ((0, 1),C) are two eigenfunctions corresponding to the same eigenvalue λ, then they both satisfy the

same second-order differential equation f ″(x) = Iρη(x − a) f (x) + λf (x) with the initial data ϕ(0) = ψ(0) = 0. Thus, they only differ by a
multiplicative factor depending on ϕ′(0) and ψ′(0). □

By the classical spectral theory, the eigenvalues of H(t) in (2.1) form smooth curves, and the basis made by the corresponding eigenfunc-
tions can be chosen smooth with respect to t, up to adjusting the phases (see Ref. 3). By Proposition 2, the eigenvalues do not cross, and so
they admit the same ordering for all t ∈ [0, T]. Denote by (λk(t))k∈N∗ the ordered sequence of eigenvalues of H(t), and let (ϕk(t))k∈N∗ be the
Hilbert basis made by the corresponding eigenfunctions, smooth in t. Denote by Γt

s the unitary propagator in L2((0, 1),C) generated by (1.1),
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as given by Proposition 1. The operator Γt
s represents the flow of (1.1), and for any mild solution u ∈ L2((0, 1),C), we have Γt

su(s) = u(t). The
classical adiabatic theory, as in Chap. IV of Ref. 42 (see also Refs. 41 and 43), gives us the following proposition:

Proposition 3. Let N ∈ N∗. For every ε > 0, η̃ ∈ C2([0, 1],R+), Ĩ ∈ C2([0, 1],R+), and ã ∈ C2([0, 1], (0, 1)), there exists T∗ > 0 such that, for
every T ≥ T∗, the following property holds. Take η(t) = η̃( t

T ), I(t) = Ĩ( t
T ), and a(t) = ã( t

T ), then the flow of Eq. (1.1) satisfies

∀ k ≤ N, ∃ αk ∈ C : ∣αk∣ = 1 and ∥ΓT
0 ϕk(0) − αkϕk(T)∥

L2
≤ ε.

To mimic the dynamics of the model (1.3), we need a very high and sharp potential wall. Hence, we consider the Hamiltonian HI,η,a
=

−∂2
xx + Iρη(x − a) with both I and η very large. We note that, from a spectral point of view, the limit of HI,η,a for I,η→ +∞ is the Laplacian on

a split segment (0, a) ∪ (a, 1) with the Dirichlet boundary conditions,

H∞,a
= −∂2

xx, D(H∞,a) = H2((0, a) ∪ (a, 1),C) ∩H1
0 ((0, a) ∪ (a, 1),C).

To formulate this result properly (Theorem 3), denote by (λI,η,a
k )

k∈N∗
and (ϕI,η,a

k )
k∈N∗

the ordered sequence of eigenvalues of HI,η,a and,

respectively, a Hilbert basis of L2((0, 1),C) made by the corresponding eigenfunctions. The spectrum of H∞,a is composed of the numbers
(μl

p(a))p∈N∗ and (μr
q(a))q∈N∗ defined in (1.4); the corresponding eigenfunctions are

φl
p(x) =

√
2
a

sin(
pπ
a

x)11x∈[0,a], (2.2)

φr
q(x) =

√
2

1 − a
sin(

qπ
1 − a

(1 − x))11x∈[a,1], (2.3)

where 1x∈J is equal to 1 in J ⊂ (0, 1) and to 0 in (0, 1)/J. We denote as (λ∞,a
k )k∈N∗ and (ϕ∞,a

k )k∈N∗ the ordered spectrum of H∞,a obtained
by reordering the eigenvalues given by (1.4) in ascending order and, respectively, a Hilbert basis of L2((0, 1),C) made by the corresponding
eigenfunctions given by (2.2) and (2.3). Note that H∞,a may have multiple eigenvalues, unlike the operator HI,η,a (see Proposition 2). More
precisely, H∞,a has at most double eigenvalues appearing if and only if a is rational. The convergence of the spectrum (λI,η,a

k )k∈N∗ of HI,η,a to
the spectrum of H∞,a as η, I → +∞ when I and η are of the same order is described as follows:

Theorem 3. For each k ∈ N∗ and δ > 0, there exists a constant Ck,δ > 0 [which depends continuously on a ∈ (0, 1) and on the shape of ρ]
such that, for all η ≥ 1 and I ≥ 1 satisfying δ η ≤ I ≤ 1

δη, we have

λ∞,a
k −

Ck,δ
√η

≤ λI,η,a
k ≤ λ∞,a

k +
Ck,δ

η
.

If λ∞,a
k is a simple eigenvalue of H∞,a with a normalized eigenfunction ϕ∞,a

k , then there exists αI,η,a
k ∈ C such that ∣αI,η,a

k ∣ = 1 and

∥ϕI,η,a
k − αI,η,a

k ϕ∞,a
k ∥L2 ≤

Ck,δ
√η

.

If λ∞,a
k = λ∞,a

k+1 is a double eigenvalue of H∞,a corresponding to a pair of normalized eigenfunctions ϕ∞,a
k and ϕ∞,a

k+1 , then there exist αI,η,a
k ∈ C

and βI,η,a
k ∈ C such that ∣αI,η,a

k ∣
2 + ∣βI,η,a

k ∣
2
= 1 and

∥ϕI,η,a
k − αI,η,a

k ϕ∞,a
k − βI,η,a

k ϕ∞,a
k+1 ∥L2 ≤

Ck,δ
√η

.

