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Abstract. We show that universal maps (i.e. such whose iterations approximate every
possible dynamics arbitrarily well) form a residual subset in an open set in the space of
smooth dynamical systems. The result implies that many dynamical systems emerging
in natural applications may, on a very long time scale, have quite unexpected dynamical
properties, like coexistence of many non-trivial hyperbolic attractors and repellers and
attractors with all zero Lyapunov exponents. Applications to reversible and symplectic
maps are also considered.
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Decades of the study of dynamical systems with chaotic behavior revealed that
with few exceptions these systems are more difficult than we would like. The
diversity and variability of the types of chaotic dynamics occurring practically in
any application are so great that nobody nowadays pursues the goal of a detailed
mathematical description of the dynamics of a given system with chaos. The main
source of difficulty is that the most of chaotic dynamical systems which emerge in
natural applications appear to be structurally unstable. A system, i.e. a smooth
map f : M →M of a smooth n-dimensional manifold M , or a smooth flow ft on M ,
is called structurally stable if it is topologically equivalent to every close system (two
systems are topologically equivalent if there exists a homeomorphism of M which
maps the orbits of one system to the orbits of the other). A structurally unstable
system is thus such that its orbit structure can be changed by an arbitrarily small
(in some Cr-metric on M) perturbation.

Structurally unstable systems can fill open regions in the space of smooth dy-
namical systems. One of these regions, the so-called Newhouse domain N , is the
interior of the closure of the set of the systems which have a homoclinic tangency
(that is an orbit of tangency between stable and unstable manifolds of a saddle pe-
riodic orbit). By [1, 2], this open set is non-empty, for the space of Cr-smooth maps
on any manifold M of dimension n ≥ 2 for any r ≥ 2. Importantly, any generic
family of maps which contains a map with a homoclinic tangency intersects N for
some open set of parameters [2, 4, 14, 15, 16]. As homoclinic tangencies easily
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appear in a huge variety of chaotic dynamical systems for many parameter values,
it follows that a great many naturally emerging models belong to the Newhouse
domain for some, presumably large, regions of the parameter space1. Studying dy-
namics of maps from the Newhouse domain is therefore one of the basic questions
of the mathematical chaos theory.

In [3, 5, 8, 9], it was shown, however, that by an arbitrarily small (in Cr, for
any r = 2, ...,∞, ω) perturbation of any map from the Newhouse domain, one can
create homoclnic tangencies of arbitrarily high orders and arbitrarily degenerate
periodic points. This result shows that bifurcations of any map from N are too
diverse, and their complete and detailed understanding is impossible. An unfolding
of tangency of order m requires m parameters, and here m can be arbitrarily large,
so no finite-parameter unfolding can capture all changes in the dynamics which
can occur at the perturbations of a given map f ∈ N . In fact, for maps from
an arbitrarily small neighborhood of f ∈ N in the space of Cr-smooth maps,
the relation of topological equivalence has infinitely many independent continuous
invariants (in other words, for any such neighborhood the set of the equivalence
classes is infinite-dimensional); the same is true if we consider weaker equivalence
relations: the topological equivalence on the set of non-wandering orbits, or on the
set of periodic orbits, or even on the set of stable periodic orbits [3, 5]. The goal of
this paper is to describe in precise terms the scale of this variability and dynamical
richness for systems from the Newhouse domain.

In my opinion, the main characteristic feature of systems from N is the absence
of self-similarity: generically, the short-time behavior does not determine what
will happen on longer time scales (contrary to Axiom A systems where a finite
Markov partition determines the dynamics for all times). In order to describe this
property, I use the following construction from [26, 27]. Let f be a Cr-map of an
n-dimensional manifold M . Let B be any ball in M , i.e. let B = ψ(Un) where
Un is the closed unit ball in Rn and ψ is some Cr-diffeomorphism which takes
Un into M (we may take various maps ψ for the same ball B; transition from one
particular choice of ψ to another corresponds to a Cr-transformation of coordinates
in B). We also assume that the Cr-diffeomorphism ψ is, in fact defined on some
larger ball V : Un ⊂ V ⊆ Rn. Given positive m, the map fm|B is a return map if
fm(B)∩B 6= ∅. By construction, the return map fm|B is smoothly conjugate with
the map fm,ψ = ψ−1◦fm◦ψ (in order the map fm,ψ to be properly defined, we need
to also assume that fm(B) ⊆ ψ(V )). The map fm,ψ is a Cr-map Un → Rn, and it
is solely defined by the choice of the coordinate transformation ψ and the number
of iterations m (the choice of the map ψ : Un → M fixes the ball B = ψ(Un)
as well). We will call the maps fm,ψ obtained by such procedure renormalized
iterations of f . The set

