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1. Introduction 

The purpose of this paper is to present a list of asymptotic normal forms which describe the 

trajectory behaviour near the stability boundary of a triply degenerate equilibrium state in 

systems with discrete symmetry. We say a triple instability when a dynamical system has an 

equilibrium state such that the associated linearized problem has a triplet of zero eigenvalues. 

In this case, as it is well known, the study is reduced to a three-dimensional system on the 

center manifold. Moreover, if the original system possesses a symmetry, as many systems in 

hydrodynamics do, then the reduced system may also inherit the symmetry. 

In order to study bifurcations near a stability boundary one must introduce small governing 

parameters,the number of which is at least equal to the order of degeneracy of the linear problem, 

or this number may even be greater provided there are any additional degeneracies in the 

non-linear part. Since the unfolding parameters are small, the orbits in the center manifold may 

stay in a small neighborhood of the equilibrium state for a rather long time (there is no fast 

instability in the center manifold because all characteristic exponents of the reduced linearized 

system are nearly zero). Thus, it is reasonable to rescale the parameters and phase variables so 

that they become of finite values instead of asymptotically vanishing ones; the time variable 

must be rescaled too. 

This approach is rather general. Its advantage is that upon the rescaling procedure has been 

carried out, many resonant monomials disappear The most trivial example is the saddle-node 

bifurcation with a single zero eigenvalue. In this case the center manifold is one-dimensional. 

The Taylor expansion of the system near the equilibrium state may be written in the following 

form 

. + 2 l 3 X = J.I x + 3X + ... , 
where J.I is a small governing parameter. The rescaling x --+ Mx, t --+ t/ M brings the 

system to the form 

x = ±1 + x2 + O( M), 
so only the second degree monomial survives in the limit J.I --+ O. 

An analogous algorithm can be applied to the multi-dimensional case. The limit of the 

rescaled system as governing parameters tend to zero, gives a description "in the main order" of 

the behavior of the system near a bifurcation point. We call such a limit system an asymptotic 

normal form. 
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The asymptotic nonnal fonns that arise in the study of equilibria with single or double zero 

eigenvalues are one- or two-dimensional, respectively. The analysis of such fonns is often very 

comprehensive so the most of efforts is applied for establishing a rigorous correspondence 

between the dynamics in the asymptotic nonnal fonn and that in the original system 11,21 . The 
situation is different in higher dimensions. 

Three- (and higher) dimensional asymptotic nonnal fonns may exhibit a non-trivial dynam­

ics. For example, Shilnikov chaos was found in the asymptotic nonnal form corresponding to 

the bifurcation of triple zero eigenvalue with a complete Jordan box (31 ; the existence of the 

Lorenz attractor was shown in nonnal fonns for the bifurcations corresponding to triple zero 

eigenvalue in case of an additional symmetry 141. Notably, the nonnal fonns mentioned above 

appear to coincide with some well-known models coming from different applications: the third­

order Dulling equation, the Shimizu-Marioka system, the Lorenz model. 

In this paper we derive an infinite series of asymptotic nonnal fonns (ordered by the 

increase in the degree of degeneracy in non-linear tenns) corresponding to the triple zero 

eigenvalue ( with some non-degeneracy conditions: (3), (17) and (IS» in a system with 

Zq-symmetry. Namely, assuming that (x, y, z) are the coordinates in the three-dimensional cen­

ter manifold and a bifurcating equilibrium state resides at the origin, we suppose that our system 

is equivariant with respect to the rotation by the angle 21f/q around the z-axis. We should 

note that the cases q = 2 and q ~ 3 are principally different and will therefore be considered 

separately. The resulting asymptotic nonnal fonns are given by systems (13) for q = 2 and (2S) 

for q ~ 3. The degrees of polynomials in the right-hand side are listed in (13) and (25)-(27), 

respectively. We note that all listed systems have a natural "physical" meaning, namely, they 

describe the behaviour near a triple instability in the presence of a certain symmetry. Thus, this 

list below may be regarded as a recipe for exclusion of irrelevant terms in the non-linearity as 

well as for selection of those non-linear tenns which are responsible for specific details of the 

behaviour. 

