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ON DYNAMIC PROPERTIES OF DIFFEOMORPHISMS
WITH HOMOCLINIC TANGENCY

S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov UDC 517.933; 517.987.5

Abstract. We study dynamic properties of systems in Newhouse domains near a diffeomorphism having
a saddle fixed point with a homoclinic tangency in the following cases: one-dimensional, two-dimensional,
where a fixed point is a saddle-focus with one real and two complex-conjugate multipliers, and four-
dimensional saddle-focus with two pairs of complex-conjugate multipliers.

CONTENTS

. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
1. Statement of the Problem and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

1.1. Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
1.2. Bifurcation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
1.3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
1.4. Rescaling lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323

2. Properties of the Local and Global Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 1324
3. Proof of the Rescaling Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328

3.1. First-return mappings in the case (1, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
3.2. First-return mapping in the case (2, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329
3.3. Proof of Lemma 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
3.4. First-return mapping in the case (1, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
3.5. First-return mapping in the case (2, 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335

4. Proof of the Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
4.1. Proof of Theorems 1.2 and items 1 and 2 of Theorem 1.1. . . . . . . . . . . . . . . . . . 1339
4.2. Proof of Theorem 1.4 and item 3 of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . 1340
4.3. Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342

Introduction

Poincaré homoclinic trajectories, i.e., trajectories bi-asymptotic to saddle periodic trajectories, are
one of the most attractive objects of study in the theory of dynamic systems. First of all, this is due
to the fact that their existence justifies the existence of a complex dynamics. So, in a neighborhood
of a rough homoclinic trajectory, at whose points invariant manifolds of a saddle periodic orbit have a
transversal intersection, there exists a countable set of periodic trajectory and a continuum of Poisson
stable trajectories [26, 28].

If there is at least one nonrough homoclinic trajectory, or, as one says, a homoclinic tangency, then this
implies that in any neighborhood of the system considered, there exists a countable set of nonroughness
domains in which systems with homoclinic tangency are dense. For the first time, this phenomenon was
discovered by Newhouse in the case of two-dimensional diffeomorphisms in [21]. In the higher-dimensional
case, the Newhouse domains also exist in a neighborhood of any system with a homoclinic tangency in
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the parameter space of finite-parametric families [16], as well as in the space of dynamic systems in a
natural way [16, 23, 24].

We note immediately that the dynamic properties demonstrated by systems from the Newhouse domains
are characterized by an exceptional strangeness and complexity. Thus, in [13, 15], it was proved that even
in the two-dimensional case, the description of the dynamics of a system from the Newhouse domains
requires an infinite set of invariants (the so-called Ω-moduli, see [8, 9]), and, moreover, systems with
homoclinic tangency of any order and with trajectories with an arbitrary degeneration are dense (in the
Cr-topology with any r ≥ 3) in the Newhouse domains (see [13, 19]).

In the present work, we continue the study of dynamic properties of systems from the Newhouse domains
near a diffeomorphism having a saddle fixed point with a homoclinic tangency. Here, we restrict ourselves
to the consideration of only the so-called base cases: the two-dimensional case, the three-dimensional case,
where the fixed point is a saddle-focus with one real multiplier and a pair of complex-conjugate multipliers,
and the four-dimensional case of a saddle-focus that has two pairs of complex-conjugate multipliers. In
the general higher-dimensional case, the dynamics near the homoclinic tangency is mainly determined by
the structure of the set of so-called leading multipliers of a fixed point. Generically, this is either a pair
of real multipliers, or a single real multiplier and a pair of complex-conjugate multipliers, or two pairs
of complex-conjugate multipliers. Therefore, it is obvious that the diffeomorphisms considered are the
simplest among all the diffeomorphisms with the same tuple of leading multipliers.

The bifurcations of two-dimensional diffeomorphisms with homoclinic tangency have been intensively
studied since [1]. Therefore, here, we focus our attention mainly on three- and four-dimensional diffeo-
morphisms, i.e., on the case of a saddle-focus. We consider three types of saddle-focuses. A fixed point
with the multipliers λe±iϕ and γ, where 0 < λ < 1, 0 < ϕ < π, and |γ| > 1, is called a (2, 1) saddle-
focus. A point is called a (1, 2)-saddle-focus if it has multipliers λ and γe±iψ, where 0 < |λ| < 1, γ > 1,
and 0 < ψ < π. A point is called a (2, 2)-saddle-focus if it has the multipliers λe±iϕ and γe±iψ, where
0 < λ < 1, γ > 1, 0 < ϕ < π, and 0 < ψ < π.

In all cases, we assume that the module J of the product of multipliers is not equal to 1. For definiteness,
we assume that J < 1 (the case J > 1 reduces to this case by passing to the inverse mapping).

We show that similarly to the two-dimensional case, in the Newhouse domains, diffeomorphisms with
countably many stable periodic trajectories are dense for J < 1. It was known earlier [2, 20, 23] that stable
periodic trajectories can arise under the homoclinic tangency bifurcation under the condition that the
unstable manifold of the corresponding saddle point is one-dimensional and the saddle quantity satisfies
σ ≡ |λγ| < 1. As our result shows, no one of these conditions is necessary. On the other hand, we note
that in the case J > 1, the expansion of volumes near a saddle fixed point prohibits stable trajectories in
a small neighborhood of the homoclinic tangency for the system itself, as well as for all systems close to it
[14, 32]. Moreover, in the Newhouse domains, diffeomorphisms with countably many completely unstable
periodic trajectories are dense.

As for saddle periodic trajectories, in the case of a saddle-focus with homoclinic tangency, we find
the following substantially non-two-dimensional phenomenon. Precisely, we show here that under certain
conditions, diffeomorphisms having simultaneously a countable set of saddle periodic trajectories of two
and even three types (i.e., diffeomorphisms with unstable manifolds of different dimensions) are dense in
the Newhouse domains. Note that the dimensions of the unstable manifolds of these periodic trajectories
can be even greater than the dimension of the unstable manifold of the initial fixed point. In general,
this phenomenon can be found in many cases of homoclinic bifurcations near a loop of the saddle-focus
[22], near nonrough heteroclinic contours [12, 18, 32], and near homoclinic tangencies in certain cases of
codimension 2 [6, 7, 30]; it was explicitly used in constructing a wild spiral attractor in [31]. In principle,
the coexistence of trajectories with different numbers of Lyapunov exponents seems to be the most general
of higher-dimensional systems from the Newhouse domains.

The existence of nonrough periodic trajectories from the Newhouse domains is another characteristic
property of systems from Newhouse domains. It is known (see [1, 2]) that in the two-dimensional case,
under a bifurcation of homoclinic tangency, periodic trajectories with one multiplier equal to 1 or −1 arise.
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We show here that in the case of a saddle-focus, periodic trajectories with two or even three multipliers
whose modules are equal to 1 can arise and the diffeomorphisms with these trajectories are dense in the
corresponding Newhouse domains.

The bifurcations of a periodic motion in the case of one multiplier equal to +1 or −1 are well known:
they are the saddle-node bifurcation and the period doubling bifurcation. In the case of a periodic
trajectory with two multipliers on the unit circle, for example, ν1,2 = e±iω, its bifurcations can lead to the
arising of closed invariant curves. Here, in connection with the problem of the existence of countably many
nontrivial attractors, we first of all are interested in stable closed curves. Thus, we show that in the case
of a homoclinic tangency to a fixed point of saddle-focus type with J < 1 (except for a (2, 1)-saddle-focus
for |λγ| < 1, where the dynamics does not, in principle, differ from the case of a saddle), diffeomorphisms
with countably many stable invariant curves are dense in the corresponding Newhouse domains.

In the case of a (2, 2)-saddle-focus with λγ2 > 1, the bifurcations of homoclinic tangency lead to the
arising of periodic trajectories with three multipliers on the unit circle. These cases require a separate
consideration, which is not presented in this paper. We only note that, for example, in the case of
multipliers (−1,−1,+1), the corresponding normal form is a set of three autonomous differential equations
(Morioka–Shimizu system) having a Lorenz-type attractor [25]. Correspondingly, we can expect that in
the case of a (2, 2)-saddle-focus with λγ2 > 1, diffeomorphisms with countably many strange attractors
will be dense in the Newhouse domains.

The main results of the paper were announced in [17].

1. Statement of the Problem and Main Results

1.1. Main assumptions. Consider a Cr-smooth diffeomorphism f having a saddle fixed point O.
Assume that the stable and unstable manifolds W s(O) and W u(O) intersect nontransversally at points
of a certain homoclinic trajectory Γ0.

Assume that the point O has no nonleading multipliers. Here, the following four main cases arise: the
two-dimensional case where the multipliers of the point O are real, two three-dimensional cases where there
are one real and two complex-conjugate multipliers, and one four-dimensional case where the multipliers
are complex. Precisely, assume that the following condition holds.

A. The point O belongs to one of the following types:
(1, 1) if the multipliers λ and γ of the point are real, |λ| < 1, and |γ| > 1;
(2, 1) if O has a pair of complex multipliers λ1,2 = λe±iϕ, where λ ∈ (0, 1) and ϕ ∈ (0, π), and one

real multiplier γ, where |γ| > 1;
(1, 2) if O has one real multiplier λ, where |λ| < 1, and a pair of complex multipliers γ1,2 = γe±iψ,

where γ > 1 and ψ ∈ (0, π);
(2, 2) if O has two pairs of complex multipliers λ1,2 = λe±iϕ and γ1,2 = γe±iψ, where λ ∈ (0, 1),

γ > 1, and ϕ,ψ ∈ (0, π).

The point O is called a saddle in the first case and a saddle-focus in all other cases. Let J be the
module of the product of the multipliers of the point O. Assume that f satisfies the following condition.

B. J < 1, |λγ| �= 1 in the case (2, 1), and λγ2 �= 1 in the case (2, 2).

Introduce the integer number de (which will be called the “effective dimension”) as follows:

• de = 1 in the case (1, 1) and also in the case (2, 1) for |λγ| < 1;
• de = 2 in the case (2,1) for |λγ| > 1, in the case (1, 2), and also in the case (2, 2) for λγ2 < 1;
• de = 3 in the case (2, 2) for λγ2 > 1.

The meaning of the constants J and de is very simple. J is the Jacobian of the mapping f at the fixed
point O. Therefore, the diffeomorphism f contracts volumes near O if J < 1 and expands them if J > 1.
Also, it is obvious that if J < 1, then, under iterations of the mapping f , all (de+1)-dimensional volumes
near O are exponentially contracted, while de-dimensional volumes can be expanded.
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Obviously, condition B is not restrictive since the case J > 1 reduces to the given case by passing to
the inverse mapping. It should only be kept in mind that the stable manifold becomes unstable in this
case, i.e., the case (1, 2) transforms into (2, 1) and vice versa. The definition of the set de is also changed
in an obvious way.

Denote by T0 the restriction of the diffeomorphism f to a sufficiently small neighborhood U0 of the
fixed point O. We say that T0 is a local mapping. In a small neighborhood of the point O(0, 0), the
mapping T0 can be written as follows:

x̄ = Ax+ . . . , ȳ = By + . . . . (1.1)

The stable multipliers (whose modules are less than 1) and the unstable multipliers (whose modules are
greater than 1) of the point O are eigenvalues of the matrices A and B, respectively. Note that if a stable
multiplier is real, then A = λ and x is a scalar; if there is a pair of complex stable multipliers, then
x = (x1, x2) and A = λ

(
cosϕ − sinϕ
sinϕ cosϕ

)
. Also, if an unstable multiplier γ is real, then B = γ and y is a

scalar; if there is a pair of complex unstable multipliers, then y = (y1, y2) and B = γ
(

cosψ − sinψ
sinψ cosψ

)
.