⋃
m,ψ

fm,ψ of all possible renormalized iterations of f will be

called the dynamical conjugacy class of f . As the balls ψ(Un) can be of arbitrarily

1to get convinced, one may take any map of a two-dimensional disc with a chaotic behavior,
find a saddle periodic point and follow, numerically, its stable and unstable invariant curves; the
usual picture is that, after a number of iterations, folds in the unstable curve come sufficiently
close to the stable curve, so the tangencies can be created by a slight parameter tuning
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small radii, with the center situated anywhere, the dynamical conjugacy class of f
captures arbitrarily fine details of the long-time behavior of f .

When we speak about dynamics of the map, we somehow describe its iterations,
and the description should be insensitive to coordinate transformations. Therefore,
the class of the map f , as we just have introduced it, gives some representation
of the dynamics of f indeed: the larger the class, the more rich and diverse the
dynamics of f is. There are some natural restrictions on this richness, as certain
properties of the map f are inherited by all the maps from its class. For instance,
when the topological entropy of f is zero, so is the entropy of every map from the
class, any form of the hyperbolicity is inherited as well, all the maps from the class
of a symplectic map are symplectic (although the symplectic form may become
not a standard one), the class of a volume-contracting or a volume-preserving map
contains only volume-contracting and, respectively, volume-preserving maps, an
orientation-preserving map produces a class which contains orientation-preserving
maps alone.

Importantly, only few of such “inheritable” properties can survive Cr-small
perturbations of the map f . One of the known robust structures is the so-called
dominated splitting (see [18]). A smooth map f : M → M of a compact n-
dimensional manifold M has a dominated splitting when the tangent space at
every point x ∈M is split into direct sum of two subspaces: N+(x)⊕N−(x) = Rn,
which depend continuously on x, which are invariant with respect to the derivative
of f : f ′(x)N+(x) = N+(f(x)) and f ′(x)N−(x) = N−(f(x)), and which, at each
x0 ∈M , satisfy the following requirement:

λ−(x0) := limm→+∞ sup
‖u‖=1,u∈N−(x0)

1
m

ln ‖f ′(xm) · · · f ′(x0)u‖ <

< λ+(x0) := limm→+∞ inf
‖v‖=1,v∈N+(x0)

1
m

ln ‖f ′(xm) · · · f ′(x0)v‖,

where x0, x1, . . . , xm, . . . denotes the orbit of x0 by f ; in other words, the dom-
inance condition means that the maximal Lyapunov exponent corresponding to
the subspace N−(x0) is strictly less than minimal Lyapunov exponent correspond-
ing to the subspace N+(x0). There always exist trivial splittings, with N− = ∅,
N+ = Rn or N− = Rm, N+ = ∅. Non-trivial dominated splitting exists for
uniformly hyperbolic systems (in this case λ−(x) < 0 < λ+(x) for every x) and
for uniformly partially-hyperbolic and pseudo-hyperbolic (volume-hyperbolic) sys-
tems. In general, there may be several dominated splittings for the same map,
so we may have a hierarchy of subspaces ∅ = N−0 ⊂ N−1 ⊂ · · · ⊂ N−k = Rn,
Rn = N+

0 ⊃ N+
1 ⊃ · · · ⊃ N+

k = ∅ such that every pair N−j , N+
j corresponds

to a dominated splitting. For any particular field N±k (x) of the invariant subsets
in this hierarchy, the linearized map restricted to the subset may exponentially
contract (or expand) d-dimensional volumes for some d ≤ dimN±k . This volume
contraction/expansion property is also inheritable by all renormalized iterations of
f and it also persists at small smooth perturbations.