2. Symmetry of order 2 

Consider a system in 1R3 near an equilibrium state 0(0,0,0) with three zero characteristic expo­

nents. We suppose that the systems possesses a symmetry (x, y, z) <---t (-x, -y, z). We will 

also suppose that the linear part of the system near 0 restricted onto the invariant plane z = 0 

has a complete Jordan block. Then the system may locally be written in the fonn 

{ 

i: = y 
iJ = x(az + F(x2, y, y2, z)) + yG(y2, z) 
. - H( 2 2) Z - x ,xy,y ,z , 

where neither H(O, 0, 0, z) nor F(O, 0, 0, z) contains linear tenns. 

Let us consider a three-parameter perturbation of the system in the fonn 
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(2) 

where Jl = (Jl I,Jl2,Jl3) is a small parameter; the functions F,G and H may also depend on Jl. 

Let us suppose that 

a fO. (3) 

It is then obvious that a change of the z-coordinate reduces (2) to the following form (with some 

newG and H) 

Let us rescale the variables and the time: 

X --T /5"x , y --T /5vY, z -t /5 z z, t -t t!T, 

where /5" , /5y, {;z and T are some small quantities. We assume Jl1 f 0 and let 

/5y = T/5", /5z = T2 = IJlII. 
Then, (4) recasts in the form 

{ ~ z = 

where Q and A are new rescaled parameters, no longer small: 

(4) 

(5) 

The asymptotic normal form is a finite limit of system (5) as Jl -t O. Note that different 

choices of proportion between the scaling factors /5" and T yield different normal forms. 

In the last equation in (5) those terms which contain Z2, yl and yz tend to zero as T -t O. 

Thus, by cutting out small terms we transform (5) to the form 

(6) 

The right-hand side in (6) is to be finite, i.e., if the Taylor expansions of the functions Hi begin 

with x2m; for zero values of the perturbation parameters Jl1,Jl2,Jl3, then the following inequali­

ties must hold 

- 293 -



V Pisarevskii. A. Shilnikov and D. Turaev 

6;(m,+ I) /TJ < 00 , 

6;(7n2+1) /T2 < 00, 

6;(ffi,+I) /T < 00, 

6;(m.+I) /T < 00. 

Therefore, we can choose T such that 

T ~ 6~, (7) 

where 

{3 = min {~(ml + 1), m2 + 1, 2(mJ + 1), 2(m4 + 1)} . (8) 

For example, in the most generic case where Hi(O) 'f 0 (i = 1, . .. , 4) the exponent {3 = 2/3 

in (7), (8). Then, system (6) is reduced to the form 

{ 

1: = Y 
if = x(±1 - z ) - AY 
Z = -o:z +x2 H I (0)+O(T). 

(9) 

In the limit T -> 0 this system becomes the Shimizu-Marioka model, where the parameters 0: 

and A may take arbitrarily finite values. 

Let us now consider an extra degeneracy : HI (0) = 0 and H; (0) 'f O. In order to study 

bifurcations in this case,one should introduce a new independent governing parameter which is 

the constant term of the Taylor expansion of HI . 

Let us next suppose {3 = 1 as follows from relation (8). System (6) is then reduced to the 

following asymptotic form: 

{ 

1: = Y 
if = x(±1- z ) - AY 
Z = -o:z + x 2hlO + H2(0)xy, 

(10) 

i.e., to the Lorenz equations. Here, hlO = HI(O)/T is the third rescaled governing parameter 

which may take arbitrarily finite values. 

The next degeneracy H2(0) = 0, H~(O) 'f 0 modifies the third equation in (10): 

- - 4 
Z = -o:z + x 2h lO + h20XY + H; (O)x , (II) 

where hlO = HI (0)/r/2 and h20 = H2(0)/T I/2 Here, (3 = 4/3. 

By repeating this procedure we get a hierarchy of the asymptotic normal forms. Let us 

denote 
00 2_'" 2i Hi(X ) - L Hijx . 
j 

We assume that at the moment of bifurcation the values of Hij vanish for j = 0, . .. , m; - 1. As 
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before, we will consider these Hij as additional independent small parameters. 