The main tools of the proof are the min-max theorem (Ref. 44, Theorem XIII.1) and estimates of the difference of the Rayleigh quotients
associated with H∞,a and HI,η,a. The convergence of the eigenvalues and eigenfunctions is quite classical. The main interest of Theorem 3 is to
provide quantitative estimates. They could be useful for estimating the time of control and the required sharpness of the wall or for providing
control of the error terms. However, this kind of discussion is not central to the present paper. Therefore, we skip the proof and refer the
reader to Ref. 5.
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III. SHORT-TIME MOVEMENT OF THE HIGH POTENTIAL WALL
In this section, we consider V(t, x) = I(t)ρη(t)(x − a(t)) with smooth controls I, η, and a. For large η, we can see V as a very thin

(of width η−1) moving wall. When I (which determines the height of the wall) is large, the norm of the map u ∈ H1
0 ((0, 1),C) z→

V(x, t)u = I(t)ρη(t)(x − a(t))u ∈ H−1((0, 1),C) is large. Therefore, even a small displacement of a(t) may, in principle, cause a strong mod-
ification of the initial state. However, the following lemma shows that if the initial condition is localized outside of the support interval
[a(t) − 1

η , a(t) + 1
η ] of the potential V , then the speed with which the solution deviates from the initial condition is uniformly bounded for all η

and I.

Lemma 1. Let η(t) ≥ η∗ ∈ R+ for all t ∈ [t1, t2], and let u(t) be the solution of the Schrödinger equation (1.1) in this interval
with the L2((0, 1),C) initial data. Take any function ψ ∈ C1([t1, t2], H2((0, 1),C) ∩H1

0 ((0, 1),C)) that, for every t ∈ [t1, t2], vanishes in
[a(t) − 1

η∗
, a(t) + 1

η∗
] (so Vψ ≡ 0). Then, for all t ∈ [t1, t2],

∥u(t) − ψ(t)∥2
L2 ≤ ∥u(t1) − ψ(t1)∥2

L2 + C(t2 − t1), (3.1)

with C independent of the choice of functions η, I, and a and given by

C = 2 sup
t∈[t1 ,t2]

( ∥u(t1)∥L2∥∂2
xxψ(t)∥L2 + (∥ψ(t)∥L2 + ∥u(t1)∥L2 )∥∂tψ(t)∥L2 ).

Proof. As the evolution operator of the Schrödinger equation is unitary, ∥u(t)∥L2 is constant in time. Let us, first, assume that u(t1) ∈
D(−∂2

xx + V(t1, ⋅)), which implies regularity of the solution with respect to time as shown in Proposition 1. As V(t, ⋅)ψ(t, ⋅) ≡ 0 for every
t ∈ [t1, t2], we have

∂t
1
2
∥u(t) − ψ(t)∥2

L2 = ∂t(
1
2
∥ψ(t)∥2

− Re(⟨u(t)∣ψ(t)⟩L2))

≤ ∥ψ(t)∥L2∥∂tψ(t)∥L2 + ∣⟨(−∂2
xx + V(t, ⋅))u(t)∣ψ(t)⟩L2 ∣ + ∥u(t)∥L2∥∂tψ(t)∥L2

≤ ∣⟨∂2
xxu(t)∣ψ(t)⟩L2 ∣ + (∥ψ(t)∥L2 + ∥u(t1)∥L2 )∥∂tψ(t)∥L2

≤ ∣⟨u(t)∣∂2
xxψ(t)⟩L2 ∣ + (∥ψ(t)∥L2 + ∥u(t1)∥L2 )∥∂tψ(t)∥L2

≤ ∥u(t1)∥L2∥∂2
xxψ(t)∥L2 + (∥ψ(t)∥L2 + ∥u(t1)∥L2 )∥∂tψ(t)∥L2 .

Now, the validity of estimate (3.1) follows from

∥u(t) − ψ(t)∥2
L2 ≤ ∥u(t1) − ψ(t1)∥2

L2 + ∣t2 − t1∣ sup
t∈[t1 ,t2]

∣∂t∥u(t) − ψ(t)∥2
L2 ∣ for all t ∈ [t1, t2].

We conclude the proof by noting that the estimate is extended by density to any u(t1) ∈ L2((0, 1),C). □

Recall that we denote by λ∞,a(t)
k the eigenvalues of the Laplacian operator on the split interval (0, a(t)) ∪ (a(t), 1) for any frozen value of

t. For each k ∈ N∗, we have λ∞,a
k ∈ {μl

p(a)}p∈N∗ or λ∞,a
k ∈ {μr

q(a)}q∈N∗ , where μl
p and μr

q are given by (1.4). The corresponding eigenfunctions
are denoted as ϕ∞,a(t)

k and are equal to φl
p or φr

q defined by (2.2) or (2.3), respectively. The functions φl
p and φr

q evolve smoothly with a and are
mostly localized outside the support interval of V . As shown in Proposition 4, this implies that if we consider any of the functions ϕ∞,a(t)

k as
an initial condition for Eq. (1.1), the solution will not deviate far from ϕ∞,a(t)

k on a certain short interval of time, uniformly for all large η and
all I.