The general suspicion is that, perhaps, no other robust inheritable properties
exist. This claim can be demonstrated for various examples of homoclinic bifur-
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cations (see [24]), and can be used as a working guiding principle in the study of
systems with a non-trivial dynamics:
every dynamics which is possible in Un should be expected to occur at the bifurca-
tions of any given n-dimensional system which has a compact invariant set with-
out a non-trivial dominated splitting and without a volume-contraction or volume-
expansion property.
This statement is not a theorem and it might be not true in some situations, still
it gives a useful view on global bifurcations, as we will see in a moment.

The basic example is given by an identity map of a ball. The identity map has
no kind of hyperbolic structure, neither it contracts nor expands volumes, so, ac-
cording to the above stated principle, ultimately rich dynamics should be expected
at the bifurcations of this map. Indeed, let us call a map f Cr-universal [26, 27]
if its dynamical conjugacy class is Cr-dense among all orientation-preserving Cr-
diffeomorphisms acting from the closed unit ball Un into Rn. By the definition, the
dynamics of any single universal map is ultimately complicated and rich, and the
detailed understanding of it is not simpler than the understanding of all diffeomor-
phisms Un → Rn altogether. At the first glance, the mere existence of Cr-univesal
maps of a closed ball is not obvious for sufficiently large r. However, the following
result is proven in [27].

Theorem 0.1. For every r = 1, . . . ,∞, Cr-universal diffeomorphisms of a given
closed ball D exist arbitrarily close, in the Cr-metric, to the identity map of D.

A way to use this result is to note that, as it follows from Theorem 0.1, every
time we have a periodic orbit for which the corresponding first-return map x 7→ x̄
is, locally, identity:

x̄ ≡ x,

or coincides with identity up to flat (i.e. sufficiently high order) terms:

x̄ = x+ o(‖x‖r),

a Cr-small perturbation of the system can make the first-return map universal, i.e.
bifurcations of this orbit can produce dynamics as complicated as it only possible
for the given dimension of the phase space.

In examples below, we show how powerful this observation can be. We start
with the so-called absolute Newhouse domain A in the space of Cr-smooth maps
(r ≥ 2) of any given manifold M , dimM ≥ 2. This domain is an open subset of the
Newhouse domain such that no map from A has a non-trivial dominated splitting,
nor it uniformly contracts or expands volumes. The set A can be constructed
as the interior of the closure of the set of maps which have a particular type of
heteroclinic cycle.

Namely, in the two-dimensional case the heteroclinic cycle is the union of 4
orbits: two saddle periodic orbits, p1 and p2, such that the saddle value at p1 is
less than 1 and at p2 it is greater than 1, and two heteroclinic orbits, Γ12 and Γ21,
such that Γ12 corresponds to transverse intersection of Wu(p1) and W s(p2) (the
unstable manifold of p1 and the stable manifold of p2), and Γ21 corresponds to



Richness of chaos 5

tangency between the other pair of invariant manifolds, Wu(p2) and W s(p1). The
saddle value is defined as the absolute value of the product of multipliers of the
periodic orbit, i.e. it is the absolute value of the determinant of the derivative of
the first-return map (if x0 is a point of period l, then f l(x0) = x0 and f l is called
the first-return map). Thus, if the saddle value is greater than 1, then the map f
expands area near p1, and f is area-contracting near p1 if the saddle value is less
than 1. So, no map with the heteroclinic cycle of the type we just described is
uniformly area-contracting, nor area-expanding. The tangency between the stable
and unstable manifolds forbids the existence of a non-trivial dominated splitting.
When the map f is perturbed, the tangency may disappear, however new orbits
of heteroclinic tangency may appear somewhere else, and indeed, as follows from
[2, 7], maps with a heteroclinic cycle of the above described type are dense (in Cr,
r ≥ 2) in a non-empty open region in the space of Cr-smooth maps; moreover, the
closure of this region contains all maps with such heteroclinic cycles. This region
is our domain A in the two-dimensional case.