The intersection points of the trajectory Γ0 with U0 belong to the set W s ∩W u and accumulate to O.
A countable set of these points lies on W s

loc and W u
loc. Let M+ ∈ W s

loc and M− ∈ W u
loc be two certain

points of a trajectory Γ0 and let M+ = fk0(M−) for a certain natural k0. Let Π+ and Π− be certain
small neighborhoods of the points M+ and M− lying in U0. The mapping T1 ≡ fk0 : Π− → Π+ is called
a global mapping.

By condition, T1(W u
loc) is tangent to W s

loc at the point M+. Assume that this tangency is simple, i.e.,
the following conditions hold:

C. T1(W u
loc) and W s

loc have a unique common tangent vector at the point M+;
D. The tangency of surfaces T1W

u
loc and W s

loc at the point M+ is quadratic.

1.2. Bifurcation parameters. Let f be a diffeomorphism with a homoclinic tangency satisfying Con-
ditions A–D. The diffeomorphisms close to f and having a nonrough homoclinic trajectory close to Γ0

compose a smooth bifurcation surface H of codimension 1 in the space of Cr-smooth diffeomorphisms
equipped with the Cr-topology.

In this paper, we consider the bifurcations in parametric families fε transversal to H for ε = 0. In this
case, the minimum number of control parameters is exactly equal to de. As the first parameter, we take the
parameter µ estimating the splitting of W s(O) and W u(O) near the point M+ (for a precise definition of µ
in terms of coefficients of the Taylor series expansion of the global mapping T1, see Lemma 2.3). Formally
speaking, µ is a smooth functional defined for diffeomorphisms close to f such that the bifurcation surface

H is given by the equation µ(f) = 0. The family fε is transversal to H if and only if
∂

∂ε
(µ(fε)) �= 0 for

ε = 0. Precisely this condition allows us to take µ as the first component of the parameter vector ε.
If de ≥ 2, then, in addition to µ, we need one or two (when de = 3) more control parameters. In this

case, we require that the family fε, ε = 0, be transversal not only to the bifurcation surface H but to the
surfaces ϕ = const and/or ψ = const, where ϕ and ψ are angular arguments of the complex multipliers
of the saddle-focus O. This condition allows us to directly take the parameters µ, ϕ − ϕ0, and ψ − ψ0,
where ϕ0 and ψ0 are values of ϕ and ψ for ε = 0 as control parameters.

Therefore, we set
(1) ε = µ in the case (1, 1) and also in the case (2, 1) for |λγ| < 1;
(2) ε = (µ, ϕ− ϕ0) in the case (2, 1) for |λγ| > 1;
(3) ε = (µ, ψ − ψ0) in the case (1, 2) and also in the case (2, 2) for λγ2 < 1;
(4) ε = (µ, ϕ− ϕ0, ψ − ψ0) in the case (2, 2) for λγ2 > 1.
Note that ϕ and ψ are continuous invariants on the topological conjugacy on the set of nonwandering

trajectories (the so-called Ω-moduli) for systems with homoclinic tangencies in the case of the saddle-
focus. As was shown in [4, 14], any change of values of these Ω-moduli (in the class of diffeomorphisms
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on H, i.e., when the initial tangency is not split) can lead to the bifurcations of one-time going-around
periodic trajectories.1 In particular, this explains why one parameter µ cannot be sufficient in studying
the bifurcations in the cases (2, 1), (1, 2), and (2, 2).

Note that all our results will hold here for arbitrary families fε (including the case where the number
of parameters is greater than de) under only one assumption that the above-presented transversality
conditions hold.

One of the general results on the families fε is the existence of the Newhouse domains in them. First
of all, we recall the following result from [16].

Theorem (theorem on the Newhouse intervals). Let fµ be a one-parameter family of Cr-smooth (r ≥ 3)
diffeomorphisms transversal to the bifurcation surface H of a diffeomorphism satisfying conditions A–D.2

Then in any neighborhood of the point µ = 0, there exists Newhouse intervals such that
(1) the values of the parameter µ corresponding to the case where the diffeomorphism fµ has a simple

homoclinic tangency at the point O are dense in these intervals;
(2) the family fµ is transversal to the corresponding bifurcation surfaces.

Since the Newhouse domains are open in C2-topology in the set of dynamic systems, applying the
theorem on Newhouse intervals to the family fε, we obtain the following corollary.

Corollary (Newhouse domains for parameter families). In the space of parameters ε, there exists a se-
quence of open domains δj accumulating to ε = 0 such that the values of the parameters ε for each of
which the diffeomorphism fε has a trajectory of simple homoclinic tangency to the point O are dense in
δj. Moreover, the family fε is transversal to each of the corresponding bifurcation surfaces.

1.3. Main results. We will study the properties of the diffeomorphisms fε from the Newhouse domains
δj . For analysis of bifurcations of periodic trajectories, we assume that the diffeomorphisms fε are
sufficiently smooth, precisely, r ≥ 5.

First of all, we consider the case de = 1 (recall that we consider one-parameter families with ε = µ
here).

Theorem 1.1. In the cases of a saddle (1, 1) and a saddle-focus (2, 1) for |λγ| < 1, on the Newhouse
intervals δj,

(1) the values of µ for which the diffeomorphism fµ has a periodic trajectory with the multiplier +1 are
dense;

(2) the values of µ for which the diffeomorphism fµ has a periodic trajectory with the multiplier −1 are
dense;

(3) the values of µ for which the diffeomorphism fµ has countably many stable periodic trajectories are
dense (and form a set of the second category).

In essence, items (1) and (2) of this theorem are proved in [1] for the case of a saddle and in [2, 3]
for the case of a saddle-focus. Item (3) has been known since [20], and the three-dimensional case was
considered in [10, 14] (see also [23]). For completeness, we present the proof of Theorem 1.1 together with
the proof of other results presented below.

Further, we consider the case de ≥ 2. Here, the main focus is on those properties of the diffeomorphisms
fε which are new as compared with the case of a saddle. These are

(1) the existence of nonrough periodic trajectories having more than one multiplier on the unit circle
(Theorem 1.2);

1A similar situation also takes place in the case of a saddle but for two-time going-around periodic trajectories. Here,
any change of the Ω-module θ = − ln |λ|/ ln |γ| leads to bifurcations of these trajectories [8, 11]. Also, note that three-time
going-around periodic trajectories in this case can be subjected to the so-called cusp bifurcations [29] when, at a critical
instant, one of the multipliers is equal to +1 and the first Lyapunov value vanishes.

2Note that in [16], instead of condition B, we require only that λγ �= 1. Note that our condition B includes this
requirement.
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(2) the existence of countably many stable closed invariant curves (Theorem 1.3);
(3) the coexistence of countably many rough periodic trajectories of more than two different types

(Theorem 1.4).

Theorem 1.2. In the case de = 2, i.e., in the case of a saddle-focus (2, 2) for λγ2 < 1, a saddle-focus
(1, 2), and also a saddle-focus (2, 1), for |λγ| > 1, the values of the parameters ε such that the corresponding
diffeomorphism fε has a periodic trajectory with two multipliers on the unit circle given in advance are
dense in the Newhouse domains δi. In the case of saddle-focus (2, 2) for λγ2 > 1 (i.e., if de = 3) the
values of the parameters ε such that the corresponding diffeomorphism fε has a periodic trajectory with
any three multipliers on the unit circle given in advance are dense in the Newhouse domains δj.

Since we consider real diffeomorphisms, note that, more precisely, Theorem 1.2 tells us about those
tuples of multipliers into which each complex multiplier enters together with its complex conjugate.
In particular, we obtain that in the case of homoclinic tangency to a saddle-focus, for de ≥ 2, the
diffeomorphisms with periodic trajectories having the multipliers e±iω, where 0 < ω < π, are dense
in the Newhouse domains. The analysis of bifurcations of these periodic trajectories and also periodic
trajectories with the multipliers (−1,−1) allows us to prove the following result.

Theorem 1.3. Let a Cr-smooth (r ≥ 5) diffeomorphism f satisfy conditions A–D. Then in the case
de ≥ 2, the values of parameters for which the diffeomorphism fε has countably many stable closed
invariant curves are dense and compose a set of the second category in the Newhouse domains δj.

In this theorem, the condition J < 1 is essential (for J > 1, all trajectories are necessarily unstable).
In the class of two-dimensional diffeomorphisms with J �= 1, there cannot be closed invariant curves near
the homoclinic tangency, since we have either a contraction of areas (for J < 1) or their expansion (for
J > 1). However, in the case of codimension 2, where J = 1 at the instant of homoclinic tangency,
even for diffeomorphisms of the plane, we can observe the arising of closed invariant curves [6, 7]. Closed
invariant curves also arise under bifurcations of a nonrough heteroclinic contour with two saddles such
that J < 1 on one saddle and J > 1 on the other. As was shown in [12, 18], near systems with these
contours, there exist Newhouse domains in which the diffeomorphisms simultaneously having a countable
set of stable and completely unstable closed invariant curves are dense.

The following theorem gives an answer to one of the main questions on the dynamics of systems from
the Newhouse domains, the question on the coexistence of rough periodic trajectories of different types.

Theorem 1.4. The values of the parameters under which the diffeomorphisms fε have countably many
stable periodic trajectories and countably many saddle periodic trajectories with the dimensions of unstable
manifolds varying from 1 up to de inclusively are dense and compose a set of the second category in the
Newhouse domains δj.

Note that here, there can be no periodic trajectories with unstable manifolds of dimension greater than
de because of the contraction of (de + 1)-dimensional volumes [17, 32]. Thus, for example, in the case
of saddle-focus (2, 2) with λγ2 < 1, we have saddles with one- and two-dimensional unstable manifolds,
and there are no saddles with three-dimensional unstable manifolds. At the same time, for λγ2 > 1 and
λγ < 1, we simultaneously have saddles with one-, two-, and three-dimensional unstable manifolds.

The proof of Theorems 1.1–1.3 is based on the study of the first-return mappings near a trajectory of
homoclinic tangency. We reduce the study of these mapping to the analysis of the following standard
mappings:

(i) the mapping of the parabola ȳ = M − y2 (for the case of a saddle-focus (2, 1) and for |λγ| < 1);
(ii) the Henon mapping x̄1 = y, ȳ = M − y2 +Bx1 (for the case of a saddle-focus (2, 1) for |λγ| > 1);
(iii) the Meer mapping ȳ1 = y2, ȳ2 = M + Cy2 − y2

1 (for the case of a saddle-focus (1, 2) and also a
saddle-focus (2, 2) for λγ2 < 1);

(iv) the three-dimensional Henon mapping x̄1 = y1, ȳ1 = y2, ȳ2 = M +Cy2 +Bx1 − y2
1 (for the case of

a saddle-focus (2, 2) for λγ2 > 1).
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The linear analysis of fixed points of these mappings is comparatively easy (see Sec. 4), but it yields
the information necessary for the proof of Theorems 1.1, 1.2, and 1.4. As for closed invariant curves
(and, properly, Theorem 1.3) itself, we deduce their existence in the case of saddle-focuses (1, 2) and
(2, 2) from the nonlinear bifurcation analysis of mappings (iii) and (iv). In the case of a saddle-focus
(2, 1) with |λγ| > 1, the Henon mapping (ii) itself has no (asymptotically stable) invariant closed curves.
Therefore, to prove Theorem 1.3 in this case, we must deal with the so-called generalized Henon mapping
(see Lemma 1.2).