In particular, if a∗ ∈ (0, 1) is a crossing point where λ∞,a∗
k = λ∞,a∗

k+1 for some k ∈ N∗, then for any small ν, the split Laplacian eigenfunctions
ϕ∞,a∗−ν

k and ϕ∞,a∗+ν
k+1 correspond to the same mode φl

p or φr
q. Therefore, if a(t1) = a∗ − ν and a(t2) = a∗ + ν, then the flow of (1.1) on the interval

[t1, t2] will take the function ϕ∞,a(t1)
k close to ϕ∞,a(t2)

k+1 (and the function ϕ∞,a(t1)
k+1 close to ϕ∞,a(t2)

k ) when ν and (t2 − t1) are small enough (see
Fig. 4).

This yields exactly the permutation of eigenmodes introduced in Theorem 1. The precise statement is given as follows:

Proposition 4. Let a∗ ∈ (0, 1) ∩Q. Take N ∈ N∗ such that λa∗
N+1 ≠ λ

a∗
N and any ε > 0, κ > 0. There exists η∗ > 0 such that, for every sufficiently

small τ > 0, ν > 0 and any smooth functions η, I, and a that satisfy η(t) ≥ η∗ , I(t) ≥ 0, a∗ − ν = a(0) ≤ a(t) ≤ a(τ) = a∗ + ν, and ∣a′(t)∣ ≤ κ for all
t ∈ [0, τ], we have
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FIG. 4. The evolution of the eigenmode (c) driven by the motion of the potential wall. When the wall moves too slow and it takes a long time to pass the crossing of the
eigenvalues of the split Laplacian, the motion is adiabatic and the state is deformed as shown in (d)—it tunnels from one side of the wall V to the other (because the spectral
curves of −∂2

xx + V do not intersect). On the other hand, when we move the wall faster, the motion goes from the lower spectral curve to the higher as shown by the red line.
In such case, the state (c) is deformed to (b) and the state (a) is deformed to (d).

∀k ≤ N, ∥Γτ0ϕ
∞,a∗−ν
k − ϕ∞,a∗+ν

σ(k) ∥L2 ≤ ε,

where Γt
s is the flow of Eq. (1.1) and σ = σa∗+ν

a∗−ν is the permutation defined in Sec. I.

Proof. Note that the eigenmodes ϕ∞,a(t)
k given by (2.2) and (2.3) are not of class H2 in the whole interval (0, 1), and they do not vanish

everywhere in [a(t) − 1
η∗

, a(t) + 1
η∗
], and so we cannot directly apply Lemma 1 to these functions. We, therefore, modify them near the support

interval of V . Choose some k ≤ N and assume that ϕ∞,a∗−ν
k is given by (2.2) for some p ∈ N∗ [the estimates for the case where ϕ∞,a∗−ν

k is given
by (2.3) are similar]. Let χ be a smooth truncation equal to 0 in [−1, +∞) and to 1 in (−∞,−2]. We introduce χα(⋅) = χ(⋅/α); this function
vanishes in [−α, +∞). Denote

ψa(t)
k (x) ∶=

√
2

a(t)
sin(

pπ
a(t)

x)χα(x − a(t)). (3.2)

Now, ψa(t)
k is a smooth function vanishing in [a(t) − 1

η∗
, a(t) + 1

η∗
] when α ≥ 1

η∗
. Moreover, ψa(t)

k is close, uniformly for all t, to ϕ∞,a(t)
k =

√
2

a(t) sin( pπ
a(t) x)11x∈[0,a(t)] in L2((0, 1),C) when α is small. More precisely,

∥ϕ∞,a
k − ψa

k∥L2 ≤

√
2
a∫

a

a−2α
sin2(

pπ
a

x) dx ≤
4π
√

3
p(
α
a
)

3
2
= O(Nα3/2). (3.3)

To apply Lemma 1, we need to estimate the derivatives of ψa(t)
k when α is small. Note that the first and second derivatives of χα are of

order 1
α and 1

α2 , respectively, and are supported in [a(t) − 2α, a(t) − α]. Thus, we have
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∫

1

0
∣sin(

pπ
a(t)

x)∂2
xxχα(x − a(t))∣

2
dx ≤

p2π2
∥∂2

xxχ∥2
∞

α4 a(t)2 ∫

a(t)−2α

a(t)−α
(a(t) − x)2 dx = O(N2α−1),

and similarly, ∫
1

0 ∣ cos( pπ
a(t) x)∂xχα(x − a(t))∣2dx = O(α−1) and ∫

1
0 ∣ sin( pπ

a(t) x)χα(x − a(t))∣2dx = O(N2α3). This gives

∥∂2
xxψ

a(t)
k ∥L2

≤

√
2

a(t)
[∥sin(

pπ
a(t)
⋅) ∂2

xxχα(⋅ − a(t))∥
L2

+ 2
pπ

a(t)
∥cos(

pπ
a(t)
⋅) ∂xχα(⋅ − a(t))∥

L2

+
p2π2

a(t)2 ∥sin(
pπ

a(t)
⋅)χα(⋅ − a(t))∥

L2
] = O(Nα−1/2 + N3α3/2).