In the higher-dimensional case, where n = dimM > 2, we consider heteroclinic
cycles for which the saddle periodic orbits p1 and p2 have one-dimensional unstable
manifolds, so the multiplers λj1, λj2, . . . , λjn of the orbit pj are such that |λj1| >
1 > max

k≥2
|λjk| for each j = 1, 2. For each of the points pj , we order the multipliers

according to the decrease in the absolute value, i.e. |λjk| ≥ |λjs| if k ≤ s. We
assume then that λ12 is real, while the rest of the multipliers λ1k, k ≥ 3, go in
complex-conjugate (non-real) pairs except, maybe, for the last one, λ1n, which
must be real if n is odd. For the multipliers λ2k, k ≥ 2, of the orbit p2, we will
allow only the last one, λ2n, to be real if n is odd. As in the two-dimensional
case, we also assume that Wu(p1) and W s(p2) have a transverse intersection at
the points of a heteroclinic orbit Γ12, while Wu(p2) and W s(p1) have a tangency
at the points of the heteroclinic orbit Γ21.

These conditions mean [24] that the map with such heteroclinic cycle cannot
have a non-trivial dominated splitting. Indeed, if we have a dominated splitting,
the spaces N+ and N− at a periodic point must be the invariant subspaces of
the derivative of the first-return map at this point; moreover, for some λ̄ > 0, the
space N+ corresponds to the multipliers whose absolute value is greater than λ̄,
and N− corresponds to the multipliers whose absolute value is less than λ̄. As
the multipliers λ2k, k ≥ 2, go in pairs of equal absolute value, for any non-trivial
dominated splitting the dimension of the space N+ at the points of the orbit p2

must be odd. On the other hand, as the multipliers λ1k with k ≥ 3 also go in
complex-conjugate pairs, the only possibility for the space N+ at the points of the
other periodic orbit, p1, be odd-dimensional corresponds to dimN+ = 1. Since
N+ depends on the point continuously, dimN+ should be the same at the points
of p1 as at the points of p2. Thus, the only possibility for a non-trivial dominated
splitting occurs when at the points of the periodic orbits pj , j = 1, 2, the space
N+ corresponds to the multiplier λj1 (whose absolute value is greater than 1),
and the space N− corresponds to the rest of multipliers, i.e. N+ must be tangent
to Wu(pj) and N− must be tangent to W s(pj). By continuity, this would imply
that N+ would be tangent to Wu(p2) at every point of Wu(p2), and N− would
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be tangent to W s(p1) at every point of W s(p1). As the manifolds Wu(p2) and
W s(p1) are not transverse at the points of the heteroclinic orbit Γ21, we find that
N+ ⊕N− 6= Rn, a contradiction to the definition of the dominated splitting.

Now, assume that

∣∣∣∣∣
n∏
k=1

λ1k

∣∣∣∣∣ < 1 and

∣∣∣∣∣
n∏
k=1

λ2k

∣∣∣∣∣ > 1, i.e. the map f contracts

volume at the points of p1 and expands volume at the points of p2. So, the
maps with the heteroclinic cycle that satisfies all these assumptions do not have a
non-trivial dominated splitting and cannot be uniformly volume-contracting, nor
volume-expanding. One can extract from [4, 14] that the Cr-closure of the set
of the maps with such heteroclinic cycles has a non-empty interior, which is our
absolute Newhouse domain A in the space of n-dimensional Cr-maps.

By the definition, for any map f ∈ A, by an arbitrarily small perturbation of
f a heteroclinic cycle of the type we just described can be created. Typically, the
tangency between Wu(p2) and W s(p1) at the points of the heteroclinic orbit Γ21

is quadratic, however, by an arbitrarily small (in Cr) perturbation, this tangency
can be split in such a way that a new orbit of the heteroclinic tangency between
Wu(p2) and W s(p1) can be created, and for this new orbit the order of tangency
can be infinite [8, 9]. This contradicts the usual logic stemming from singularity
theory, where small perturbations usually lead to a decrease in the degeneracy.
Here, the order of degeneracy may be increased without a bound (the price is
that the new heteroclinic orbit which corresponds to the flat tangency is, in some
sense, much longer than the original orbit of quadratic tangency). Importantly,
by an additional, arbitrarily Cr-small perturbation of the heteroclinic cycle with
the flat tangency, a periodic spot can be created (cf. [9]). The periodic spot is a
ball D ⊂M filled by periodic points, i.e. f lx ≡ x for every x ∈ D and some l, the
same for all x ∈ D. By applying Theorem 0.1 to the map f l|D, we thus find