1.4. Rescaling lemma. In the case of diffeomorphisms close to a diffeomorphism with homoclinic
tangency, the first-return mappings from a small fixed neighborhood Π+ of the homoclinic point M+

are written in the form of compositions Tk = T1T
k
0 , where k = k̄, k̄ + 1, . . . , and k̄ can be sufficiently

large. Recall that T0 = fε
∣∣
U0

, where U0 is a certain small neighborhood of a fixed point and T1 ≡ fk0ε
is a mapping defined in a small neighborhood Π− of the homoclinic point M− that maps Π− inside Π+.
Therefore, the domain of the mapping Tk on Π+ is a “small strip” σ0

k = Π+ ∩T−k
0 Π−. The domains of σ0

k
are nonempty for all sufficiently large k (the less the sizes of the neighborhoods Π+ or Π− are, the greater
the minimum k is), and they accumulate to W s

loc ∩ Π+ as k → +∞.
The following lemma (the main technical result of our paper) shows that for a sufficiently large k, the

first-return mappings Tk can be represented in a certain standard form as mappings asymptotically close
as k → ∞ to certain one-, two-, or three-dimensional quadratic mappings.

Lemma 1.1 (Rescaling lemma). Let f0 be a Cr-smooth (r ≥ 5) diffeomorphism satisfying conditions A–
D and fε be a de-parameter family transversal to H for ε = 0. Then, in the parameter space, there exist
a countable sequence of domains ∆k accumulating to ε = 0 such that the following assertions hold.

For ε ∈ ∆k, there exists a transformation of coordinates on σ0
k and parameters on ∆k, Cr−1-smooth

in coordinates and Cr−2-smooth in parameters resulting in the first-return mapping Tk : (x, y) 	→ (x̄, ȳ)
reducing to one of the following forms:

(i)
ȳ = M − y2 + o(1), x̄ = o(1) (1.2)

in the case (1, 1) and also in the case (2, 1) for λγ < 1;
(ii)

x̄1 = y, ȳ = M − y2 +Bx1 + o(1), x̄2 = o(1) (1.3)
in the case (2, 1) for λγ > 1;

(iii)
ȳ1 = y2, ȳ2 = M + Cy2 − y2

1 + o(1), x̄ = o(1) (1.4)
in the case (1, 2) and also in the case (2, 2) for λγ2 < 1;

(iv)
x̄1 = y1, ȳ1 = y2, ȳ2 = M + Cy2 +Bx1 − y2

1 + o(1), x̄2 = o(1) (1.5)
in the case (2, 2) for λγ2 > 1.

Moreover, the domain of the mapping Tk is asymptotically large and, in the limit as k → +∞, covers all
finite values of the coordinates (x, y).

The normalized parameters M , B, and C are related to the initial parameters µ, ϕ, and ψ as follows:

M = M0γ
2nk(µ+O(|λ|k + |γ|−k)),

B = B0 (λγn)k cos(kϕ+ αk(ε)),

C = C0γ
k cos(kψ + βk(ε)),

(1.6)

where n = dimW u(O), the constants M0, B0, and C0 are different from zero, and the functions αk and
βk, together with their derivatives, are uniformly bounded in k. Moreover, when ε runs over the domain
∆k, in turn, the values of the parameters M , B, and C run over asymptotically large domains covering
all finite values in the limit as k → +∞.
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Here, o(1) denotes certain functions (of the coordinates and of the parameters M , B, and C) tending
to zero as k → ∞ together with all its derivatives up to the order (r − 2) inclusively and up to the order
(r − 3) in the parameters uniformly on any bounded set of the space (x, y,M,B,C). Also, note that in
the case of a saddle-focus, the domains ∆k corresponding to finite values of B and C can consist of several
connected components (by the periodicity of the coefficients B and C in ϕ and ψ, respectively).

In case (ii) of Lemma 1.1, we need a sharper account for asymptotically small terms of mapping (1.3),
which leads to the following result.

Lemma 1.2. In the case (2, 1) for λγ > 1, where ε = (µ, ϕ − ϕ0) ∈ ∆k and the corresponding value of
the parameter B is bounded away from zero, the mapping Tk in the form (1.3) has a two-dimensional
attracting invariant Cr−2-smooth manifold Ms

k ⊂ σ0
k of the form x2 = o(1) as k → ∞ such that the

mapping Tk
∣∣∣
Ms

k

has the form

x̄1 = y, ȳ = M − y2 +Bx1 +
2J1

B
(λ2γ)k (x1y + o(1)) , (1.7)

where J1 �= 0 is a certain constant (more precisely, J1 is the Jacobian of the global mapping T1 calculated
at the homoclinic point M− for ε = 0).

Mapping (1.7) is called the generalized Henon mapping. It was introduced in [6, 7], where, in particular,
it was shown that this mapping demonstrates the nondegenerate Andronov–Hopf bifurcation and has a
closed stable invariant curve for the values of the parameters (M,B) in certain open domains (see Sec. 4).

The content of the paper is as follows. In Sec. 2, we study the properties of the local mapping T0(ε) and
the global mapping T1(ε). In Sec. 3, we study the first-return mapping and prove Lemmas 1.1 and 1.2.
In Sec. 4, we carry out the analysis of mappings (1.2)–(1.5) and (1.7) and prove Theorems 1.1–1.4.

2. Properties of the Local and Global Mappings

To study the first-return mapping Tk = T1T
k
0 for all sufficiently large k and all sufficiently small ε,

we need appropriate formulas for the mappings T0 and the form of the local mapping T0(ε). For all
sufficiently small values of the parameters, this mapping has a fixed point Oε which is assumed to be
located at the origin. Extracting the linear part and choosing the coordinate axes in the appropriate way,
we can represent T0(ε) in the form (1.1). Moreover, using a Cr-smooth coordinate change, we can rectify
the local stable and unstable manifolds of the point Oε. Thus, T0 reduces to the form

x̄ = A(ε)x+ p(x, y, ε), ȳ = B(ε)y + q(x, y, ε), (2.1)

where the functions p and q are Cr-smooth and vanish together with their first derivatives at the origin;
moreover, p(0, y, ε) ≡ 0 and q(x, 0, ε) ≡ 0. In this case,

W s
loc = {y = 0, v = 0}, W u

loc = {x = 0, y = 0}.
Note that only rectification of the manifolds W s

loc and W u
loc is not sufficient for our purposes. In essence,

this is related to the fact that in the right-hand sides of Eqs. (2.1), there are too many nonresonant terms.
Nevertheless, using additional coordinate changes, we can remove a certain part of these terms. Precisely,
the following assertion holds.

Lemma 2.1. Let r ≥ 3. For all sufficiently small ε, we can introduce Cr−1-coordinates (x, u, y, v) on U0

of class Cr−2 with respect to the parameters in which the mapping T0(ε) is written in the form

x̄ = A(ε)x+ P (x, y, ε)x, ȳ = B(ε)y +Q(x, y, ε)y, (2.2)

where
P (0, y, ε) = P (x, 0, ε) ≡ 0, Q(x, 0, ε) = Q(0, y, ε) ≡ 0. (2.3)
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One of the crucial merits of the form (2.2) is that, in this case, the mapping T k0 : U0 → U0 represented
in the so-called “crossed form” is linear in the principal order for all sufficiently large k. Precisely, let T0(ε)
be reduced to the form (2.2) and (xi, yi), i = 0, . . . , k, be points on U0 such that (xi, yi) = T0(xi−1, yi−1).
Then the following assertion holds.

Lemma 2.2. For any sufficiently large k and any sufficiently small ε, the mapping T k0 (ε) : (x0, y0) →
(xk, yk) can be represented in the form

xk −Ak1(ε)x0 = λ̂kξk(x0, yk, ε), y0 −B−k
1 (ε)yk = γ̂−kηk(x0, yk, ε), (2.4)

where λ̂ and γ̂ are certain constants such that 0 < λ̂ < |λ| and γ̂ > |γ| and the functions ξk and ηk,
together with their derivatives (including those in the parameters) up to the order (r − 2) are uniformly
bounded in k.

Lemmas 2.1 and 2.2 are proved in [8, 9, 27] for various cases.
As for the global mapping T1(ε), using conditions C andD of the quadratic character of the homoclinic

tangency, we also find its convenient representation. Recall that the transversality condition for the family
fε to the bifurcation set H means that among the parameters ε, we can distinguish a splitting parameter
µ of the invariant manifolds of the point O near the chosen homoclinic point M+. In this case, the global
mapping T1(ε) can be represented in the form described in the following lemma.

Lemma 2.3. The coordinates defined in Lemma 2.1 can be introduced in U0 in such a way that for all
sufficiently small ε, the global mapping T1(ε) can be written in the form

x̄− x+ = ax+ b0(y − y−) + . . . ,

ȳ = µ+ cx+D0(y − y−)2 + . . .
(2.5)

in the case (1, 1) (here x ∈ R1, y ∈ R1);

x̄− x+ = ax+
(
b0
0

)
(y − y−) + . . . ,

ȳ = µ+ c1x1 + c2x2 +D0(y − y−)2 + . . .

(2.6)

in the case (2, 1) (here x ∈ R2, y ∈ R1);

x̄− x+ = ax+ b0(y1 − y−1 ) + b1ȳ2 + . . . ,

ȳ1 = µ+ cx+D0(y1 − y−1 )2 + . . . ,

y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + ex+ . . .

(2.7)

in the case (1, 2) (here x ∈ R1, y ∈ R2);

x̄− x+ = ax+
(
b0
0

)
(y1 − y−1 ) + b1ȳ2 + . . . ,

ȳ1 = µ+ c1x1 + c2x2 +D0(y1 − y−1 )2 + . . . ,

y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + e1x1 + e2x2 + . . . ,

(2.8)

where b0 �= 0, c �= 0, D0 �= 0, d2 �= 0, x+ �= 0, and y− �= 0 in the case (2, 2) (here x ∈ R2, y ∈ R2).

Note that in formulas (2.7) and (2.8), the global mapping T1 is represented in the crossed form with
respect to the coordinate y2, i.e., the right-hand sides are functions of (x, y1) and ȳ2.