(3.4)

By similar computations,

∥∂tψa(t)
k ∥L2

= O
⎛

⎝
N sup

t∈[0,t]
∣a′(t)∣

⎞

⎠
= O(Nκ). (3.5)

The L2
−norm of ψa

k is controlled by O(1 + Nα3/2) due to (3.3). Now, by Lemma 1, if u(τ) = Γτ0ϕ
∞,a∗−ν
k , then

∥u(τ) − ψa(τ)
k ∥

2
L2 ≤ ∥ϕ∞,a∗−ν

k − ψa∗−ν
k ∥

2
L2 + Nτ O(α−1/2 + N2α3/2 + (2 + Nα3/2)κ)

by (3.4) and (3.5). Using (3.3), we can then estimate

∥u(τ)−ϕ∞,a(τ)
σ(k) ∥L2 ≤ ∥u(τ) − ψa(τ)

k ∥L2 + ∥ψa(τ)
k − ϕ∞,a(τ)

σ(k) ∥L2

≤ ∥ϕ∞,a∗−ν
k − ψa∗−ν

k ∥L2 +
√

Nτ O(
√
α−1/2 + N2α3/2 + (2 + Nα3/2)κ ) + ∥ψa∗+ν

k − ϕ∞,a∗+ν
σ(k) ∥L2

= O(Nα3/2) +
√

Nτ O(
√
α−1/2 + N2α3/2 + (2 + Nα3/2)κ ). (3.6)

Choose α≪ (ε/N)2/3. Set η∗ > 0 sufficiently large so that α ≥ 1
η∗

. Then, the above computations are valid for any choice of the function η(t)
bounded by η∗ from below for all t ∈ [0, τ]. Therefore, if we take

τ ≪
ε2

N(α−1/2 + N2α3/2 + (2 + Nα3/2)κ)
,

estimate (3.6) yields the claim. Note that the only restriction on ν (the range of displacement of the potential wall) is given by

ν ≤ sup
t∈[0,t]

∣a′(t)∣τ ≤ κτ,

and so the result holds true for all sufficiently small ν. □

Remark. From (3.6), we may estimate the behavior of the parameters in the statement of Proposition 4. For example, for N ∈ N∗

and κ > 0 fixed, when the error ε is small, the sharpness of the potential η∗ is at least O(ϵ−
2
3 ). Hence, τ and ν have to be at most O(ϵ

7
3 ).

For ϵ > 0 and κ > 0 fixed, when we consider a large number N of frequencies, then η∗ is at least O(N
2
3 ). Thus, τ and ν have to be at

most O(N−2).

IV. PROOF OF THEOREMS 1 AND 2
A. Proof of Theorem 1

In order to obtain the permutation of eigenmodes described in Theorem 1, we use the following control path (see also Fig. 2). Fix some
very large η∗ and, first, start to adiabatically increase I from zero to a very large value I∗ , thus obtaining a thin and high potential wall located
at ai. The evolution of the eigenstates during this stage is adiabatic, as stated in Proposition 3. Next, we move the wall to the location af. In this
step, the potential V(x, t) = I∗ρη∗ (x − a(t)) has a large fixed amplitude and a small fixed width (η∗)−1. The movement of the wall alternates
adiabatic motion (by Proposition 3) and short-time level crossings (by Proposition 4). Finally, we adiabatically decrease I to zero, up to the
extinction of the potential.
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Crossings of eigenvalues and the corresponding permutations. With no loss of generality, assume ai < af. We take any a(t) growing
from ai to af, such that ∣a′(t)∣ ≤ κ for all t (where κ is the bound from Theorem 1).

The operator H∞,a [the Laplacian with the Dirichlet boundary conditions on the split interval (0, a) ∪ (a, 1), as introduced in Sec. II]
corresponds to the ideal motion described by the formal equation (1.3). Recall that its eigenvalues (λ∞,a

k )k∈N∗ are grouped into two fam-
ilies (μl

p(a))p∈N∗ and (μr
q(a))q∈N∗ given by (1.4). Specifically, for N ∈ N∗ given in the statement of Theorem 1, there exist P, Q ∈ N such

that

(λai
k )k≤N = (μ

l
p(ai))

p≤P
∪ (μr

q(ai))q≤Q
.

When a moves from ai to af, the spectral curves belonging to (μl
p(a))

p≤P
or (μr

q(a))
q≤Q

can cross a finite number of the spectral curves of H∞,a

at a finite number of locations (a∗,j)j≤j∗ with j∗ ∈ N∗. Order the crossing points so that

ai < a∗,1 < ⋅ ⋅ ⋅ < a∗,j∗ < af

(as ai and af are irrational, no crossing can happen at the end points a = ai or a = af). Denote by M ∈ N∗ the smallest number such that any of
the curves (μl

p(a))p≤P and (μr
q(a))q≤Q cross only eigenvalues in (λ∞,a

k )k≤M when a moves from ai to af. For any irrational a and b in [ai, af], we
define the permutation σb

a as follows:

● if λ∞,a
k equals to μl

p(a) = p2π2

a2 for some p, then σb
a (k) is the index such that μl

p(b) = p2π2

b2 = λb
σb

a (k); and

● if λ∞,a
k equals to μr

q(a) = q2π2

(1−a)2 for some q, then σb
a (k) is the index such that μr

q(b) = q2π2

(1−b)2 = λb
σb

a (k).

Let ν∗ > 0 be small enough so that ai < a∗ ,1 − ν∗ , a∗ ,j + ν∗ < a∗ ,j+1 − ν∗ for j = 1, . . . , j∗ − 1 and a∗,j∗ + ν∗ < af. As (a∗,j)j≤j∗ correspond to
the crossing point of the N first eigenvalues, we have

∀k ≤ N, σaf
ai (k) = σ

a
∗,j∗+ν∗

a
∗,j∗−ν∗ ○ ⋅ ⋅ ⋅ ○ σ

a∗,1+ν∗
a∗,1−ν∗ (k).