Theorem 0.2. For every r = 2, . . . ,∞, the Cr-universal maps form a residual
subset2 in the absolute Newhouse domain.

A more dramatic formulation of this result can be as follows: dynamics of a
generic map from the absolute Newhouse domain A is beyond human comprehen-
sion. Indeed, just by the definition, every possible robust (i.e. common for an
open set of maps) dynamical feature is present in each universal map as well. In
particular, each universal map has an infinite set of attractors of all possible robust
types, as well as an infinite set of repellers of all types. For example, as a corollary
to Theorem 0.2, we obtain

Theorem 0.3. For every r = 2, . . . ,∞, a Cr-generic map f ∈ A has infinitely
many uniformly hyperbolic attractors of every possible3 topological type.

Of course, every such map has all possible types of arbitrary uniformly-hyperbolic
sets, i.e. not just attractors, also “saddles” and repellers. Similar to [7], one may
show that the attractors and repellers are not separated (the closure of all the

2i.e. a countable intersection of open and dense subsets
3for a map of the n-dimensional ball, n ≥ 2
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attractors has a non-empty intersection with the closure of all the repellers) for
a generic map from A. Indeed, we obtain the attractors/repellers from periodic
spots, which are born in an arbitrarily small neighborhood of some heteroclinic
cycles; in particular, some iteration of such spot comes close to the saddle peri-
odic orbit which is a part of the heteroclinic cycle. By taking smaller and smaller
neighborhoods of the heteroclinic cycle, we find that the limit of both attractors
and repellers contain the same saddles. We note that this inseparability of the set
of attractors from the set of repellers means that the Conley’s fundamental con-
struction of attractor-repeller pairs [19] cannot, generically, produce completely
meaningful results.

The fact that generic maps may have an infinite (countable) set of attractors
is known since [1] where the genericity of the maps with infinitely many coexisting
stable periodic orbits (“sinks”) was proven for area-contracting maps from the
Newhouse domain. Moreover, the closure of the set of stable periodic orbits was
shown to contain a non-trivial hyperbolic set. Generic inseparability of the set of
“sinks” from the set of “sources” (completely unstable periodic orbits) was proven
in [7] for the absolute Newhouse domain in the space of two-dimensional maps
(i.e. when no area-contraction nor area-expansion property holds). Examples
with coexistence of infinitely many non-trivial attractors (invariant tori, Lorenz-
like attractors, Benedics-Carleson attractors) were built in [6, 10, 11, 12, 17]. Our
results here show that attractors of arbitrarily complicated nature can coexist in
unbounded number.

Maybe even more typical for the absolute Newhouse domain are strange at-
tractors of a different nature, as described by the following

Theorem 0.4. For every r = 2, . . . ,∞, ω, a Cr-generic map f ∈ A has an un-
countable (of the cardinality of continuum) set of weak attractors such that for each
orbit in each of these attractors all Lyapunov exponents are zero.

By the weak attractor we mean a compact, chain-transitive invariant set Y
which is an intersection of a nested sequence of trapping neighborhoods, namely

Y =
∞⋂
i=1

Di where Di ⊆ Di+1 and (the trapping property) f(cl(Di)) ⊂ int(Di)

[20, 25]. This definition means that even if we add a sufficiently small bounded
noise to f , the forward iterations of any point in Y will forever stay in a small
neighborhood of Y (in one of the trapping regions Di). The chain-transitivity
means that for an arbitrarily small level of the bounded noise there exists a “noisy”
orbit of f which connects any two points in Y , i.e. the attractor Y contains no
smaller attractor. The weak attractors we construct in Theorem 0.4 are the so-
called solenoids, filled by limit-periodic orbits. Namely, there is a monotonically
increasing sequence of integers ki such that each of the sets Di is a union of ki
disjoint balls Dij , j = 1, . . . , ki, and f(clDij) ⊂ intDi,j+1modki (hence ki+1 is
always a multiple of ki).

