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HOMOCLINIC TANGENCIES OF AN ARBITRARY ORDER IN
NEWHOUSE DOMAINS

S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov UDC 517.987.5

1. Introduction

This paper is devoted to the study of complex and unexpected phenomena that are observed in two-
dimensional mappings (or in three-dimensional flows) with homoclinic tangencies. In particular, we show that,
in the Cr-topology, for an arbitrary finite r, in any neighborhood of a system with a quadratic homoclinic
tangency there are nonrough systems with homoclinic tangencies of arbitrarily high orders, i.e., systems of
an arbitrarily high codimension. Such phenomena were not observed in bifurcation theory previously.

The study of systems with homoclinic tangencies was initiated in [4]. First and foremost, three classes
of such systems were distinguished in that paper. Namely, let L be a saddle periodic motion, and let Γ be a
homoclinic trajectory along which the stable and unstable invariant manifolds of L are quadratically tangent
to each other (see Fig. 1). Let λ and γ be multipliers of L, |λ| < 1, and let |γ| > 1. Assume that |λγ| �= 1;
moreover, without loss of generality, we can assume that |λγ| < 1. Let U be a small neighborhood of the
closure Γ ∪ L of the homoclinic trajectory, and let N be the set of all trajectories that lie entirely in U .
Depending on the signs of multipliers and on the signs of certain coefficients that characterize the way in
which the stable and unstable manifolds adjoin to Γ, the systems with homoclinic tangencies fall into one of
the following three classes:

(1) for systems of the first class, the set N is trivial: N = {L,Γ};
(2) for systems of the second class, N is a nontrivial, nonuniformly hyperbolic set that admits a complete

description in the language of symbolic dynamics (via some quotient system of the topological Bernoulli
scheme consisting of three symbols);

(3) for systems of the third class, N still contains nontrivial, hyperbolic subsets, but, generally speaking,
the set N is not exhausted by them; moreover, the everywhere dense nonroughness takes place on bifurcation
films of systems of the third class. (In [10, 11], a similar classification was carried out for the multidimensional
case, including the case of systems with homoclinic tangencies of an arbitrary finite order.)

To be more specific, according to [4], systems that have nonrough periodic motions are dense in any
one-parameter family of systems with homoclinic tangencies of the third class in which the quantity

θ = −
ln |λ|

ln |γ|
(1.1)

varies monotonocally. Subsequently, it was shown in [10, 12] that systems with countable sets of stable
periodic motions (for θ > 1; if θ < 1, then systems with countable sets of unstable periodic motions) and
systems with secondary homoclinic tangencies were everywhere dense in one-parameter families of this kind.
This is due to the fact that the structure of the set N essentially depends on the value of θ in the case
of systems of the third class. Indeed, even from the results of [4], it follows that θ is an invariant of the
Ω-equivalence (i.e., of topological equivalence on the set of nonwandering trajectories) for systems of the
third class (see [11, 13]). In other words, systems with different values of θ cannot be Ω-equivalent; therefore,
arbitrarily small changes in θ necessarily lead to bifurcations in the nonwandering set.

In particular, one can obtain one more trajectory with homoclinic tangency by an arbitrarily small
change of θ (moreover, the original homoclinic tangency does not vanish under this procedure). This fact
has far-reaching implications. Namely, by using localized small smooth additions, it is proved that in the
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Fig. 1

set of systems with homoclinic tangencies of the third class, systems having infinitely many saddle periodic
trajectories with homoclinic tangencies of the third class are dense.1

We note that the latter statement means that such systems have infinitely many independent contin-
uous invariants (moduli) of the Ω-equivalence (because for each individual tangency of the third class, the
corresponding value of θ is such an invariant; we do not insist that the totality of all those values serve as a
complete invariant; other invariants are also possible, for instance, τ from [11, 12, 13]).

The construction that involves an infinite set of trajectories with homoclinic tangencies is the basic
element in the proof of the following statement, which is called the Main Theorem in view of its importance.

Main Theorem. Systems that have homoclinic tangencies of an arbitrarily high order are dense in the
set of systems with quadratic homoclinic tangencies of the third class.

We note that systems of the third class exist near any system with a quadratic homoclinic tangency.
Therefore, the result of the Main Theorem contradicts the scheme of resolution of degeneracies, which is, so
to say, traditional in the singularity theory: here by small and arbitrarily smooth perturbations of a system,
we pass without obstruction from the quadratic tangency to the degeneracies (tangencies) of higher order.

1Here and throughout this paper, we mean density in the Cr-topology for an arbitrary finite r. If we consider C∞-smooth
systems, then density in the Cr-topology for an arbitrary finite r means density in the C∞-topology by definition.
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The study of the first return mapping near the tangency of the nth order allows one to deduce from the
Main Theorem the following result: systems that have infinitely many nonrough periodic trajectories of an
arbitrary order of degeneracy2 are dense in the set of systems of the third class.

Thus, a complete description of dynamics of systems with homoclinic tangencies of the third class (in
particular, a complete description of bifurcations of periodic motions of such systems) within the framework
of some finite-parameter family is not possible in principle.

Systems with quadratic homoclinic tangencies that are close to the original tangency form bifurcation
surfaces of codimension one. The above-presented results are obtained for the most part by examining
perturbations under which a system does not leave such a bifurcation surface. However, it is natural to
consider initially the perturbations that “split” the original tangency of invariant manifolds. Let µ be a
bifurcation parameter that controls the splitting of the separatrices, and let Xµ be a family of systems in
which µ varies monotonically. Thus, Xµ transversally intersects the surfaces of systems with homoclinic
tangencies when µ = 0. The following fact is of fundamental importance here: in any transversal one-
parameter family Xµ, there exists a sequence of intervals, accumulating to µ = 0, in which values of the
parameter that correspond to quadratic homoclinic tangencies are dense (moreover, Xµ is transversal to each
of the corresponding bifurcation surfaces).

This result was proved by Newhouse for two-dimensional diffeomorphisms3 in [25]. Roughly speaking,
this means that although each individual homoclinic tangency can be eliminated by small perturbations of a
system, such perturbations, generally speaking, do not allow one to remove homoclinic tangencies completely.

Domains of everywhere dense nonroughness in the space of Cr-smooth (r ≥ 2) dynamical systems in
which systems with homoclinic tangencies are dense are called the Newhouse domains (the above intervals of
values of the parameter at which the transversal family Xµ intersects the Newhouse domains are called the
Newhouse intervals).

The most popular result (proved in [24]) on the dynamics of two-dimensional mappings in Newhouse
domains consists of the fact that if the saddle quantity σ = |λγ|, i.e., the absolute value of the product of
multipliers of a periodic trajectory L, is less than unity, then systems having infinitely many stable periodic
trajectories are dense in Newhouse domains.4

This assertion is an almost immediate consequence of the density of values of the parameter that corre-
spond to homoclinic tangencies and the earlier result in [4] stating that if σ < 1, then in a transversal family,
we have a sequence (accumulating to µ = 0) of intervals of values of µ corresponding to the existence of a
stable periodic motion.5

As was already noted, systems with heteroclinic tangencies of the third class are arbitrarily close to any
system with a homoclinic tangency of any kind. Therefore, they are dense in Newhouse domains, and our
Main Theorem immediately implies the following fundamental fact.

Systems with infinitely many homoclinic tangencies as well as systems with infinitely many periodic
trajectories of an arbitrarily high order of degeneracy are dense in Newhouse domains.

Thus, the infinite degeneracies do not vanish when the bifurcation surface corresponding to the homoclinic
tangency is left. Quite the contrary, arbitrarily near any such surface, we have domains in which the infinite
degeneracies are dense.

From a purely mathematical standpoint, this result is indicative of the fact that the structure of the
partition of the space of dynamical systems into classes of the Ω-equivalence is far from trivial. What is

2We mean the trajectories with one multiplier equal to 1 or to −1 and with arbitrarily many zero Lyapunov values, i.e.,
successive coefficients of nonlinear terms in the normal form of the Poincaré mapping on the central manifold.
3In [8], it was carried over to the general higher-dimensional case; the higher-dimensional case was also considered in [27]

under the condition that the unstable manifold of the saddle periodic trajectory was one-dimensional.
4If σ > 1, then systems having infinitely many completely unstable periodic trajectories are dense in Newhouse domains. In

the higher-dimensional case, the general property of systems in Newhouse domains consists of the coexistence (of infinitely many)
periodic trajectories with stable manifolds of distinct dimensions, i.e., with distinct numbers of positive or negative Lyapunov
exponents (see [21]); the criteria for existence of an infinite set of stable periodic trajectories in the higher-dimensional case are
also given in this paper; see also [9]; a special case was considered in [27].
5If we have no any special interest in one-parameter families, then we can use the fact that systems with homoclinic tangencies

of the third class are dense in Newhouse domains, and that, in turn, systems with countably many stable periodic motions are
dense (see [10]).
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Fig. 2

more important, this result is directly related to the study of specific dynamical models. The point is that
homoclinic tangencies (and, therefore, Newhouse domains in the parameter space) can be found in a great
variety of specific families of systems with complex dynamics. Thus, they exist in the Henon mapping (and,
in general, in any family of two-dimensional mappings that are sufficiently close to one-dimensional ones after
doubling of a period); they appear when invariant tori are blown up (see [2, 26]), i.e., under the transition from
the quasiperiodic regime to chaos, they can be found in Lorentz-type models in domains beyond a boundary of
the domain of existence of a Lorentz attractor (see [3, 28]), in systems with wild pseudohyperbolic attractors
(see [16]), and in systems with spiral chaos.

A system with spiral chaos is a system whose attractor can contain a homoclinic loop of an equilibrium
state of saddle-focus type. In the three-dimensional case, it is a saddle equilibrium state at which the roots
λ1, λ2, and λ3 of the characteristic equation satisfy the following conditions:

λ1,2 = ρ± iω, ρ < 0, ω �= 0, λ3 > 0,

ρ + λ3 > 0, λ1 + λ2 + λ3 < 0.

The unstable manifold of such an equilibrium state is one-dimensional and consists (less the equilibrium
state) of two trajectories, the unstable separatrices. If one of the separatrices returns to the saddle-focus as
t → +∞ (i.e., if this separatrix lies in the two-dimensional stable manifold; see Fig. 2), then one says that
there is a homoclinic loop. Systems with homoclinic loops of saddle-focus type form bifurcation surfaces of
codimension one. It was proved in [17] (in [19] for the higher-dimensional case) that nontrivial hyperbolic
sets are present in any neighborhood of a loop. Moreover, according to [14], the following systems are dense
on the bifurcation film6: (1) systems that have nonrough periodic motions; (2) systems with countably many
stable periodic motions; (3) systems with homoclinic tangencies. The latter implies that near any system
with a loop of saddle-focus type, there exist Newhouse domains and infinite degeneracies that are described
by our Main Theorem.

The presence of degeneracies of an arbitrarily high order in the Newhouse domains renders the problem
of a complete qualitative description of a great variety of models with complex dynamics (such as those
enumerated above) unrealistic. Thus, the periodic and homoclinic trajectories of the nth order of degeneracy

6More precisely, in any one-parameter family on the film in which the quantity ν = −λ3/ρ < 1 varies monotonically.
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occur in a generic n-parameter family that intersects surfaces of a homoclinic tangency.7 But if we take into
account additional parameters, we would necessarily obtain new degeneracies of higher order, and so on.

This results were announced in [6]. A detailed scheme of the proof was presented in [7, 22]; some technical
passages that were omitted in these papers are contained in [21, 22] in one form or another. These problems
and the method for proving the above results have aroused certain interest recently; therefore, we believe
that it is appropriate to give a complete presentation of proofs. It should be noted that similar results are
valid also in the higher-dimensional case (see [9, 21]), but here we restrict ourselves to the consideration of
two-dimensional diffeomorphisms and three-dimensional flows for better clarity.

The paper consists of six sections. Section 2 is of a preparatory nature. In this section, we give the
necessary formulas for the local and global mappings, carry out the subdivision of systems with homoclinic
tangencies into classes, and prove Theorem 1, which states that in a neighborhood of any system with a
homoclinic tangency, there exist systems with homoclinic tangencies of the third class.

In Sec. 3, we study the structure of nontrivial hyperbolic subsets for the case of systems belonging to
the third class; we show that this structure essentially depends on the quantity θ (Theorem 2).

In Sec. 4, we consider the main kinds of bifurcations in one-parameter families of systems of the third
class (the role of parameter is played by the Ω-module of θ). We prove Theorem 3, which states that the values
of the parameter that correspond to secondary homoclinic tangencies are dense in such families. Theorem 4
is also proved in this section; it states that systems with infinitely many homoclinic tangencies are dense in
the set of systems with homoclinic tangencies of the third class.

In Sec. 5, we prove the Main Theorem (Theorem 5) on the density of systems with homoclinic tangencies
of an arbitrarily high order. We note that here we use the inductive method of proof, passing by small
perturbations from a tangency of order n to a tangency of order n + 1.8 In this chain of arguments, in
essence, the final step is of fundamental importance, i.e., the transition from the tangency of order r − 1 to
the tangency of order r . The latter (like a tangency of curves y = 0 and y = xr+1 at zero) is a tangency of
an “uncertain order” in the case of the Cr-topology (with an arbitrary finite r), since such a tangency can
be transformed “into anything” by arbitrarily small Cr-smooth perturbations; for instance, one can attain
the local coincidence of curves. Using this method, we prove the following result, which, in some way, makes
the assertions of the Main Theorem more specific.

Systems with homoclinic tangencies corresponding to the local coincidence of stable and unstable manifolds
are dense in the bifurcation surface of systems with homoclinic tangencies of the third class (and in Newhouse
domains as well).