It is obvious that in the rescaled system (6) there are non-zero coefficients in front of those 

terms which correspond to such m; for which the minimum in (8) is achieved; all terms of higher 

orders vanish in the limit T -+ O. The terms of degree less then 2mi, which appear in Hi for 

non-zero parameter values, also survive after the rescaling; their normalized coefficients appear 

as the independent parameters assuming arbitrary finite values. 

Thus, if we get rid of asymptotically vanishing terms, system (6) takes the form 

{

X = y 
iJ = x(±1 - z) - AY 
i = -az + x2 HI (X2) + XyH2(X2) + y2H3(X2) + zx2H4(X2), 

where His are polynomials of degrees ni such that 

max B(n.+ 1), ~ + 1, 2(n3 + 1), 2(n4 + I)} = ~ < 

min U(n. + 2), n2 + 2, 2(n3 + 2), 2(n4 + 2)} 

(12) 

(13) 

(if some Hi vanish identically, then we let ni = -1). The coefficients of ii;j are defined as 

follows: 
2(j + 1) 

- 8i - (J 
hi; = H;;/T 

where 51 = 3, 82 = 2, 83 = 54 = 1. 

It follows immediately from (13) that n3 = n4, i.e., the degrees of il3 and il4 are always 

equal. Hence, the list of the asymptotic normal forms which are given by (12),(13) can be 

ordered by the increase of the common degree n( = n3 = n4). 

The first in the list are the systems given by (9), (10) and (II) - they correspond to n = 

-1. For each of the greater values of n there are four sub-cases,as listed below. Each consecutive 

case corresponds to an additional degeneracy. This is a cyclic list: next after the fourth is the first 

case corresponding to the increased by 1 value of n. 

I. n. = 3n+2, ~ = 2n+ 1; atthe moment of bifurcation the first n coefficients vanish 

in both H3 and H4, the first 2n and (3n + 1) coefficients vanish in H2 and HI, respectively. 

2. nl = 371 + 3, n2 = 271 + 1; at the moment of bifurcation the first n coefficients vanish in 

both H3 and H4, the first (2n + 1) and (3n + 2) coefficients vanish in H2 and HI, respectively. 

3. nl = 3n + 3, n2 = 2n + 2; at the moment of bifurcation the first n coefficients vanish in 

both H3 and H4, the first (2n + 1) and (3n + 3) coefficients vanish in H2 and HI, respectively. 

4. nl = 371 + 4, n2 = 2n + 2; at the moment of bifurcation the first n coefficients vanish in 

both H3 and H4, the first (271 + 2) and (3n + 3) coefficients vanish in H2 and HI, respectively. 

3. Symmetry of order q (q > 3) 

Let us consider a system in 1R3 which possesses an equilibrium state (0,0,0) with three zero 
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characteristic exponents AI = A2 = A3 = 0. Let the Jacobian matrix of the system at the 

equilibrium state be zero, and the system be equivariant with respect to the rotation to 21f/q around 

the z-axis. The system near the equilibrium state can then be written in the form 

( 14) 

where w = x + iy and w = x - iy. We consider a three-parameter perturbation of (14) in the 

form 

(ILl + iJl2)w + wFI (ww, wq, wq) + W'I-I F2(ww, wq, wq) 
Z(WGI(WW, wq, W'I, z) + Wq- IG2(WW, wq, w q, z» 
-IL3Z + HI (ww, wq, wq) +ZH2(WW, wq, wq) + z2H3(WW, wq, wq , z). 

(15) 

Suppose that the main coupling term (the zw-term in the first equation in (15» is non-zero at 

the bifurcation moment, Le., 

(16) 

We also assume 

H3(0, 0,0,0) =f. 0. (17) 

Denote A = GI(O, 0, 0, 0) and B = H3 (0, 0,0,0). Without loss of generality we assume B = 1 

(this can always be achieved by a linear rescaling of z). One can check that a suitable coordinate 

transformation 

z -.z + lI1(w, w) 
eliminates all terms in H2 up to any prescribed finite order, provided 

IrnA =f. ° (18) 

and 
1 

ReA =f. -, m = 1,2, ... . (19) 
m 

Condition (18) will be our standing assumption next. If (19) holds, we therefore assume 

H2 = O(lwIN) 

for some sufficiently large N . If, on the contrary, ReA . m = 1 for some integer m at the 

bifurcation, then the only term that survives in H2 is (ww)m, whence 

H2 = h2m(WW)m +O(lwIN) 

in this case. 