Fixing the parameters. Let ε′ < ε/(4j∗ + 3), where ε > 0 is the small error introduced in Theorem 1. We apply Proposition 4 to each
moment a = a∗ ,j where the crossings of eigenvalues occur. We obtain some large η∗ and we can choose, for every j ≤ j∗, a distance νj < ν∗ , a
time τj, and a path aj ∈ C∞([0, τj], [a∗,j − νj, a∗,j + νj]) satisfying

∥a′∥L∞([0,τ],R) ≤ κ, a(m)
j (0) = a(m)

j (τj) = 0, ∀m ∈ N∗, (4.1)

such that

∀η ≥ η∗, ∀k ≤ N, ∥Γτ0ϕ
∞,a∗,j−νj

k − ϕ∞,a∗,j+νj

σj(k) ∥L2 ≤ ε′. (4.2)

Next, we apply Theorem 3 for each a = a∗ ,j ± νj and for k ≤M. We obtain that, maybe with a larger η∗ , estimate (4.2) is also guaranteed for
η = η∗ and for some sufficiently large I = I∗ ,

∀k ≤M, ∃αI∗ ,η∗ ,j±
k ∈ U, ∥ϕI∗ ,η∗ ,aj±νj

k − αI∗ ,η∗ ,j±
k ϕ∞,aj±νj

k ∥L2 ≤ ε′, (4.3)

where U = {z ∈ C, ∣z∣ = 1}.
The initial “vertical” adiabatic motion. Now, we start to construct the potential V(x, t) = I(t)ρη(t)(x − a(t)). First, we fix a(t) to be

constantly equal to ai, η(t) = η∗ , and choose I(t) to be a smooth function going from 0 to I∗ , with the derivative I′(t) compactly supported in
(0, T1) and satisfying ∣I′(t)∣ < κ for some sufficiently large T1 > 0. Then, we apply Proposition 3 and obtain an adiabatic evolution lasting up
to the time t = T1 such that

∀k ≤ N, ∃αk ∈ U, ∥ΓT1
0

√
2 sin(kπ⋅) − αkϕ

I∗ ,η∗ ,ai
k ∥L2 ≤ ε′. (4.4)

The initial “horizontal” adiabatic motion. Next, we fix I(t) to be a constant, I = I∗ , and choose a(t) to be a smooth monotone function
going from ai to a∗ ,1 − ν1, with the derivative a′ compactly supported in (0, T2) for a sufficiently large T2 > 0. We apply again Proposition 3
and obtain an adiabatic motion lasting the time T2 such that

∀k ≤ N, ∃αk ∈ U, ∥ΓT2
0 ϕ

I∗ ,η∗ ,ai
k − αkϕ

I∗ ,η∗ ,a∗,1−ν1
k ∥L2 ≤ ε′. (4.5)
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As above, we choose T2 sufficiently large so that ∥a′∥L∞((0,T2),R) ≤ κ. Now, we concatenate the obtained path with the previous one. Note that
the concatenation is still smooth, since the derivatives vanish near the joint point. Moreover, Γt

s is unitary, and so the L2
−errors propagate

without change. Gathering (4.4) and (4.5), we obtain the paths a(t), I(t), and η(t), all smooth in [0, T1 + T2], satisfying

∀k ≤ N, ∃αk ∈ U, ∥ΓT1+T2
0

√
2 sin(kπ⋅) − αkϕ

I∗ ,η∗ ,a∗,1−ν1
k ∥L2 ≤ 2ε′. (4.6)

In addition, we still have ∥I′∥L∞((0,T1+T2),R) ≤ κ, ∥η′∥L∞((0,T1+T2),R) ≤ κ, and ∥a′∥L∞((0,T1+T2),R) ≤ κ.
The first short-time crossing. In the previous step, we stopped at a∗ ,1 − ν1, just before the first crossing point of the ideal eigenvalues

λ∞,a
k . At this point, we can no longer follow the perfectly adiabatic motion, as explained in Sec. III (see Fig. 4). Thus, we use a quasi-adiabatic

path a1(t), lasting a time T3, to go from a∗ ,1 − ν1 to a∗ ,1 + ν1 so that conditions (4.1) and (4.2) are satisfied. We concatenate this path to
the previous ones. Once again, the evolution operator is unitary and the error term from (4.6) is transmitted without amplification. Due to
(4.1)–(4.3), the concatenated control satisfies

∀k ≤ N, ∃αk ∈ U, ∥ΓT1+T2+T3
0

√
2 sin(kπ⋅) − αkϕ

I∗ ,η∗ ,a∗,1+ν1
σ1(k) ∥L2 ≤ 5ε′.

Again, we keep ∥I′∥L∞((0,T1+T2+T3),R) ≤ κ, ∥η′∥L∞((0,T1+T2+T3),R) ≤ κ, and ∥a′∥L∞((0,T1+T2+T3),R) ≤ κ.
Iteration of the process. We repeat the strategy presented above for every crossing point. Thus, we proceed as follows for every 1 ≤ j ≤ j∗.