In Sec. 6, we prove that there exist nonrough periodic trajectories of an arbitrarily high order of degen-
eracy (Theorem 6). Here the proof is based on the rescaling of the first-return mapping near a trajectory
with a degenerate homoclinic tangency. Thus, we find that in the case of tangency of order n, where n < r,
there exist periodic trajectories with multipliers +1 and −1 and with zero first n and first [n/2]−1 Lyapunov
values, respectively (the restriction of the corresponding mapping to the central manifold is written in the
form x̄ = ±x + lxn+1 + ..., where l �= 0). We prove that if n ≥ r, that is, in the case of homoclinic tangency
corresponding to the local coincidence of stable and unstable manifolds, there exist periodic trajectories for
which either the restriction of the Poincaré mapping to the central manifold is the identity mapping or the
square of this restriction is the identity mapping (i.e., it is a mapping of the form x̄ = x in the first case, and
it is a mapping of the form x̄ = −x in the second case).

Acknowledgments. This work was supported by the Russian Foundation for Basic Research (project
No. 99-01-00231), the INTAS (grant No. 97-804), and the Scientific Program “Universities of Russia” (project
No. 1905).

7For n = 2, bifurcations leading to the appearance of periodic trajectories with degeneracy of order two (the so-called cusps)
were studied in [15] in the case of systems with nonrough Poincaré homoclinic trajectories; in [1], such bifurcations were studied
in the case of systems with homoclinic loops of saddle-focus type.
8Here we use the lemma (Lemma 2) stating that it is possible to make up, by small perturbations, one tangency of order

n+ 1 from two tangencies (of orders n and 1, respectively).
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Fig. 3

2. Three Classes of Homoclinic Tangencies

We consider a Cr-smooth (3 ≤ r ≤ ∞) two-dimensional diffeomorphism f0. Let the following conditions
be satisfied: (A) f0 has a rough saddle periodic trajectory L0 with multipliers λ and γ, where |λ| < 1, |γ| > 1.

(B) The saddle quantity σ ≡ |λγ| is less than unity.
(C)The stable manifold (W s

0 ) and the unstable manifold (W u
0 ) of the periodic trajectory are quadratically

tangent to each other at some points of a homoclinic trajectory Γ0 (Fig. 3a).
Let O be some point of the trajectory L0. It is a fixed point for some iteration of the diffeomorphism

under consideration. We denote by T0 the restriction of this iteration to a small neighborhood U0 of the point
O (Fig. 3b) and say that T0 is a local mapping. By definition, the multipliers λ and γ are the eigenvalues of
the matrix of the linearization of T0 at the point O.

In some Cr−1-coordinates (x, y) on U0, the mapping T0 can be written in the following form (see [11,
13]):

x̄ = λx + h(x, y)x2y, ȳ = γy + g(x, y)xy2, (2.1)

where h(x, y) · xy and g(x, y) · xy are functions of class Cr−1. In particular, in these coordinate systems, the
origin corresponds to the fixed point O, the equation for the local stable manifold W s

loc of the point O is
y = 0, and the equation for the local unstable manifold W u

loc of the point O is x = 0.
The representation of T0 in the form (2.1) is rather convenient because the mapping T k0 in these coordi-

nates is linear in the principal order, uniformly for all sufficiently large k. Namely, in the case where σ < 1,
we have the following representation (see [11, 13, 29]) for the mapping T k0 : (x0, y0) �→ (xk, yk):

xk = λkx0 + |λ|kξk(x0, yk),
y0 = γ−kyk + |γ|−kηk(x0, yk),

(2.2)

where the functions ξk and ηk tend to zero as k → ∞, together with all their derivatives up to the order
(r − 1). Furthermore,

‖ξk, ηk‖Cr−2 = O(|γ|−k). (2.3)

U0 contains a countable set of points of the trajectory Γ0 (the fact that Γ0 is a homoclinic trajectory means
that positive iterations of any point of Γ0 accumulate to O along W s

loc, while the negative ones accumulate to
this point along W u

loc). We choose a pair of such homoclinic points and denote them by M+ and M−, where
M+(x+, 0) ∈W s

loc and M−(0, y−) ∈W u
loc. Without loss of generality, we can assume that x+ > 0 and y− > 0.

Let Π+ and Π− be some sufficiently small rectangular neighborhoods of the homoclinic points M+ and M−,
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respectively. They are defined as follows:

Π+ = {(x, y) | |x− x+| ≤ ε0, |y| ≤ ε0},
Π− = {(x, y) | |x| ≤ ε1, |y − y−| ≤ ε1}.

(2.4)

Obviously, for small ε0 and ε1, we have that T0(Π
+) ∩ Π+ = ∅ and T0(Π

−) ∩ Π− = ∅. Let q be a positive
integer such that f q0 (M

−) = M+ (such q always exists, since M− and M+ are points of the same trajectory).
The mapping T1 ≡ f q : Π− → U0 is called the global mapping. It can be written in the following form:

x̄− x+ = ax + b(y − y−) + ...,
ȳ = cx + d(y − y−)2 + ...,

(2.5)

where the dots denote the higher-order terms (o(|x|+ |y− y−|) in the first equation and o(|x|+ |y − y−|2) +
O(|x||y − y−|) in the second one). We note that we have bc �= 0 in (2.5) because T1 is a diffeomorphism,
and we have d �= 0 there because the tangency of T1(W

u
loc) with W s

loc at the point M+ is a quadratic one by
assumption.

The signs of quantities c and d will be of importance for us. Of course, these signs are also determined
by the choice of the orientation of the axes x and y (we recall that the orientation was fixed by setting x+ > 0
and y− > 0). A positive d corresponds to the tangency of T1(W

u
loc ∩ Π−) with W s

loc from above, while a
negative d corresponds to a tangency from below. If γ < 0, then each iteration of the mapping T0 reverses
the orientation along the y axis, and we can choose the homoclinic point M+ in such a way that d would be
positive. For λ < 0, the iterations of T0 reverse the orientation along the x axis, and we can choose homoclinic
points in such a way that c would be positive. In accordance with what was said above (see also [4]), one
can distinguish 10 different types of homoclinic tangencies; a certain combination of signs of the parameters
λ, γ, c, and d corresponds to each of these types (see Table 1). We note that in this table, the symbol +(−)
means that the sign of the corresponding parameter for this type of homoclinic tangency can be changed if
some other pair of homoclinic points is chosen.

Table 1.

H11 H21 H31 H2 H13 H23 H33 H43 H53 H63
λ + + − + + − + + − −
γ + + + + + + − − − −
d − − − + + + +(−) +(−) +(−) +(−)
c + − +(−) − + +(−) + − + −

A similar construction arises when one considers a three-dimensional flow with a saddle periodic trajecto-
ry and with a nonrough homoclinic trajectory along which the stable and unstable manifolds are quadratically
tangent to each other (Fig. 1). As U0, we take a small secant line of the periodic trajectory and denote by T0
the Poincaré mapping on U0. The point O at which the periodic trajectory intersects the secant is a saddle
fixed point for T0; therefore, here we also have formulas (2.1)–(2.3). Now, as M+ and M− we take a pair of
points at which the homoclinic trajectory intersects U0, namely, M+ on the local stable manifold and M− on
the local unstable manifold. Since these points lie on the same trajectory, the mapping T1 is defined along
the trajectories of the flow from the small neighborhood Π− of the point M− on U0 to the small neighborhood
Π+ of the point M+ on U0. Since the time of transition of the trajectory from the neighborhood of the point
M− on U0 to the neighborhood of the point M+ on U0 is finite and depends on the initial point smoothly,
T1 is a diffeomorphism. Therefore, we can write the Taylor series expansion of T1 at the point M−, which is
given by the same formula (2.5).

Throughout the rest of this paper, we deal only with the pair of mappings (T0, T1); therefore, we will not
distinguish between the cases of two-dimensional diffeomorphisms and three-dimensional flows (we use the
term “system” in both cases). We note that the set of systems f each of which is Cr-close to f0 and has a
nonrough homoclinic trajectory Γ that is close to Γ0 forms a smooth Banach submanifold H of codimension
one in the space of Cr-diffeomorphisms or Cr-flows.

We denote by U a sufficiently small neighborhood of the set O ∪ Γ0 (Fig. 3b). We study the structure
of the set N of trajectories that lie entirely in U .
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Fig. 4

Any trajectory from N (except for O) should intersect the neighborhoods Π+ and Π− (otherwise, such
trajectory will not be close to Γ0). However, not for every initial point of Π+ does its trajectory get into Π−.
The set of those points on Π+ whose iterations get into Π− under the action of T0 is the union of countably
many strips σ0k = Π+∩T−k0 Π−, k = k̄, k̄+1, ..., which accumulate to the segment Π+∩W s

loc (Fig. 4). In turn,
the images of strips σ0k under the action of T k0 are vertical strips σ1k = Π− ∩ T k0Π

+ on Π−, which accumulate
to the segment Π− ∩W u

loc (Fig. 4b). It follows from (2.2)–(2.4) that

σ0k = {(x, y)
∣∣ |x− x+| ≤ ε0,

γ−k(y− − ε1 + O(γ−k)) ≤ y ≤ γ−k(y− + ε1 + O(γ−k))},
σ1k = {(x, y)

∣∣ λk(x+ − ε0 + O(γ−k)) ≤ x
≤ λk(x+ + ε0 + O(γ−k)), |y − y−| ≤ ε1}.

(2.6)

Following [4], we assign those homoclinic tangencies to the first class for which the following holds:

γ > 0 and d < 0 (2.7)

(the first three columns of Table 1). The tangencies for which

γ > 0, λ > 0, c < 0, d > 0 (2.8)

belong to the second class (the fourth row of Table 1). All other combinations of signs of γ, λ, c, and
d correspond to homoclinic tangencies of the third class (the last six columns of Table 1). We note that,
according to (2.7) and (2.8), any quadratic tangency in the case where γ < 0 is a tangency of the third class,
and in the case where γ > 0 and λ < 0, any quadratic tangency “from above” is a tangency of the third
class. In the case where γ > 0 and λ > 0, the combination c > 0 and d > 0 corresponds to a tangency
of the third class. According to (2.5), such a tangency is a tangency “from above” (d > 0), and a right
half-neighborhood of a nonrough homoclinic point in Π− is mapped under the corresponding global mapping
T1 into a half-neighborhood that is adjacent to the parabola T1(W

u
loc) ∩Π+ “from above” (c > 0).

For the case where λ > 0 and γ > 0, the classification of homoclinic tangencies is illustrated by Fig. 5.
Here, Fig. 5a and Fig. 5b correspond to homoclinic tangencies of the first class (the tangencies are “from
below” in both cases), and Fig. 5c and Fig. 5d correspond to homoclinic tangencies of the second and third
classes, respectively (the tangencies are “from above” in both cases).

The following statement from [4] gives a complete description of the set N for the homoclinic tangencies
of the first and second classes.
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In the case of a tangency of the first class, the set N has a trivial structure: N = {L0,Γ0}. In the
case of a tangency of the second class, the set N is (nonuniformly) hyperbolic; moreover, the trajectories
from N are in a one-to-one correspondence with the trajectories of the quotient system obtained from the
Bernoulli topological scheme consisting of three symbols {0, 1, 2} by means of identification of two homoclinic
trajectories (..., 0, ..., 0, 1, 0, ..., 0, ...) and (..., 0, ..., 0, 2, 0, ..., 0, ...).

The structure of the set N in the case of a tangency of the third class is studied in the subsequent
sections. This is important to study systems of precisely this type because tangencies of the third class exist
near any system with a homoclinic tangency. That is, the following theorem holds.

Theorem 1. Let fµ be a one-parameter family that is transversal to a bifurcation surface of systems with
quadratic homoclinic tangencies when µ = 0. Then, in any neighborhood of the point µ = 0, there are values
of the parameter that correspond to quadratic homoclinic tangencies of the third class.

Proof. Let f0 have a nonrough homoclinic trajectory of the first or second class. We embed f0 into a smooth
one-parameter family fµ that for µ = 0 is transversal to the surface H of codimension one consisting of
Cr-systems that are Cr-close to f0 and have a trajectory with a homoclinic tangency that is close to Γ0.

Now the mappings T0 and T1 depend on µ. The change of variables reducing the mapping T0 to the form
(2.1) depends on µ Cr−2-smoothly (see [29]). Moreover, the functions ξ and η in formula (2.2) for T k0 also
depend on µ Cr−2-smoothly and estimates (2.3) hold for the derivatives with respect to µ as well (see [11,
13, 29]). Then both λ and γ should be considered as functions of µ (of class Cr−2).

The global mapping T1 ≡ T1(µ) is written in the form

x̄− x∗(µ) = ax + b(y − y−) + ϕ1(x, y − y−, µ),
ȳ = y∗(µ) + cx + d(y − y−)2 + ϕ2(x, y − y−, µ),

(2.9)

where x∗(0) = x+ and y∗(0) = 0; the coefficients a, b, c, and also y− are now functions of µ (of class Cr−2; we
assume that y− depends on µ in order to exclude from the equation for ȳ the term that is linear in (y− y−));
the functions ϕ1,2 do not contain linear terms, and, moreover, the coefficient of (y− y−)2 in ϕ2 turns to zero
for µ = 0. Therefore,

ϕ1 = O[(|x|+ |y − y−|)2],
|ϕ2| = O(x2 + |x||y − y−|+ |µ|(y − y−)2) + o((y − y−)2).

(2.10)

We recall that the local stable and unstable manifolds of the point O are rectified, i.e., W u
loc = {x = 0}

and W s
loc = {y = 0}. Respectively, the piece T1(W

u
loc ∩ Π−) of the unstable manifold near the point M+ is

defined by the following equation:

ȳ = y∗(µ) +
d

b2
(x− x∗)2 + o((x− x∗)2). (2.11)

The fact that the family is transversal to the bifurcation surface means that the homoclinic tangency is split
with a nonzero “rate” when µ changes, i.e.,

d

dµ
y∗(µ) �= 0.

Therefore, without loss of generality, we can assume that

y∗(µ) ≡ µ

in (2.9), and thus, T1(µ) can be rewritten as

x̄− x∗(µ) = ax + b(y − y−) + ϕ1(x, y − y−, µ),
ȳ = µ + cx + d(y − y−)2 + ϕ2(x, y − y−, µ).