Let us rescale the phase and time variables: 

W-'T/3 W, Z-'T'YZ, t-.t/T, 

where /3 and "( are some quantities defined further and T = vi IL~ + 14. Then, system (15) takes 

the form : 
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w - eiflw + WFI(T 2i3WW , Tqi3W q, T qi3W q)/T 

+ W'I- I F2 ( T2i3 ww, T qi3 Wq, Tqi3W'1) / T 1-i3( q- 2) 

+ z(wG1(r2i3ww, Tqi3W q, T qi3W'1, r'Yz) 

+ W'I- IG 2(r2i3w1O, T qi3W q, T qi3W'1, T'YZ)/T(2-q)i3)/TI-'Y 

Z - -az + HI (T2i3101O, T qi3W q, r qi3W'1)/r'Y+ I 

+ ZH2(r 2i3ww, T qi3Wq, r qi3w q)/r + Z2 H3( r 2i3w1O, T Qi3W q, r Qi3W'1, T'Y Z)/T1-'Y, 

Q = Jl3/ J Jl~ + Jl~, n = Arg(JlI + iJl2) 
are the normalized parameters. 

(20) 

After the normalization the monomials that are multiplied by r in a positive power will disappear 

as r ---> 0, whereas the monomials with the factor TO remain. The coefficients of these monomials serve 

as some structural parameters of the system. The factor T in negative powers is allowed only in 

front of the terms whose coefficients vanish at the bifurcation moment; after the normalization 

these terms also remain, and their coefficients can be regarded as the normalized 

governing parameters (in addition to Q and n). 

We assumed (see (\6),(\7» that the term zw in the first equation in (\5) as well as Z2 in the 

second equation do not vanish. It is hence seen from (20) that I 2: 1. In order for those terms to 

persist in the asymptotic normal form, we choose I = 1. Then, the normalized system is given by 

w - eiflw + w FI (T2i3101O, T Qi3WQ, T Qi3W'1)/T 

+ W'I-I F 2( r2i3ww, T Qi3WQ, TQi3W'1)/TI-i3(Q-2) 
Z + Azw + 0(1) (21) 

Z - -QZ + Z2 + HI (T 2i3WW , r Qi3w Q, ~i3Uf1)/T2 

+ ZH2(T 2i3WW , T Qi3w Q, T Qi3WQ)/T + 0(1). 

By dropping the asymptotically vanishing terms, it is rewritten as 

W -

Q-I 
eirlw + w E r2ki3-1 (WW)k Rk (Ti3QWQ, T i3QW'l) 

k=cO 

+ 
Q-I 

w Q- 1 E T(2k+Q-2)i3- I (WW)k Pk(TQi3W Q, T Qi3WQ) 
k~O (22) 

+ Azw 
Q-I 

Z - -QZ + Z2 + E T2ki3-2(ww)kSk(rPQwQ, T i3QW'l) 
k=cO 

+ CmZT2mi3-l(ww)m 

where Ro(O,O) = 0, So(O,O) = 0; the last term appears only if the non-resonance condition 

(\9) is violated, so the integer power m is here equal to (ReA)-I. 
In the limit T ---> +00 the terms up to the orders rk,Pk, Sk survive in, respectively, R.I., Pk , Sk 
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if and only if 

max (2k+qTk,2(k - 1) + q(Pk + 1), 2k + qSk) = ~ < 
k=O •...• q-1 2 f3 

(23) 

< min (2k +qh + 1),2(k -1) +q(Pk + 2), 2k + q(Sk + 1» 
k=O •...• q-1 2 

If the monomial z( ww)m in the second equation in (22) is resonant, it will merge to the final 

asymptotic normal form in case where 
1 

(ReA)-1 = m:S 2f3. (24) 

Comparing (24) with (23) reveals that this term would appear in the resulting normal form si­

multaneously with the term w(ww)'" in the first equation (i .e., when T", ~ 0). 