First, we move adiabatically between a∗ ,j + νj and a∗ ,j+1 − νj+1, which add an error ε′, like in (4.5). This motion preserves the ordering of the
eigenvalues. The duration of the motions is chosen large enough in order to control the speed of the wall’s motion with the parameter κ.
Second, we have the quasi-adiabatic dynamics satisfying (4.1)–(4.3) while moving from a∗ ,j+1 − νj+1 to a∗ ,j+1 + νj+1. This motion adds an error
3ε′ and applies the permutation σj+1 to the eigenmodes. Finally, we move adiabatically between a∗,j∗ + νj∗ and af as in the first “horizontal”
adiabatic motion by controlling again the speed of the wall’s motion. We obtain that, for a suitable time T, there exist smooth controls I(t),
η(t) ≡ η∗ , and a(t) such that

∥η′∥L∞((0,T),R) ≤ κ, ∥η′∥L∞((0,T),R) ≤ κ, ∥a′∥L∞((0,T),R) ≤ κ,

and∀k ≤ N, ∃αk ∈ U, ∥ΓT
0
√

2 sin(kπ⋅) − αkϕ
I∗ ,η∗ ,a f

σ(k) ∥L2 ≤ (4j∗ + 2)ε′,

where σ = σj∗ ○ ⋅ ⋅ ⋅ ○ σ1 is exactly the permutation σaf
ai in Theorem 1.

Final “vertical” adiabatic motion. With fixed a(t) ≡ af, and η(t) = η∗ , we adiabatically decrease I to 0 with the speed slower than κ. The
whole concatenated control path gives us Theorem 1 as

∀k ≤ N, ∃αk ∈ U, ∥ΓT
0
√

2 sin(kπ⋅) − αk
√

2 sin(σ(k)π⋅)∥L2 ≤ (4j∗ + 3)ε′ < ε.

□

B. Realizing an arbitrary finite permutation
It is clear that the arguments in the Proof of Theorem 1 can be generalized to the case of the potential given by

V(t, x) =
J

∑
j=1

Ij(t)ρηj(t)(x − aj(t)) (4.7)

with several moving walls that “almost split” the interval. While Theorem 1 allows us to realize a specific permutation σaf
ai to the eigenmodes,

it is not clear that permutations are reachable by combining several permutations of this specific type. However, introducing several potential
walls in (4.7), we can reach any permutation of any given number of the modes.

Proposition 5. Take any permutation σ : N∗ → N∗. For all N ∈ N∗ and ε > 0, there exist J ∈ N, T > 0, and smooth functions Ij ∈

C∞([0, T],R+), ηj ∈ C∞([0, T],R+), and aj ∈ C∞([0, T], (0, 1)), j = 1, . . . , J, such that the following holds. Let Γt
s be the unitary propagator gen-

erated by the Schrödinger equation (1.1) in the time interval [s, t] ⊂ [0, T] with the potential V defined by (4.7). Then, for all k ≤ N, there exists
αk ∈ C with ∣αk∣ = 1 such that

∥ ΓT
0 sin(kπx) − αk sin(σ(k)πx) ∥

L2
≤ ε.

Proof. Since the main arguments of the Proof of Theorem 1 still hold for V given by (4.7), it is enough to consider the ideal problem—
free particle in the interval [0, 1] completely split into several subintervals. We show that any permutation σ of N∗ can be realized by changing
the locations aj(t) of the splittings. We examine the first N eigenvalues. Let J = max{N, σ(1), . . . , σ(N)} − 1.

J. Math. Phys. 61, 101511 (2020); doi: 10.1063/5.0005399 61, 101511-11

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

The initial “vertical” adiabatic motion. At t = 0, we split the interval [0, 1] into (J + 1) subintervals [0, a1(0)] ∪ [a1(0), a2(0)] ∪ ⋅ ⋅ ⋅ ∪
[aJ(0), 1]. We choose aj(0) such that the intervals have decreasing lengths that are very close. More precisely, we assume ∣a1(0) − 0∣ > ∣a2(0) −
a1(0)∣ > . . . > ∣1 − aJ(0)∣ > 1

2 ∣a1(0) − 0∣. When we increase adiabatically the intensity Ij of the potential walls from 0 to a large value
I = I∗ , the first mode becomes localized in the first interval [0, a1(0)], the second mode in the second interval, and so on. Note that since
∣1 − aJ(0)∣ > 1

2 ∣a1(0) − 0∣, the first mode corresponding to any subinterval corresponds to an eigenvalue lower than the one corresponding to
the second mode in any of the subintervals.

The “horizontal” quasi-adiabatic motion. Using the quasi-adiabatic motion as in Theorem 1, we change the location of the walls in
such a way that [0, a1(T)] has the σ(1)-th length among the intervals, [a1(T), a2(T)] has the σ(2)−th length, and so on, until [aN−1(T), aN (T)].
For j > N, we make the length of [aN (T), aN+1(T)] have order p among the lengths of all the intervals, where p is the least integer in
N∗/{σ(1), . . . , σ(N)}, the interval [aN+1(T), aN+2(T)] gets the qth length with q being the least integer in N∗/{σ(1), . . . , σ(N), p}, and so
on. Moreover, we require (as above) that the ratio of any two lengths is strictly less than 2. As a consequence, the second eigenvalue in the
longest subinterval is higher than the first eigenvalue in all the subintervals.