(2.12)

We consider first the case where Γ0 is a nonrough homoclinic trajectory of the second class (Fig. 6); here
γ > 0, λ > 0, c < 0, and d > 0. We take a strip σ0i with a sufficiently large number i and consider those µ > 0,
for which the vertex of the curve T1(µ)(W u

loc) lies below the strip σ0i on Π+, and the curve itself intersects
this strip along two segments of the curves u1i and u2i . The vertex of curve (2.11) is the point (x∗(µ), µ); it
lies below the strip σ0i if µ � γ−i (see (2.6)). We note that this is certainly so when µ ∼ λi (since λγ < 1
by assumption, and i is taken sufficiently large), and we will consider precisely such µ. The equations of the
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Fig. 5

curves u1i and u2i on the strip σ0i are obtained from system (2.12), in which it is necessary to set x = 0 and to
take into account that the coordinates ȳ of the points on the strip σ0i should satisfy the following inequalities:

γ−i(y− − ε1) ≤ ȳ ≤ γ−i(y− + ε1) (2.13)

(see (2.6)). Thus, we obtain that the curves u1i and u2i in parametric form are defined by the equation

x0 − x∗(µ) = bt + ... , y0 = µ + dt2 + ... , (2.14)

where t runs over the values from the following interval (we take into account the fact that µ� γ−i):

γ−i/2

√
y− − ε1

d
≤ t ≤ γ−i/2

√
y− + ε1

d
(2.15)

for the curve u1i ; for u2i , t runs over the interval

−γ−i/2
√

y− + ε1
d

≤ t ≤ −γ−i/2
√

y− − ε1
d

. (2.16)

Inequalities (2.15) and (2.16) define (if we set t = y − y− and x = 0) the segments l1 and l2 that are two
connected components of the set T−11 (σ0i ) ∩W u

loc(O). Since we are considering the tangency of the second
class, small neighborhoods that are adjacent to l1 and l2 on the side of positive x are mapped under the action
of T1 below (in the direction of decreasing values of y) the curves u1,2i , i.e., to the right (in the direction of
increasing values of x) of the curve u1i and to the left of the curve u2i for b > 0 (Fig. 6b) and, conversely, they
are mapped to the left of u1i and to the right of u2i for b < 0.
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Fig. 6

Under the mapping T i0, the strip σ0i transforms into the strip σ1i ⊂ Π−, and the curves u1i and u2i transform
into the curves ū1i and ū2i , respectively; by virtue of (2.2) and (2.14), the equations of these curves are the
following ones:

x = λi(x∗ + bt + ...), γ−i(y + ...) = µ + dt2 + ... , (2.17)

where t runs over the values from the interval (2.15) for the curve ū1i , or it runs over the values from interval
(2.16) for the curve ū2i . Since λ > 0, left half-neighborhoods of the curves u1,2i are mapped to the left (in the
direction of decreasing values of x) of ū1,2i , respectively.

It is seen from (2.17), (2.10), (2.2), (2.15), and (2.16) that the curves ū1,2i are close to y = const. Namely,
on these curves ∥∥∥∥ ∂x1

∂(y1, µ)

∥∥∥∥+

∥∥∥∥∂2x1∂y21

∥∥∥∥ = O(λiγ−i/2). (2.18)

Moreover,

ū1i : x = λix+ + λib

√
γ−iy−

d
+ ... ,

ū2i : x = λix+ − λib

√
γ−iy−

d
+ ...

(2.19)

(we have taken into account the fact that µ � γ−i). Now it follows from (2.12) that the curves T1(ū
1
i ) and

T1(ū
2
i ) are quadratically tangent to W s

loc = {y = 0} for

µ = µ1,2i = |c|λi(x+ ± b

√
γ−iy−

d
+ ...). (2.20)

These curves are the images of the segments l1,2 on the local unstable manifold (with respect to the new
global mapping T1T

i
0T1), i.e., these values of µ correspond to the homoclinic tangencies. It follows from (2.12)

and (2.18) that these tangencies are split with a nonzero rate when µ changes; therefore, the family fµ is
transversal to the corresponding bifurcation films.

As was already noted, for b > 0, the right half-neighborhood of the segment l2 and, for b < 0, the right
half-neighborhood of the segment l1 are mapped under the action of T1 to the left of the curves u2i and u1i .
Futhermore, under the action of T i0, they are mapped into the left half-neighborhoods of the curves ū2i and
ū1i , respectively, which, in turn (since c < 0), are mapped above the curves T1(ū

1
i ) and T1(ū

2
i ), respectively.
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Thus, µ = µ1i for b < 0 and µ = µ2i for b > 0 correspond to the homoclinic tangencies of the third class (see
Fig. 6b for the case b > 0).

To complete the proof, it remains to consider the case of the tangency of the first class (the first three
columns in Table 1). This means that γ > 0 and d < 0, i.e., for µ = 0, we have the tangency from below
(as in Fig. 5a and Fig. 5b). For µ < 0, the stable and unstable manifolds do not have intersections, and for
µ > 0, there appear two transversal intersections and the piece T1(W

u
loc∩Π−) of the unstable manifold enters

the domain y > 0. We show that in this case, there exist values of µ > 0 for which the homoclinic tangency
from above appears; moreover, the family fµ is transversal to the corresponding bifurcation surface. Such a
tangency is either of the third class (in the case where λ < 0 it is always so) and then the theorem is proved,
or it belongs to the second class. The appearance of tangencies of the third class in this case for the values
of parameters that are close to each other was just proved above.

We take a strip σ0i with a sufficiently large number i. We consider those µ > 0 for which the vertex of
the curve T1(W

u
loc ∩ Π−) lies inside the strip σ0i (Fig. 7 for the case where λ > 0, c < 0 and Fig. 10a for the

case where λ > 0, c > 0), i.e., (see (2.11), (2.6))

γ−i(y− − ε1) ≤ µ ≤ γ−i(y− + ε1).

The equation of the piece T−11 (W s
loc ∩ Π+) of the stable manifold of the point O near the point M− has

the following form (we set ȳ as in (2.12) and also use (2.10)):

x = −
µ

c
+
|d|

c
(y − y−)2 + . . . . (2.21)

Since µ ∼ γ−i � |λ|i, this curve always has two connected components ν1,2i in the intersection with the
vertical strip σ1i , which is at a distance of about |λ|i from y = 0 (see (2.6)). According to (2.2) and (2.3), the
images ν̃1,2i of these components with respect to the mapping T−i0 are defined in a neighborhood of the point
M+ by the following parametric equation:

λi(x + ...) = −
µ

c
+
|d|

c
t2 + . . . , y = γ−i(y− + t + ...), (2.22)

where t is a parameter that runs over the values from −ε1 to ε1 and x takes values near x+. Since µ� |λ|i,
it is easy to see that the curves ν̃1,2i are close (at least in C2 and also in C1 with respect to µ) to the straight
lines

y = γ−i(y− ±

√
µ

|d|
+ ...).

Now it is obvious (see (2.11)) that T1(W
u
loc ∩ Π−) has the quadratic tangency with the curves ν̃1,2i for

µ = µ±i = γ−i(y− ±

√
γ−i

|d|
+ ...).

For both values of µ, the curve T1(W
u
loc ∩ Π−) is tangent to the corresponding curve ν̃1,2i from below, i.e.,

on the side corresponding to the decrease of y. Since γ > 0, the image T i0T1(W
u
loc ∩ Π−) is also adjacent to

T−11 (W s
loc ∩Π+) from below in both cases (Figs. 8, 9, and 10). This means that the piece T1T

i
0T1(W

u
loc ∩Π−)

of the unstable manifold W u is tangent to W s
loc from different sides for µ = µ+i and µ = µ−i . Thus, one of

these tangencies is a tangency of the first class (as the original one is) (Fig. 9 and Fig. 10b), while the other
is either a tangency of the second class (Fig. 10c) or a tangency of the third class (Fig. 8), which completes
the proof of the theorem.

3. Nontrivial Hyperbolic Subsets of Systems with Homoclinic Tangencies of the Third Class

Before turning to the study of the set of trajectories that lie entirely in a small neighborhood of a
nonrough homoclinic trajectory, we will make more precise the method by which such neighborhoods are
chosen. This method is completely determined by the choice of neighborhoods Π+ and Π− of the homoclinic
points M+ and M−, respectively; this is convenient first of all from the instrumental point of view. Namely,
we choose the neighborhoods in such a way that, for some sufficiently large k̄, these neighborhoods would
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Fig. 7

contain entirely all strips σ0k and σ1k with numbers k ≥ k̄ and would not intersect strips whose numbers are
less than k. Such neighborhoods are called special; the way in which they are constructed is described, e.g.,
in [5, 11].

Schematically, a special neighborhood is constructed as follows (Fig. 11). The initial arbitrarily small
neighborhoods Π+ and Π− are further diminished by removing “everything unnecessary” from them. Namely,
we remove the points that get from Π+ to Π− for less than k iterations of the mapping T0 and remove the
points that get from Π− to Π+ for less than k iterations of the mapping T−10 . Thus, by virtue of (2.2) we
retain in Π+ only those points for which |y| ≤ |γ|−k̄(y− + ε1), and in Π−, we retain only those points for
which |x| ≤ |λ|k̄(x+ + ε0).

Furthermore, we retain in Π+ only such a “minimal” rectangular neighborhood of the point M+ that
contains T1(Π

−)∩Π+, while, in Π−, we retain only such a “minimal” rectangular neighborhood of the point
M− that contains T−11 (Π+) ∩ Π− (see Fig. 11). As a result, we obtain (see [5, 11]) that without loss of
generality, we can choose Π+ and Π− as follows:

Π+ = {(x, y) | |x− x+| ≤ ρk̄, |y| ≤ |γ|
−k̄(y− + ρk̄)},

Π− = {(x, y) | |x| ≤ |λ|k̄(x+ + ρk̄), |y − y−| ≤ ρk̄},
(3.1)

where ρk̄ = C|γ|−k̄/2 and C is some positive constant that does not depend on k̄.
The images T1σ

1
k of the strips σ1k have the form of horseshoes (see Fig. 12) that accumulate to the piece

lu = T1(W
u
loc) ∩ Π+ of the unstable manifold of the point O as k → ∞. It is obvious that the trajectories

from the set N (from the set of all trajectories lying entirely in the special neighborhood) should cross Π+

at points of intersections of horseshoes T1σ
1
i with strips σ0j for various i, j ≥ k. Thus, it is clear that the

structure of the set N essentially depends on the character of these intersections.
A nonempty intersection of a horseshoe with a strip can be tame or it can be wild (different types of

intersections are shown in Fig. 13). Namely, the intersection of the horsehoe T1σ
1
i with the strip σ0j is tame

if the set T1σ
1
i ∩ σ0j consists of two connected components σ01ji and σ02ji (Fig. 14), and the restriction of the

mapping T̃i ≡ T1T
i
0 to the inverse images T̃−1i σ01ji and T̃−1i σ02ji (to the substrips σ01i and σ02i on σ0i ) is a saddle

mapping in the sense of [18] (i.e., it is a contracting mapping along the x axis and it is an expanding mapping
along the y axis; the exact definition will be given below).
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Fig. 8

The following result was proved in [5] (see also [11, 12]).

Lemma 1. There exist a sufficiently large k̄ and a positive constant S1, depending only on f0 and independent
of k̄ such that

(1) if the inequality

d[γ−jy− − cλix+] > Sk̄(i, j), (3.2)

where Sk̄(i, j) = S1(|λ|i+|γ|−j)·|γ|−k̄/2, holds for some integers i, j ≥ k̄, then the intersection of the horseshoe
T1σ

1
i with the strip σ0j is tame;
(2) if the inequality

d[γ−jy− − cλix+] < −Sk̄(i, j) (3.3)

holds for some integers i, j ≥ k̄, then T1σ
1
i ∩ σ

0
j = ∅.

It is convenient to restate this lemma in the following way: if the horseshoe T1σ
1
i has a wild intersection

with the strip σ0j (i.e., if, for instance, the intersection T1σ
1
i ∩ σ0j consists of one connected component, or if

the corresponding mappings are not saddle ones), then we necessarily have

|d| · |γ−jy− − cλix+| ≤ Sk̄(i, j). (3.4)

Also, if T1σ
1
i ∩ σ

0
j �= ∅, then the inequality

d[γ−jy− − cλix+] ≥ −Sk̄(i, j) (3.5)

holds.
Inequalities (3.2)–(3.5) have a relatively simple geometric sense. The strip σ0j is a thin horizontal rectangle

on Π+ with the central line y = γ−jy−, and the strip σ1i is a thin vertical rectangle on Π− with the central
line x = λix+. By (2.2), the strip σ1i is mapped under the action of T1 into the horseshoe whose central line
is the parabola y = cλix++d((x−x+)/b)2. The condition d[γ−jy−− cλix+] > 0 implies that the straight line
y = γ−jy− and the above parabola intersect at two points, while the condition d[γ−jy− − cλix+] < 0 implies
that they do not intersect. Allowance is made for the nonzero thickness of both the strip and the horseshoe
by means of the coefficient Sk(i, j) in (3.2)–(3.5).

We recall that in order for the intersection to be tame, it is also necessary to verify that the mapping
T̃i = T1T

i
0 is a saddle mapping on T̃−1i σ01ji and on T̃−1i σ02ji . We will adhere to the following definition: the

mapping (x1, y1) �→ (x2, y2) (where (x1, y1) ∈ X1 × Y1, (x2, y2) ∈ X2 × Y2, and X1, X2, Y1, and Y2 are some
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Fig. 9

closed subsets of Banach spaces) is said to be saddle if x2 and y1 are uniquely defined by any x1 ∈ X1 and
y2 ∈ Y2 and, moreover, the mapping of the correspondence (x1, y2) �→ (x2, y1) (the so-called cross mapping)
is contractive in the metric max{‖x‖, ‖y‖}.