It is obvious that one can build such solenoids by a perturbation of periodic
spots. The periodic spot itself is a chain-transitive set and it can be made a weak
attractor (even asymptotically stable) by a small smooth perturbation. Every orbit
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in the periodic spot has all Lyapunov exponents zero. However, the maps with the
periodic weak attractors with zero Lyapunov exponents are not generic (the set of
the maps with periodic spots is, as we explained above, dense in A, but it is not
residual - by Kupka-Smale theorem). Therefore, we need a solenoid construction
in order to achieve the Cr-genericty. Moreover, in contrast to the previous results
which have been proven so far only in the smooth category, Theorem 0.4 holds
in the real-analytic case (r = ω) as well. There is a hope in the contemporary
dynamical systems community that some kind of non-uniform hyperbolicity or
partial hyperbolicity is a typical feature for the majority of systems. Theorem 0.4
shows, however, that this cannot be fully true in the absolute Newhouse domain.

We have used a particular type of heteroclinic cycles in order to describe the
richness of dynamics and bifurcations in the absolute Newhouse domain. One can,
however, show that maps with other types of homoclinic and heteroclinic cycles
or other bifurcating orbits whose existence prevents the map from possessing a
dominated splitting and from uniform contraction/expansion of volumes (see the
corresponding criteria in [24]) also belong either to the absolute Newhouse domain
itself, or to its boundary. One of the easiest examples is given by the so-called
reversible maps. Given a smooth involution R (i.e. R ◦ R = id) of the manifold
M , a map f : M →M is called reversible if f−1 = R ◦ f ◦R; such maps naturally
appear as Poincaré maps in time-reversible flows. Often, naturally appearing time-
reversible flows are also Hamiltonian, however, non-Hamiltonian reversible flows
are frequent too. A periodic point x of the reversible map f is called symmetric if
Rx = f lx for some l (in other words, the set of points of the symmetric periodic
orbit is invariant with respect to R). The symmetric periodic orbit is called elliptic
if all its multipliers are simple and have absolute value 1. Obviously, the multipliers
of a symmetric periodic orbit come in pairs: if λ is the multiplier, then λ−1 is also
a multiplier. Therefore, a symmetric elliptic periodic orbit remains elliptic for an
arbitrary reversible map sufficiently close (in C1) to the original one. In other
words, reversible maps with symmetric elliptic periodic orbits form an open subset
in the space of all Cr-smooth reversible maps. This open subset is our absolute
Newhouse domain in the reversible case, Ar (note that no non-trivial dominated
splitting exists at the elliptic point, nor the map can contract/expand volumes
exponentially at such point).

It is well-known [21] that dynamics near a typical symmetric elliptic point is
pretty much conservative, e.g. invariant KAM-tori may exist. However, between
the tori we have resonant periodic orbits, and one can show that by a perturbation,
which is arbitrarily small in Cr, r = 1, . . . ,∞, and which keeps the map in the
reversible class, arbitrarily degenerate resonant periodic orbits (hence - periodic
spots) can be born from the elliptic orbit. Even if a periodic spot sequence is
symmetric, it can be split into a pair of non-symmetric spot sequences (i.e. one
sequence in the pair is taken into the other spot sequence by the involution R).
Behavior near a non-symmetric periodic orbit (e.g. near a non-symmetric periodic
spot sequence) of a reversible map does no longer need to be conservative-like or
in any other way to differ from the general case (cf. [13]). Thus, by applying
Theorem 0.1 to the non-symmetric periodic spot sequences which emerge near the
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symmetrtic elliptic orbit, we obtain

Theorem 0.5. For every r = 1, . . . ,∞, the Cr-universal maps form a resid-
ual subset in Ar. In particular, a Cr-generic map f ∈ Ar has infinitely many
uniformly-hyperbolic attractors and uniformly-hyperbolic repellers of every possible
topological type, and the closure of the attractors of each of such maps coincides
with the closure of the repellers and contains all symmetric elliptic points.