In essence, formulas (2.5)–(2.8) are Taylor-series expansions for y−(ε) chosen in an appropriate way;
by dots we denote nonlinear terms (except for one quadratic term explicitly written). Also, note that the
coefficients a, . . . , e2, as well as x+ and y−, and also the terms denoted by dots depend on the parameters
ε in general (where, as usual, ε1 = µ). Here, the corresponding class of smoothness in ε is Cr−3: in the
coordinates of Lemma 2.1, the mapping T1, together with its derivative in (x, y), is Cr−2-smooth in ε
(see [27]); therefore, the coefficient D0(ε) of the quadratic term is Cr−3-smooth.
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Proof of Lemma 2.3. We use the coordinates of Lemma 2.1 on U0.
Let the homoclinic points M+ ∈ W s

loc and M− ∈ W u
loc have the coordinates M+ = M+(x+, 0) and

M− = M−(0, y−), where ‖x+‖ �= 0 and ‖y−‖ �= 0. Since T1M
− = M+ for ε = 0, we can write the

mapping T1(ε) in the following form for sufficiently small ε:

x̄− x+(ε) = âx+ b̂(y − y−(ε)) + · · · ,
ȳ = y+(ε) + ĉx+ d̂(y − y−(ε)) + · · ·

(2.9)

where the dots denotes the terms of order of smallness not less than two, all coefficients depend on ε in
general, and y+(0) = 0. Moreover,

det
(
â b̂

ĉ d̂

)
�= 0. (2.10)

Using conditions C and D, we find relations which the coefficients in (2.9) satisfy. Consider condition C.
It means that for ε = 0, the surface T1W

u
loc has exactly one tangent vector to the plane W s

loc at the point
M+. Since W u

loc has the equation x = 0 and W s
loc the equation ȳ = 0, it follows from (2.9) that the

intersection of the tangent planes to T1W
u
loc and W s

loc at the point M+ is one-dimensional if and only if
the system d̂(y − y−) = 0 has a one-parameter family of solutions for ε = 0. Thus, in the case where
y ∈ R1 and d̂ is a scalar (i.e., in the cases (1, 1) and (2, 1)), we have

d̂ = 0 for ε = 0. (2.11)

If y ∈ R2 (the cases (1, 2) and (2, 2)), then d̂ is a (2 × 2)-matrix, and

det d̂ = 0 and rank d̂ = 1 for ε = 0. (2.12)

In the case where y ∈ R1, the second equation in (2.9) can be written in the form

ȳ = ŷ+(ε) + ĉx+D0(y − y−)2 + . . . , (2.13)

where several first terms of the Taylor-series expansion, including linear terms and second-order terms,
are explicitly written. Condition D of the quadratic character of the homoclinic tangency means that
D0 �= 0. Note that the right-hand side of Eq. (2.13) does not contain a term linear in (y − y−); this can
always be attained for sufficiently small ε assuming that y− depends on ε in an appropriate way.

Finally, in the case (1, 1), we obtain formula (2.5) for the mapping T1, where b0 = b̂, c = ĉ, and b0c �= 0
by (2.10) and (2.12). Also note that in (2.5), we have set µ = ŷ+(ε), thus stressing the fact that ŷ+(ε) is
a splitting parameter of the manifolds W s(O) and W u(O) near the homoclinic point M+.

In the case (2, 1), to obtain formula (2.6), we make one more coordinate change, precisely the linear

rotation in the x-plane in order to transform the vector b = (b̂1, b̂2) into (b0, 0), where b0 =
√
b̂21 + b̂22 �= 0.

It is easily seen that this can be attained by using the rotation x 	→ Rωx, where ω = arctan(−b̂2/b̂1). In
this case, we note that

c1 =
b̂1ĉ1 − b̂2ĉ2

b0
, c2 =

b̂2ĉ1 + b̂1ĉ2
b0

,

and c21 + c22 �= 0 by (2.10).
Now we consider the cases where y ∈ R2 (i.e., the cases (1, 2) and (2, 2)). The equations for ȳ from (2.9)

become
ȳ1 = ŷ+

1 (ε) + ĉ1x+ d̂11(y1 − y−1 ) + d̂12(y2 − y−2 ) + . . . ,

ȳ2 = ŷ+
2 (ε) + ĉ2x+ d̂21(y1 − y−1 ) + d̂22(y2 − y−2 ) + . . . .

(2.14)

Note that the rotation of the coordinates in the y-plane leaves the form of Eq. (2.14) the same in principle,
but the coefficients can change. For ε = 0, since det d̂ = 0, we can rotate the y-coordinates in such a way
that the following relations hold:

d̂11 = 0, d̂12 = 0. (2.15)
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Without loss of generality, we assume that these relations hold for ε = 0. Since rank d̂ = 1 for ε = 0, at
least one of the coefficients d̂21 or d̂22 is nonzero. Assume that

d̂22 �= 0. (2.16)

If this is not true (i.e., d̂22 = 0, and hence d̂21 �= 0), then we take another homoclinic point, precisely, the
point T−1

0 (M−), and consider it as a new point M−. For the new global mapping (T1 new = T1T0), the
new matrix d̂ is written as

d̂new = d̂ ·
(

cosϕ − sinϕ
sinϕ cosϕ

)
.

By (2.15), we obtain

d̂new =
(

0 0
d̂21 cosϕ+ d̂22 sinϕ −d̂21 sinϕ+ d̂22 cosϕ

)
.

If d̂22 = 0, then, after passing to the new homoclinic point, we indeed obtain that (2.16) holds (since
d̂21 �= 0 and sinϕ > 0 since ϕ ∈ (0, π)).

Now we also take into account the quadratic terms; then Eq. (2.14) for ȳ1 is written in the following
form for ε = 0:

ȳ1 = c1x+D1(y1 − y−1 )2 +D2(y1 − y−1 )(y2 − y−2 ) +D3(y2 − y−2 )2 + . . . . (2.17)

Since d̂22 �= 0, the second equation in (2.14) can be resolved with respect to (y2 − y−2 ). Respectively, for
ε = 0, we have

y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + ex+ . . . , (2.18)

where d1 = −d̂21/d̂22 and d2 = d̂−1
22 . Substituting (2.18) in (2.17), we obtain

ȳ1 = c1x+D0(y1 − y−1 )2 + D̃1(y1 − y−1 )ȳ2 + D̃2ȳ
2
2 + . . . , (2.19)

where
D0 ≡ D1 + d1D2 + d2

1D3 (2.20)

and D̃1,2 are certain coefficients. Therefore, for ε = 0, the mapping T1 in the crossed form is written as

x̄− x+ = ax+ b0(y1 − y−1 ) + b1ȳ2 + . . . ,

ȳ1 = cx+D0(y1 − y−1 )2 + . . . ,

y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + ex+ . . .

(2.21)

in the case (1, 2) and as

x̄1 − x+
1 = a11x1 + a12x2 + b0(y1 − y−1 ) + b11ȳ2 + . . . ,

x̄2 − x+
2 = a21x1 + a22x2 + b12ȳ2 + . . . ,

ȳ1 = c1x1 + c2x2 +D0(y1 − y−1 )2 + . . . ,

y2 − y−2 = d1(y1 − y−1 ) + d2ȳ2 + e1x1 + e2x2 + . . .

(2.22)

in the case (2, 2) with certain new coefficients a, b, c, d, and e (in the case (2, 2), we make the coefficient of
(y1−y−1 ) in the equation for x̄2 zero by using an appropriate rotation of x-coordinates as in the case (2, 1)).
In this case, condition (2.10) is rewritten as

det
∂(x̄, ȳ1)
∂(x, y1)

�= 0, (2.23)

which yields b0 �= 0 and c �= 0 in both cases.
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Since x = 0 on W u
loc, as follows from (2.21), (2.22), the image T1W

u
loc of this surface is given by the

equation

y1 =
D0

b20
(x− x+)2 + . . . (2.24)

near the point M+ in the case (1, 2) and by the equations

x2 − x+
2 = b12y2 + . . . , y1 =

D0

b20
(x1 − x+

1 )2 + . . . (2.25)

in the case (2, 2). In any case, it is obvious that condition D for the quadratic tangency of this surface to
W s

loc: y = 0 is equivalent to the condition D0 �= 0.
As above, for ε �= 0, the mapping T1 is given by Eqs. (2.21) and (2.22): since D0(ε) �= 0 for all

sufficiently small ε, we can always choose y−1 (ε) and y−2 (ε) and additionally rotate the y-coordinates so
that the coefficients d11(ε) and d12(ε) will be identically equal to zero for all sufficiently small ε. The only
distinction from the case ε = 0 is thus the appearance of the nonzero free term y+

1 (ε) in the equation for
ȳ1. As above, the transversality condition of the family fε to the bifurcation surface H allows us to set
y+
1 (ε) = µ. This completes the proof of Lemma 2.3.

3. Proof of the Rescaling Lemmas

In this section, we study the first-return mapping

Tk(ε) ≡ T1T
k
0 : σ0

k → σ0
k

for all sufficiently large k, k = k̄, k̄ + 1, . . . , and small ε, ‖ε‖ ≤ ε0. In this case, for the mapping
T k0 : σ0

k → σ1
k, we use formula (2.4) of Lemma 2.2, where (x0, y0) ∈ Π+, (xk, yk) ∈ Π−, and for the global

mapping T1(ε), we use the corresponding formulas of Lemma 2.3. According to Lemma 2.2, for any small
x0 and yk and for any sufficiently large k, the corresponding coordinates xk and y0 are uniquely defined.
Therefore, we can use (x0, yk) as coordinates on σ0

k; the coordinate y0 is calculated by the formula

y0 = B−k
1 (ε)yk + γ̂−kηk(x0, yk, ε)

(see Lemma 2.2). Note that in the coordinates (x0, yk), the size of the small strip σ0
k is bounded away from

zero in all directions for any k. So, if we define the neighborhoods Π+ and Π−as {‖x−x+‖ ≤ ρ0, ‖y‖ ≤ ρ0}
and {‖x‖ ≤ ρ0, ‖y − y−‖ ≤ ρ0}, respectively, where ρ0 is a small positive constant, then each small strip
σ0
k is defined by the relation

{‖x0 − x+‖ ≤ ρ0, ‖yk − y−‖ ≤ ρ0}.

3.1. First-return mappings in the case (1, 1). Here, the coordinates x and y are one-dimensional
and A = λ and B = γ. By (2.4) and (2.5), the first-return mapping Tk ≡ T1T

k
0 can be represented in the

following form for all sufficiently large k and small ε:

x̄0 − x+(ε) = aλkx0 + b0(yk − y−) +O
(
(yk − y−)2 + |λ|k|x0||yk − y−| + λ̂k|x0|

)
,

γ−kȳk + γ̂−kO(|x̄0| + |ȳk|) = µ+ cx0λ
k +D0(yk − y−)2

+O
(
(yk − y−)3 + |λ|k|x0||yk − y−| + λ̂k|x0|

)
,

(3.1)

where b0 �= 0, c �= 0, and D0 �= 0. Note that here and in what follows, we choose λ̂ sufficiently close to |λ|
(but always less than |λ|), so that, in particular, λ̂ > λ2.

Shift the origin:
x = x0 − x+(ε) + ν̃1

k , y = yk − y− + ν̃2
k
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in such a way that the first equation in (3.1) contains no free terms, i.e., the terms depending on ε only,
and the second equation contains no linear term in y. This can always be done for ν̃jk = O(λk + γ̂−k)
chosen in an appropriate way. As a result, system (3.1) is rewritten in the form

x̄ = O(|λ|k|x| + |y|),
ȳ + (γ̂/γ)−kO(|x̄| + |ȳ|) = γkM1 + D̃0γ

ky2 + γkO(|y|3 + |λ|k|x|), (3.2)

where
M1 ≡ µ− γ−k1 y−(1 + . . . ) + cλk1x

+(1 + . . . )

and D̃0 = D0(1 + βk); here βk = O(λk + γ̂−k) is a certain small quantity.
We now normalize the coordinates as follows:

x = −γ
−k

ρk
xnew, y = − 1

D̃0

γ−kynew, (3.3)

where ρ is a certain number from the interval

max
{|λγ|, |γ|−1

}
< ρ < 1. (3.4)

Since |λγ| < 1 and |γ| > 1, such ρ really exists and, moreover, the normalization factors in (3.3) are
asymptotically small as k → ∞. Hence, since the size of the small strip σ0

k is bounded away from zero
in the coordinates (x0, yk), the range of the orthonormal coordinates (x, y) becomes infinitely large under
the increase of k.