We note that from the definition it follows directly that the composition of saddle mappings is a saddle
mapping itself. It is also obvious that, for any function y1 �→ x1 with Lipschitz constant ≤1, the saddle
mapping transforms the graph of this function into the graph of the function y2 �→ x2 that is defined for all
y2 ∈ Y2 and is a Lipschitzian function with Lipschitz constant that is uniformly less than 1; moreover, the
mapping is expansive along the y axis. Similarly, the inverse mapping transforms a graph of any function
x2 �→ y2 with a Lipshitz constant ≤1 into the graph of the function x1 �→ y1, which is defined for all x1 ∈ X1
and is a Lipshitz function with Lipschitz constant that is uniformly less than 1; moreover, it is expanding
along the x axis. Therefore, a fixed point9 of the saddle mapping acting from the product X × Y into this
same product is a rough saddle (hyperbolic) point; moreover, the stable and unstable manifolds of this point
are the graphs of the functions (respectively x �→ y and y �→ x) that are defined for all x ∈ X (respectively,
for all y ∈ Y ) and have Lipschitz constants <1.

It is obvious that, to a certain extent, the definition of the saddle mapping depends on the choice of
coordinates in X1×Y1 and X2×Y2. On the strips σ0i , we use coordinates that are introduced in the following
way. First of all, let (xi, yi) = T i0(x0, y0) for any point (x0, y0) ∈ σ0i . Then, by (2.2), xi and y0 are uniquely
defined by (x0, yi); therefore, (x0, yi) can be chosen as coordinates on σ0i . We denote such coordinates by
(x′, y′) (here we also have |x′ − x+| ≤ ρk̄ and |y′ − y−| ≤ ρk̄; see (3.1)).

From (2.2) and (2.5), we obtain the following relation for the restriction of the mapping T̃i to T̃−1i (T1σ
1
i ∩

σ0j ):

x̄′ − x+ = a(λix′ + λiξi(x
′, y′)) + b(y′ − y−) + ...,

γ−j ȳ′ + γ−jηj(x̄
′, ȳ′) = c(λix′ + λiξi(x

′, y′)) + d(y′ − y−)2 + ....
(3.6)

9Such a fixed point exists and is unique by virtue of the contraction mapping principle: obviously, the fixed points of the
original and cross mappings coincide.
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Fig. 10

If inequality (3.2) holds with appropriate S1, then relation (3.6) can be rewritten in a cross form as

x̄′ = x+ + λi(x′ + . . . )± b

√
γ−j(

1

d
ȳ′ + . . . )− λi(

c

d
x′ + . . . ),

y′ = y− ±

√
γ−j(

1

d
ȳ′ + . . . )− λi(

c

d
x′ + . . . ),

(3.7)

where the signs “+” and “−” correspond to the mapping T̃i on the components T̃−1i σ01ji and T̃−1i σ02ji , respec-
tively. Dots denotes terms that tend to zero as i, j → +∞. Obviously, if (3.2) is satisfied, then the cross
mapping (3.7) is contractive and, therefore, the mapping T̃i|T̃−1i (T1σ1i ∩σ0j ) is, in fact, a saddle mapping.

Lemma 1 allows us to give a rather detailed description of the structure of hyperbolic subsets in a
neighborhood of a homoclinic tangency. We note that for each trajectory from the set N\O, we can define
in a natural way its coding, i.e., the following sequence of positive integers:

(..., k−s, ..., ks, ...), (3.8)

where ks (ks ≥ k̄) is the number of the strip to which the sth point Ms of the intersection of the trajectory
with Π+ belongs. Codings that are infinite on both sides correspond to those trajectories from N that do not
lie either in the stable manifold of the point O or in the unstable manifold of this point. For each trajectory
from W s, its last point of intersection with Π+ belongs to W s

loc, and its further iterations under the action
of T0 do not leave a small neighborhood of the point O (and tend to O). Correspondingly, the codings of
such trajectories are finite on the right, and we end them by the symbol +∞. Codings for trajectories from
W u (i.e., for trajectories that are α-limit with respect to O) are finite on the left and begin with the symbol
+∞. Codings for trajectories that are homoclinic with respect to O (i.e., for trajectories belonging to the
intersection of the stable manifold with the unstable one) are finite on both sides.
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A pair of integers (ks, ks+1) with ks ≥ k̄ and ks+1 ≥ k̄ is said to be inadmissible if inequality (3.3) holds
for j = ks and i = ks+1; otherwise (if the inequality (3.5) is fulfilled), this pair is said to be admissible. An
admissible pair (ks, ks+1) for which inequality (3.2) is fulfilled (for j = ks and i = ks+1) is said to be tame.
A sequence {ks} of integers with ks ≥ k̄ is said to be admissible if any pair (ks, ks+1) in this sequence is
admissible. Finally, an admissible sequence is said to be tame if any pair (ks, ks+1) is tame. It is obvious
that in the case of a tangency of the second class (γ > 0, λ > 0, d > 0, and c < 0), all sequences with
ks ≥ k̄ are tame (except for the sequence (+∞,+∞), which is the coding of the original trajectory Γ0 with
the homoclinic tangency), provided that k̄ is sufficiently large. For tangencies of the first class (γ > 0 and
d < 0), any pair (i, j) with j ≤ i is not admissible (by virtue of the fact that |λγ| < 1); therefore, in this
case, there are no admissible sequences that are infinite on the left10; the only admissible sequence bounded
by the symbol +∞ on the left that is possible in this case is the sequence (+∞,+∞).

For the systems with homoclinic tangencies of the third class, the set of admissible and/or tame sequences
has a nontrivial structure.

In the case where γ > 0, λ > 0, c > 0, and d > 0 (the fifth column of Table 1), taking the logarithm of
inequalities (3.2) and (3.5), we see that the pair (i, j) is admissible if

j ≤ iθ − τ + S|γ|−k̄/2; (3.9)

this pair is tame if

j < iθ − τ − S|γ|−k̄/2, (3.10)

where

θ = −
ln |λ|

ln |γ|
, τ =

1

ln |γ|
ln
∣∣∣cx+
y−

∣∣∣,
and S is some positive constant.

In the case where λ > 0, γ < 0, c > 0, and d > 0 (the sixth column of Table 1), it follows from (3.2)–(3.5)
that any pairs (i, j) with an odd i are not admissible, while the pairs with an even i are admissible (or tame)
if inequality (3.9) (respectively, (3.10)) holds.

In the case where λ > 0, γ < 0, c < 0, and d > 0 (the seventh column of Table 1), any pair (i, j) with an
even i is tame, and that with an odd i is admissible if the inequality

j ≥ iθ − τ − S|γ|−k̄/2 (3.11)

holds; this pair is tame if the inequality

j > iθ − τ + S|γ|−k̄/2 (3.12)

holds.
In the case where γ > 0, λ < 0, d > 0, and c > 0 (the eighth column of Table 1), any pair (i, j) with an

odd j is tame, while a pair with an even j is admissible (or tame) if inequality (3.9) (respectively, (3.10))
holds.

In the case where γ < 0, λ < 0, c > 0, and d > 0 (the ninth column of Table 1), pairs (i, j) with an even
i and an odd j are always tame, and those with an odd i and an even j are always not admissible; pairs (i, j)
with both i and j even are admissible (or tame) if inequality (3.9) (respectively, (3.10)) holds; pairs (i, j)
with both i and j odd are admissible (or tame) if inequality (3.11) (respectively, (3.12)) holds.

Finally, in the case where γ < 0, λ < 0, c < 0, and d > 0 (the tenth row of Table 1), pairs (i, j) with both
i and j even are always tame, while those with both i and j odd are always inadmissible; pairs (i, j) with i
odd and j even are admissible (or tame) if inequality (3.9) (respectively, (3.10)) holds; pairs (i, j) with i even
and j odd are admissible (or tame) if inequality (3.11) (respectively, (3.12)) holds.

The following theorem is a strengthened version of the theorem proved in [4].

Theorem 2. (1) A coding of any trajectory from N\O is an admissible one.
(2) For any infinite tame sequence K = {ks}, there is a continuum of trajectories with the coding K in N ,

and if K is a finite tame sequence of length n, then there are exactly 2n−1 rough and homoclinic with respect

10Here the values of ks in the admissible sequence should decrease with decrease in s, but ks ≥ k̄ by condition.
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Fig. 11

to O trajectories with the coding K in N . Namely, for any sequence {αs} composed of the symbols “1” and
“2,” there exists a unique trajectory such that the successive points Ms of intersection of this trajectory with
Π+ lie in the components σ0αsks,ks−1 of the intersection T1σ

1
ks−1
∩ σ0ks.

Proof. By definition, we have

Ms ∈ T1σ
1
ks−1
∩ σ0ks, (3.13)

where {Ms} is the sequence of points of intersection of the trajectory with Π+ and {ks} is the coding of the
trajectory. It should be noted that this relation makes sense also in the case of finite (on the left or on the
right) codings for σ1∞ ≡W u

loc ∩ Π− and σ0∞ ≡W s
loc ∩Π+.

Now the assertion of item 1 of the theorem follows immediately from (3.13) and item 2 of Lemma 1. To
prove item 2 of the theorem, we note that if the sequence K is tame, then it follows from item 1 of Lemma
1 that for any pair (ks−1, ks), the intersection T1σ

1
ks−1
∩ σ0ks consists of two components, σ01ksks−1 and σ02ksks−1.

Therefore, the trajectory has the coding K if and only if, for some sequence {αs} consisting of the symbols
1 and 2, we have

Ms ∈ σ0αsksks−1 (3.14)

for all points Ms. By definition,

Ms = T̃ks−1Ms−1; (3.15)

moreover, since the pair (ks−1, ks) is tame, the mapping T̃ks−1 is a saddle one on σ0αsksks−1 .

Thus, for each tame sequence K and for each sequence {αs}, we have the sequence of spaces σ0αsksks−1 and

the sequence of saddle mappings T̃ks acting from σ0αsksks−1 into σ
0αs+1
ks+1ks

. Now if K is infinite on both sides, then

1755



Fig. 12

the existence and uniqueness of the sequence Ms satisfying (3.14) and (3.15) follows from the lemma (see
[18]) on a fixed point of a sequence of saddle mappings in the countable product of spaces.11

In order to prove the theorem for the case of a finite on the left tame sequence K, we note that the curve
T1(W

u
loc ∩Π−), in its intersection with any strip σ0j such that the pair (+∞, j) is tame, is defined by the first

formula in (3.7), in which it is necessary to set i = +∞. Therefore, it is a vertical curve, i.e., a curve of the
form x′ = ϕ(y′), where the function ϕ is defined for all y′ and has Lipschitz constant that is less than 1. By
the property of saddle mappings, all further images of W u

loc ∩Π−, which are defined according to the rule

ls = (T̃ks−1ls−1) ∩ σ0αsksks−1 , l1 = σ0α1k1+∞,

likewise are vertical curves, and the mappings T̃ks|ls are expanding along the y′ axis. The lemma on a fixed
point of a sequence of contractive mappings in the countable product of spaces (see [18]), when applied to
the sequence

l1
T̃−1k1←− l2

T̃−1k2←− · · ·
T̃−1ks−1
←− ls

T̃−1ks←− . . . ,

implies that the sequence of points Ms such that

Ms ∈ ls, Ms+1 = T̃ksMs

exists and is unique. By construction, it is exactly the sequence of points of intersection of Π+ with the
trajectory with the coding K; the existence and uniqueness of it for every given sequence {αs} is stated in
item 2 of Theorem 2.

11We look for a sequence of points (x′s, y
′
s) ∈ σ

0αs
ksks−1

such that T̃ks(x
′
s, y

′
s) ≡ (x̄′s+1, ȳ

′
s+1) = (x′s+1, y

′
s+1), but since the

mappings T̃ks are all saddle ones, the cross mapping ({xs}, {ȳs}) �→ ({x̄s}, {ys}) is a contractive mapping on the space of
sequences with the norm maxsmax{|xs|, |ys|}.
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Fig. 13

In the case of a finite on the right tame sequence K, the proof is similar; here the corresponding inverse
images of W s

loc ∩Π+ are horizontal curves, i.e., curves of the form y′ = ψ(x′), where the function ψ is defined
for all x′ and has Lipschitz constant that is less than 1.

Finally, in the case of a finite tame sequence K, each homoclinic point is found as the unique point of the
transversal intersection of the corresponding vertical curve (the image of W u

loc ∩Π−) with the corresponding
horizontal curve (the inverse image of W s

loc ∩ Π+). The theorem is proved.

We denote by Ñ the set of trajectories with tame codings from N that was constructed in Theorem
2. For any trajectory with a coding {ks} from Ñ one can construct a refined coding of this trajectory, i.e.,
the sequence of symbols “0,” “1,” and “2” that is obtained from the initial coding by replacing each symbol
ks with the sequence 0 . . . 0︸ ︷︷ ︸

ks

1 or with the sequence 0 . . . 0︸ ︷︷ ︸
ks

2, depending on to which component, σ01ks+1ks or

σ02ks+1ks , belongs the corresponding point Ms+1, at which the trajectory intersects Π+ (if the first on the left
(or the last on the right) ks = +∞, then we simply replace it by an infinite sequence of zeros). By Theorem 2,
the trajectories from Ñ are uniquely reconstructed by the refined coding. Therefore, if we define a dynamical
system on the set of points at which trajectories from Ñ intersect a small neighborhood U0 of a point O in
the following way: the mapping T0 acts on points from U0\Π−, and the mapping T1 acts on Π−, then the
system thus obtained would be topologically conjugate to the mapping of the shift on the set of refined codings.