The final “vertical” adiabatic motion. We adiabatically remove the walls by decreasing I to 0. The mode localized in the first subin-
terval corresponds to the σ(1)−th mode, i.e., sin(σ(1)πx), the mode localized in the second subinterval becomes sin(σ(2)πx), and so on.
Thus, our quasi-adiabatic control has changed the modes sin(kπx) for k ≤ N into the modes sin(σ(k)πx), up to error terms as small as we
want. □

C. Proof of Theorem 2
The construction of Proposition 5 can be used to prove Theorem 2. It is enough to show that by applying a control of the type of (4.7),

we can move the initial state A sin(π⋅) arbitrarily L2-close to any given state u f with norm A/
√

2. Indeed, by reversing time, this would imply
that starting from any state ui, we can drive the system arbitrarily L2-close to the state

√
2∥ui∥ sin(π⋅). By combining both motions, we can

start from ui and drive the system arbitrarily close to u f if both states have the same L2
−norm.

Hence, let us show that given any set of real numbers ck such that∑kc2
k = 1 and any set of αk ∈ U = {z ∈ C, ∣z∣ = 1}, k = 1, . . ., N, we can

drive the initial state sin(π⋅) arbitrarily close to

u =
N

∑
k=1

ckαk sin(kπ⋅) (4.8)

(since we work up to a small error, we may choose N large and assume that u is only supported by the first N modes).
We start with the control described in Proposition 5 that sends the first mode to the Nth mode as in Fig. 5 and modify the speed with

which the potential walls move in order to reach the vicinity of the state u defined by (4.8) with the given values of ck and arbitrary αk,
k = 1, . . ., N. After that, we tune the phases.

First, split [0, 1] into N subintervals with decreasing lengths, the largest subinterval being less than twice longer than the smallest one.
Then, grow adiabatically the potential walls at the boundary points between these intervals. Next, move each aj(t), j = 1, . . . , J, to decrease the
length of the first subinterval and to increase the length of the others. During this process, the line of eigenvalues starting from the lowest
mode of the initial problem crosses the lines of eigenvalues corresponding to the modes 2, . . . , N of the initial problem, one by one, exactly in
this order (see Fig. 5) (note that these lines do not cross with each other). Before the crossing with the line of the second mode, the solution
is close to the lowest energy mode ψ1. By the adiabatic theorem, this will remain the case if we move the walls extremely slowly. On the other
hand, if we move the walls faster and make a short-time crossing as in Theorem 1, then after the crossing the solution will get close to the

FIG. 5. We start with ui = sin(π⋅), split the interval into N subintervals, and slowly modify their lengths such that the first eigenvalue of the split Laplacian crosses the next
N − 1 ones. At each crossing, we can choose the speed of the wall motion in the range between the one described in Sec. III, which would lead to complete crossing, and
a much slower one that would make the system change adiabatically. This allows us to create a superposition of the crossing modes with any given amplitudes. After that,
we can stop changing parameters for some time and wait until the evolution of the autonomous Schrödinger equation sends the phases αk sufficiently close to their target
values.
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second (in the order of the increase in energy) mode ψ2 (see Sec. III). By continuity, we can choose an intermediate speed in such a way that
the solution after the crossing gets close to a superposition of these modes, namely, to c1 α1 ψ1 +

√
1 − c2

1 α2 ψ2 with some α1,α2 ∈ U and c1 as
in (4.8).

Since the equation is linear, we can trace the evolution of the modes ψ1 and ψ2 separately. By construction, there will be no fur-
ther crossings for ψ1, while the line of eigenvalues corresponding to ψ2 will cross the line corresponding to ψ3. As before, by tuning the
speed of crossing, we can keep an energy c2 on the mode ψ2 and drive the remaining part on ψ3. One repeats this procedure until the last
crossing. Then, the solution gets close to ∑N

k=1ckα̃kψk with exactly the same coefficients ck as in (4.8), but with uncontrolled coefficients
α̃k ∈ U.

It remains to tune the phases. We can always arrange the above procedure in such a way that at the end of it the lengths
L1, . . . , LN of the subintervals into which the potential walls divide the interval (0, 1) were sufficiently close to be rationally indepen-
dent. Since the walls are very high, the first eigenvalues are close to λk = (π/Lk)2, and so they are close to a set of rationally independent
numbers.

Recall that we can make this approximation as good as we want if we make the potential wall sufficiently thin and high. Thus, if we just
wait for a time t without changing the potential, the solution will get close to∑N

k=1ckαke−itλkψk. Due to the closeness to rational independence,
the flow t ↦ (e−itλk )k≤N is almost dense in the torus TN , and we can tune the phases αk to any α̂k ∈ U prescribed in advance. Note that the
upper bound on the waiting time t is independent of the initial and target values of αk, k = 1, . . . , N, and depends only on the desired accuracy
of the approximation.