In the new coordinates, system (3.2) is rewritten as

x̄ = O(ρk|y| + |λ|k|x|),

ȳ + (γ̂/γ)−kO(ρ−k|x̄| + |ȳ|) = −D̃0γ
2kM1 − y2 +O

(
|γ|−k|y|3 +

|λγ|k
ρk

|x|
)
.

(3.5)

Now, by (3.4) and taking into account the inequalities |λγ| < 1 and λ̂ < |λ|, we reduce system (3.5) to
the desired form (1.2), where we set

M = −D̃0γ
2k
1 [µ− γ−k1 y−(1 + . . . ) + cλk1x

+(1 + . . . )]. (3.6)

Note that the parameter M , as well as the coordinates (x, y), can assume arbitrary finite values for large k.

3.2. First-return mapping in the case (2, 1). Here, x = (x1, x2) is two-dimensional, y is one-
dimensional, and

A ≡ λ

(
cosϕ − sinϕ
sinϕ cosϕ

)
, B ≡ γ.

By (2.4) and (2.6), the first-return mapping Tk ≡ T1T
k
0 can be represented in the following form for

each sufficiently large k and all small ε:

x̄01 − x+
1 (ε) = λkA11(kϕ)x01 + λkA12(kϕ)x02 + b0(yk − y−)

+O
(
(yk − y−)2 + λk‖x0‖|yk − y−| + λ̂k‖x0‖

)
,

x̄02 − x+
2 (ε) = λkA21(kϕ)x01 + λkA22(kϕ)x02

+O
(
(yk − y−)2 + λk‖x0‖|yk − y−| + λ̂k‖x0‖

)
,

γ−kȳk + γ̂−kηk(x̄0, ȳk, ε) = µ+D0(yk − y−)2

+ λk [x01(c1 cos kϕ+ c2 sin kϕ)x01 + (c2 cos kϕ− c1 sin kϕ)x02]

+O
(
(yk − y−)3 + λk‖x0‖|yk − y−| + λ̂k‖x0‖

)
,

(3.7)
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where
A11(kϕ) = a11 cos kϕ− a12 sin kϕ, A12(kϕ) = a12 cos kϕ+ a11 sin kϕ,

A21(kϕ) = a21 cos kϕ+ a22 sin kϕ, A22(kϕ) = a22 cos kϕ− a21 sin kϕ.
(3.8)

Shift the origin:

x1 = x01 − x+
1 (ε) + ν̃1

k , x2 = x02 − x+
2 (ε) + ν̃2

k , y = yk − y−(ε) + ν̃3
k ,

in such a way that the first and second equations in (3.7) contain no free term and the third equation
contains no term linear in y (here ν̃ik = O(λk + γ̂−k)). In this case, we also replace x̄01 and x̄02 in the
terms independent of ȳ in the left-hand side of the third equation in (3.7) by their expressions from the
first and second equations. Then (3.7) is rewritten as

x̄1 = λkA11(kϕ)x1 + λkA12(kϕ)x2 + b0y +O(y2 + λk|y| + λ̂k‖x‖),
x̄2 = λkA21(kϕ)x1 + λkA22(kϕ)x2 +O(y2 + λk|y| + λ̂k‖x‖),

ȳ + (γ̂/γ)−kO(|ȳ|) = γkM1 + D̃0γ
ky2 + λkγk

[
(c1 cos kϕ+ c2 sin kϕ)x1

+(c2 cos kϕ− c1 sin kϕ)x2 +
(
(λ̂/λ)k + γ̂−k

)
O(‖x‖)

]
+ γkO

(
|y|3 + λk‖x‖|y|

)
,

(3.9)

where
M1 ≡ µ− γ−ky−(1 + . . . ) + C0λ

k (cos(kϕ+ ϑ1) + . . . )

and

C0 =
√

(c21 + c22)(x
+
1

2 + x+
2

2), sinϑ1 =
c1x

+
2 − c2x

+
1

C0
, cosϑ1 =

c1x
+
1 + c2x

+
2

C0
, (3.10)

D̃0 = D0(1 + βk), and βk = O(λk + γ̂−k) is a certain small coefficient.
Consider the case |λγ| < 1. As in the case (1, 1), we normalize the coordinates as follows:

x =
γ−k

ρk
xnew, y = −D̃−1

0 γ−kynew,

where ρ is a certain number from interval (3.4). In the new coordinates, system (3.9) becomes

x̄1 = ρkO(y) + λkO(x), x̄2 = ρkγ−kO(y2) + λkO(x),

ȳ + (γ̂/γ)−kO(ȳ) = M − y2 +
λkγk

ρk
O(x) + |γ|−kO(y3),

(3.11)

where

M ≡ −D̃0γ
2k

[
µ− γ−ky−(1 + . . . ) + λk(C0 cos(kϕ+ ϑ1) + . . . )

]
. (3.12)

Therefore, by (3.4), after resolving the latter equation with respect to ȳ, mapping (3.11) reduces to the
desired form (1.2).

Now we consider the case where |λγ| > 1 (but, as above, |λ2γ| < 1 here). We normalize the coordinates
in (3.9) as follows:

x1 = −(b0D̃−1
0 )γ−kx1 new, x2 = −ρk(b0D̃−1

0 )γ−kx2 new, y = −D̃−1
0 γ−kynew,

where ρ is a certain constant from the interval

|γ|−1 < λ < ρ < |λγ|−1, (3.13)

which is nonempty since 1 >
1

|λγ| =
λ

|λ2γ| > λ by |λ2γ| < 1.
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In the new coordinates, system (3.9) becomes

x̄1 = y + λkO(‖x‖ + |y|),
x̄2 = ρ−kλkA21(kϕ)x1 + λkA22(kϕ)x2 + ρ−kλkO(y) + ρ−kλ̂kO(x),

ȳ + (γ̂/γ)−kO(ȳ) = M − y2 + λkγkb0

{
(c1 cos kϕ+ c2 sin kϕ+ ν1

k)x1

+ρk(c2 cos kϕ− c1 cos kϕ+ ν2
k)x2

}
+O

(
|γ|−k|y|3 + λk‖x‖|y| + (λ̂k + λkγ̂−k)‖x‖2

)
,

(3.14)

where, as above, formula (3.12) holds for the parameter M , ν1
k and ν2

k are certain small coefficients,

and ν1,2
k = O

(
(λ̂/λ)k + γ̂−k

)
. Resolve the third equation in (3.14) with respect to ȳ and normalize

the coordinate y: ynew = y(1 + β̂k), where β̂k = O
(
(γ̂/γ)−k

)
is a certain small quantity, once again.

Then (3.14) is rewritten as

x̄1 = y + λkO(‖x‖ + |y|),
x̄2 = ρ−kλkA21(kϕ)x1 + λkA22(kϕ)x2 + ρ−kλkO(|y|) + ρ−kλ̂kO(‖x‖),

ȳ = M − y2 + λkγkb0

{
(c1 cos kϕ+ c2 sin kϕ+ ν1

k)x1

+ρk(c2 cos kϕ− c1 cos kϕ+ ν2
k)x2

}
+O

(
|γ|−k|y|3 + λk‖x‖|y| + λ̂k‖x‖2

)
,

(3.15)

where the new coefficients M and ν1,2
k differ from the old coefficients by small quantities of order

O
(
(γ̂/γ)−k

)
; the coefficient b0 remains the same.

Note that since |λγ| > 1, the coefficient

Bk(ϕ) ≡ b0λ
kγk(c1 cos kϕ+ c2 sin kϕ+ ν1

k) (3.16)

in the third equation in (3.15) is no longer small. Nevertheless, Bk(ϕ) can assume arbitrary finite values
(for all large k) if the parameter ϕ varies near those values at which c1 cos kϕ + c2 sin kϕ = 0, i.e., near
the values

ϕ =
ϑ2

k
± π

2k
+ 2π

j

k
, j ∈ Z, (3.17)

where ϑ2 ∈ [0, 2π) is such that

cosϑ2 = c1/
√
c21 + c22, sinϑ2 = c2/

√
c21 + c22.

Since c �= 0 (by Lemma 2.3), values (3.17) of the angle ϕ densely fill in the interval (0, π) for all possible
k and j.

Denote B = Bk(ϕ), thus stressing that along with M , B is one more control parameter. Note that the
parameter M (see formula (3.12)) can also assume arbitrary finite values when µ varies near the value
µ0
k = γ−k1 y− − C0λ

k cos(kϕ0 + ϑ1).
Introduce the new coordinate ynew = y+λkO(‖x‖+ |y|) such that x̄1 = y in the new coordinates. Then

by (3.13), mapping (3.15) assumes the desired form (1.3).

3.3. Proof of Lemma 1.2. We continue the study of the case (2, 1) for |λγ| > 1 and |λ2γ| < 1.
Assume that B �= 0 in (3.15). Since λkγkρk → 0 as k → ∞, we can introduce the new coordinate

x1 new = x1 +
1
B
b0λ

kγkρk(c2 cos kϕ− c1 cos kϕ+ ν2
k)x2.
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Then (3.15) is rewritten as

x̄1 = y +
b0A21(kϕ)

B
(c2 cos kϕ− c1 sin kϕ+ ν2

k)λ
2kγkx1 +O(λk),

x̄2 = O

(
λk

ρk

)
, ȳ = M − y2 +Bx1 +O(λk).

(3.18)

Note that this mapping is an exponential contraction with respect to the coefficient x2 (with the contrac-
tion coefficient O(λkρ−k)); then in domains of the phase space where there is a contraction with respect
to the coordinates x1 and y, the contraction coefficient with respect to these variables is bounded away
from zero for B �= 0. Then [27, Theorem 4.4] implies that for any Q,R > 0 and for each sufficiently large
k, mapping (3.18) has a Cr−2-smooth nonlocal asymptotically stable invariant central manifold Mc

k of
the form x2(x1, y,M,B) = O(λkρ−k) in the domain ‖(x, y)‖ ≤ Q for ‖(M,B)‖ ≤ R. The restriction of
mapping (3.18) to Mc

k has the form

x̄1 = y +
b0A21(kϕ)

B
(c2 cos kϕ− c1 sin kϕ+ ν2

k)λ
2kγkx1 +O(λk),

ȳ = M − y2 +Bx1 +O(λk).
(3.19)

In the domain where B is uniformly bounded, |B| < Q, we find from (3.16) that c1 cos kϕ + c2 sin kϕ =
O(λ−kγ−k). Since |λγ| > 1, we obtain

c2 cos kϕ− c1 sin kϕ = ±
√
c21 + c22 + . . . ,

where the dots stand for the terms tending to zero as k → ∞. Also (see (3.8)),

A21(kϕ) = a21 cos kϕ+ a22 sin kϕ = ±a21c2 − a22c1√
c21 + c22

+ . . . .

Therefore,

b0A21(kϕ)(c2 cos kϕ− c1 sin kϕ+ ν2
k) = b0(a21c2 − a22c1) + . . . .

It is easy to see from (2.6) that the constant J1 = b0(a21c2 − a22c1) is exactly the Jacobian of the global
mapping T1 calculated at the point (x = 0, y1 = y−) for ε = 0. Also, note that in this case, λ2kγk is the
principal part of the Jacobian of the local mapping T k0 . Denote Jk = J1λ

2kγk. Then mapping (3.19) can
be written in the form

x̄1 = y +
Jk
B
x1 + o(Jk), ȳ = M − y2 +Bx1 +O(λk). (3.20)

Make one more change of coordinates:

x1 new = x1, ynew = y +
Jk
B
x1 + o(Jk) ≡ x̄1.