In particular, a periodic trajectory corresponds to a periodic coding. Each of the points at which this
trajectory intersects Π+ is a fixed point for the product of the sequence of saddle mappings for the period of
the coding. Since such a product is itself a saddle mapping, this periodic trajectory is a rough saddle one,
and, for every point at which this trajectory intersects Π+, the stable and unstable manifolds of these points
are the horizontal and vertical curves, respectively. Heteroclinic (or homoclinic) trajectories of transversal
intersection of stable and unstable manifolds of the corresponding periodic trajectories correspond to the
codings that are asymptotically periodic on both sides.
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Fig. 14

We note that any point at which every trajectory from Ñ intersects Π+ has, in general, stable and
unstable manifolds that are horizontal and vertical curves, respectively, i.e., all trajectories from Ñ are
saddle ones, and the set Ñ is (nonuniformly) hyperbolic (see [4, 5]).

Although the set Ñ may not coincide with the entire set N\{O,Γ0}, in any case, it is a good approxima-
tion of the latter set. Indeed, trajectories of the nonsaddle type from N should have at least two successive
points of intersection with Π+ that belong to the strips σ0i and σ0j whose numbers should satisfy the inequality

|j − iθ + τ | ≤ Ŝ|γ|−k/2, (3.16)

which is equivalent to (3.4). The solutions of the latter inequality are given by the set of points (i, j) (with
integral coordinates) that lie in a narrow band on the plane (the greater the k̄, the narrower this band). It
is clear that the structure of this set essentially depends on θ and τ . For instance, in the case where θ is
rational, θ = p/q, τq �∈ Z, this set is empty for a sufficiently large k̄ (which depends on θ and τ). It is easy
to see that in this case, the set of admissible coding (without (+∞,+∞)) coincides with the set of tame
codings, and we have the following result, which was obtained earlier in [5].

Let θ = p/q, and let τq �∈ Z. Then there exists k = k(θ, τ) such that N\{L0,Γ0} = Ñ , that is, all
trajectories from N\Γ0 are saddle trajectories.

From the geometric standpoint, the fact that the set of integer solutions to inequality (3.16) is empty
for rational θ and suitable τ means that the vertices of all horseshoes get into the spaces between strips for
such θ and τ . Since the number of strips is infinite, this situation is not rough. Thus, if θ is irrational,
then inequality (3.16) has countably many integer solutions for any k. Therefore, countably many strips and
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horseshoes can have wild intersections, which results in a rather nontrivial dynamics that will be considered
below. It is important for us that the sets of integer solutions to inequalities (3.9)–(3.12) change under an
arbitrarily small change in θ, and, by Theorem 2, the sets N and Ñ necessarily change.

4. Coexistence of Homoclinic Tangencies of the Third Class

Let f0 be a system with a saddle periodic trajectory L0 and with a nonrough trajectory Γ0 of the third
class homoclinic to L0. The set of systems f that are Cr-close to f0 and have a homoclinic trajectory Γ that
is close to Γ0 form a smooth Banach submanifold H of codimension one.

We consider a one-parameter family fν of systems containing f0 on H. We assume that the quantity
θ = − ln |λ|/ ln |γ| varies monotonically as ν changes, i.e.,

θ′(ν) �= 0. (4.1)

As was noted in the preceding section, the sets of integer solutions to inequalities (3.9)–(3.12) change
under an arbitrarily small change in θ. Therefore, for arbitrarily small changes in the values of the parameter,
bifurcations should take place in the set N of all trajectories lying in a small neighborhood U of the set L0∪Γ0.
Thus, the following result holds.

On the interval of variability of ν, the subsets B+1 , B
−
1 , and B2 are dense. These subsets are such that

(1) the system fν has a nonrough twicely going around
12 periodic trajectory of saddle-node type for

ν ∈ B+1 , and it has a nonrough twicely going around periodic trajectory with multiplier equal to −1 for
ν ∈ B−1 ;

(2) for ν ∈ B2, the system fν has infinitely many stable twicely going around periodic trajectories in U .

Item (1) was proved in [4, 12], and item (2) was proved in [12]. Our further considerations are based on
the following result of the same kind.

Theorem 3. ([11]). The values of the parameter ν for which fν has a trajectory of a quadratic homoclinic
tangency in U that is different from Γ are dense on the interval of variability of ν.

Proof. We take arbitrary ν1 �= ν2 that are sufficiently close to each other, so that θ1 ≡ θ(ν1) �= θ(ν2) ≡ θ2,
and, for definiteness, we assume that θ1 > θ2. We consider the case where λ > 0, γ > 0, c > 0, and d > 0
(Fig. 5d) first.

We note that for any arbitrarily large k̄, there exist integers i ≥ k̄ and j ≥ k̄ such that
(1) the pairs (i, i) and (j, i) are tame for all ν, i.e., the horseshoes T1σ

1
i and T1σ

1
j intersect the strip σ0i

tamely (Fig. 15);
(2) for ν = ν1, the pair (i, j) is tame, and for ν = ν2 it is inadmissible, i.e., for ν = ν1, the horseshoe

T1σ
1
i intersects the strip σ0j tamely (Fig. 15a), and for ν = ν2 it does not intersect this strip at all (Fig. 15b).

To attain this (see the preceding section), it is sufficient to choose i ≥ k̄ and j ≥ k̄ in such a way that
the following inequalities are fulfilled simultaneously:

j − iθ1 + τ(ν1) < −S|γ(ν1)|
−k̄/2 (4.2)

and

j − iθ2 + τ(ν2) > S|γ(ν2)|
−k̄/2, (4.3)

where (4.2) is equivalent to (3.2), and (4.3) is equivalent to (3.3). It is clear that the set of such pairs (i, j)
is countable for any θ1 > θ2. We fix one such pair and denote it by (i∗, j∗).

Let pi be a point on the strip σ0i that is a fixed point for the first return mapping Ti ≡ T1T
i
0 : σ0i → σ0i .

In general, for each sufficiently large i, there are exactly two such points in the case under consideration. In
the class of diffeomorphisms on H, both these points are rough saddle ones. Let pi be one of them.

We denote by Ŵ s
i a connected component of the set W s(pi) ∩ σ0i that contains the point pi. We show

that for any sufficiently large i, the curve Ŵ s
i has the form of a segment that crosses the strip σ0i horizontally

12That is, intersecting Π+ exactly at two points.
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Fig. 15

(and which is asymptotically close to the straight line y = γ−iy−) (Fig. 16). We denote by Ŵ u
i the connected

component of the set W u(pi) ∩ (T1(σ
1
i ) that contains pi. We show that Ŵ u

i has the form of a segment of a
parabola (defined by an equation of the type y = cx+λi + db−2(x − x+)2 + ...) which crosses the horseshoe
T1(σ

1
i ) along its whole length (Fig. 16).

When ν = ν2, since the inequality (4.3) holds for i = i∗ and j = j∗, we have Ŵ u
i∗ ∩ Ŵ s

j∗ = ∅ because the
horseshoe T1(σ

1
i∗) and the strip σ0j∗ do not intersect (Fig. 17a). On the other hand, for ν = ν1, the curves

Ŵ u
i∗ and Ŵ s

j∗ intersect exactly at two points, since the horseshoe T1(σ
1
i∗) and the strip σ0j∗ intersect tamely

(for i = i∗, j = j∗, and θ = θ1, inequality (4.2) holds). Thus, we obtain that under a continuous change
in the value of the parameter ν, there exist some ν∗ ∈ (ν1, ν2) such that f(ν∗) has a nonrough heteroclinic
trajectory in which points the unstable manifold of the point pi∗ and the stable manifold of the point pj∗

are tangent to each other. Since the intersection of the horseshoe T1(σ
1
j∗) with the strip σ0i∗ is always tame

(because j∗ > i∗), it follows that there exists a rough heteroclinic trajectory lying in the intersection of the

stable manifold of the point pi∗ with the unstable manifold of the point pj∗ (in particular, the curves Ŵ u
j∗

and Ŵ s
i∗ always intersect transversally). Thus, the diffeomorphism f(ν∗) has a nonrough heteroclinic contour

containing twicely going around periodic trajectories that intersect Π+ at the points pi∗ and pj∗, respectively,
and two heteroclinic trajectories, one of which is nonrough (Fig. 17b). This contour is the simplest one in

the sense that already the curves Ŵ u
i∗ ⊂ W u(pi∗) and Ŵ s

j∗ ⊂ W s(pj∗) have tangency. Heteroclinic contours
of this type are denoted by Cij .

It is clear that we can obtain homoclinic tangencies of the stable and unstable manifolds of either the
point pi∗ or the point pj∗ by an arbitrarily small (smooth) perturbation of the contour Ci∗j∗. The simplest
tangency of this class, which, in addition, can be directly calculated (see below), is the homoclinic tangency

of the curve Ŵ u
i∗ ⊂W u(pi∗) with one of the connected components of the set W s(pi∗)∩σ0j∗, which are defined

in the following way. Since the horseshoe T1(σ
1
j∗) intersects the strip σ0i∗ tamely, the intersection T1(σ

1
j∗)∩Ŵ

s
i∗

consists of two segments l1i∗ and l2i∗ (Fig. 18). The inverse images of these segments with respect to the

mapping T−j
∗

0 T−11 : σ0i∗ → σ0j∗ are the horizontal curves Ŵ s1
i∗j∗ and Ŵ s2

i∗j∗ on the strip σ0j∗ (Fig. 17), which are
the pieces of the manifold W s(pi∗). The instances of the corresponding homoclinic tangencies are shown in
Fig. 18a and Fig. 18b.
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Fig. 16

To complete the proof of the theorem, it remains to make the corresponding calculations (for the curves

Ŵ s
i , Ŵ

u
i , Ŵ s1

i∗j∗, and Ŵ s2
i∗j∗) in the case where γ > 0, λ > 0, c > 0, and d > 0. We note that θ > 1 because

|λγ| < 1. Since j∗ and i∗ are sufficiently large, it follows from (4.3) that j∗ > i∗. This implies that the
pairs (i∗, i∗) and (j∗, i∗) are always tame because they satisfy inequality (3.2), in which it is necessary to set
j = i = i∗ in the first case and j = i∗ and i = j∗ in the second case.

In order to find the equations of the curves Ŵ s
i∗ and Ŵ u

i∗, we use the representation of the mapping
T̃i ≡ T1T

i
0 on the strip σ0i∗ in the form (3.7) (in which it is necessary to set j = i = i∗). Using this formula,

we immediately determine the coordinates of the point pi∗:

x = x+ + O(|γ|−i
∗/2), y = γ−i

∗
y− + O(|γ|−3i

∗/2),

since the “cross” coordinates (x′, y′) and the proper coordinates (x, y) on the strip σ0i are related (see (2.2)
and (2.3)) by the following formula:

x = x′, y = γ−iy′ + γ−iηi(x
′, y′), (4.4)

where ηj → 0 as j → +∞, together with all its derivatives up to the order (r − 1) (possibly, except for the
(r − 1)th derivative with respect to the parameter ν), and where ‖ηi‖Cr−2 = O(|γ|−i).

As was noted in the preceding section, Ŵ s
i is a horizontal curve in the coordinates (x′, y′) (i.e., it is

a curve of the form y′ = y− + ϕ(x′), where the function ϕ is defined for all |x − x+| ≤ ρk̄ and |ϕ| ≤ ρk̄,∣∣∣ d
dx′

ϕ
∣∣∣ < 1; here ρk̄ = C|γ|−k̄/2 is the size of the neighborhoods Π±). By the definition of a stable manifold,

we have that

W s
i ⊂ T̃−1i W s

i ,

and formula (3.7) immediately implies that T̃−1i W s
i ∩ σ

0
i is given by the following equation:

y = γ−iy− + O(|γ|−3i/2), (4.5)
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Fig. 17

i.e., in the given coordinates, it is the curve that deviates from the straight line y′ = γ−iy− not more than
by a distance of about O(|γ|−3i/2), doing so together with all its derivatives.13

By the property of saddle mappings, each of the two components of the inverse image of

T̃−1j∗ Ŵ
s
i∗ ≡ T−j

∗

0 (T−11 Ŵ s
i∗)

is also a horizontal curve (in the cross coordinates (x′, y′)). We recall that the pair (j∗, i∗) is tame, and,
therefore, the mapping T̃j∗ is a saddle mapping on the set T̃−1j∗ (T1σ

1
j∗ ∩ σ

0
i∗). We denote these components by

Ŵ s1
i∗j∗ and Ŵ s2

i∗j∗. The mapping T̃j∗ is given by formula (3.7), in which it is necessary to set i = j∗ and j = i∗.

Moreover (we recall that j∗ > i∗, and, therefore, |γ|−i
∗
� |λ|j

∗
), the inverse image of curve (4.5) under the

action of T̃j∗ is also given by an equation of the form (4.5), but already in the coordinates (x′, y′), which are

related to the strip σ0j∗ by the formula (4.4) with i = j∗. Correspondingly (see (4.5)), the curves Ŵ s1
i∗j∗ and

Ŵ s2
i∗j∗ have the form

y = γ−j
∗
y− + |γ|−j

∗
pα(x, ν), (4.6)

where α = 1, 2 and (see (2.3))

‖pα‖Cr−2 = O(|γ|−i
∗/2) and

dr−1pα

dxr−1
→ 0 as i∗, j∗ → +∞. (4.7)

We denote by W u
i a connected component of the unstable manifold W u(pi) ∩ σ0i that contains pi. Since

pi is a fixed point of the saddle mapping, W u
i is a vertical curve of the form x′ = x+ + ψ(y′), where |ψ| ≤ ρk̄

and
∣∣∣ d
dx′

ψ
∣∣∣ < 1. Since

W u
i ⊂ T̃iW

u
i ,

it immediately follows from formula (3.7) (in which it is necessary to set i = j) that W u
i is given by the

equation

x′ = x+ + O(|γ|−i/2).