Now, we slowly decrease the height of the potential walls up to the extinction of the potential. This is an adiabatic process that trans-
forms (up to a small error) the modes ψk into sin(πk⋅) while keeping ck constant. The phases acquire a shift, i.e., the solution gets close to
∑

N
k=1ckα̂keiθkψk for some real θk, k = 1, . . . , N. Importantly, the phase shifts θk do not depend on α̂k, and so by choosing α̂k = e−iθkαk, we obtain

the desired result. □

V. A PERMUTATION LEADING TO AN EXPONENTIAL GROWTH OF ENERGY
As we remarked, the potential V can be taken zero at the beginning and the end of the time interval [0, T] in Theorem 1, and so the

permutation described in this theorem can be applied as many times as we want. Let us demonstrate that this, typically, should lead to an
exponential growth in energy. Specifically, if we start with an eigenstate ψk with the eigenvalue λk, then after applying n times the permutation
σaf

ai , we will find the system at the eigenstate ψkn with kn = (σaf
ai )

n(k). The claim is that the energy λkn behaves as

λkn ∼ enrλk

for some r(ai, af) > 0, for a typical initial condition k0 = k and typical values of ai and af.
Proving this (after a proper rigorous reformulation) could be a non-trivial task. Still, it is not hard to build explicit examples of the

exponential growth (see Ref. 4). The argument behind the general claim is as follows: Note that for any permutation σ of the set of natural
numbers, its trajectory kn = σn(k0) is either looped or tends to infinity both at forward and backward iterations. The exponential growth claim
means that for the permutations σaf

ai , most of the trajectories are not looped and the averaged value of ln kn+1
kn

is strictly positive typically (as
λk ∼ k2, the exponential growth of the energy is equivalent to the exponential growth of the eigenstate number k).

In order to estimate the average value of the increment in ln k, we recall that at each irrational a, the eigenstates of the Dirichlet–Laplacian
in the split interval (0, a) ∪ (a, 1) are divided into two groups, the left eigenstates are supported in (0, a), and the right eigenstates are supported
in (a, 1). Order the eigenstates by their energy λk and introduce the indicator sequence: ξa(k) = 1 if the eigenstate ψk is left, and ξa(k) = −1 if
ψk is right. The two sequences ξai and ξaf completely determine the permutation σaf

ai . Indeed, if at some a, the state ψk is left and acquires the
number m when we order the left states by the increase in energy, then there are exactly m left and (k −m) right states with the energies not
exceeding λk, and so Sa(k) ∶= ξa(1) + ⋅ ⋅ ⋅ + ξa(k) = 2m − k. If ψk is a right state with the number n in its group, then there are exactly n right
and (k − n) left states with the energies not exceeding λk, and so Sa(k) = k − 2n. These two formulas can be rewritten as

m or n =
1
2

(k + ξa(k)Sa(k)).

After splitting the interval (0, 1) at a = ai, the state ψk becomes left if ξai (k) = 1 or right if ξai (k) = −1. When a changes from ai to af, the left
states remain left and the right states remain right, and the corresponding number m or n stays constant, implying that the number k changes
to k̄ = σaf

ai according to the rule

k + ξai (k)Sai (k) = k̄ + ξai (k)Saf (k̄). (5.1)

One needs a proper analysis of the dynamics of k defined by this formula, but we just make a heuristic assumption that ξai and
ξaf are sequences of independent, identically distributed random variables. Let β ∈ (0, 1) be the probability of ξai = 1, and let γ ∈ (0, 1)
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be the probability of σaf = 1. Then, in the limit of large k, we may substitute Sai (k) ∼ (2β − 1)k and Saf (k̄) ∼ (2γ − 1)k̄ in (5.1), which
gives

k̄ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

β
γ

k + o(k) with probability β

1 − β
1 − γ

k + o(k) with probability 1 − β.

It follows that in the limit of large k,

r ∶= E(ln k̄ − ln k) = β ln
β
γ

+ (1 − β) ln
1 − β
1 − γ

.

This quantity is strictly positive if β ≠ γ, giving the claimed exponential growth. It would be interesting to do a more rigorous analysis of the
dynamics generated by permutations of eigenvalues due to this or other cyclic processes.

The process described by Eq. (1.1), which we study in this paper, follows the “ideal” permutation σaf
ai only approximately, and only

until the eigenstate number k is smaller than a certain fixed number N. This means that one can repeat this process until the corresponding
eigenvalue remains significantly lower than I∗ , the maximal intensity of the potential V(x, t). Thus, until this moment, we can expect the
exponential growth of the energy at the repeated application of the control cycle of Theorem 1. This lets us to estimate as O(ln I∗) the number
of the control cycles sufficient to transform a low energy state to the state with energy of order I∗ . As the speed with which we change I is
bounded from above, and we have I = 0 at the beginning of each cycle, the duration of one cycle is O(I∗). Thus, we can transform a low energy
eigenstate to the state of energy of order I∗ in a time of order I∗ ln I∗ .

In fact, no unbounded exponential growth of the energy is possible in the setting of (1.1), or for any periodic in time, smooth potential
V(x, t) in a bounded domain. Indeed, assume that ψ(t) is a solution of the Schrödinger equation with ψ(0) concentrated close to the kth
eigenmode. Until our permutation process stays valid, after n cycles, ψ(nT) is concentrated close to the σn(k)−th eigenmode. This implies,
in particular, that ∥ψ(nT)∥H1 grows like O(σn(k)). However, it is proved in Ref. 45 (see also Ref. 46) that the Hs

−norm of the solution of a
periodic Schrödinger equation has at most a polynomial growth rate for any s > 0. Even when the ideal permutation σ yields an exponential
growth of the eigenmodes, we will move away from this trajectory after a finite time. The realization of the unbounded exponential growth
needs to use a more singular evolution like, for example, the splitting process (1.3).
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