Relation (23) is easily resolved and gives 

{ 

[S~k] if 2k:S q - 1 

Tk = [S2;-q] _ 1 if 2k 2: q (25) 

[
Sq_2] 

po = -2- , Pk = Tk_1 - 1 for k = 1, ... , q - 1 

Thus, the structure of the asymptotic normal form is defined by the values of SO, • . . ,Sq_l. 
Moreover, it follows from (23) that 

and 

So - 1 2: Sq_1 ~ So - 2. 

Therefore, the string ofthe integers Sk has the following structure: for some integers ko and k I 

such that 0 :S ko < kl :S q - 1 and for some integer d ~ 0 

So = .. . = Sk. = d, Sko+1 = ... = SkI = d - 1, Sk = d - 2 at k > k 1. (26) 

Furthermore, we have from (23) 

which gives 

i.e., 

or, finally, 

qd + max(2ko, 2kl - q) :S h < qd + min(2ko, 2kl - q) + 2, 

2ko < 2kl - q + 2 and 2kl - q < 2ko + 2, 

ko + lJ. if q is even 
2 

kl = ko + ~ ± ~ if q is odd. 
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The obtained relations (24)-(27) describe completely the structure of the asymptotic normal 

form. Namely, this is the following system 
q-I 

tV = eillw+ I)WW)k (wRk(wq,wq) + wq- I h(wq, wq)) + Azw 
k=O 

(28) 
q-I 

Z = -uz + Z2 + ~)WW)k Sk(Wq, wq) + Cmz(ww)m 

where Rk.i\,Sk are polynomials of degrees 7'k,Pk,Sk respectively, where 7'k and Pk are ex-

pressed in terms of Sk via (25) and the set of the integers skhas the structure given by (26),(27)(the 

negative values of some of 1'k, Pk or Sk mean merely the absence of the corresponding terms in 

the normal form (28». Here, Ro(O, 0) = 0, So(O, 0) = O. The value of Cm is non-zero if and 

only if m= (ReA)-1 and l'm ~ O. 

Formulae (26),(27) define a natural order for the normal forms given by (28): the order follows 

the increase ofdand the increase of ko for each fixed d (in case q is odd there are also two possible 

values of k l ). 

Thus, the first in the list are the following systems 

q=3: {~ - eillw + Pooow2 + Azw 
-uz + Z2 + SIOOWW -

q > 3: { ~ - ei!lw+ Azw 
2 -- -uz + z + SIOOWW, 

They correspond to d = 0, ko = 1 (the case d = 0, ko = 0 is trivial). For q > 4 the list of 

normal forms corresponding to d = 0 is continued by 

IV = eillw + Azw + w E kOO(WW)k 
19:5ko/2 

[
q -1] q > 4, ko = 2" , " -2- : 

z - -uz + Z2 + E SkOO(WW)k 
1990 

We recall that ifin the above system ReA = 11m for some positive integer m ~ ko, then the 

term Cmz(wwr should be added to the last equation. Note that for q ~ 3 the systems above 

have the rotational symmetry w ...... wei<p. Hence they can further be reduced totwo-dimensional 

systems. 

The next are the normal forms with d = 1. We list them only for q = 3,4: 

q =3: {
tV = eillw + Pooow2 + Azw 
Z = -uz + Z2 + SJOoww + SOIow3 + SOOlW3, 

q = 3,4 {
tV = eillw + RJOow2w + Pooo'iiJl- 1 + Azw 
Z = -uz + Z2 + SIOOWW + SOIowq + SOOI'iiJI + S200(ww)2 + C1zww, 
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tV = eiOw + RlOOW2W + PoooUfl-1 + Azw 
q-l 

Z = -QZ + Z2 + 2: SkOO(wW)k + SOlOWq + SOOliffl 
k=l 

+SllOWqt1 tv + SIOI wwq+ 1 + C1zww. 

Here, 61 =1= 0 if and only if ReA = 1. 
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