13Up to the order (r − 1) (possibly, except for the (r − 1)th derivative with respect to the parameter ν; this derivative may
not exist because we are bringing the system to the form (2.1); see [29] for details).
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Fig. 18

Now, according to formula (2.2) (in which it is necessary to set k = i, yk = y′ = y, x0 = x′, and xk = x), the
image of T i0W

u
i in σ1i has the form

x = λix+ + |λ|iq(y, ν), (4.8)

where (see (2.3))

‖q‖Cr−2 = O(|γ|−i/2) and
dr−1q

dyr−1
→ 0 as i→ +∞. (4.9)

According to formula (2.5), the image of T1T
i∗

0 W
u
i∗ in Π+ has the form

y = cx+λi
∗
+

d

b2
(x− x+)2 + o((x− x+)3) + |λ|i

∗
O(|x− x+|+ |γ|−i

∗/2), (4.10)

i.e., this curve (we denote it by Ŵ u
i∗) is close to the central line of the horseshoe T1σ

1
i∗ (Fig. 16).

We have chosen i∗ and j∗ in such a way that the horseshoe T1σ
1
i∗ does not intersect the strip σ0j∗ for

ν = ν2 (Fig. 15b), but it intersects this strip tamely for ν = ν1 (Fig. 15). Thus, the piece Ŵ u
i∗ of the unstable

manifold of the point pi∗ does not intersect the piece Ŵ s1,2
i∗j∗ of the stable manifold of the same point for ν = ν2,

and it intersects this piece transversally at two points for ν = ν1. Therefore, for some ν that lies between ν1
and ν2, the curves Ŵ u

i∗ and Ŵ s1,2
i∗j∗ should be tangent to each other.

Comparing the derivatives of the right-hand sides of (4.10) and (4.6) with respect to x, we see that the

curves Ŵ u
i∗ and l1,2s (i∗) should have a tangency at the point with the coordinate

x = x+ + O(|λ|i
∗
+ |γ|−(j

∗+i∗/2)).
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Fig. 19

The difference between the y coordinates of the corresponding points on the curves Ŵ u
i∗ and Ŵ s1,2

i∗j∗ is equal to

Di∗j∗ = γ−j
∗
y− − cx+λi

∗
+ |γ|−i

∗/2O(|λ|i
∗
+ |γ|−j

∗
). (4.11)

It is seen from (4.2) and (4.3) that this quantity changes sign when ν changes from ν1 to ν2. By construction,

the value of ν for which Di∗j∗ vanishes corresponds to the tangency of the curves Ŵ u
i∗ and Ŵ s1,2

i∗j∗ , and since
they are pieces of the stable and unstable manifolds of the saddle periodic point pi∗, we have the desired
homoclinic tangency. Since the second derivative of the right-hand side of (4.10) is bounded away from zero
and the second derivative of the right-hand side of (4.6) is small, the obtained tangency is quadratic. It

follows from (4.1) that for a sufficiently large i∗, the derivative
d

dν
Di∗j∗ is different from zero for Di∗j∗ = 0.

This means that the family fν is transversal on H to the bifurcation surface of systems (of codimension one
on H) that have two nonrough homoclinic trajectories, one of which is Γ, while the other corresponds to

homoclinic tangencies close to that constructed above (i.e., to the tangency of the pieces Ŵ u
i∗ and Ŵ s1,2

i∗j∗ of
the manifolds of the point that is close to pi∗).

It remains to consider the cases with negative λ or γ. In the cases that correspond to the sixth, seventh,
and ninth columns of Table 1, the proof is completely similar if we take the corresponding i∗ and j∗ to be
even. A nonrough contour Ci∗j∗ also exists in each of these cases.

The cases that correspond to the eighth and tenth columns of Table 1 (where λ > 0, γ < 0, d > 0, c < 0
and λ < 0, γ < 0, d > 0, c < 0, respectively) are somewhat different from the one considered above: here i∗ is
even, j∗ is odd, and there is no fixed point pj∗ because T1(σ

1
j∗)∩σ

0
j∗ = ∅ (Fig. 19). Thus, there are no nonrough

contours Ci∗j∗ in these cases, but homoclinic tangencies of the curves Ŵ u
i∗ and Ŵ s1,2

i∗j∗ still exist (Fig. 19), and

the proof of the existence of such tangencies is similar to that presented above.14 This completes the proof
of the theorem.

Remark. According to Theorem 1, it follows from the transversality of the family of fν on H to the bifur-
cation surfaces corresponding to the constructed homoclinic tangencies that the values of ν that correspond
to the homoclinic tangencies of the third class are dense in the family of fν .

14We also note that in both of these cases, the proof of the corresponding assertions for f cannot be obtained automatically
by passing to f2.
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We emphasize that the secondary homoclinic tangencies such as those that were constructed above
appear necessarily in any family of systems on H in which θ varies monotonically. The value of θ depends
only on the values of the multipliers at the point O; therefore, new homoclinic tangencies can be obtained
by small perturbations of a system that are localized in an arbitrarily small neighborhood of the point O.

Theorem 4. Systems with infinitely many saddle periodic trajectories each of which has a nonrough homo-
clinic trajectory of the third class are dense on the film H formed by systems with homoclinic tangencies of
the third class.

Proof. In order to obtain new homoclinic tangencies, we use small perturbations under which a system does
not leave H and which are localized in an arbitrarily small neighborhood of the point O. These perturbations
are found by construction.

Namely, we take an arbitrary δ > 0 and assume that δm is a sequence of positive numbers such that

∞∑
m=1

δm < δ. (4.12)

For an arbitrary system f0 on H, we construct the system f∗, which is δ-close to f0 in the Cr-topology and
has infinitely many homoclinic tangencies. We are perturbing f0 locally in a small neighborhood of the point
O; therefore, the global mapping T1 does not change and we only keep track of the mapping T0.

In order not to lose smoothness, we do not bring the mapping T0 to the form (2.1). Instead, we rectify the
local stable and unstable manifolds of the point O (this can be done by a Cr-smooth change of coordinates),
so that the mapping T0 becomes

x̄ = λx + h(x, y), ȳ = γy + g(x, y), (4.13)

where h(0, y) = 0 and g(x, 0) = 0. We choose f ∗ in such a way that the mapping T0 takes the form

x̄ = λx + h(x, y), ȳ = (γ +
∞∑
m=1

νmδmχ(κ−1m · (x, y)))y + g(x, y), (4.14)

where the positive quantities κm and νm are to be determined. In any case, we require that the series in
(4.14) converge, while the function χ(·), which is a C∞-smooth function on the plane, positive in the unit
circle, and identically equal to zero outside this circle, should satisfy the condition ‖χ‖Cr ≤ 1 under this
procedure (the existence of such functions is a standard fact). We choose a sufficiently small κm such that
νm ∈ [0, κrm], so this perturbation is localized in a small neighborhood of the point O, and its Cr-norm is
less than some given δ. Specifically, the perturbation is localized in a neighborhood of size supm≥1 κm. In
addition, by virtue of (4.12) and the choice of a small νm, we also attain the uniform Cr-convergence of the
series in (4.14). Since we do not intend to change the mapping T1 that acts from a small neighborhood of
the homoclinic point M− into a small neighborhood of the homoclinic point M+, we should require that

sup
m≥1

κm < d0 ≡ min(x+, y−). (4.15)

The positions of the local stable and unstable manifolds of the point O do not change under these per-
turbations (these manifolds remain to be the straight lines); therefore, the initial homoclinic tangency of
T1(W

u
loc ∩ Π+) with W u

loc does not vanish (we recall that the mapping T1 does not change).
The system f ∗ serves as the limit for the sequence of systems fM with one and the same mapping T1

and with the mapping T0 represented as

x̄ = λx + h(x, y), ȳ = (γ +
M∑
m=1

νmδmχ(κ−1m · (x, y)))y + g(x, y). (4.16)

We choose the values of νm and κm successively, so that for each M ≥ 1, the system fM has M saddle periodic
trajectories with homoclinic tangencies of the third class (in addition to L0 and Γ0). These trajectories
are separated from the point O; therefore, any perturbation of the system that is localized in some small
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Fig. 20

neighborhood of the point O does not split these tangencies. We denote the size of this neighborhood by dM
and require

sup
m>M

κm < dM . (4.17)

This means that the difference between fM and all subsequent systems fM+1, fM+2, . . . , including f ∗, is
localized in a neighborhood of the point O of size dM . Therefore, M homoclinic tangencies in the system fM
do not vanish under the passage to the subsequent systems fM+1, fM+2, . . . Thus, the limit system f ∗ has
infinitely many homoclinic tangencies, which is the required result.

Conditions (4.15) and (4.17) gives an inductive rule for finding the appropriate values of κm (the scales
to which our successive perturbations are localized). In order to find νm (the size of perturbations), we
proceed by induction. We suppose that, for some M ≥ 1, all the values νm, κm with m ≤M − 1 are already
determined. We choose κM < min(d0, . . . , dM−1) (i.e., in such a way that (4.15) and (4.17) are satisfied) and
consider a one-parameter family of systems f(ν) that are different from fM−1 only in a neighborhood of the
point O of size κM such that the mapping T0 has the form

x̄ = λx + h(x, y),
ȳ = (γ +

∑
m<M νmδmχ(κ−1m · (x, y))

+νδMχ(κ−1M · (x, y)))y + g(x, y);
(4.18)

here ν changes from 0 to κrM (where r is the smoothness of system).
For ν = 0, this system coincides with the system fM−1, which has M−1 secondary homoclinic tangencies

of the third class by the inductive assumption. Since the difference between this system and fM−1 for all ν is
localized in a neighborhood of the point O of a sufficiently small size κM , these homoclinic tangencies persist
for all ν and lie at finite distance from O. Moreover, θ varies continuously with ν:

θ = −
lnλ

ln(γ + (νδM +
∑
m<M νmδm)χ(0))

.

By Theorem 3, we obtain that there exist values of ν arbitrarily close to ν = 0 and such that the system
has one more homoclinic tangency of the third class that is arbitrarily close to the original homoclinic
trajectory Γ0. Choosing such sufficiently small ν as the desired νM , we obtain the system fM having already
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Fig. 21

M secondary homoclinic tangencies of the third class. Continuing this construction infinitely, we obtain the
required system f ∗, which lies in H and is Cr-smooth by construction. The theorem is proved.

5. Homoclinic Tangencies of an Arbitrarily High Order

In this section, we show that it is possible to obtain homoclinic tangencies of an arbitrarily high order
by means of small perturbations of an infinite chain of coexisting homoclinic tangencies that was constructed
in Theorem 4. Namely, the following result is valid.

Theorem 5. Systems with homoclinic tangencies of any order are dense in the set of systems with homoclinic
tangencies of the third class.

Proof. We show that for any system f0 ∈ Cr with a quadratic homoclinic tangency of the third class, for
any δ > 0 and for any n, there exists a perturbation whose Cr-norm is not more than δ that does not split
the original tangency and is such that the perturbed system has a trajectory with homoclinic tangency of
order n. It is convenient to assume from the outset that f0 ∈ C∞ (since we can always make the system f0
more smooth by an arbitrarily small Cr-perturbation without splitting the original homoclinic tangency).

According to Theorem 4, in any neighborhood of f0, in the Cr-topology on the bifurcation film H, there
is a system f ∗ such that for some infinite sequence of subscripts i1 < i2 < . . . , each of the saddle fixed
points pim ∈ σ0im of the mapping T̃im for the system f ∗ has nonrough homoclinic trajectory with a quadratic
tangency. Moreover, if γ < 0 or if λ < 0, then all im are even (see the proof of Theorem 3).

Since |λγ| < 1, it follows from Lemma 1 that for any sufficiently large i, the horseshoe T1σ
1
i intersects the

strip σ0i+1 tamely provided that γ > 0 and λ > 0. If γ or λ are negative, then in any case, for an even i, the
horseshoe T1σ

1
i intersects the strip σ0i+2 tamely. In any case, for any m, there exists a finite increasing sequence
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of subscripts im ≡ im0, im1, . . . , iml ≡ im+1 such that the sequence (. . . im, im, im1, . . . , iml−1, im+1, im+1 . . . )
(which is asymptotic with respect to the periodic ones on both sides) is tame.

What this means is that we have the following pattern (Fig. 20a): the unstable manifold W u(pim)
intersects the stable manifold W s(pim1) transversally, the unstable manifold W u(pim1) intersects the stable
manifold W s(pim2) transversally,..., the unstable manifold W u(piml−1) intersects the stable manifold W s(pim+1)
transversally, and so on for any m. By Theorem 2, for any m, there exists a trajectory (with a coding

(. . . im, im, im1, . . . , iml−1, im+1, im+1 . . . ))

with the transversal intersection of the manifolds W u(pim) and W s(pim+1).
Then it follows from the λ-lemma that the pieces of the stable manifold W s(pim+1) accumulate to the

stable manifold W s(pim). Therefore, using an arbitrarily small Cr-smooth perturbation of the system that
is localized in an arbitrarily small neighborhood of the point pim, we can split the quadratic homoclinic
tangency of the manifolds W u(pim) and W s(pim) in such a way that we would have the quadratic heteroclinic
tangency of manifolds W u(pim) and W s(pim+1) near the former tangency.15 Since these new perturbations
are localized in arbitrarily small neighborhoods of points pim , not one of them splits other homoclinic or
heteroclinic tangencies. Thus, we can successively modify the mapping f∗ in such a way that the system
obtained in the limit would be still Cr-close to f0, and, moreover, W u(pi1) would be quadratically tangent to
W s(pi2) along some heteroclinic trajectory Γi1i2, ..., W u(pim) would be quadratically tangent to W s(pim+1)
along some heteroclinic trajectory Γimim+1 , and so on to infinity (Fig. 20b).

We note that since |λγ| < 1 and im > i1 for m > 1 (and, in addition, all im are even for a negative γ or
λ), the pair (im, i1) is always tame, i.e., by Theorem 2, there always exists a trajectory with the transversal
intersection of W u(pim) and W s(pi1).

Now the assertion of the theorem follows from the lemma stated below.