Then (3.20) becomes

x̄1 = y, ȳ = M − y2 +Bx1 +
Jk
B
y +

2Jk
B
x1y + o(Jk). (3.21)

By additional shifts of the coordinate y and the parameter M ,

ynew = y − Jk
2B

, Mnew = M − J2
k

4B2
,

we reduce mapping (3.21) to the form (1.7). Lemma 1.2 is proved.
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3.4. First-return mapping in the case (1, 2). Here x is one-dimensional, y = (y1, y2) is two-
dimensional, and

A ≡ λ, B ≡ γ

(
cosψ − sinψ
sinψ cosψ

)
.

By (2.4) and (2.7), for any sufficiently large k and all small ε, the first-return mapping Tk ≡ T1T
k
0 can be

written as follows:

x̄0 − x+ = aλkx0 + b0(yk1 − y−1 ) + b1γ
−k(cos kψ · ȳk2 + sin kψ · ȳk1)

+O
(
(yk1 − y−1 )2 + |yk1 − y−1 |(|λ|k|x0| + γ−k‖ȳk‖) + λ̂k|x0| + γ̂−k(|x̄0| + ‖ȳk‖)

)
,

γ−k(cos kψ · ȳk1 − sin kψ · ȳk2) = µ+ cλkx0 +D0(yk1 − y−1 )2

+O
(
(yk1 − y−1 )3 + |yk1 − y−1 |(|λ|k|x0| + γ−k‖ȳk‖) + λ̂k|x0| + γ̂−k(|x̄0| + ‖ȳk‖)

)
,

yk2 − y−2 = eλkx0 + d1(yk1 − y−1 ) + d2γ
−k(cos kψ · ȳk2 + sin kψ · ȳk1)

+O
(
(yk1 − y−1 )2 + |yk1 − y−1 |(|λ|k|x0| + γ−k‖ȳk‖) + λ̂k|x0| + γ̂−k(|x̄0| + ‖ȳk‖)

)
;

(3.22)

recall that 0 < λ̂ < |λ| and γ̂ > γ, and, moreover, it is assumed that λ̂ and γ̂ are sufficiently close to |λ|
and γ, respectively.

Shift the origin:

xnew = x0 − x+(ε) + ν̃1
k , y1 new = yk1 − y−1 (ε) + ν̃2

k , y2 new = yk2 − y−2 (ε) + ν̃3
k ,

in such a way that the first and third equations in (3.22) contain no terms depending only on ε and the
second equation contains no terms linear in (y1 − y−1 ). Here, ν̃ik(ε) = O(γ−k). If we additionally resolve
the first equation with respect to x̄ and substitute the corresponding expression in the right-hand sides
of the remaining equations, then (3.22) is rewritten as follows:

x̄ = O
(|y1| + |λ|k|x| + γ−k‖ȳ‖) ,

γ−k
{
cos kψ · ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖)} = M1 + cλk x+ D̃0 y

2
1

+O
(
|y1|3 + |λ|k|x||y1| + λ̂k|x| + γ−k‖ȳ‖|y1|

)
,

y2 − eλk x− d̃1y1 = d2γ
−k {

(cos kψ + ν1
k)ȳ2 + (sin kψ + ν2

k)ȳ1

}
+O

(
y2
1 + |λ|k|x||y1| + γ−k‖ȳ‖|y1| + λ̂k|x| + γ̂−k‖ȳ‖2

)
,

(3.23)

where ν1,2
k = O(γ̂−kγk) and the coefficients D̃0 and d̃1 differ from D0 and d1, respectively, by small

quantities of order O(γ−k). Also, we denote

M1 ≡ µ− γ−kE0 cos(kψ − ϑ2 + . . . ) + cλk(x+ + . . . ), (3.24)

where

E0 =
√

(y−1 )2 + (y−2 )2, cosϑ2 = y−1 /E0, sinϑ2 = y−2 /E0. (3.25)

Make one more change of coordinates:

xnew = x, y1 new = y1, y2 new = y2 − d̃1y1.
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Then mapping (3.23) is rewritten as

x̄ = O
(|y1| + |λ|k|x| + γ−k‖ȳ‖) ,

(cos kψ − d1 sin kψ)ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖)
= M1γ

k + cλkγkx+ D̃0γ
ky2

1 +O
(
γk|y1|3 + |λ|kγk|x||y1| + λ̂kγk|x| + ‖ȳ‖|y1|

)
,

y2 − eλkx = d2γ
−k {

(cos kψ + ν1
k)ȳ2 + (sin kψ + d1 cos kψ + ν2

k)ȳ1

}
+O

(
y2
1 + |λ|k|x||y1| + λ̂k|x| + γ−k‖ȳ‖|y1| + γ̂−k‖ȳ‖2

)
(3.26)

with certain coefficients ν1,2
k = O(γ̂−kγk).

Introduce the new coordinates y1 and y2 by the formulas

y1 new = (cos kψ + ν1
k)y2 + (sin kψ + d1 cos kψ + ν2

k)y1,

y2 new =
1
d2
γk

(
y2 − eλkx)

)
.

(3.27)

The old coordinates are expressed through the new coordinates by the formulas

y2 = d2γ
−ky2 new + eλkx,

y1 =
1
s0
y1 new − 1

s0
(cos kψ + ν1

k)(d2γ
−ky2 new + eλkx),

(3.28)

where
s0 ≡ s0(kψ) = sin kψ + d1 cos kψ + ν2

k . (3.29)

Consider only those ψ for which s0 �= 0. Then the coordinate change (3.27) is nondegenerate and (3.26)
is rewritten in the form

x̄ = O(|y1| + |λ|k|x| + γ−k(|y2| + |ȳ|)),

γkȳ1(cos kψ − d1 sin kψ + ν3
k) − d2ȳ2 + (γ̂/γ)−kO(ȳ2) + |λγ|kO(x̄)

= γ2ks0M1 + cs0λ
kγ2kx+ D̃0(s0)−1γ2ky2

1

+γ2kO
(
y3
1 + |λ|k|x||y1| + γ−k‖ȳ‖‖y‖ + λ̂k|x| + γ−k‖y‖2 + γ̂−k‖ȳ‖2)

)
,

y2 = ȳ1 + γkO
(
y2
1 + |λ|k|x||y1| + γ−k‖ȳ‖‖y‖ + γ−k‖ȳ‖2 + λ̂k|x|

)
,

(3.30)

where ν3
k = O(γ̂−kγk) is a certain small coefficient.

Now, normalize the coordinates as follows:

x = ρkγ−2kxnew, y1 =
d2s0

D̃0

γ−2ky1 new, y2 =
d2s0

D̃0

γ−2ky2 new, (3.31)

where

1 < ρ <
1

|λ|γ2

(recall that |λγ2| < 1 by condition, and we also assume that s0 is bounded away from zero).
Then, after normalizations (3.31), mapping (3.30) in the new coordinates is written as follows:

x̄1 = φ1
k(x, y, ȳ),

1
d2
γkȳ1(cos kψ − d1 sin kψ + ν3

k) − ȳ2 = M̃ + y2
1 + φ2

k(x, y, ȳ),

y2 = ȳ1 + φ3
k(x, y, ȳ),

(3.32)
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where

M̃ = γ4kD0

d2
2

[
µ− γ−k(y−1 cos kψ − y−2 sin kψ + . . . ) + cλk(x+ + . . . )

]
(3.33)

and φlk = o(1) as k → ∞.
We note that the trigonometrical term

C(kψ) ≡ 1
d2
γk(cos kψ − d1 sin kψ + ν3

k)

in (3.32) is bounded for large k only if cos kψ − d1 sin kψ is close to zero, i.e., for the values of ψ close to

ψ =
1
k

arctan
(

1
d1

)
+ π

j

k
, j ∈ Z. (3.34)

For these values of ψ, the coefficient s0 in (3.29) is bounded away from zero: s20 = 1 + d2
1 + . . . .

Note that values (3.34) of the angle ψ are dense in (0, π) for all possible j and k. This means that for
any Q > 0, in any neighborhood of each point ψ0 ∈ (0, π), there exist intervals ϑk (of size of order γ−k)
of values of ψ such that the coefficient C(kψ) assumes all values from the interval [−Q,Q] when ψ runs
over ϑk.

In the range of ψ where C is finite, we can resolve system (3.32) with respect to ȳ. The mapping Tk
becomes

x̄1 = φ̃1
k(x, y,M,C),

ȳ2 = M − y2
1 + Cy2 + φ̃2

k(x, y,M,C),

ȳ1 = y2 + φ̃3
k(x, y,M,C),

(3.35)

where M = −M̃, C = C(kψ), and φ̃k = o(1). Now setting y2 new = y2 + φ̃3
k, we obtain exactly mapping

(1.4) of Lemma 1.1.

3.5. First-return mapping in the case (2, 2). Here x = (x1, x2) and y = (y1, y2) are two-dimensional
and

A ≡ λ

(
cosϕ − sinϕ
sinϕ cosϕ

)
, B ≡ γ

(
cosψ − sinψ
sinψ cosψ

)
.

By (2.4) and (2.8), for each sufficiently large k and all sufficiently small ε, the first-return mapping
Tk ≡ T1T

k
0 can be written as

x̄01 − x+
1 = b0(yk1 − y−1 ) + b11γ

−k(cos kψ ȳk2 + sin kψ ȳk1)
+O

(
(yk1 − y−1 )2 + γ−k|yk1 − y−1 |‖ȳk‖ + λk‖x0‖ + γ̂−k(‖x̄0‖ + ‖ȳk‖)

)
,

x̄02 − x+
2 = b12γ

−k(cos kψ ȳk2 + sin kψ ȳk1)
+O

(
(yk1 − y−1 )2 + γ−k|yk1 − y−1 |‖ȳk‖ + λk‖x0‖ + γ̂−k(‖x̄0‖ + ‖ȳk‖)

)
,

γ−k(cos kψ · ȳk1 − sin kψ · ȳk2)
= µ+ λkC1(kϕ)x01 + λkC2(kϕ)x02 +D0(yk1 − y−1 )2

+O
(
(yk1 − y−1 )3 + |yk1 − y−1 |(λk‖x0‖ + γ−k‖ȳk‖) + λ̂k‖x0‖ + γ̂−k(‖x̄0‖ + ‖ȳk‖)

)
,

yk2 − y−2 = λkE1(kϕ)x01 + λkE2(kϕ)x02 + d1(yk1 − y−1 )
+d2γ

−k(cos kψ · ȳk2 + sin kψ · ȳk1)
+O

(
(yk1 − y−1 )2 + |yk1 − y−1 |(λk‖x0‖ + γ−k‖ȳk‖) + λ̂k‖x0‖ + γ̂−k(‖x̄0‖ + ‖ȳk‖)

)
,

(3.36)

where
C1 = c1 cos kϕ+ c2 sin kϕ, C2 = c2 cos kϕ− c1 sin kϕ,
E1 = e1 cos kϕ+ e2 sin kϕ, E2 = e2 cos kϕ− e1 sin kϕ,

(3.37)
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and, as above, 0 < λ̂ < λ and γ̂ > γ.
Introduce the following new coordinates (shifts of coordinates):

x1 new = x1 − x+
1 (ε) + ν̃1

k , x2 new = x2 − x+
2 (ε) + ν̃2

k ,

y1 new = yk1 − y−1 + ν̃3
k , y2 new = yk2 − y−2 + ν̃4

k .