One may argue that the genericity notion we employ here is not necessarily
adequate to the intuitive idea of “being typical”. However, if we do not insist on
having an infinite set of hyperbolic attractors and are satisfied with, say, one, the
corresponding maps will be open and dense in Ar. Since the emergence of hyper-
bolic theory in the 60-s, the problem of finding a uniformly-hyperbolic attractor
in a system of natural origin has been actively discussed (see also a very interest-
ing recent discovery in [22, 23]). Ironically, Theorem 0.5 offers amazingly simple
while seemingly useless solution: any reversible map with elliptic point in general
position possesses a hyperbolic attractor. Of course, this is hardly what we want,
as such attractor does not represent the whole of dynamics and coexists with too
many other, mainly unknown, objects.

In the case of a symplectic map f of an even-dimensional symplectic manifold
M , we restrict the definition of the dynamical conjugacy class of f by including
into it only those renormalized iterations fm,ψ = ψ−1 ◦ fm ◦ ψ which all preserve
the same given symplectic form on M (for example, when M is a two-dimensional
disc with the standard symplectic form dx∧dy, ψ can be any map with a constant
Jacobian). Though this requirement restricts possible choices of the maps ψ, the
balls ψ(Un) can still be of arbitrarily small sizes and situated anywhere in M ,
so the such defined class of f still provides a description of the behavior of f
on arbitrarily fine spatial scales. With this definition of the dynamical conjugacy
class we call a symplectic map Cr-universal if the Cr-closure of its class contains all
orientation-preserving symplectic Cr-diffeomorphisms acting from the closed unit
ball Un into Rn.

Exactly like in the above discussed case of reversible maps, the maps with ellip-
tic periodic points form an open subset, As, in the space of Cr-smooth symplectic
maps. While most of the neighborhood of the elliptic point is filled by KAM-tori,
resonant periodic orbits between the tori can be arbitrarily degenerate, and pe-
riodic spots can be born out of the elliptic orbit by an arbitrarily small smooth
perturbation within the class of symplectic maps. By applying a “symplectic ver-
sion” of Theorem 0.1 to these spots (see [26, 9] for the two-dimensional case) we
obtain

Theorem 0.6. For every r = 1, . . . ,∞, the Cr-universal maps form a residual
subset in the absolute Newhouse domain As in the space of symplectic maps.

We, of course, do not have attractors or repellers here (as symplectic maps
are volume-preserving). Note also that in the two-dimensional case the set As
coincides with the usual Newhouse domain in the space of area-preserving maps,
and in this case Theorem 0.6 holds true for the analytic case (r = ω) as well [9, 28].
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Symplectic maps appear as Poincaré maps for Hamiltonian systems restricted
to a fixed energy level. Unless a special structure (uniform partial hyperbolicity)
is imposed on the system, elliptic periodic orbits appear in Hamiltonian systems
seemingly inevitably (e.g. they exist generically in energy levels near points of
minimum of the Hamiltonian). By Theorem 0.6, dynamics near any such orbit
can approximate iterations of an arbitrary symplectic map arbitrarily well. It is
one of the most basic physics beliefs that the fundamental dynamical processes
are described by Hamiltonian equations, the laws of nature. By Theorem 0.6,
given any such process, we may record what the values of variables are at certain,
arbitrarily long, discrete sequences of time values, and, for an arbitrary large set
of such recordings, almost any, arbitrarily chosen Hamiltonian system (with an
elliptic orbit somewhere) will reproduce all the records with an arbitrary high
precision, just by an appropriate change of variables and arbitrarily fine tuning of
parameters - with the only requirement that the number of degrees of freedom is
determined correctly. In other words, for an arbitrary choice of the laws of nature
one can still have an arbitrarily good agreement with observation by making a
right choice of variables. The point of view that the laws of nature are relative,
and their choice is, to a certain extent, a matter of convenience, exists for a long
time (see e.g. [29]); our results here provide an additional support to it.
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