Lemma 2. Let L1, L2, and L3 be saddle periodic trajectories of some C
∞-smooth system g. Let W u(L1) and

W s(L2) have a tangency of order n− 1 along some heteroclinic trajectory Γ12, and let W
u(L2) and W s(L3)

have a quadratic tangency along some heteroclinic trajectory Γ23. Then there exists an arbitrarily small (in the
Cr-topology for an arbitrary r) perturbation localized in arbitrarily small neighborhoods of some heteroclinic
points of the trajectories Γ12 and Γ23 such that the manifolds W

u(L1) and W
s(L3) of the new diffeomorphism

g̃ have a tangency of order n at the points of some heteroclinic trajectory Γ13.

Namely, applying Lemma 2 to the contour pi1,Γi1i2, pi2 ,Γi2i3 , pi3 (Fig 20b) consisting of the chain of
heteroclinic tangencies that were constructed above, we obtain that, using a small perturbation localized in
the neighborhoods of the trajectories Γi1i2 and Γi2i3 , one can construct a heteroclinic trajectory Γi1i3 that
would correspond to the tangency of order two (i.e., to the cubic tangency) between the manifolds W u(pi1) and
W s(pi3). The other heteroclinic tangencies are not split under such a perturbation, and, applying the lemma
now to the contour pi1,Γi1i3, pi3 ,Γi3i4 , pi4, we obtain a heteroclinic trajectory Γi1i4 that would correspond to
the tangency of order 3 between the manifolds W u(pi1) and W s(pi4), and so on, untill we obtain the tangency
of order n between the manifolds W u(pi1) and W s(pin+1). Since W u(pin+1) always has a trajectory along
which it intersects W s(pi1) transversally, it follows by virtue of the λ-lemma that the pieces of the stable
manifold W s(pi1) accumulate to the stable manifold W s(pin+1). Therefore, by one more arbitrarily small
perturbation, we can split the heteroclinic tangency of order n between the manifolds W u(pi1) and W s(pin+1)
in order to obtain the required homoclinic tangency of order n (between the manifolds W u(pi1) and W s(pi1)).

In order to complete the proof of the theorem, we have to prove Lemma 2.
Let O2 be some point on a periodic trajectory L2, and let the corresponding local mapping T0 be reduced

to the following form (see (2.1)):

x̄ = λ2x + h2(x, y)x
2y, ȳ = γ2y + g2(x, y)xy

2, (5.1)

where λ2 and γ2 are the multipliers of L2 such that 0 < |λ2| < 1 < |γ2|. Thus, the point O2 coincides with
the origin, W s

loc(O2) is defined by the equation y = 0, and W s
loc(O2) is defined by the equation x = 0. In the

15Here we can directly consider the nonrough heteroclinic contour of the type Cimjm+1 (see the preceding section) for all
types of quadratic homoclinic tangencies of the third class, except for the cases that correspond to the eighth and tenth columns
of Table 1.
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Fig. 22

neighborhood of the point O2, we choose the following two heteroclinic points: the point M+
2 (x+2 , 0), which

belongs to the trajectory Γ12, and the point M−
2 (0, y−2 ) which belongs to the trajectory Γ23 (Fig. 21).

Since Γ12 corresponds to the tangency of order (n − 1), the equation of the segment lu of the unstable
manifold of the trajectory L1 near the point M+

2 has the form

y = d1(x− x+2 )n + o[(x− x+2 )n].

In turn, the equation of the segment ls of the stable manifold of the trajectory L3 near the point M−
2 can be

written as
x = d2(y − y−2 )2 + o[(y − y−2 )2].

The nonzero coefficients d1 and d2 in the above formulas can always be made equal to unity by a linear change
of coordinates, and in what follows, we will assume that this was done.

We perturb the system g in such a way that the equation of the curve lu becomes

y = ε0 + ε1(x− x+2 ) + ... + εn−2(x− x+2 )n−2

+εn−1(x− x+2 )n−1 + (x− x+2 )n + o[(x− x+2 )n],
(5.2)

while the equation of the curve ls transforms into

x = µ0 + µ1(y − y−2 ) + (y − y−2 )2 + o[(y − y−2 )2]. (5.3)

Here ε0, ..., εn−2, εn−1, µ0, and µ1 are independent small parameters that should be determined. It is obvious
that the corresponding perturbation can be localized in neighborhoods of two heteroclinic points (one on the
trajectory Γ12 and the other on the trajectory Γ23).
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We show that for a sufficiently large k, the parameters ε0, ..., εn−1 and µ0, µ1 can be chosen in such a
way that the curves T−k0 ls and lu (Fig. 22) would have a tangency of order n near the point M+

2 ; moreover,
as k → +∞, the corresponding values of the parameters ε0, ..., εn−1 and µ0, µ1 should tend to zero. For
definitenes, in the case where λ2 < 0, we take k even, so that always λk2 > 0.

According to (2.2), the curve T−k0 ls becomes

λk2x + λk2ξk(x, ỹ) = µ0 + µ1(ỹ − y−2 ) + (ỹ − y−2 )2 + o[(ỹ − y−2 )2],
y = γ−k2 ỹ + γ−k2 ηk(x, ỹ),

(5.4)

where ỹ is a parameter that runs over the values near ỹ = y−2 ; the functions ξk and ηk, together with all their
derivatives, tend to zero as k → +∞.

We introduce new variables u = x− x+2 and w = ỹ− y−2 . Then Eqs. (5.2) and (5.4) of the curves lu and
ls are written in the form

y = ε0 + ε1u + ... + εn−1u
n−1 + un + o(un) (5.5)

and

λk2u + λk2 ξ̃k(u, w) = µ̃0 + µ̃1w + w2 + o(w2),
y − γ−k2 y−2 = γ−k2 w + γ−k2 ηk(u + x+2 , w + y−2 ),

(5.6)

respectively, where µ̃0 = µ0−λk2(x
+
2 +ξk(x

+
2 , y

−
2 )), µ̃1 = µ1−λk2

d

dỹ
ξk(x

+
2 , y

−
2 ), and the function ξ̃k is identically

equal to zero for u = 0 (we have simply transferred the expression λk2ξk(x
+
2 , y

−
2 +w) to the right-hand side of

the equation).
Now we perform the change of variable y−γ−k2 y−2 −γ

−k
2 ηk(u+x+2 , y

−
2 ) = v; after that, the second equation

in (5.6) becomes

v = γ−k2 w + γ−k2 η̃k(u, w), (5.7)

where η̃k(u, w) is identically equal to zero for w = 0. Equation (5.5) of the curve lu is rewritten in the form

v = ε̃0 + ε̃1u + ... + ε̃n−1u
n−1 + un + o(un), (5.8)

where the modified parameters ε̃j differ from the original parameters εj by quantities that tend to zero as
k → +∞.

We fix the choice of µ1 and εn−1, having required that µ̃1 = 0 and ε̃n−1 = 0. We also normalize the
coordinates by performing the following substitutions in formulas (5.6)–(5.8):

u �→ αku, v �→ αnkv, w �→ w

√
−λk2αk, (5.9)

where the small factor α is given by the formula

α2n−1k = −λkγ−2k. (5.10)

Equations (5.6) and (5.7) of the curve T−k0 ls are rewritten in the new coordinates as follows:

u = ∆− w2 + pk1(v), v = w + pk2(w),

where the functions pk1 and pk2, together with their derivatives, tend to zero as k → +∞; therefore, this
equation can be rewritten in an explicit form as follows:

u = ∆− v2 + pk(v), (5.11)

where pk, together with its derivatives, tends to zero as k → +∞; ∆ is the scaled parameter µ̃0 defined by

∆ =
µ̃0

αkλk
. (5.12)

Equation (5.5) of the curve lu becomes

v = E0 + E1u + ... + En−2u
n−2 + un + qk(u), (5.13)
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where qk tends to zero, together with its derivatives, as k → +∞ and

Ej =
ε̃j

αn−jk
, j = 0, ..., n− 2. (5.14)

We show that for any sufficiently large k, curves (5.11) and (5.13) have tangency of order n in the
bounded range of values of u and v for bounded values of the parameters ∆, E0, . . . , En−2. Turning back to
the unscaled variables u and v (formula (5.9)) and parameters µ̃0 and ε̃j (see (5.12) and (5.14)), we obtain
that the tangency of the nth order between the curves T−k0 ls and lu takes place for small (tending to zero as
k → +∞) values of u, v, µ̃, and ε̃, i.e., in a small neighborhood of the point M+

2 and for small values of the
perturbation parameters µ and ε, as was required.

Thus, the problem is reduced to the question of the tangency of curves (5.11) and (5.13). In essence, our
considerations are based on the following relatively simple algebraic problem.

Let the following two parabolas be given on the (u, v)-plane:

u = ∆− v2 and v =
n−2∑
j=0

Eju
j + un; (5.15)

one of them is of the second degree and the other one is of the nth degree. It is required to prove that there
exist values of the parameters for which these parabolas have tangency of the nth order.

However, formally we do not reduce the problem to the question of the tangency of the polynomial curves
(5.15), but directly take into account the small additional terms pk and qk in (5.11) and (5.13). We note that
a similar problem was solved by us in [20], but, for completeness of presentation, we also carry out a detailed
discussion in this paper.

Let

Q(u) =
n−2∑
j=0

Eju
j + un. (5.16)

The condition for the tangency of the nth order of curves (5.11) and (5.13) at some point (u∗, v∗) is written
in the form

u∗ = ∆−Q2(u∗) + . . . ,
1 = −2Q(u∗)Q′(u∗) + . . . ,
0 = −Q(u∗)Q′′(u∗)− (Q′(u∗))2 + . . . ,
...

0 = −
j−1∑
i=0

Cij−1Q
(i)(u∗)Q(j−i)(u∗)...,

0 = −
dnQ2

dun
(u∗) + . . . ,

(5.17)

where Cij−1 are binomial coefficients, while the dots (here and in what follows) denote terms that tend to
zero, together with their derivatives, as k → +∞. It immediately follows from (5.17) that Q(u∗) should be
different from zero and

Q′(u∗) = −1
2
Q−1(u∗) + . . . ,

Q′′(u∗) = −1
4
Q−3(u∗) + . . . ,

...

Q(j)(u∗) = −σjQ(u∗)−(2j−1) + . . . ,
...

Q(n)(u∗) = −σnQ(u∗)−(2n−1) + . . . ,

(5.18)

where σj are some constants, σ1 = 1/2, σ2 = 1/4, and

σj =

j−1∑
i=1

Cij−1σiσj−i.
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It is seen from this formula that all σj are positive; what is important for us is that σn �= 0.16

Since Q(u) is a polynomial, we have

Q(u) = Q(u∗) + Q′(u∗)(u− u∗) + ... +
Q(n)

n!
(u∗)(u− u∗)n. (5.19)

Since the coefficient of un in the polynomial Q should be equal to 1, while the coefficient of un−1 should be
equal to 0, it follows from (5.19) that

Q(n)(u∗) = n! (5.20)

Q(n−1)(u∗) = u∗Q(n)(u∗). (5.21)

We find from the last equation in (5.18) and from the first equation in (5.21) that

Q(u∗) = −(
σn
n!

)1/(2n−1) + . . . ,

and since σn �= 0, we have that Q(u∗) is bounded away from zero as k → +∞. Now we find from (5.18)
the values of all other derivatives Q(j)(u∗) and calculate the coordinate u∗ from the penultimate equation in
(5.18) and from (5.21) as follows:

u∗ =
2

2n− 1

(σn
n!

)2/(2n−1)
+ . . . .

The coefficient ∆ is found from the first equation in (5.17):

∆ =
2n + 1

2n− 1

(σn
n!

)2/(2n−1)
+ . . . ,

while the coefficients Ej are calculated from (5.19). (For instance, in the case n = 2, we have the following:
∆ = 3/4+ . . . , E0 = −3/4+ . . . , u∗ = 1/2+ . . . . Correspondingly, we obtain that the parabolas u = 3/4−v2

and v = −3/4 + u2 have a cubic tangency at the point v = −1/2 , u = 1/2 (Fig. 23)).
Since the obtained values of Ej , ∆, u∗ and v∗ = Q(u∗) + . . . have finite limits as k → +∞, they remain

bounded for all sufficiently large k, which is the required result. The lemma is proved.

We note that if the stable and unstable manifolds of some saddle periodic trajectory have a quadratic
tangency of order ≥r, then, using a small perturbation of the system in the Cr-topology, one can always
attain the coincidence of the stable and unstable manifolds on some interval, i.e., obtain a continuum (a
one-parameter family) of nonrough homoclinic trajectories (we call such families homoclinic bands). Thus,
Theorem 5 implies the following proposition.

Proposition 1. Systems with homoclinic bands are dense in the set of systems with homoclinic tangencies
of the third class.

We note that, by Theorem 4, it is possible initially to perturb the original system of the third class in such
a way that it would have countably many tangencies of the third class and then use the construction from
Theorem 5 near each of these tangencies; we can do this independently, since the perturbation constructed in
Theorem 5 is localized in a small neighborhood of individual, separately taken homoclinic trajectories. Thus,
we can formally strengthen Theorem 5 in the following way:

Proposition 2. Systems each of which has infinitely many homoclinic tangencies of every order n = 1, . . . ,∞,
including infinitely many individual homoclinic bands, are dense in the set of systems with homoclinic tan-
gencies of the third class.

16The coefficients σj can be calculated explicitly: we note that for the function Q̂(u) =
√
∆− u, relations (5.17) hold

identically for any u∗; therefore, Q̂(j)(u) ≡ −σjQ̂−(2j−1)(u) for any u (see (5.18)). Differentiating this identity, we have

Q̂(j+1)(u) = σj(2j − 1)Q̂
−(2j)(u)Q′(u) = −σj((2j − 1)/2)Q̂

−(2j+1),

whence σj+1 =
2j−1
2 σj and

σj =
(2j − 3) · (2j − 5)...3 · 1

2j
.
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Fig. 23

6. Periodic Trajectories of High Orders of Degeneracy

In this section, in particular, we deal with degenerate periodic trajectories. We adhere to the following
definition.