Here the small shifts ν̃ik(ε) (of order O(|γ|−k)) are chosen so that the first, second, and fourth equations in
(3.36) contain no free term and the third equation contains no term linear in y1. In this case, we resolve
the first and second equations with respect to x̄ and substitute the obtained expression into the third and
fourth equations. As a result, system (3.36) is rewritten as

x̄1 = b0y1 +O
(
y2
1 + λk‖x‖ + γ−k(‖y‖ + |ȳ|)) ,

x̄2 = O
(
y2
1 + λk‖x‖ + γ−k(‖y‖ + |ȳ|)) ,

γ−k
{
cos kψ · ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖)}

= M1 + C1λ
kx1 + C2λ

kx2 + D̃0 y
2
1 +O

(
|y1|3 + λk‖x‖|y1| + λ̂k‖x‖ + γ−k‖ȳ‖|y1|

)
,

y2 − d̃1y1 − E1λ
kx1 − E2λ

kx2 = d2γ
−k {

(cos kψ + ν1
k)ȳ2 + (sin kψ + ν2

k)ȳ1

}
+O

(
y2
1 + λk‖x‖|y1| + γ−k‖ȳ‖|y1| + λ̂k‖x‖ + γ̂−k‖ȳ‖2

)
,

(3.38)

where ν1,2
k = O(γ̂−kγk) and the coefficients D̃0 and d̃1 differ from D0 and d1, respectively, by certain

small quantities of order O(γ−k). Also, we have denoted

M1 ≡ µ− γ−kE0 cos(kψ + ϑ2 + . . . ) + λkC0 cos(kϕ− ϑ1 + . . . ) (3.39)

(see formulas (3.25) and (3.10)).
Introduce the new coordinate y2 by the formula y2 new = y2 − d̃1y1. Then mapping (3.38) is rewritten

in the form

x̄1 = b0y1 +O
(
y2
1 + λk‖x‖ + γ−k(‖y‖ + ‖ȳ‖)) ,

x̄2 = O
(
y2
1 + λk‖x‖ + γ−k(‖y‖ + ‖ȳ‖)) ,

(cos kψ − d̃1 sin kψ)ȳ1 − sin kψ · ȳ2 + (γ̂/γ)−kO(‖ȳ‖)
= M1γ

k + C1λ
kγkx1 + C2λ

kγkx2 + D̃0γ
ky2

1 +O
(
γk|y1|3 + λkγk‖x‖|y1| + λ̂kγk‖x‖ + ‖ȳ‖|y1|

)
,

y2 − λkE1x1 − λkE2x2 = d2γ
−k {

(cos kψ + ν3
k)ȳ2 + (sin kψ + d1 cos kψ + ν4

k)ȳ1

}
+O

(
y2
1 + λk‖x‖|y1| + λ̂k|x| + γ−k‖ȳ‖|y1| + γ̂−k‖ȳ‖2

)
,

(3.40)
where ν3,4

k = O(γ̂−kγk). Introduce the new coordinates y by the formulas

y1 new = (cos kψ + ν3
k)y2 + (sin kψ + d1 cos kψ + ν4

k)y1,

y2 new = γk
1
d2

(
y2 − E1λ

kx1 − E2λ
kx2

)
.

(3.41)

For the old coordinates (y1, y2), we have

y2 = γ−kd2y2 new + E1λ
kx1 + E2λ

kx2,

y1 =
1
s0
y1 new − d1

s0
(d2 cos kψ + ν3

k)(γ
−ky2 new + E1λ

kx1 + E2λ
kx2),

(3.42)
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where
s0 ≡ s0(kψ) = sin kψ + d1 cos kψ + ν4

k . (3.43)

Also consider those ψ for which s0 is uniformly bounded away from zero. Then (3.40) is rewritten in the
form

x̄1 = b0
s0
y1 +O

(
y2
1 + λk‖x‖ + γ−k(‖y‖ + ‖ȳ‖)) ,

x̄2 = O
(
y2
1 + λk‖x‖ + γ−k(‖y‖ + ‖ȳ‖)) ,

1
d2
γkȳ1(cos kψ − d1 sin kψ + ν5

k +O(ȳ1)) − ȳ2(1 + ν6
k +O(ȳ2)) + (λγ)kO(x̄)

= γ2ks0M1 + D̃0(s0)−1γ2ky2
1 + C̃1s0λ

kγ2kx1 + C̃2s0λ
kγ2kx2

+γ2kO
(
|y1|3 + λk‖x‖|y1| + γ−k(‖ȳ‖‖y‖ + ‖y‖2) + λ̂k‖x‖2 + γ̂−k‖ȳ‖2

)
,

y2 = ȳ1 +O
(
γk‖y‖2 + λkγk‖x‖‖y‖ + ‖ȳ‖‖y‖ + ‖ȳ‖2 + λ̂kγk‖x‖

)
,

(3.44)

where ν5,6
k = O(γ̂−kγk) and the coefficients C̃1 and C̃2 differ from C1 and C2, respectively, by quantities

of order O(λ̂kλ−k).
Consider the case λγ2 < 1. Normalize the coordinates in (3.44) as follows:

x1 = ρ−k
d2s0

D̃0

γ−2kx1 new, x2 =
d2s0

D̃0

γ−2kx2 new,

y1 =
d2s0

D̃0

γ−2ky1 new, y2 =
d2s0

D̃0

γ−2ky2 new,

(3.45)

where ρ is a certain number such that λγ2 < ρ < 1.
Note that since the normalization coefficients in (3.45) are asymptotically small, the domains of the

new coordinates (x, y) grow when k increases, and in the limit as k → ∞, they cover all finite values. This
allows us to assume that our mapping is defined on the domain ‖(xnew, ynew)‖ ≤ Q for a certain Q > 0,
and, moreover, the constant Q can be arbitrarily large. In this case, mapping (3.44) is rewritten in the
following form in coordinates (3.45) for sufficiently large k:

x̄1 = ρkO(y1) + γ−kO(‖(x, y, ȳ)‖),
x̄2 = γ−kO(‖(x, y, ȳ)‖),
1
d2
γkC(kψ)ȳ1 − ȳ2 = M̃ + y2

1 +
(
λkγ2k

ρk
+ γ−k

)
O(‖(x, y, ȳ)‖),

y2 = ȳ1 + γ−kO(‖(x, y, ȳ)‖).

(3.46)

where

M̃ = γ4k D̃0

d2
2

M1, (3.47)

formula (3.39) holds for M1, and

C(kψ) = cos kψ − d1 sin kψ + ν5
k . (3.48)

Note that the coefficients M̃ and C = d−1
2 C(kψ)γk can obviously assume arbitrary finite values for

large k under the variation of the initial parameters µ and ψ.
In this case, C is uniformly bounded only in the case where cos kψ − d1 sin kψ is asymptotically close

to zero, i.e., for values of ψ close to those given by formulas (3.34). As we have already noted, for these
ψ, the quantity s0 from (3.43) is uniformly bounded away from zero: |s0| =

√
1 + d2

1(1 + . . . ). In what
follows, we will consider only these ψ.
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As a result, in any bounded domain of values of (x, y,M,C), mapping (3.44) can be rewritten in the
form

x̄1 = o(1), x̄2 = o(1),

ȳ1 = y2 + o(1), ȳ2 = −M̃ + Cy2 − y2
1 + o(1),

(3.49)

where by o(1) we have denoted the functions of all coordinates and parameters which tend to zero
uniformly in any bounded domains of values of (x, y,M,C) as k → ∞ together with all derivatives up to
the order (r − 2) in coordinates and up to the order (r − 3) in parameters. If we set M = −M̃ in (3.49),
then we obtain exactly the desired mapping (1.4).

Now, let us consider the case λγ2 > 1 (as above, λγ < 1). Now normalize the coordinates in (3.44) as
follows:

x1 =
d2b0

D̃0

γ−2kx1 new, x2 = qkγ−2kx2 new,

y1 =
d2s0

D̃0

γ−2ky1 new, y2 =
d2s0

D̃0

γ−2ky2 new,

(3.50)

where q is a certain number from the interval q ∈ (
γ−1, (λγ2)−1

)
. This interval is nonempty and lies in

(0, 1) since

1 >
1
λγ2

=
γ−1

λγ
> γ−1.

Now mapping (3.44) is written in coordinates (3.50) in the following form:

x̄1 = y1 + γ−kO(‖(x, y, ȳ)‖),
x̄2 =

γ−k

qk
O(‖(x, y, ȳ)‖),

1
d2
γkC(kψ)ȳ1 − ȳ2 = M + y2

1 +
b0
d2
λkγ2k (c11 cos kϕ+ c12 sinϕ+ lk)x1

+λkγ2kqkO(x2) + γ−kO(‖(x, y, ȳ)‖),

y2 = ȳ1 + γ−kO(‖(x, y, ȳ)‖),

(3.51)

where lk = O((λ̂/λ)k) is a certain small parameter and M and C(kψ) are defined by the formulas (3.47)
and (3.48).

As compared with (3.46), in mapping (3.51), along withM and C = γkC(kψ), there arises an additional
independent parameter

B = B(kϕ) ≡ b0
d2
λkγ2k(c11 cos kϕ+ c12 sinϕ+ lk).

Since λγ2 > 1, the coefficient B(kϕ) is no longer small (as in the case λγ2 < 1), and under a variation of
ϕ, it can assume any finite values for large k. The values of ϕ near

ϕ = −1
k

arctan
(
c1
c2

)
+ π

j

k
, j ∈ Z, (3.52)

correspond to bounded values of B. In the domain of bounded values of (x, y,M,B,C), mapping (3.51)
can be written in the form

x̄1 = y1 + o(1), x̄2 = o(1),

ȳ2 = −M −Bx1 + Cy1 − y2
1 + o(1), ȳ1 = y2 + o(1).

If we change the signs of M and B, then we obtain mapping (1.5).
Therefore, the rescaling lemma is proved.
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4. Proof of the Main Theorems

The proof of Theorems 1.1–1.4 is based on the rescaling lemmas. These lemmas allow us to carry out
a comparatively simple analysis of the first-return mappings Tk(ε), which assume the form of standard
quadratic mappings for ε ∈ ∆k. It is convenient to prove Theorems 1.1–1.4 in the following order: we
first prove Theorem 1.2, then Theorem 1.4 (for which, in fact, only the linear analysis of fixed points of
the first-return mapping is needed), and then prove Theorem 1.3. Theorem 1.1 is deduced in proving
Theorems 1.2 and 1.4.

4.1. Proof of Theorems 1.2 and items 1 and 2 of Theorem 1.1. We first carry out the analysis of
fixed points of the first-return mappings (1.2)–(1.5) and (1.7) in order to find the values of the parameters
M , B, and C under which the above mappings have fixed points with multipliers on the unit circle.

4.1.1. Mapping (1.2). Consider the one-dimensional mapping of the parabola

ȳ = M − y2.

Let ν1 �= 0 be a multiplier of a certain fixed point of it. Then the coordinate y of this fixed point satisfies
the equations M = y + y2 and 2y = −ν1, and we obtain then that the mapping of the parabola has a
fixed point with this multiplier ν1 for

M =
ν2
1

4
− ν1

2
. (4.1)

Since mapping (1.2) is closed to the mapping of the parabola together with sufficiently many derivatives,
it also has a fixed point with the multiplier ν1 for M = Mk(ν1) that is asymptotically close to the value
of (4.1) as k → ∞. Other multipliers of the fixed point (one in the case (1,1) and two in the case (2,1))
have modules always less than 1: they tend to zero as k → ∞.