Definition 1. Let some Cr-smooth system g have a periodic trajectory L one of whose multipliers ν is equal
to ±1, while the second multiplier is different from unity in absolute value. Moreover, the restriction of the
first-return mapping (the Poincaré mapping) near L to the one-dimensional central manifold is written either
in the form

ȳ = y + lny
n + ... if ν = 1 , ȳ = −y − lny

2n+1 + ... if ν = −1

(where ln �= 0 is the nth Lyapunov value; 1 ≤ n ≤ r − 1 for ν = 1 and 1 ≤ n ≤ (r − 1)/2 for ν = −1) or in
the form

ȳ = νy + o(yr)

if all Lyapunov values are equal to zero. In the first case, we say that this periodic trajectory has order of
degeneracy n − 1; in the second case, the periodic trajectory is said to have an infinite (uncertain) order of
degeneracy.

Theorem 6. Systems with periodic trajectories of any order of degeneracy (both with ν = 1 and with ν = −1)
are dense in the set of systems with homoclinic tangencies of the third class.
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Remark. We note that, by Theorem 2, singly going around periodic trajectories near a nonrough homoclinic
trajectory are always rough saddle ones (as long as we do not split a tangency). As far as the twicely going
around trajectories are concerned, they can be nonrough; moreover, they have the first order of degeneracy
under this procedure, and can be either with the multipler +1 or with the multiplier −1 (see [12, 23]). In
the case of triply going around periodic trajectories, degeneracies of already higher order can occur. Thus, it
is shown in [15] that systems having nonrough triply going around periodic trajectories of the second order
of degeneracy are dense in the set of systems with homoclinic tangencies of the third class. Such periodic
trajectories occur and are nonremovable in two-parameter families, in particular, in families in which the
parameters θ and τ serve as controlling parameters. The study of periodic trajectories of the second order
of degeneracy was based on the construction already with three horseshoes, in contrast to the construction
with two horseshoes that was used in the proof of Theorem 3. If we involve more strips and horseshoes, then,
in principle, we can obtain periodic trajectories of higher orders of degeneracy, but a direct study of fixed
points of a mapping for many goings around along a neighborhood of a nonrough homoclinic trajectory is
too difficult. Therefore, in this case, we proceed alternatively. We study bifurcations of singly going around
periodic trajectories near the tangencies of high order, as stated in Theorem 5. Such tangencies can be
obtained by a small perturbation near any quadratic homoclinic tangency of the third class; therefore, in
order to prove Theorem 6, we take an order of a homoclinic tangency as high as may be required.

Proof of Theorem 6. Thus, consider a system f̃ which has a saddle periodic trajectory with a trajectory
of a homoclinic tangency of some order n. As in the proof of Theorem 5, we assume that f̃ ∈ C∞. The local
mapping T0 can still be written in the form (2.1).

The global mapping T1 near the trajectory with homoclinic tangency of order n is written as

x̄− x+ = ax + b(y − y−) + ...,
ȳ = cx + d(y − y−)n+1 + ...,

(6.1)

where the dots stand for the terms of second and higher orders in the first equation, while in the second
equation the dots denote the terms of order o(|x|+ |y − y−|n+1) + O(|x| · |y − y−|).

In the generic n-parameter family f̃ε of systems that are close to f̃ (f̃0 ≡ f̃), the parameters ε =
(ε0, ..., εn−1) can be introduced in such a way that the global mapping T1 would take the following form:

x̄− x+ = ax + b(y − y−) + ...,
ȳ = cx + ε0 + ε1(y − y−) + ... + εn−1(y − y−)n−1 + d(y − y−)n+1 + ....

(6.2)

The local mapping T0 now depends on the parameters, i.e., formula (2.1) takes the form

x̄ = λ(ε)x + h(x, y, ε)x2y, ȳ = γ(ε)y + g(x, y, ε)xy2. (6.3)

According to (2.2), we have the following representation for the mapping T k0 : (x0, y0) �→ (xk, yk) (see [13,
11]):

xk = λ(ε)kx0 + λ(ε)kγ(ε)−kξk(x0, yk, ε),
y0 = γ(ε)−kyk + γ(ε)−2kηk(x0, yk, ε),

(6.4)

where the functions ξk and ηk are uniformly bounded with respect to k, together with all their derivatives.
Now we consider the mapping T̃k(ε) ≡ T1T

k
0 for one going around along the homoclinic trajectory. This

mapping is defined on the strip σ0k, and the following lemma shows that the above mapping is close to a
polynomial one-dimensional mapping.

Lemma 3. Using linear transformations of coordinates and parameters, it is possible to reduce the mapping
T̃k to the form

17

X̄ = Y + O(|λγ|k + |γ|−k/n),
Ȳ = E0 + E1Y + ... + En−1Y

n−1 + Y n+1 + O(|λγ|k + |γ|−k/n),
(6.5)

where the range of values of the new variables X and Y and parameters E0, . . . , En−1 is unboundedly increasing
with increase in k and covers all finite values in the limit.

17We recall that |λγ| < 1; therefore, the O(·)-terms in (6.5) tend to zero as k → +∞.
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Proof. Using (6.4) and (6.2), we can write the mapping T̃k in the following form:

x̄− x+ = aλk(x + ...) + b(y − y−) + ...
γ−k(ȳ + γ−kηk(x̄, ȳ)) = cλk(x + ...)+

+ε0 + ε1(y − y−) + ... + εn−1(y − y−)n−1 + d(y − y−)n+1 + ... .
(6.6)

We note that the coordinates that are used on the strip σk0 coincide with the coordinates (x′, y′) defined in
Sec. 3: x′ coincides with the original coordinate x, while y′ = yk is a y coordinate of a kth iteration of a
point under the action of the mapping T0.

We shift the origin in the following way: x → x + x+, y → y + y−. Then mapping (6.6) is reduced to
the form

x̄ = by + O(λk) + O(y2),
γ−kȳ + γ−2kO(|ȳ|) = (ε0 − γ−ky− + cλkx+ + ...)+

+ε1y + ... + εn−1y
n−1 + dyn+1

+O(yn+2) + λkO(|x|+ |y|).

Now, if we normalize the coordinates and the parameters in the following way:

x = bd−1/nγ−k/nX, y = d−1/nγ−k/nY,

(ε0 − γ−ky− + cλkx+ + ...) = d−1/nγ−k(1+1/n)E0,

εj = d−1/nγ−kγ
k
n
(j−1)Ej ,

the above mapping is reduced to the form (6.5), which completes the proof of the lemma.
According to Lemma 3, any bifurcations occurring in mapping (6.5) for arbitrary finite values of E0, . . . ,

En−1 in the finite domain (X, Y ) occur near a homoclinic tangency of order n. Thus, this mapping has a
fixed point with multiplier ν = ±1 when

(X, Y ) = 0 + . . . , E0 = 0 + . . . , E1 = ν + . . . , (6.7)

where the dots denote the terms that tend to zero as k → +∞. The central manifold of this point is tangent
at this very point to the eigenvector of the linearization matrix that corresponds to the multiplier ν, i.e., this
manifold has the form X = ν−1Y + O(Y 2). The restriction of mapping (6.5) to this manifold has the form

Ȳ =
n−1∑
j=0

EjY
j + Y n+1 + . . . ,

and we can always choose

E0 = 0 + . . . , E1 = ±1 + . . . , Ej = 0 + . . . (2 ≤ j ≤ n− 1)

in such a way that we would obtain a fixed point of the nth order of degeneracy with the multiplier ν = 1 or a
fixed point of the ([n/2]− 1)th order of degeneracy with the multiplier ν = −1. In the case where n ≥ r, the
corresponding fixed point has infinite (uncertain) order of degeneracy: if the values of the parameters are as
defined by (6.7), then the restriction of mapping (6.5) to the central manifold has the form Ȳ = νY + o(Y r).
Theorem 4 then implies Theorem 6.

It is clear that in the case of uncertain order of degeneracy of a periodic trajectory, we can arbitrarily
slightly locally Cr-smoothly perturb the original system in such a way that the restriction of mapping (6.5)
to the central manifold in some sufficiently small neighborhood of zero would already be of the form Ȳ = Y
for ν = 1 and of the form Ȳ = −Y for ν = −1. Thus, we obtain the continuum (the one-parameter family) of
nonrough periodic points. We call such families periodic bands. Therefore, Theorem 6 implies the following
proposition.

Proposition 3. Systems with periodic bands are dense in the set of systems with homoclinic tangencies of
the third class.
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We note that Lemma 3 contains more information than is necessary for the proof of Theorem 6. The
lemma shows that, near the homoclinic tangency of order n, the first-return mapping is close (in suitable
coordinates) to a one-dimensional polynomial mapping with arbitrary finite coefficients. Moreover, a stronger
assertion can be made:

Somewhere near a quadratic tangency, we can find a multiply going around Poincaré mapping that (in some
rescaled coordinates) is Cr-close to the mapping X̄ = Y , Ȳ = Φ(Y ) with any preassigned Cr-smooth function
Φ(Y ) (defined on the closed interval [−1, 1]).

This result is based on the study of first-return mappings in the neighborhood of a homoclinic tangency
that corresponds to the local coincidence of the stable and unstable manifolds of a saddle periodic trajec-
tory (by Proposition 1, systems with tangencies of this kind are dense in H). Let f̂ be precisely such a

diffeomorphism. We are assuming that f̂ ∈ C∞ and that the product of multipliers λ and γ of a saddle
periodic trajectory having a homoclinic band is less than unity in absolute value. The mapping T0 for the
diffeomorphism f̂ is given by formula (2.1), and the global mapping T1 near the homoclinic band has the
form

x̄− x+ = ax + b(y − y−) + O[(|x|+ |y − y−|)2],
ȳ = β(x, y),

(6.8)

where

β(0, y) ≡ 0 for |y − y−| ≤ ρ (6.9)

for some sufficiently small ρ > 0. The mapping T1 acts from a neighborhood (of size ρ) of some homoclinic
point M−(0, y−) into a neighborhood of the homoclinic point M+(x+, 0). Now we perturb the diffeomorphism

f̂ in a special way, namely, we assume that the mapping T1 is given by the formula

x̄− x+ = ax + b(y − y−) + ...,

ȳ = φ̃(y) · χ(x, y) + β(x, y),
(6.10)

where χ is identically equal to unity in a neighborhood of the point M− of size ρ and is identically equal
to zero outside the neighborhood of the point M of size 2ρ. This corresponds to the consideration of some
functional family f̂φ of diffeomorphisms that coincide with f̂ everywhere, except for a neighborhood of the
point M−, and are defined by formula (6.10) near the point M−. It is clear that if ρ is chosen sufficiently

small, then the mapping T0 remains the same as it is for f̂ .
Let XK be the set of Cr-smooth functions defined on the closed interval [−1, 1] and bounded in the

Cr-norm by a constant K > 0. Let Φ ∈ XK . Then we specify φ̃ in (6.10) by the formula

φ̃(y) = (ρΦ(
y − y−

ρ
) + y−)γ−k. (6.11)

Combining the formula (2.2) for T k0 with (6.10), we obtain that the mapping T1T
k
0 has the following form on

the strip σk0 for |y − y−| ≤ ρ (in the same coordinates as in Lemma 3):

x̄− x+ = aλk(x + ...) + b(y − y−) + O(|y − y−|2),
γ−k(ȳ + γ−kηk(x̄, ȳ)) = φ̃(y − y−) + β(λk(x + ...), y − y−).

(6.12)

We note that β = O(|λ|k) by (6.9); therefore, γkβ tends to zero as k → +∞ (because |λγ| < 1). Now, by the
change of coordinates

(x− x+)

bρ
+ · · · = X,

(y − y−)

ρ
= Y,

we reduce the mapping T1T
k
0 to the form

X̄ = Y + ρO(Y 2) + O(λk), Ȳ = Φ(y) + O(λkγk),

which was required.
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Izv. Ross. Akad. Nauk, Ser. Mat., 56, No. 6, 1165–1196 (1992).

12. S. V. Gonchenko and L. P. Shil’nikov, “On arithmetical properties of topological invariants of systems
with nonrough homoclinic trajectories,” Ukr. Mat. Zh., 39, No. 1, 21–28 (1987).

13. S. V. Gonchenko and L. P. Shil’nikov, “Invariants of the Ω-conjugacy of diffeomorphisms with nonrough
homoclinic trajectories,” Ukr. Mat. Zh., 42, No. 2, 153–159 (1990).

14. I. M. Ovsyannikov and L. P. Shil’nikov, “On systems with homoclinic curves of saddle-focus type,” Mat.
Sb., 130, No. 4, 552–570 (1986).

15. O. V. Sten’kin and L. P. Shil’nikov, “On bifurcations of periodic motions near a nonrough homoclinic
curve,” Differents. Uravn., 33, No. 3, 377–384 (1997).

16. D. V. Turaev and L. P. Shil’nikov, “An example of a wild strange attractor,” Mat. Sb., 189, No. 2, 137–
160 (1998).

17. L. P. Shil’nikov, “On a case of existence of a countable set of periodic motions,” Dokl. Akad. Nauk SSSR,
160, No. 3, 558–561 (1965).

18. L. P. Shil’nikov, “On one of the Poincaré–Birkhoff problems,” Mat. Sb., 74, No. 4, 378–397 (1967).
19. L. P. Shil’nikov, “On the problem of the structure of an extended neighborhood of a rough equilibrium

state of focus-saddle type,” Mat. Sb., 81, No. 1, 92–103 (1970).
20. P. Gaspard, S. V. Gonchenko, G. Nicolis, and D. V. Turaev, “Complexity in the bifurcation structure of

homoclinic loops to a saddle-focus,” Nonlinearity, 10, No. 2, 409–423 (1997).
21. S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev, “Dynamical phenomena in systems with structurally

unstable Poincare homoclinic orbits,” Int. J. Bifurcation Chaos, 6, No. 1, 15–31 (1996).
22. S. V. Gonchenko, L. P. Shil’nikov, and D. V. Turaev, “On models with non-rough Poincaré homoclinic
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