4.1.2. Mapping (1.3). Consider the Henon mapping (a limit mapping for (1.3)):

x̄ = y, ȳ = M +Bx− y2.

Let ν1 and ν2 be multipliers of a certain fixed point of it (then they are both real or compose a complex-
conjugate pair of numbers; also, we set ν1ν2 �= 0). The coordinates x = y of this fixed point satisfy the
equation M = y(1 − B) + y2. In this case, the characteristic equation has the form ν2 + 2yν − B = 0.
Then it is easily found that

B(ν1, ν2) = −ν1ν2, M(ν1, ν2) =
ν1 + ν2

4
(ν1 + ν2 − 2ν1ν2 − 2). (4.2)

Clearly, mapping (1.3) also has a fixed point with these multipliers ν1 and ν2 for values of M and B
asymptotically close to those which are given by formula (4.2). The module of the third multiplier is
always less than 1 (it tends to zero as k → ∞).

4.1.3. Mapping (1.4). Consider the following mapping (limit for (1.4)):

ȳ1 = y2, ȳ2 = M + Cy2 − y2
1.

Let ν1 and ν2 be the multipliers of a certain fixed point of it (then they either are both real or compose a
complex-conjugate pair again; again, we assume that ν1ν2 �= 0). The coordinates y1 = y2 = y of this fixed
point satisfy the equation M = y(1−C)+y2 and the characteristic equation has the form ν2−Cν+2y = 0.
Then it is easily found that

C = ν1 + ν2, M =
ν1ν2

2
(1 − C) +

(ν1ν2)2

4
. (4.3)

Mapping (1.4) also has a fixed point with these multipliers ν1 and ν2 for M and C asymptotically close
to those given by formula (4.3). The modules of other multipliers (of the third in the case (1,2) and the
fourth in the case (2,2)) are always less than 1.

1339



4.1.4. Mapping (1.5). Consider the following three-dimensional mapping (limit for (1.5)):

x̄ = y1, ȳ1 = y2, ȳ2 = M +Bx+ Cy2 − y2
1. (4.4)

Let ν1, ν2, and ν3 be nonzero multipliers of a certain fixed point of it (then either they all are real or one of
them is real and the other two form a complex-conjugate pair of numbers). The coordinates x = y1 = y2

of this fixed point satisfy the equation M = x(1 − B − C) + x2 and the characteristic equation has the
form −ν3 + Cν2 − 2xν +B = 0. Then it is easily found that

B = ν1ν2ν3, C = ν1 + ν2 + ν3,

M = (ν1ν2 + ν1ν3 + ν2ν3)(1 −B − C) +
(ν1ν2 + ν1ν3 + ν2ν3)2

4
.

(4.5)

Obviously, the initial mapping (1.5) also has a fixed point with these multipliers ν1, ν2, and ν3 for values
of the parameters M , B, and C asymptotically close to those which are given by formula (4.5). The
module of one more multiplier of this point is always less than 1 for large k.

Therefore, for any tuple {ν1, . . . , νde} of de multipliers given in advance (where de = 1 in the case
of mapping (1.2), de = 2 for mappings (1.3) and (1.4), and de = 3 for mapping (1.5)), for each of the
mappings (1.2)–(1.5) there are values of the parameters M = Mk, B = Bk, and C = Ck for which there
exists a fixed point whose de multipliers are exactly equal to ν1, . . . , νde . Note that in this case, the values
Mk, Bk, and Ck of the parameters mentioned above are uniformly bounded in k. By (1.6), this implies
that for the corresponding values of the initial parameters, (µ, ϕ, ψ) = (µk, ϕk, ψk) as k → +∞, we have
that first, µk → 0, and, second, in the case de ≥ 2, we can always find a subsequence of (ϕk, ψk) converging
to the point (ϕ0, ψ0), where ϕ0 and ψ0 are values of the angular arguments of the complex multipliers for
the point O of the diffeomorphism f0. Therefore, we obtain the following assertion.

Corollary 4.1. For any tuple {ν1, . . . , νde} of multipliers given in advance, there exists a sequence εk → 0
of values of the parameters ε such that for ε = εk, the diffeomorphism fε has a one-time going-around
periodic trajectory, de multipliers of which are exactly equal to ν1, . . . , νde, and other multipliers of which
strictly lie inside the unit disk.

Theorem 1.2 immediately follows from this assertion. Indeed, in the Newhouse domain δj , near any
ε ∈ δj , there exist values of the parameters corresponding to homoclinic tangencies to the pointO for which
Conditions A–D hold; since we have just proved that arbitrarily small perturbations in the framework
of the same family fε yield periodic trajectories (one-time going around with respect to the repeated
homoclinic tangencies) with any tuple of de multipliers given in advance on the unit circle in a complete
correspondence with Theorem 1.2.

Note that in the case of Theorem 1.1, we have de = 1, because we speak about the periodic trajectories
having either the multiplier ν1 = +1 or ν1 = −1. Corollary 4.1 immediately yields items 1 and 2 of
Theorem 1.1 for the Newhouse intervals δj .

4.2. Proof of Theorem 1.4 and item 3 of Theorem 1.1. We again use Corollary 4.1 but for rough
periodic trajectories such that the module of each of their multipliers ν1, . . . , νde is not equal to 1. Then
we obtain de + 1 different types of rough trajectories in totality in accordance with how many of these de
multipliers lie inside the unit disk: 0, 1, . . . , or all de trajectories. The first case corresponds to a stable
periodic trajectory.

Recall that arbitrarily close to any value of the parameters from the Newhouse domain δj , there exists
a value of ε for which the point O has a trajectory of a simple homoclinic tangency. According to
Corollary 4.1, arbitrarily close to this value of ε, there exists a value of the parameter for which fε has a
rough periodic trajectory exactly with d multipliers outside the unit disk for any d = 0, . . . , de given in
advance. Since this trajectory is rough, it exists in a certain domain of the range of parameters. Repeating
the arguments, inside this domain, we find a smaller one that controls the existence of one more rough
periodic trajectory with d multipliers outside the unit disk with the same d or any other d from 0 up to
de, and so on. Repeating this procedure infinitely many times for each d = 0, . . . , de, we obtain a sequence
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of embedded domains such that the values of ε in the intersection of these domains correspond to the
existence of infinitely many rough periodic trajectories with all possible tuples of 0, 1, . . . , de multipliers
lying outside the unit disk. By construction, the obtained set of values of ε is the intersection of countably
many open and dense sets in δj , i.e., sets of the second category. The theorem is proved.

4.3. Proof of Theorem 1.3. As in the proof of Theorem 1.4, it suffices to show that the first-return
mappings T (k) have a stable closed invariant curve in certain domains of the parameters (M,B), (M,C),
or (M,C,B). To obtain countably many closed invariant curves, we apply the construction with embedded
domains, which is the same as in the proof of Theorem 1.4.

We first consider the case of saddle-focus (1,2) and saddle-focus (2,2) with λγ2 < 1. In this case,
according to Lemma 1.1, the mapping T (k) reduces to the form

x̄ = o(1), ȳ1 = y2, ȳ2 = M + Cy2 − y2
1 + o(1). (4.6)

The limit mapping
ȳ1 = y2, ȳ2 = M + Cy2 − y2

1 (4.7)
has a fixed point with the multiplier ν1,2 = e±iω for values of the parameters (M,C) on the curve
L : {M = 3

4 − 1
2C, C = 2 cosω} (i.e., |C| < 2; see formula (4.3)). For ω �= π/2 and 2π/3, the stability of

a closed invariant curve that appears under bifurcations of such a fixed point is determined by the sign
of the first Lyapunov quantity. Recall that the Lyapunov quantity G1 is the coefficient of the cubic term
of the normal form ρ̄ = ρ+G1ρ

3 + o(ρ3), θ̄ = θ + ω +O(r2) of the mapping written in polar coordinates

(ρ, θ) near the fixed point. For mapping (4.7), it is easy to calculate that G1 = −1 − 1
2(1 − cosω)

, so

that the Lyapunov quantity is always negative here. Since G1 is the coefficient of the cubic term, the
Lyapunov quantity remains negative for all mappings C3-close to (4.7).

Now we consider mapping (4.6). For each sufficiently large k, it also has a curve in the parameter space
near the curve L controlling the existence of a fixed point with two multipliers e±iω (the absolute values
of other multipliers are less than 1). Denote this curve by Lk. The restriction of mapping (1.4) to the
central manifold near the fixed point is Cr−2-close to (4.7). Since r ≥ 5, we obtain that the corresponding
Lyapunov quantity for mapping (1.4) is negative, and hence, in passing the values of the parameters
through Lk, a closed stable invariant curve arises; it exists in a certain domain of parameters; this is what
was required to be proved.

In the case of saddle-focus (2,2) with λγ2 > 1, the first return mapping T (k) reduces to the form

x̄2 = o(1), x̄1 = y1, ȳ1 = y2, ȳ2 = M + Cy2 +Bx1 − y2
1 + o(1). (4.8)

Here, for small B, the Lyapunov quantity is also negative for the fixed point having the multipliers
ν1,2 = e±iω, ν3 = B + o(1), and ν4 = o(1). This is directly implied by the fact that for B = 0, mapping
(4.8) degenerates as k → +∞ into mapping (4.7) with respect to the coordinates y1 and y2, while the
negativity of the Lyapunov quantity for the latter mapping has just been proved. Therefore, in this case,
we also obtain that for each sufficiently large k and for values of the parameters from a certain domain,
the first-return mapping has a stable closed invariant curve.

In the case of saddle-focus (2,1) with de = 2, i.e., for λγ > 1, to find stable invariant curves, we will
use the refined form of the first-return mapping deduced in Lemma 1.2. This is the so-called generalized
Henon mapping of the form

x̄1 = y, ȳ = M − y2 +Bx1 +Qkx1y + o(Qk), (4.9)

where Qk �= 0 and Qk → 0 as k → +∞. This mapping was studied in [6, 7], where, in particular, it was
shown that for values of the parameters (M,B) in a certain domain, mapping (4.9) has a stable closed
invariant curve for sufficiently large k. Precisely such a domain arises adjoining the point (M = M∗

k , B =
B∗
k), where

M∗
k = 3 −Qk + o(Qk), B∗

k = −1 +Qk/2 + o(Qk),
at which mapping (4.9) has a fixed point with multipliers (−1,−1).
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Therefore, in all cases with de ≥ 2, the family fε has a countable sequence of domains ∆̃k ⊂ ∆k

accumulated to ε = 0 as k → ∞ such that for ε ∈ ∆̃k, the diffeomorphism fε has a stable closed invariant
curve. To obtain finitely many closed invariant curves for a dense set of values of the parameters from
the Newhouse domains δj , it suffices to apply the construction with embedded domains from the proof of
Theorem 1.4. This completes the proof of Theorem 1.3.
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curves,” Dokl. Akad. Nauk SSSR, 320, No. 2, 269–272 (1991).

16. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov, “On the existence of Newhouse domains near
systems with a nonrough homoclinic curve (higher-dimensional case),” Dokl. Ross. Akad. Nauk, 329,
No. 4, 404–407 (1993).

1342



17. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov, “Dynamical phenomena in higher-dimensional
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